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A B S T R A C T

Within the framework of Discrete Element Modelling of masonry structures, a contact law based on Cohesive
Zone Model and Coulomb’s law is proposed to describe the fracture behaviour of mortar joints. The contact law
is expressed in mixed mode I+ II and is based on the cohesive behaviours of pure modes I and II and on the
frictional behaviour whose parameters can be estimated from an experimental procedure consisting in two
fracture tests. Moreover, it is shown from numerical simulations that the contact law exhibits a load path de-
pendency in agreement with the quasi-brittle behaviour expected for mortar. Finally, a parametric study per-
formed from the simulation of the diagonal compression of a masonry panel shows a good agreement of the
obtained load-displacement responses and failure modes compared to experimental results of the literature.

1. Introduction

Masonry is one of the oldest building material and is thus widely
present around us. But despite the simplicity of its manufacturing, it
exhibits a complex behaviour, mainly influenced by the heterogeneity
and anisotropy induced by the units arrangement and by the difference
of material properties between the elements composing the structure.
However, a better understanding of masonry is relevant for design
optimisation of modern structures, but also for the conservation of
ancient buildings that are part of our heritage.

Many researchers proposed different approaches for the numerical
study of masonry structures, depending on the level of accuracy and the
simplicity desired. Macro-modelling considers the structure as a
homogenised continuum, averaging stresses and strains at global level.
Some macro-models are derived from concrete approach like smeared
crack models [26,28,15] but such models are more adapted to grouted
masonry because they do not take into account anisotropy due to
mortar joints [2]. Other macro-models were developed especially for
masonry and failure criteria are derived directly from experimental
data [21,16]. These approaches can give good idea of the behaviour of
the structure but are limited to conditions under which experimental
data are obtained.

As regards to multi-scale models, homogenisation techniques
[16,18] consider masonry as a periodical arrangement. This periodicity
allows to consider the media as a repetition of elementary cells that
take into account the behaviour of its constitutive materials. Stresses

and strains of the equivalent homogenised media are expressed from
the description of the elementary cell. The structure behaviour is thus
deduced from the properties of local elements.

To better understand masonry at a local level and take real geo-
metry into account, several micro-models have been proposed
[16,27,25]. They represent blocks, mortar joints and block/mortar in-
terfaces separately and allow to observe mechanisms at block level,
joint level, or combined mechanisms of block and joint. These ap-
proaches can represent local damage and global behaviour of masonry
structures but are very time consuming because of the large number of
represented elements. Consequently, these methods are not well
adapted to large scale structures. To tackle this limitation, simplified
micro-models are possible [16,12,6,29,30], where mortar joints and
block/mortar interfaces are lumped into one interface element. In this
framework, Discrete Element Methods (DEM) [7,19] allows both micro-
and simplified micro-modelling. Indeed, DEM describe collections of
bodies (rigid or deformable) in interaction and global behaviour is
deduced from local behaviour. Hence, this method is well suited for the
modelling of a discontinuous media such as masonry.

The aim of this work is to develop an accurate model, able to de-
scribe the fracture behaviour at the scale of mortar joints, i.e. at a
mesoscopic scale. Within the framework of Discrete Element Method,
the progressive damage of mortar joints and the frictional behaviour of
fractured joints are described with a Cohesive Zone Model (expressed in
mixed-mode I+ II) and with Coulomb’s law respectively.

Firstly, we briefly introduce Non Smooth Contact Dynamics method
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2. Discrete modelling with non smooth contact dynamics

Discrete element models have the ability to represent collection of
bodies in interaction and allow to take into account the discontinuous
nature of a media. The structure is described at a local scale through
interaction laws, and the global behaviour is then deduced from local
behaviour.

Generally, discrete element methods rely on few hypotheses [9]:

(i) Interaction depends only on the properties of the two bodies in
contact,

(ii) Contact region is small compared to the element size: contact can
be considered as punctual,

(iii) Strain is still confined to the contact region, so bodies can be
considered as rigid,

(iv) Interactions are independent from each other so that the contact
force can be determined from the strain at the contact region.

Contact Dynamics was first achieved by Moreau [19] and allows to
simultaneously deal with all active interactions over a time step, ig-
noring the 4th hypothesis (iv). Later, Jean [14] extends this method and
adapts it to collections of deformable bodies, giving birth to the so
called Non Smooth Contact Dynamics (NSCD) that neglects the hypoth-
esis (iii). The method uses an implicit time integrator and ”Non Smooth”
refers to the use of interaction laws not necessarily regular. The NSCD is
implemented into the LMGC90 software [8,10], that will be used for
discrete modelling.

