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Applications
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Abstract

This paper is related to the study of systems of reflected backward
stochastic differential equations with interconnected bilateral obstacles.
These systems are connected with zero-sum stochastic switching games.
Under appropriate assumptions, we provide either existence or existence
and uniqueness of the solution of those systems when the switching costs
are [to processes. The link with systems of PDEs with bilateral intercon-
nected obstacles is also stated via the Feynman-Kac representation when
randomness comes from a Markov diffusion process.

AMS Classification subjects: 93C30 ; 91A15 ; 93E20 ; 49J20.

Keywords: Systems of reflected BSDEs ; Bilateral interconnected obstacles ;
Zero-sum stochastic switching games ; Optimal switching ; Systems of PDEs
with interconnected obstacles ; Feynman-Kac representation ; Viscosity solu-
tion.

1 Introduction
This paper is related to the study of systems of reflected backward stochastic dif-
ferential equations (BSDEs in short) with interconnected bilateral obstacles. A
solution for such a system is a family of adapted processes (Y7, Z", K'7% K"7); iyer
such that: For any (i,j) € T'and t < T,
V7 =€ 4 [T fi(s,0, (Y)Y gk yeriwre, Z9)ds — [[F Z9dB, + [ (dK9+ — dK9)
L? < Y;” < Utij;
T i piiy gt T i YR
Jo V7 = LY)dK™" =0 and [ (U —Y7)dK"™ =0,

(1.1)
where:
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a) I':= Fl X FQ = {1, ...,ml} X {]., ...,mg} ;
ijo._ kj ijo._ . il | = .
b) LY = kerlpla—x{i}{yt T =g, )} and Uy = lel{rzn_l}{j}{Y; +9,(0)};
c) fu, €9, g,, and gj are given data of the problem which are described
precisely later N
d) K“* are non-decreasing processes such that Ky ()

This system introduced first in [I6] is related to the zero-sum stochastic
switching game, as shown later in some papers including [4, 9]. On the other
hand, note that the above BSDEs have two reflecting barriers which depend on
the solution (Y#); ;.

A stochastic optimal switching control problem of a system (which can be a
portfolio in market, a power plant, etc.) is a discrete stochastic optimal control
where a strategy o is pair of sequences ((Tn)n>0,(Cn)n>0) such that for any
n > 0, 7, is a stopping time such that 7,, < 7,41 and (,, are random variables
valued in the set of modes under which the system is run. Roughly speaking
at time 7,, the controller decides to switch the system from its current mode to
the new one denoted by (,. The switching actions are not free and generate
expenditures. When a strategy o is implemented, it induces a payoff which
is equal to J(o) and then the problem is to find a strategy o* which realizes
sup, J (o). This problem is related to systems of reflected backward stochastic
differential equations (RBSDEs in short) with interconnected one lower obstacles
to which reduces in the case when g;; = +00. There are several papers on
this topic including [TI, 2] 5], 1T} [8l, 12] 15} 22} 17, 25] [18] (see also the references
therein) in connection with energy, finance, etc..

Next one has a zero-sum switching game if there are two decision makers
and 7wy which intervene on the system by both choosing its joint working mode
(i,4) € T (m and 73 choose i € 't and j € I'? respectively). The interests of the
decision makers are antagonistic, that is to say, when m (resp. m2) implements
the strategy oy (resp. o2) there is in-between a payoff J (o1, 02) which is a profit
(resp. cost) for 71 (resp. mg). The zero-sum switching game (especially issues
of existence of the value, a saddle point, etc.) is connected with the solutions
of system of reflected BSDEs of types (see e.g. [4, [@]). This is the main
motivation to study this system .

There are only very few papers which deal with the problem of existence
of a solution for system . The question of uniqueness is even less studied.
According to our best knowledge, system is studied in two papers only
which are [16] and [4]. In [I6], the authors have shown existence of a solution
for this system when the switching costs 9, and g;; are constant. The
question of uniqueness is not addressed and remained open. On the other hand,
in [4], Djehiche et al. have considered system in the markovian framework
of randomness. By using tools which combine results on partial differential
equations (PDEs for short) with results on BSDEs, the authors have shown
existence and uniqueness of the solution of system . The switching costs
9, and g;; are not constant.

Therefore the main objective of this paper is to complete the existing liter-
ature on the problem of existence and uniqueness of a solution for the system
of RBSDEs with bilateral interconnected obstacles ([1.1]) and to provide an ap-
plication in the field of PDEs. Actually the novelties of this paper are the
following:



i) We show that system (|1.1)) has a solution in the case when the processes 9y
and g, are of Ito type and under the monotonicity assumption of the functlons
f% (see (H5) below) ;

ii) We show that system (|1.1)) has a unique solution in the case when the
processes g and gjl are Ito processes and the functions f¥ do no depend on
z. We do not require the monotonicity assumption on these latter functions ;

iii) When randomness is Markovian and comes from a diffusion process X% “’,
we show that the Feynman-Kac representation formula holds for (Y% )(i,j)er, the
first component of the solution of system , i.e., there exist deterministic
continuous functions (v*/)(; j)er such that for any (i,j) € T, s € [t,T], Vi7" =
v (s, X1*). Moreover the functions (v"7)(; jjer are the unique solution of the
following system of PDEs with bilateral interconnected obstacles: V(i,j) € T,

min{v¥ (¢, ) — X [vF (t, x) — g, (t2)];