Over a time step, three important steps are necessary to solve the
problem (Fig. 1):

• Contact detection

• Computation of contact forces, called contact problem

• Determination of bodies motion

Indeed, two sets of unknowns appear in the multi-contact problem:
local unknowns related to the interactions, and global unknowns related
to the bodies (Fig. 2). Mappings exist between these two levels. For a
contact α, the operator Hα gives the contribution Rα to global resultant
forces due to local forces Rα :

�= qR H ( )α α α (1)

where q represents the vector of generalised degrees of freedom.
Using duality consideration, velocity relative to contact can also be

related to body velocity with transposed operator HT :

� = qH V( )α T α α (2)

For each contact, the relative velocity and reaction force are related
through a condition of Signorini-Coulomb. The unilateral Signorini
condition (Fig. 3a) describes the impenetrability between two bodies
and is written as:
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where g is the gap between two bodies and �n the normal contact force.
For dynamical issues, it is more natural to formulate the above system
in terms of velocities:
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where �n is the normal component of velocity relative to the contact.
The Coulomb’s law (Fig. 3b) allows to express shear sliding re-

sistance between two bodies in contact and is written as:
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with >λ 0 and μ the friction coefficient.
Usually the motion of each body composing the divided media can

be described by the dynamics equation:

  = + +
+

q q t tV V R( ) ̇ ( , , ) ( )
Initial conditions and boundary conditions

int ext

(6)

where:

•  is the inertia matrix

• int refers to internal forces (deformable bodies) and the non-linear
inertia terms (centrifugal and gyroscopic)

• ext represents the external forces

• q corresponds to the vector of generalised degrees of freedom

• V is the velocity vector

• R represents contact forces

In order to manage collisions and non smooth events, dynamics (6)
is reformulated in terms of differential measures Dubois et al. [10].
Then, considering a time-interval +t t] , ]i i 1 of length h, the previous
equation can be integrated as:

Fig. 1. Resolution of the contact problem.

Fig. 2. Local/global mapping.

(NSCD) that will be used for discrete modelling with LMGC90 software. 
Then, we present the cohesive interface law that was implemented in 
order to model progressive damage of mortar joints. As we will see, this 
formulation is based on cohesive parameters corresponding to joints 
fracture in pure Mode I (opening) and pure Mode II (sliding), which can 
be easily estimated from two experimental tests.
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where I is the impulse of contact resultant.
Or:
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The term Vfree represents the free velocity, i.e. the velocity the body
would have without any contact.

The previous equation is then expressed with local unknowns, and
using the Delassus operator ( = −q qH H( ) ( )αβ T α

m
β

m
1 ), the problem

can be sum up as:
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where � �= + ∑ ≠qH V( )loc free
α Tα

m free β α
αβ β

, .
The resolution of the contact problem is done using a Non-Linear

Gauss Seidel method Jean [14].

3. Formulation of cohesive contact in mixed mode I+ II

3.1. Cohesive contact law

The contact forces calculation is based on the definition of contact
laws at the interfaces. LMGC90 has been already successfully used for
the modelling of masonry structures [22,24,32], but mainly with fric-
tional contact laws, or Mohr Coulomb criterion. However, a lot of
masonry structures include mortar joints between stone blocks that
confer cohesion at the contact level. The fracture behaviour of mortar
joints is known to be quasi-brittle, meaning that the failure of the joint
is preceded by a progressive damage resulting in a progressive decrease
of normal and tangential stiffness. Such a behaviour can be represented
by a Cohesive Zone Model, which describes the behaviour of a material
through a constitutive law that relates the stress at the interface to the
displacement discontinuity.

In this study, the structure, composed of masonry blocks linked by
mortar joints, is modelled by lumping mortar joints and block/mortar
interfaces into a unique interface (Fig. 4). This approach corresponds to
the simplified micro-modelling of Lourenço [16] that we will be called
thereafter mesoscopic approach.

Here, the constitutive law will admit an elastic part followed by a
concave softening branch, typical of quasi-brittle materials. The soft-
ening part is here approximated by a bilinear behaviour (Fig. 5a), ac-
cording to Morel et al. [20]. The bilinear softening branch is subdivided

into two parts which are assumed to represent the two main mechan-
isms activated during quasi-brittle failure, namely micro-cracking and
crack-bridging. The first part takes place after reaching the peak stress
and until the cross-over displacement δc and mobilises micro-cracking
energy J μ. In the second part, crack-bridging energy Jb is consumed
until the ultimate displacement δu. After δu, the interface is fully broken
and no more cohesive stress is transmitted. Then, a classic Coulomb’s
friction law takes place.