—{i}
max[ (¢, :c) mingerz_ {]}[ Ltz )+g]l(t,x I;
O Sowi(ta) — LX) () — U, (05 (@) yer)]} = 0
vI(T,z) = h(x).
(1.2)
The monotonicity assumption of the functions (f¥ )i,j is no longer required
as in [3, 4, 3] 24], etc. This result on PDEs improves also substantially the
existing literature on this domain (see the previous references). System
can be seen as the Hamilton-Jacobi-Bellman-Isaacs system associated with the
zerosum switching game when utilities are implicit or depend on the values.

The paper is organized as follows: In Section 2 we introduce and analyze, un-
der the monotonlmty assumption on the functions (f%¥), ;, the approximating
schemes of (|I.1]) obtained by penalization. We show that the penalization terms
are bounded in appropriate space. We then show that the penalization schemes
converge and their limits provide solutions for . In Section 3, by Picard
iterations, and step by step backwardly, we show that system has a unique
solution when (f% )i,; do not depend on z. Finally in Section 4, we deal with
application of the result of Section 3 in the field of PDEs. We first show that
the processes (Y/)(; j)er enjoy the Feynman-Kac formula through deterministic
continuous with polynomial growth functions (v*)(; jyer. Moreover the func-
tions (v'7)(; j)er are the unique solution of system of PDEs with obstacles
of min-max type. They are also the unique solution of the dual system to (|1.2))
which is of max-min type.

2 Statements, assumptions and preliminaries

Let T > 0 be a fixed real constant. Let (92, F,P) be a complete probability
space which carries a d-dimensional Brownian motion B = (Bj)e[o,7] Whose
natural filtration is FC := 0{Bs, s < t}0<t<T We denote by F = (F;)o<i<T the
completed filtration of (Fy Jo<t<r with the P-null sets of F, then it satisfies the
usual conditions, i.e., it is complete and right continuous. On the other hand,
we define P as the o-algebra on [0,7] x € of the F-progressively measurable
sets. Next, we denote by:

- S82: the set of P-measurable continuous processes ¢ = (¢t)tefo, 1) such that
E(supyeo,r ) < o0



- A2 : the subset of S? of non-decreasing processes K = (K;);<7 such that
Ko = 0;

- H%*(k > 1): the set of P-measurable, R¥-valued processes ¢ = (#t)teo,1]
such that E(fOT |pe|2dt) < oo.

- For tg < t; € [0,T], H[Qt’ftl] is the subset of H?* of processes ¢ = ((s)s<T

such that ¢, = Zs1p, 4,)(s) ds @ dP-a.s. on [0,T] x Q with Z € H**.

To proceed, let I'!, I'2 be the finite sets of the whole switching modes available
for the controllers or players. As mentionned previously I' := I'' x I'> and
denote by A its cardinal, i.e., A := |T'| = [I'}| x |T'?|. On the other hand for
(i,5) € Tt x T2, we define (I'")~" :=T* — {i} and (['?)77 :=T2% — {j}.

Next let us denote by ¢ the generic element (y%/ )i.j)er of RA and let us
introduce the following items: For any i,k € I'' and j,1 € I'?,
i) f7: (t,w,7,2) €[0,T] x A x RA x R = f(t,w,¥,2) ER;
ii) g, (t,w) €[0,T] x Q= g, (t,w) € RT;
i) g;: (t,w) € [0,T] x Q= g;(t,w) € RY.
iv) €9 is a r.v. valued in R and Fr-measurable.

Finally let us introduce the following assumptions on f¥ g, and g,, for
i,k eT!and j,l € T%
[H1] For any (i,7) € I't x T2,

a) There exists a positive constant C' and a non negative P-measurable
process (n;)i<r which satisfies E[sup,<7 |ns|?] < oo and such that:
P-a.s, V(ij,2z) € RM4 ¢ € [0,T],

|19t 5,2)] < C(L+m+ 131),
where |{f] refers to the standard Euclidean norm of 7 in R* (the same

for |z| below). Note that this implies that IE[fOT | £ (t,0,0)]2dt] < oo;

b) fi is Lipschitz continuous with respect to (w.r.t for short) (7/,2)
uniformly in (t,w), i.e. P-a.s., for any t € [0, 7], (71, 21) and (3, 22)
elements of RA4 we have

F9 (85T, 1) = f9 (855, 22)] < CUYE = B3| + |21 — 22
where C is a fixed constant.
[H2] For any (i,5) €T,
a) E(|§9?) < oc;

b) €Y, as the terminal condition at time 7T, satisfies the following con-
sistency condition: P-a.s.,

kj _ < £ < i g, .
2 (& D) €75 pin (€ 43,(T)



[H3] a) For all ij,io € I'! (resp. ji1,j2 € I'?) and t € [0,7], the process
iy (resp. ;)5
(i) is non-negative and continuous;
(i) For any k € T (resp. ¢ € T'?) such that |{i1,is, k}| = 3 (resp.
{41, 42, ¢} = 3) it holds:

P—as, Vt<T,g, (t)<g, (t)+g, (t) (resp. Gj, 5, () < TGj,0(t) + Gojy (1)) 5
(2.1)
b) The processes (gik)i’kerl and (g, ¢)jeer2 verify the non free loop
property, that is to say, if (ig, jx)k=1,2,.. v isaloopin T, ie., (iy,jn) =
(41, 41), card {(ix, jx)k=1,2,..n} = N—1and forany k =1,2,..., N —
1, either i1 =i (resp. jr+1 = Jjr), we have:

N-1

P—as, Vt<T, Y G (t)#0 (2.2)
k=1

where Vk = ].7 ...N—L G'Lk]k (t) =9 . o (t)]]-ik7éik+1+§jkjk (t)]]'jk#jk+1'

1kk
This assumption makes sure that any instantaneous loop in the switch-

ing mode set I'' x T'?, of the players (or decision makers), is not free
i.e. one of the controllers needs to pay something when the system is
switched and comes back instantaneously to the initial mode. Note

that (2.2)) also implies: For any (i1, ...,iy) € (I'")" such that iy = i,
and card{iy,i2,....,in} = N — 1,

and for any (j1, ..., 7n) € (I'?)N such that jy = j; and card{j, jo, ..., in} =
N1,

N—
Zﬁmﬂ )=0]=0, Vt <T.
k=1
or any (¢,7),(k,4) €I, g, (resp. g.,) 1s an Ito process, 1.e.,
H4] F ,j), (k,0) €T, g, 40) is an Tto i

gz (t)_g +f0 zk d8+f0 zk dBS’t<T
with g, € ’HQ and by, P-measurable and E[sup,< [b;;(s)[*] < oc.

resp. 9je(t) = 50(0) + fo je(s)ds + fo Gje(s)dBs, t < T, -
with 7, € H24d and b]g, P-measurable and E[supS<T |bjé( 2] < oo.

[H5] Monotonicity:
For any (i,7) € T' and (k,1) € I™% :=T' — {(i,4)}, the mapping 3"

fia(t, 7,2) is non-decreasing when the other components (y*?), )(k,1)
and z are fixed.



Definition 2.1. A family (Y, Zij,Kij*,Kij’*)(MEp is said to be a solution
of the system of T@ﬂggted BSDEs with doubly interconnected barriers associated
with ((f”)(i’j)ep,(5”)@”-)@,(gik)i’kepl,(gﬂ)j’gepz), if it satisfies the follow-
ings: ¥(i,j) €T,

Yij c SQ,Zij c fHQ,d,Kij,:l: c ./42;
Vi =g+ [ [7(sw, (Kkl)(@,l)erlxré, Zs])dsj .
! ZBdB, + K& — KPP — (K — K{P7), vt < T
L;TJS»Y;] S,UZ]thG[O’T]; . . .
Jo 7 = LP)dKP™ =0 and [ (U7 = Y,7)dK™ =0,
(2.3)

where L = ker&%)){ﬂ{Ytkj -9, (1)} and U = minir_{Yt” +g,,()}, vt <T.

3 Existence under the monotonicity condition
(H5)

In this part we prove the existence of a solution for the system of reflected
BSDEs under Assumptions (H1)-(H5). For this we first introduce penal-
ization schemes which we analyze and show properties of the penalizing terms.
Then by using the monotonicity assumption of the generator f% (s, ¢, z), namely
(H5), and comparison of the solutions we prove that the approximating schemes
converge and their limits provide solutions of the system of reflected BSDEs with
bilateral interconnected obstacles .
So let us consider the following sequence of BSDEs : Vm,n € N, (¢,5) € I,

Yij,m,n c 82, Zij,m,n c H2’d;
{ Ytij,m,n _ fij + ftT fij’m’n(s, (Yskl’m’n)(k,l)el"lxl"%Zéj’m’n)ds _ ftT Z;‘j,m,nst’ t<T,
(3.1)
where

fij,m,n(u (ykl)(k,l)el"lxl"27 Z) = f” (ta 377 Z) +n {yzj - ker&%§71[yfj - glk(t)]}

+
cn = min b+ 00}
(zt =2V0and 2~ = (—x) V0, z € R).

Since is a standard BSDE without obstacles, thanks to the results
by Pardoux-Peng [19], the solution exists and is unique. Moreover we have
the following comparison result based on a paper by Hu-Peng [14] related to
comparison of solutions of multi-dimensional BSDEs.