Hence, the shape of the cohesive function is given by:

(i) the initial stiffness K 0

(ii) the maximal stress σe

(iii) the total cohesive energy Jc

(iv) the energy distribution between the two cohesive energies J μ and
Jb, defined by the ratio = J JΦ /μ c

(v) the ultimate opening δu

The damage variable d, corresponding to the stiffness degradation
( =d K K/ 0), evolves from 1 for an intact interface, to 0 for a fully
broken interface.

For the shear behaviour of the interface (Mode II), in presence of
normal compressive stresses, a friction threshold is considered (Fig. 5b).
Its value is equal to μ σ. I , where μ corresponds to the friction coefficient
and σI to the normal compressive stress. In this configuration, the
friction threshold has to be exceeded to activate the shear cohesive
behaviour.

In the mixed mode formulation detailed thereafter, the mixed co-
hesive behaviour is expressed from the cohesive behaviours corre-
sponding to pure modes of opening (Mode I) and sliding (Mode II).
Thus, the parameters (i) to (v) given above will have to be defined for
these two modes.

3.2. Account for mixed mode

Stresses at the interface between two blocks rarely correspond to
pure mode solicitations, but are more likely combinations of these
modes. Therefore material failure can be defined as a relationship be-
tween opening and sliding displacements and their corresponding
normal and shear stresses at the interface level. The mixed mode is
expressed thanks to two criteria that allow to couple pure modes under
one mixed mode: one related to the damage initiation and the other to
the failure (Fig. 6).

The damage initiation is expressed with a quadratic stress criterion.
This criterion denotes the end of the elastic behaviour of the interface
and is expressed as function of the pure modes maximal stresses.
Considering that normal compressive stresses do not induce damage,
we can write:

Fig. 3. Unilateral contact conditions.
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Furthermore, considering that initial stiffnesses of mixed mode com-
ponents (KmI

0 and KmII
0 ) are equal to pure mode initial stiffnesses (KI

0 and
KII

0 ), the above equation can be rewritten as function of relative dis-
placements:
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Then, defining a mixed mode displacement in the space of normal and
tangential displacements:

= +δ δ δ ,m mI mII
2 2 (12)

and a displacement ratio β representing the participation of each mode:
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we can finally express the displacement corresponding to damage in-
itiation in mixed mode as function of β and of pure modes
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The second criterion describes the failure of the contact law in mixed
mode. It is expressed from the pure modes fracture energies JI

c and JII
c

through the relationship:
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where n=m=1 is considered in a first approximation.
Energy distribution (Φ) is assumed to be the same for pure traction

and shear, as well as for mixed mode. Indeed, it seems reasonable to
assume that micro-cracking and crack-bridging end at the same time for
any direction. This leads to express the cross-over displacement corre-
sponding to mixed-mode δm

c as function of the displacement ratio β and
pure modes displacements such as:

Fig. 4. Contact at the interface between blocks.

Fig. 5. Pure Modes for the mixed-mode of cohesive law.
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On the basis on the same assumption as above, we can write the mixed-
mode ultimate displacement δm

u as:

=
+

+
δ

β
δ

δ δ δ δ
δ δ β δ δ

1
m
u

m
c

I
c

I
u

II
c

II
u

II
c

II
u

I
c

I
u

2

2 (17)

Mixed-mode is now defined from pure mode parameters, for any space
configuration.

4. Identification of cohesive and frictional parameters of mortar
joints

Mixed mode cohesive law is formulated from cohesive laws in pure
Mode I (opening) and pure Mode II (sliding). The needed input para-
meters for the model are the initial stiffnesses (K K,I II

0 0 ), the maximal
strengths (σ σ,I

e
II
e ), the cohesive fracture energies (J J,I

c
II
c ) and ultimate

displacements (δ δ,I
u

II
u ) for both pure modes. The ratio Φ of micro-

cracking energy over total cohesive energy and the friction coefficient μ
are also needed.

These parameters can be estimated from characterisation tests car-
ried on assemblies of sufficiently large size to ensure the observation of
the mechanical behaviour at the mesoscopic scale. The cohesive para-
meters related to Mode I fracture of joints will be characterised from a
direct tensile test performed on two blocks (one mortar joint), while the
cohesive parameters related to Mode II fracture and friction coefficient
will be estimated from a shear test on stone triplet.

All tested specimen in this study were constituted of limestone ty-
pical of the region of Bordeaux (France) and mortar was composed of
sand, hydraulic lime and water (5:1:1). This type of block/mortar
combination can be found in historical buildings of Bordeaux area.

4.1. Mode I characterisation: direct tensile test

4.1.1. Experimental set-up
Direct tensile tests are complicated to perform in a mechanical point

of view, because the device have to induce pure traction to the spe-
cimen without any rotation. Therefore, the setting should not have any
degree of freedom in order to generate uniform damage within the
mortar joint [26]. Moreover, the test should minimise the size of the
specimen for a more uniform crack propagation [13]. Some authors
already realised direct tensile tests for the characterisation of masonry
assemblies, but had difficulties to obtain post-peak behaviours of spe-
cimens [23,4].