Proposition 3.1 ([3], pp.143). Under [H1]-[H5], for any (i,j) € T! x T'? and
n,m > 0, we have

P— a.s. Yij,m-i—l,n S Yij,m,n S Yij,m,n-i—ll (32)

Next we are interested in discussing the limit of Y% in §? when n goes
to oo for fixed m. Some similar results are already discussed in [12], [11], [3],
[15], etc. Here we apply the same method as in Hamadeéne et al. [3] to prove
the convergence of Y™™ in 82 and then we have:



Lemma 3.2. a) For any (i,j) € I'* x T2, the sequence (Ymn Zimmn) .o
converges, as n tends to infinity, to (Y™ Z9™) in §2 x H>4 ;

b) For any (i,7) € Tt x I'? and m > 0, let K™% be the following limit in S?
(which ezists, one can see [3] for more details):

t

—=17,m,+ . ii i m. _
Vi<T, K, = nll_}I{.lo ; n{Y 2" — ker{lral);_i[Yskj’m’” — 9, ()]} ds.

Then the triples (Yij’m,Zij’m,Kij’m’+)(i)j)ep is the unique solution of the
following system of RBSDFEs with lower interconnected obstacles: For any
(4,5) €T and t < T,

*1]7 c 82 ij,m ,HQ F=tj,m,+ c AQ.

z ,m i g m —kl,m 15,1,
j —§j+f fjj 5, (Ve ") kyers Zs ds—ft "B, + K0
Y’L m > Y ,m .
t ker(r%?;})(_l[ t 9, ( )
f —zj m max [?kj,m _ ( )] dKz; ,m,+ -0
0 t kE(Fal)*i t gZk:
(3.3)

where F7" (s, (y*) kner, 2) = f9(s, (™) gopyer 2) — m(y" — i [y +
gu(s))*

¢) For any m >0 and (i,j) € F,?ij’m > ym
Let us just point out that the function
+ .

(t, w, (ykl)(k er) — —m {y” - mlnle(m) i [yt +75( )]} enjoys the same prop-
erties as f% w.r.t ¢, hence f keeps the same properties as ¥ displayed in
[H1] and [H5]. Therefore to prove that (?w’m,le’m,flj’m’+)(i’j)ep1sz is the
unique solution of the RBSDEs (3.3) can be performed in the same way as in
Hamadéne and Zhang [12], therefore we omit the proof. O

Next, we introduce another equivalent approximating scheme defined as fol-
lows : for m > 0, let (Y:m, Zi:m, K”’m"“)(i’j)ep be the unique solution of the
following system of RBSDEs with lower interconnected obstacle: V(i,7) € T,

Yijm€82 ZijmeHQ Kijm+eA2
Um gzg _|_f fz]m (Yk m)(k l)EFaZZJ m, ds_ft le mdB
+szm+ szm, f,<T

ij,m m 3.4
A= ker(nFal}){—i(YtkL — g, 1)t < T’ o4
Ty ij,m j,m iJ,m,
Jo D amas (V7 = g, (DK™ =0

where fi7 (8,7, 2) == fU(8, Y, 2) = m Y ierey-s (¥ — v = Ga ()T

To proceed we are going to analyse the properties of this scheme (3.4) and its

relationship with system (3.3]) as well.
First note that for any (¢,7) € I, the sequence (f*"™),,>¢ is non decreasing
w.r.t. m, since for all m > 0,

g )~ O g = Y W =y = gal) >0

le(r2)—J

_?t

ijmt

3



Therefore by applying comparison theorem of systems of reflected BSDEs (see
[11]) we obtain

Ym >0, (i,j) €Tt x %, y¥m>ysmtl (3.5)

ie. (Y¥™), 50 is a non increasing sequence. Besides the following inequalities
hold:

—i4,|0?|m

FOU < Y 2) — Py~ min [y 4 g @)t < o < 7O

1e(T2)=3
where |T'?] is the cardinal of I'2. Therefore once more by the comparison result
of solutions of systems we have

—i5,|T%|m

Ym >0, (i,5) €Tt x 2, ¥ < yiim <79, (3.6)
Consequently, as the sequences (Y™),,~q and (Yij’m
if one of them converges then is so the other one.

Finally we have the following estimate of the penalization term in ([3.4]). This
estimate plays a crucial role in the proof of existence of the solution of (2.3).

)m>0 are decreasing then

Proposition 3.3. For any (i,j) € T, Vt < T,

ij,m il,m —
M E[} S cpe g {7 =Y —gu) Ty < C (3.7)
where the constant C is independent of m.