We propose a stiff set to prevent rotations (Fig. 7) where stone
blocks are glued inside steel boxes. Blocks are approximately 2 centi-
metres higher than the boxes, so that force application is quite closed to
the mortar joint and allow to install the metrology devices in the vici-
nity of the mortar joint. The bottom box is fixed while the traction force
is applied through the upper box.

Displacements are measured with extensometers placed at the joint
level in the four corners of the specimen where the most important
displacements are expected. The test is displacement controlled with
the average of the four extensometers displacements in order to esti-
mate the softening behaviour of the joint. The displacement rate is set
to 0.5 μm/min. During the test, the tensile stress and the opening dis-
placement of mortar joint are continuously recorded.

This set-up allows to obtain complete stress-displacement curves
(elastic and softening parts) for 75% of the tests. These are improved
results compared to other direct tensile tests carried on the same type of
assembly [23,4] that gave about 25% of usable data curves.

4.1.2. Experimental results
In most cases crack propagated at the interface between mortar joint

and stone block. Twelve tests gave a usable stress-displacement curve
(Fig. 8). As shown in Fig. 8, the scattering of the experimental results is
large, but in the same order as the one obtained by Van der Pluijm on
masonry assemblies submitted to direct traction [23]. This scattering
can have different sources such as carving of stones and the irregularity
of joint manufacturing from one specimen to one another. But above
all, masonry assemblies are made from materials (stones and mortar)
which themselves present a broad scattering by nature. Nevertheless, in
spite of a large scattering, the softening regime emphasising the

Fig. 6. Mixed mode contact law.



progressive damage of mortar joint associated to joint opening is clearly
observed from experimental response. As expected, this behaviour ex-
hibits a concave shape and the curves allow a direct estimation of co-
hesive parameters:

• The initial stiffness is determined with a linear regression before the
peak stress

• Maximal tensile stress and ultimate displacement are directly esti-
mated on σ -δ response

• Cohesive fracture energy is estimated as the area under the σ -δ
curve

The bilinear approximation of the softening behaviour can be esti-
mated from the value of the cohesive energy and the value of the energy
ratio Φ leading to the better fit of the concave shape of the softening.

The cohesive parameters found for Mode I for ashlar stones linked
by lime mortar are given in Table 1.

4.2. Mode II characterisation: triplet shear test

4.2.1. Experimental set-up
The triplet shear test is recommended by EN-1052-3 to characterise

the initial shear resistance and is thus widely used. In the present study
we propose a modification of the normalised set-up in order to observe

the softening regime which leads to the estimation of the cohesive and
frictional parameters of mortar joints.

The specimens are made of three ashlar limestone blocks linked by
two mortar joints. The test is performed with a normal stress to the
joints which facilitates the obtention of post-peak curve and allows to
determine the frictional behaviour of the failed joints. Three compres-
sion levels were tested: 0.2MPa, 0.3 MPa and 0.4MPa.

The two external blocks are kept fixed while the shear force is ap-
plied to the central one. Test was displacement controlled, with the
mean displacement of 4 LVDT placed on the two sides of the specimen,
near the two joints (Fig. 9). The displacement rate is set to 0.06mm/
min before peak.

Fig. 7. Tensile test set-up.

Fig. 8. Experimental curves from direct tensile tests.

Table 1
Cohesive parameters obtained for Mode I.

Mode I

σI
e (MPa) 0.04(0.44)

KI
0 (Pa/m) ×1.5 10 (0.60)11

JI
c (J/m2) 0.79(0.55)

δI
u (mm) 0.14(0.26)

Fig. 9. Shear test set-up.



4.2.2. Experimental results
The stress-displacement responses obtained from the shear tests are

plotted in the Fig. 10 according to the three levels of normal stress: 0.2,
0.3 and 0.4MPa. Shear stress is defined as the vertical force divided by
the surface of the two joints. Note that joint surface decreases during

the test due to the shear displacement. Consequently, the shear stress is
continuously computed from the corresponding actual joint surface, as
well as the normal stress, bit this latter remains approximately constant
during the test. As shown in Fig. 10, each stress-displacement response
exhibits a residual stress for large values of the shear displacement,
corresponding to the frictional behaviour of the failed joint.

As expected from the Coulomb’s law, the value of the residual
frictional stress increases as a function of the normal stress level. The
linear regression of these residual stresses as function of normal stresses
(with y-intercept forced to zero) leads to the estimation of the friction
coefficient μ as shown from Fig. 11. Here, μ is estimated equal to 0.70.

Moreover, from the direct observation of the frictional (residual)
stress a decomposition of stress-displacement behaviour in terms of
frictional and cohesive behaviours is proposed. As shown from Fig. 12,
this decomposition consists in estimating the cohesive behaviour of the
joint by subtracting the frictional stress from the observed stress-dis-
placement response.

Fig. 10. Experimental curves from triplet shear tests.

Fig. 11. Linear regressions for the determination of maximal shear stress (in
red) and friction coefficient (in blue). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 12. Estimation of the cohesive behaviour of the joint from the subtraction of the residual stress linked to the frictional behaviour.

Fig. 13. Evolution of Mode II cohesive energy as function of normal compres-
sive stress.

Table 2
Cohesive parameters obtained in Mode II.

Mode II

σII
e (MPa) 0.11(0.09–0.14)

KII
0 (Pa/m) ×5.8 10 (0.14–0.39)10

JII
c (J/m2) 34(0.14–1.21)

δII
u (mm) 2.51(0.10–0.23)



Once the frictional behaviour is isolated, the cohesive parameters
are estimated from an approach analogous to the one proposed for
Mode I:

• The initial stiffness is obtained with a linear regression before the
peak stress, when the response of the two joints is similar

• Cohesive fracture energy is defined as the area under the stress-
displacement curve, after subtracting the plateau due to friction
(Fig. 12).

• Ultimate displacement is determined when the stress gets stabilised

The evolution of the maximal shear stress (i.e. +σ μσII
e

I) and of the
cohesive fracture energy against normal stress level are plotted in
Figs. 11 and 13 respectively. The linear regression of the maximal shear
stress shown in Fig. 11 exhibits a value of the slope quite closed to the
value of the friction coefficient, which emphasises a quasi non-depen-
dence of the maximal cohesive shear stress σII

e upon normal stress level.
The y-intercept is assumed to be the maximal shear stress for zero

Fig. 14. Tested loading paths.

Fig. 15. Influence of ratio J J/II I on the load path 1 dependancy.



compression level.
On the other hand, as shown from Fig. 13, the Mode II cohesive

fracture energy seems to be dependent on the normal stress. Even if
such an observation was also made by Van der Pluijm [23], the few

results and their large scattering do not allow to clearly conclude about
this dependence. The observed normal stress dependent character of the
Mode II cohesive energy could be induced by the arbitrary separation of
the cohesive and frictional behaviours proposed here. Both behaviours
could be coupled and their separation be more complex than a simple
subtraction. Here, the cohesive energy for zero normal compression
stress will be taken as the y-intercept of the linear regression of cohesive
energies as function of normal stresses.

Table 2 summarises the cohesive parameters obtained for Mode II
for the given assembly. An interval is given for the coefficient of var-
iation since they were computed for each stress level.

5. Mixed mode modelling of masonry

5.1. Path-dependency of mixed-mode formulation on a basic sample

The aforementioned formulation is path-dependent, meaning that
fracture energy will be consumed differently as function of the loading
path. This kind of behaviour was already noticed with other models,
especially the one proposed by Snozzi and Molinari [31] formulated for
masonry mortar joints. Such a dependence seems in agreement with
quasi-brittle fracture behaviour for which cracks develop in directions
perpendicular to the extension of material.

To highlight this load-dependency, we study analytically two
blocks, loaded with two different load paths that have the same

Fig. 16. Influence of ratio J J/II I on the load path 2 dependancy.

Fig. 17. Mesh size influence.



departure and arrival points (Fig. 14). The dissipated cohesive energy is
expressed and compared for the two studied paths.

In the Path 1, the interface is first loaded with pure traction until ∗δI
displacement (Path 1a), then in pure shear until ∗δII (Path 1b) as shown

in Fig. 14 a. During Path 1a, the interface works in Mode I and the
energy dissipated until ∗δI can be written as:

= ∗J σ δ d1
2I

a
I
e

I
a1 1

(18)

Fig. 18. Mode I and Mode II laws used for parametric study.

Fig. 19. Load-displacement responses obtained from simulation of diagonal compression tests.



where d a1 corresponds to the value of the damage variable at the end of
Path 1a.

Then, shear loading (corresponding to Path 1b) is applied until ∗δII .
The dissipated energy corresponding to this second path can be ex-
pressed as:

= −∗J K δ δ d d1
2

( )II
b

II
a

II
b a1

0
1 1 1

(19)

where d b1 is the value of the damage variable at the end of the Path 1b.
According to Eqs. (18) and (19), the total dissipated energy during

Path 1 (i.e. +J JI
a

II
b1 1 ) can be computed as a function of the loading angle

α and of the ratio J J/II
c

I
c ranging from 1 to 6. The obtained surface is

plotted in Fig. 15. It appears that for a ratio J J/II I equal to one, the total
dissipated energy is the same regardless from the loading angle. How-
ever, the more the ratio J J/II

c
I
c is important, the more dissipated energy

increases for lower values of α. For α greater than 30 degrees, there is
no more difference in dissipated energy because the interface fails in
Mode I for which cohesive energy is smaller than the one of Mode II.