Proof. First let us show that there exists a constant C' independent of m such
that for any (i,j) € I,

E[sup |[Y7™|?] < C. (3.8)
s<T
Actually taking into account of (3.6)), it is enough to show that Y™ satisfies
the same estimate. But from (3.2)) we have
P—as. Y4m0<yimn (3.9)

and the sequences (Y9™9), <. (i,j) € T, converge in S? respectively to Y
(one can see [3], Prop.3.3, pp.149, for more details) where (Y, Zij,l?ij)(i7j)ep
is the unique solution of the system of reflected BSDEs wih interconnected up-
per obstacles associated with ((f*)(; jyer, (§)( jer: (G;)jerz2). Now the claim
follows since Yiim & lim,, Y%7 and Y¥m+l < yim,

Next in order to prove the boundedness of the penalized part of , we
rely on the link between solutions of systems of reflected BSDEs with lower
interconnected obstacles and optimal stochastic switching, which is well studied
in the literature (see e.g. [1 8], [11], [I2, 5], etc). For this purpose, we set u :=
(On,0n)n>0 an admissible strategy of switching, i.e., (0,)n>0 is an increasing
sequence of stopping times such that Plo, < T,Vn > 0] = 0, §, is ['' —valued
and F,, —measurable random variable. Next when w is implemented, we set
the cumulative switching cost A} := Zg&nflén (0n)l(o, <) for t < T and

n>1
Al = tli_{r%Af. On the other hand, for t < T, we set a; := dol(s,)(t) +



Z 6n-11(s,_, 0, (t) which stands for the indicator of the mode in which the
n>1

system under switching is at time ¢. Note that a is in bijection with the strategy
u. Finally denote by A (¢t € [0,T] and i € T'!) the following set:

Al := {u = (0, 0n)n>0 admissible strategy such that og = t,dp = i and E[(A%)?] < oo}.

Next for j € T'? and a € Al let (U%"™ V™) be the unique solution of the
following BSDE which is not of standard form since A% is only rcll: V¢ < T,

U™ is rell, Efsup, <7 U™ [?] < oo and V@™ € H24;

Ufjﬂn = gaTj + ftT l(szﬂo)flj’m(& (Yskhm)(k,l)GFv V:eaj7m)d8 - ftT Vsaj7mst + A%’ — Af,
. (3.10)
where for any s < T', f*"" is defined by:

£ (s, (YF™) 4 per, 2) =

Yoot (Cger {9 (s, VE ™) pers 2) =m0 (¥ =y = G3(0) s, =) Low s <s<on)
le(r2)-J
(3.11)
Le. fam (s, (YE™) o per, z) = 9™ (s, (YE™) (per, 2) if at time s, a(s) = q.
Note that the arguments of f**™ are s,w and z since (Yskl’m)(w)ep is already
fixed. Then the following representation holds true (see eg.[I1]): V¢ € [0, 7],

V9™ = esssup(Uf9™ — A9). (3.12)
a€Al

Indeed let (Xijvm’zijvm,gmm)
system:

(i,j)er be the unique solution of the following

XiJ}m c SQ,Zij’m c H2’Kij,m7+ c .AQ;
17,m i7 T iq m 7, m ij,m il,m —
Xt% =&Y + ft {f (s, (Kskl’_ _ )(kﬁl)EFvZ__sJ ) — lee(W)—j (Zsj - Xsl - gil(s))+}ds
,ftT Z9mdB, Jerjgym,Jr 7K?7m,+7 t< T

ij,m kjm .
Yy ken(ﬂFalggi(Xt 9, (), t < T
Ty rij,m kj,m ij,m,+
fo [y — kerﬁ“%))(—i(zt] - Qik(t))]thJ = 0.
(3.13)
Therefore (see e.g.[11]): Vt € [0, T],
Y™ = esssup(Uf™ — A%). (3.14)

acA}

But (Y#m, zim Kij’m)(m)ep is also solution of (3.13)), then by uniqueness of
the solution of system (3.13)) we have Y™ = Y™ which combined with (3.14)
implies (3.12)).

Next as a consequence of ([3.12]) we have: For any t € [0,T],4 € I'! and 5,1 € T'?,

(V2 — Y — g ()T < ess ith(Ufj’m — UM = gu()* (3.15)
acAj



Now for ¢ < T, let us set Wb .= ypom — yehm — (1), wpbmt

(gdm — gl g;(t))" and let 6 be a real constant which will be chosen

appropriately later. Then applying It6-Tanaka’s formula with e~ ftpy275m+

yields (note that Wb+ = 0 by (H2)): Vt < T,

T T
e—@tllrtadl,’m,-‘r + 5/ e—GdeqSu — 9/ e—9$117£,]l,m7+d8
t t

T
+ / ]].(Wg,jl,m>0)6705{fw (8, (Yrskl’m)(k,l)el“v V—Saj,m) o fal(s, (Yskl’m)(k,l)el"v V—sal,m)
t
() }ds — / L gy sty e (V™ — VELT _ 5 (5))dB,
t

T
) —0s a,jk,m,+ a,lk,m,+
fm/ 1ypaitmygye | E Wl - E W3 tds
t ke(r2)—i ke(r2)-t

(3.16)

where LY is the local time of Wb+ at 0 and (s, (V™) e pyer, 2) =
99 (s, (YF™) (k pyer, 2) (see (3:11))). Next let us focus on the last term of the
right side of (3.16)): V¢ <T