According to the Path 2 plotted in Fig. 14b, the interface is first
loaded with pure shear until ∗δII displacement (Path 2a), then in pure
traction until ∗δI (Path 2b). The energy dissipated during Path 2a (i.e.
until ∗δII) can be written as:

= ∗J σ δ d1
2II

a
II
e

II
a2 2

(20)

Then, the dissipated energy relative to Path 2b leads to:

= −∗J K δ δ d d1
2

( )I
b

I
a

I
b a2

0
2 2 2

(21)

where d a2 and d b2 correspond to the values of the damage variables
after loading paths 2a and 2b respectively.

The total dissipated energy during Path 2 (i.e. +J JII
a

I
b2 2 ) is plotted in

the Fig. 16 as function of the loading angle α and of the ratio J J/II I . The
comparison of the dissipated energies during Path 1 (Fig. 15) and Path
2 (Fig. 16) exhibits a strong path dependancy, especially for large va-
lues of the ratio J J/II

c
I
c.

5.2. Analysis of the diagonal compression on a masonry panel

The ability of the mixed mode contact law to describe masonry
failure modes is tested from the modelling of a diagonal compression
test on a masonry. The test conditions correspond to those of the ASTM
standard test method used to estimate the tensile or shear strength of
masonry [3]. The test is performed by applying a compression force in
the diagonal direction of a squared masonry panel until failure. The set-
up induce a complex stress state at the center of the panel. When mortar
strength is sufficiently strong, the failure occurs experimentally from
crack opening located at the center of the panel, which propagates from
the center to the corners of the panel in its diagonal direction [1]. The
specimen tends to split apart with a crack in the direction parallel to the
load axis.

LMGC90 software is used for the modelling, considering deformable
blocks which are extended to take into account mortar joint thickness.

Fig. 20. Typical failure mode.

Fig. 21. Broken contacts (i.e., cracks) just before panel failure.



The Young modulus of extended blocks is thus adapted to be re-
presentative of the stone/mortar assembly. The panel is placed with its
diagonal perpendicular to the ground. The lower corner is fixed while
an increasing displacement is applied at the upper corner in the diag-
onal direction. The cohesive contact law exposed above is used to re-
present mortar joints behaviour at the interface between blocks.

5.2.1. Influence of the mesh size
Firstly, the influence of the mesh size on the load-displacement re-

sponse is studied. The size of the mesh is controlled by the parameter lc.
This parameter defines the number of finite elements along each sides
of a block NEF side/ such as =N l1/EF side c/ . Thus, the smaller lc is, the more
refined the mesh is and the more the contact points between blocks are
since there is two contact points by finite element edge. Five sizes of
meshing are considered corresponding to lc values equal to
0.5, 0.2, 0.1, 0.05 and 0.03. Numerical simulations are carried out from
each mesh considering the cohesive laws of Mode I and Mode II de-
scribed from the cohesive parameters given in Tables 1 and 2 respec-
tively. The load-displacement response obtained for each mesh are
plotted in Fig. 17. The different load-displacement curves (whose shape
will be discussed in the following) converge towards the same response
for values of ⩽l 0.1c and hence, =l 0.1c is considered in the following of
the study.

5.2.2. Influence of cohesive parameters
In a second step, a parametric study is led to investigate the influ-

ence of input data on numerical results. In this parametric study, the
cohesive laws of Mode I and Mode II defined from the cohesive para-
meters given in Tables 1 and 2 (obtained from experiments) are con-
sidered as the reference laws and will be named as medium laws in the
following. We also consider low Mode I and Mode II laws (resp. high
Mode I and Mode II laws), proportional to medium laws, corresponding
to cohesive energies and maximum stress decrease (resp. increase) by
50% while the initial stiffnesses KI

0 and KII
0 are kept constant. Low,

medium and high Mode I and Mode II laws are plotted in Fig. 18.
We study combinations of the three laws of each mode which gives

us 9 input sets. Load-displacement responses of the panel obtained for
each combination are plotted in Fig. 19. All curves exhibit an elastic
part, which is the same regardless from the input data, followed by a
plateau at constant load before failure. The load value of the plateau as
well as the extent of the plateau (in terms of displacement) increase as a
function of the level of Mode II law while the level of the Mode I law
does not seem to influence the response. Thus, the more cohesive en-
ergy and maximum stress of Mode II increase, the more the load value
and the extent of the plateau are higher.