T
) —0s a,jk,m,+ a,lk,m,+
7m/ Loty e S W - S W Vs
t

ke(r2)—J ker2—{i}

T
_ m/ ]].(W‘g,jl,m>0)6708{Wsa7lj’m,+ _ Wg,jl,m,+ + Z (Wsa,lk,m,+ _ W;’jk’m’+)}d8.
t ker2—{j,1}
(3.17)

Note that IL(Wa,jz,,,,L>O)WSa7lj,m,+ = 0 since {WaIbm > 0} A {Welim > 0} = ()
as gj; > 0. Next by applying the inequality at —b* < (a—b)* we have: Vs < T

v a,lk,m,+ a,jk,m,+
Lyestm o) Z (W - W )
ker2—{j,1}

< Lgpaitms g > (U —gu(s) = UL 4+ g (s)
keT2—{j,1}

Using the fact that g;;(s) + g;x(s) > g;1(s), by Assumption (H3)-(a),(ii), we
deduce that A ‘
WIbm < g™ —Ugh™ 4 gy, (s) — gju(s)

and then
0< Lppesimeg > (U™ =Gy (s) = U™ + ()
ker2—{j,l}
al,m  — aj,m | — + _
< Z ]]-(U;}Jﬂ"’_Ug'l»’"+§lk(s)_§jk(3)>0) (Us - glk(s) - UsJ + g]k(s)) =0.
ker2—{j,l}
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Now going back to (3.17) we obtain: V¢ < T,

_m/ e dtm, —09{ Z Wa,]k‘ m,+ Z W;z,lk,m,+}d8

ke(T2)=7 ke(T2)-t
< m/ et *9swg’ﬂ’m’+ds (3.18)
and consequently from we have: Vt < T,
. T ) 1 /T
efetWta,]l,m’++m/ I[(Wsa,jz,m>0)6798W;’]l’m’+d8Jr5/ efede;u
t t

T T
< —/t Liyadtmsge (V9™ = V™ —Gj(s))dBs + e/t Lyaitmsg e S WEIbmt ds

T
+/t I(Ws“’jl’m>o)eies{fw(5a (Yskl’m)(k,l)el“a Virm) — fll(sa (Y Fm ") (k. pyers V )+ byl( s)}ds.
(3.19)

Next by taking 6 = m, recall Assumptions (H1) and (H4) and take the condi-
tional expectation to deduce: Vit < T,

T
Wbt < E[/ eI (5, (YF™) opers VE™) — (s, (YEY™) o pyer, V™) + bj(s)|ds| F]
t

BIC(L -+ suplo + Y sup [V sup () / M0 45| 7
s<T (k,er*sT

=—(1—e T NE[C{1+supns + > Sup|Yklm|—|—Sup\b]l( HF-
s<T (k)er 5

Now by (3.15)), we get

Ve < T, m(Y, 7" =Y =g ()T < CE[{l‘FSEp\UsH > Sgp\Y’“lm|+Sup|bg1( s)|}F]
(k,lyel °=

and then squarring, using conditional Jensen’s inequality and finally taking
expectation to obtain: Vt < T,

B[ g (1)) < CBl{1tsup i+ 3 sup [VE Prsup i (5)F)
8= (k,)er °=

which implies the desired result since the processes n and Ejl are uniformly
square integrable and by estimate (3.8]). O

Next we are going to show that K*™7 is absolutely continuous w.r.t time
and its density (dK¥™% + ds)s<r belongs to H?! uniformly in m.

Proposition 3.4. For any m > 0 and (i,j) € I, there exists a P-measurable
process (™)< such that for anyt < T,

KZJer fo z],mds

Moreover there exists a constant C' independent of m such thatE[fOT laidm|2ds) <

C.

11



Proof. Let us consider the following system of BSDEs: for any (i,5) € T,
i/ij,m,n c SQ,Zij,m,n c H2,d :

T
T =0 [ (VE) e, ZE7) = m SV - VI g ()
¢ I#]
tn Y (Ve YEmn g (5)7 s - / Z9mndB,, ¢ < T.
ke(h)— ¢
(3.20)

For (i,j) € T, m >0 and s < T let us set:

I (s) = (s, (YE™) pyers Z9) = m Y (Y™ =Y — g (s))
1#j

First note that by (H1), (3.7) and (3.8), there exists a constant C' independent
of m such that

IE[/O B9 (5)ds] < C. (3.21)

On the other hand the sequences (Y#-mn, Zimn p [ D ke(rt)—: (Yidmn
Yskj’m’”—i-gik (5))}ds)n>0, (i,7) € T, converge when n goes to +oo in S2 x H?4 x

S? to (Y, ziim [i0m) (i 5) € T, respectively. Moreover (Y™, zi:m f(ij””)(i’j)ep
(see e.g. [3] for more details) is solution of the following system: V¢ < T

}:/tljvm — gz’j + j;T Iijim(s, (}/‘Skl,m)(k’l)el_"Zgj,m)dS _ LT Z;j’mst =+ f(;jJnH‘ _ f(tij»mﬁ- :
Yz]ﬂ'n > max (}/tkja'm _glk(t)> :

ke(l"l)—i
T Sijm = kjm rigm+ _
Jo B = max (VP = g, ()K= 0.