Note that, if the tests were carried out using load control instead of
displacement one, the load-displacement response of the panel would

Fig. 22. Load-displacement responses obtained from simulation of diagonal compression tests (panel compounded from half bricks).



have been truncated at the onset of the load plateau and hence could be
qualified as a brittle response. Moreover, (i) the peak load being mainly
dependent on the Mode II cohesive properties (as previously men-
tioned) and (ii) the load-displacement response being few non-linear
before the peak load (emphasizing a low damage level of the mortar
joint), it is expected that the peak load magnitude is mainly governed
by the maximal cohesive shear stress σII

e .
On the other hand, a typical failure obtained for the medium Mode I

and Mode II laws is shown in Fig. 20. As experimentally expected, a
diagonal crack appears and the panel splits apart. On this basis, the
final failure modes obtained from each laws combination did not ex-
hibit significant difference compared to the one shown in Fig. 20 and
hence are not plotted in the paper. Nevertheless, if difference between
final failure modes are not significant, the location of damage at the end
of the plateau of the load, i.e., at the onset of the whole failure exhibits
differences as a function of the considered combination. Indeed, as
shown from Fig. 21 in which the broken contacts (black dots) are
plotted at the end of the plateau of the load, the number of broken
contacts and hence of cracks are greater for combination using the
lower Mode I law.

In a last step, let us investigate the influence of the size of the blocks
on the mechanical response of the panel in studying a panel of the same
dimensions but with blocks twice as small. For these simulations, the
nine combinations of Mode I and Mode II laws previously used lead to
the load-displacement responses plotted in Fig. 22. Compared to

responses of full-bricks panels shown in Fig. 19, the load-displacement
curves plotted in Fig. 22 exhibit an analogous shape of response but
characterised by a longer plateau and values of plateau load lower than
those observed for full bricks panels. As observed for full bricks panels,
the magnitude of the load-displacement responses is mainly governed
by the level of the Mode II law while the influence of mode I is not
significant on the panel response.

Finally, the location of damage at the end of the plateau load (i.e.,
just before the panel failure) shown in Fig. 23 does not exhibit sig-
nificant difference as a function of the combination of the Mode I and
mode II laws. However, one can note the main crack is more localized
when the difference between pure modes levels increases.

5.2.3. Comparison of experimental and simulated responses of masonry
panel

In this last part, a comparison of experimental and simulated re-
sponses of a masonry panel under diagonal compression is proposed.
Among different experimental studies available in literature [5,11,17],
the one relative to the work of Gabor et al. [11] is chosen for the quality
of the experimental responses obtained. Gabor et al. [11] tested two
masonry panels (dimensions of × ×870 840 100 mm3) composed of
hollow bricks ( × ×210 50 100 mm3) and 10mm thick mortar joint
(ready-to-use mortar with a 0–5 mm sand and Portland cement com-
position). The mechanical properties of masonry constituents used by
Gabor et al. [11] are reported in Table 3.

The diagonal compression load was applied gradually on the corners
of the panel and controlled by a load cell while the diagonal displace-
ment of the masonry panel was measured by LVDT transducers. The
experimental load-diagonal strain responses obtained by Gabor et al.
[11] are reported in Fig. 24(a) (blue and green curves only, the red one
having been obtained by Gabor et al. [11] from an EF simulation).

LMGC90 software is used again for the modelling, considering de-
formable blocks which are extended to take into account mortar joint
thickness. Note that a slight modification of the panel dimensions are

Fig. 23. Broken contacts (i.e., cracks) just before panel failure (panel compouned of half bricks).

Table 3
Mechanical properties of masonry and constituents extracted from Gabor et al.
[11].

Bricks Mortar

Elastic modulus (GPa) 12.8 4.0
Shear strength (MPa) – 1.63
Residual friction angle – 43°



considered (dimensions of × ×840 840 100 mm3) since we used ex-
tended block of dimensions × ×210 60 100 mm3. The Young modulus of
extended blocks is thus adapted to be representative of the stone/
mortar assembly and is given in Table 4.

Concerning the Mode I and Mode II cohesive properties of the in-
terface between extended blocks, only the maximal cohesive shear
stress σII

e can be estimated from the shear strength of mortar (1.63MPa)
obtained by Gabor et al. [11] as reported in Table 3. In the absence of
more informations about fracture properties of mortar joint, all other
values of cohesive parameters are assumed with respect to the expected
cohesive behaviours of a quasi-brittle material such as mortar and are
given in Table 4. Nevertheless, as previously mentioned in Section
5.2.2, it is expected that the peak load magnitude is mainly governed by
the maximal cohesive shear stress σII

e and hence, the other cohesive
parameters are expected to be of less importance in this case. As such,
note that two sets of cohesive parameters with the same value of the
maximal cohesive shear stress =σ 1.63II

e MPa are considered (Table 4)
for the numerical simulations in order to check this point. Thus, Mode I

and Mode II cohesive energies of the set 1 of cohesive properties are
considered twice as large as those of the set 2 (Table 4) while the initial
stiffness of cohesive behaviours KII

0 and KI
0 are considered here as

penalty stiffness (i.e., → ∞Ki
0 with =i I II, ).