(3.22)
As the solution of this latter is unique and by B4, (yiim, Z”:m, K9m4), ser
is also a solution then, Y*»™ = Y™ Zwm — Z:m and K7™ = K™ for
any (i,7) € I'.
Next for s < T, i,k € T'! and j € T'2, let us set

plrmn = (}N/sijm’n - }N/skj’m’n + gik<s))_'
Note that by Assumption (H2), p7™"™ = 0. Now if (X,)s<r is a continuous

semimartingale then by the use of It6-Tanaka formula (see e.g. [20], pp.231) we
have that: Vt < T,

T T
(X7)? +/ Lix,<copd(X)s = (X7)% + 2/ X7 dX,.
t t

12



Therefore for any ¢t < T,

T
(pikimmy2 4 / Lgsnmn_grimn sy (oycoy (™ = 290 4 g, (s))?ds

T
=2 [ Ugimngaimn iy e AT (s) = DHI(s) — by (o))
t

T
ikj, —ij,m,n —kjimmn
" 2/ rismn_glimny g (gcopfs (Ls T = 45T+ ai(s))dBs
t
T .
- Qn/ (i gk gy (@<opPsT D P”J Ty g s,
! le(T)— le(T1)—F

(3.23)
We now focus on the last term of (3.23).

T
ikj,m,n ilj,m,m klj,m,n
an/ [Famn _gkimny g (s)<0}st { Z s Jiman Z pEtzmn g
t le(r1)—i le(r1)—k

T
ikj
= —2']’],[ {YLJ ,m,n Yk] m, n+g ( )<0}(p‘1S 251 'I’L)st

T
ikj ki
+27L/t l{yljmn YkJMn+g ()<0}p1]mnp1jmnds
=0

T
+ 2n/ (g man _ykim, n+g (s)<0}PékJ’m n Z { pzlj,m oy p’;l]’m’n}ds
t lert —{i,k}
(3.24)

since by positiveness of g, - and g, , {yigmn —Y/Skj’m’"—i—gik(s) < 0yN{Ykimn _
yidmn 4 g,,(s) <0} = (). Next by applying the inequality a= — b~ < (a — b)~
we have

ikj,m,n kljm,n _ zl]mn
P4 > {4k }

€T — {4k}
_ pzkj,m N Z {(?Skj,m,n _ Y/Slj,m,n +£k1(8))_ _ (i/sij,m,n _ f/slj,m,n +gil(8))_}

€T —{ik}

S D D e MO R MO )
lert—{ik}

_ ]].{l}sij,m,niffskj,m . (s)<0}pi;kj ,m,n Z (f/skj,m,n N f/sij’m,n + gkl(s) o gzl(s))f -0

lert—{ik}
since by Assumption (H3)-(a),(ii), for any l € Tt —{i, k}, Lyyimn_grimn, (s)<0}(ij MMM

yidmon 9,,(s) —g,,(s))” = 0. We then deduce from (3.23) that, after takmg
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expectation,
! T
ikj,m,n\2 ik 2
2711143[/lt ]l{ff;'jymr,n_9S)€j‘nz‘n+gik(s)<0}(ps P ds) = QnE[/t (pikimm)2gq)

T

< 2] / PR (5) kI (5) by, (s)|ds]
T 1 T _

SHE[/ <p;kﬁvmv”>2ds1+gﬁ[/ (B () — BRI (s) — by (s)ds]  (3.25)
t t

which implies that
ng]E[/t (pmm)2ds] < CE[/t {1277 (s)[” + [@™ (5)[* + b (5) [ Yds].

Then by (3.21)) and Assumption (H4) on b;;, we obtain:

T T
W2E[ [ (i as] < C and 7] [ (3 pitimnas] <
0 0z

for some constant C independent of n,m. It implies that for any (i,j) € T,
the sequence ((amn = N keri— (i} pikimny r),>0 is bounded in HZ1L.
Thus one can substract a subsequence (still denoted by n) such that for any
(i,7) € T, (™) scr)pn>0 converges weakly in H>! to some P-measurable
process (o™ );<r which moreover satisfy: For any (7,7) € I' and m > 0,
E[fy (ai™)%ds] < C. (3.26)
Additionnally for any (7,7) € I" and any stopping time 7 it holds:
Kimt = [T aim(s)ds. (3.27)
Actually this is due to the fact that the sequence ( fOT ahmnds), > is also weakly

convergent in L3(2, Fr,dP) and since, as pointed out previously, K™+ &
limy, o0 [y @™ ds.