As previously mentioned, the panel is placed with its diagonal
perpendicular to the ground. The lower corner is fixed while an in-
creasing displacement is applied at the upper corner in the diagonal
direction. The Force-Diagonal strain responses of the panel obtained
from the DEM simulations and corresponding to the two sets of cohe-
sive parameters given in Table 4 are plotted in Fig. 24(b). Both Force-
Diagonal strain responses are superimposed up to the peak load and
differs in the post peak regime. As expected, the peak loads obtained
from both sets of cohesive parameters are approximately the same
(around 260 kN) and seems effectively linked to the value of the max-
imal cohesive shear stress σII

e while the load in post peak regime de-
creases more quickly in the case of weak Mode I and Mode II cohesive
energies as expected intuitively.

Let’s remember that the Force-Diagonal strain responses plotted in
Fig. 24(b) are obtained from a displacement controlled test and must be
truncated after the peak load in order to be compared to the responses
expected from a load controlled test as performed by Gabor et al. [11].
On this basis, Fig. 24 shows that the simulated Force-Diagonal strain
responses are in agreement with the experimental ones obtained by
Gabor et al. [11] and this in terms of initial stiffness as well as in terms
of peak load values.

6. Conclusions

A new contact law has been implemented in LMGC90 software al-
lowing to take into account progressive damage of masonry mortar
joints and their frictional post-failure behaviour. The proposed contact
law is inspired from Cohesive Zone Models (with a bilinear approx-
imation of the softening behaviour) and a frictional threshold is con-
sidered in Mode II in the case of normal compressive stress on the in-
terface.

The mixed-mode formulation of CZM is based on pure modes be-
haviours and allows to consider any space configuration in order to be
closer to actual mechanisms. Main advantage of the present model is
that input parameters can be directly deduced from two experimental

Fig. 24. Comparison of experimental and simulated Force vs diagonal strain of a masonry panel: (a) Experimental response extracted from Gabor et al. [11] and (b)
Simulated response obtained from DEM using mixed-mode cohesive law.

Table 4
Mechanical properties and cohesive zone parameters used in DEM simulations.

Set 1 Set 2

Cohesive zone parameters
Mode II σII

e (MPa) 1.63 1.63

JII
c (J/m2) 700 350

δII
u (mm) 4.0 4.0

ΦII (1) 0.5 0.5

Mode I σI
e (MPa) 0.33 0.33

JI
c (J/m2) 16 8

δI
u (mm) 1.0 1.0

ΦI (1) 0.5 0.5

Friction coefficient (1) 0.8

Mechanical properties of extended block
Elastic modulus (GPa) 8.26
Poisson’s ratio 0.2
Density (kg/m3) 1200
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fracture tests especially designed for this purpose. A direct tensile test 
performed on two stone blocks bonded by one mortar joint allows for 
Mode I fracture characterization and a shear test carried on three stone 
blocks bonded by two mortar joints permits Mode II fracture and fric-
tional characterization. The exploitation of experimental results is thus 
easy and input data of frictional cohesive law are quickly deduced.

First simulations of a masonry panel under diagonal compression 
has shown good agreement with experimental results in terms of failure 
modes and failure kinematics. Parametric study carried out on masonry 
panel under diagonal compression shows good agreement with ex-
perimental failure modes. As expected, input data influence response of 
the structure in terms of admissible load and damage propagation, but 
final failure modes stay globally unchanged. It is shown that the peak 
load value is strongly dependent on the Mode II cohesive parameters
and especially the value of the maximal cohesive shear stress σI

e
I . 

Finally, the simulation of the Load-Diagonal strain response of a ma-
sonry panel composed of hollow bricks and thick mortar joint exhibits a 
fair agreement with experimental responses and confirms that the value 
of peak load is effectively linked to the value of maximal cohesive shear
stress σI

e
I .

This contact law could be improved in studying the coupling be-
tween friction and cohesive behaviors. An accurate description of this 
coupling could avoid to consider Mode II cohesive energy depending on 
the normal stress level (as shown in Fig. 13) which is inconsistent from 
a theoretical point of view. Finally, if the softening behaviour of mortar 
in CZM is here described from a bilinear approximation, this one could 
be described from an exponential function which would describe the 
softening behaviour with a better accuracy.
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