Indeed let us show the weak convergence of (fOT ahmnds),>o. Let ¢ be a
random variable of L% (Q, Fr,dP). By the representation property there exists
a P-mesurable process (7)< of H%? such that:

t

¥t <7, E(F] =B+ [ ndB..
0
Next by It6’s formula we have
B¢ [ aiimnds) ~B[EIF) [ abmrds) =Bl ElGIFJadmas
0 0 0
since by Burkholder et al.’s inequality (J21], pp.160) (fg(fos aldmndryisdBs)e<r
is a martingale due to ]ET[{fOT(fOS aiFmndr)2|i 2ds}z] < oo. As the sequence
((aidmm) 1) >0 converges weakly in H?! to o™ then
E| / E[¢|Fs]a? ™ ds] —n o0 E[ / E[¢|Fs]aid™ds] = E[¢ / o™ ds]
0 0 0

which is the claim. O
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Proposition 3.5. There exist continuous adapted processes (Yij)(m)ep and
P-measurable processes (Z7)(; jyer, such that for (i,j) € Tt x I'2:

i) (Y9™),,~o uniformly converges to Y in S2.
i) (Z7") >0 converges to Z* in H2d

Proof. First let us recall the process (Y*™); »ner in (3.4). Next fix (i,j) € T
and let Y9 be the optional process such that

P-a.s, Vt < T, Y7 = lim,_,00 Yy

which exists since the sequence (Y*™),,>¢ is decreasing (see (3.5)). On the
other hand for any m > 0 we have: Vt < T,

Y, = ¢4 / Fm (s, (Y™ opyer, Z2™)ds+ / ™ (s)ds— / ZimdB,.
t t

t

Then using It6 formula with (Y%™)2 and taking into account of (3.21])-(3.26)),
one deduces the existence of a constant C' independent of m such that

T
E[/ |Zi9m2ds] < C. (3.28)
0

Next, let {m} be a sequence such that:
1) (/79 (s, (V™) tyers Z59™))scr)mso converges weakly in 21 to 61 ;
ii) (m ZlerL{j}(Ysij’m —Yim — G1(5))T)s<T)m>0 converges weakly to 6%
is H&Y
iii) (@*™),,>0 converges weakly to o/ is H*! ;
iv) (Z9™),,>0 converges weakly to Z¥ is H>4.

This sequence exists thanks to Assumption (H1) on f¥ and (3.8)), (3.7), (3.26)

and finally (3.28)). Next let 7 be a stopping time. Then as in the proof of
Proposition the following weak convergences in L?(dP), as m — oo, hold

true:

a) / F9(s, Y™ wpyer, Z9™)ds — | @9 (s)ds,
0

b [ S I ge)tas = [ 00,

ler2—{j}
c) / aij’m(s)dSA/ ' (s)ds,
0 0
d) / ZImdBg — / Z9dB;.
0 0
Therefore for any stopping time 7, we have:
ij:YOij—/ c1>ij(s)d5+/ 9”(5)(13—/ aif‘(s)ds—/ ZdB,.
0 0 0 0

As Y is an optional process and this equality holds for any stopping time then
the processes of the left and right-hand side are indistinguishable which means
that P —a.s.,Vt < T,

.. s t .. t .. t .. t s
Y :YO”—/O (I)”(s)ds—&—/o sz(s)ds—/o a”(s)ds—/o Z7dBs  (3.29)
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and the process Y is continuous. Thus by Dini’s Theorem the convergence of
the sequence of (Y*™),,>¢ to Y% holds in S? i.e.
limy,— 00 E[sup,<7 |Y;€ij7m - Y;tij|2] =0.

Next once more by the use of Itd’s formula with (Y™ — Y72 and taking
into account of - one deduces that (Z ij’m)mzo is a Cauchy sequence
in H2? and then (Z9"™),,>q converges strongly to Z% is H><. O

To proceed let us define for any (i,5) € ', t < T,
K~ :/ 0% ds and K;7" :/ ads.
0 0

We then give the main result of this section:

Theorem 3.6. The process (Yij,Zij,Kij’+,Kij’_)(i,j)ep is a solution of the
system of reflected BSDEs ({2.3)).

Proof. First note that by (3.29) and since YTij = ¢ then for any (i,j) € T,

.. .. T .. T .. T .. T ..
Y :5”—1—/ @”(s)ds—/ 9”(3)0[3—1—/ oz”(s)ds—/ ZYdBs

Now recall the definition of ®¥ and since the convergences of (Y™),,~q and
(Z"™),,>0 hold in strong sense then

(I)”(S) :fij(sv( s )(k l)€F7 ) ds ® dP
which implies that for any (i,5) € T', P-a.s. for any t < T,
e / £9 (5, (V) pers Z9)ds +(KE =K ) = (1= KP ) [ Z9a,
t
Next from (3.4) we have
. . .. T .. .. T . .. ..
Y = i [ s, (V) pen, 28 s~ [ ZmdB oI K
¢ ¢
which implies in taking expectation

T
mE|[ / > Em -y~ gi(s) ]
0 per—{it
=RB[-Y?™ 4+ &9 + / F9(s, (Y™ epyer, Z9™)ds + K™ 7). (3.30)
0

Then by Assumption (H1), (3.8),(3.26) and (3.27), there exists a constant C
such that

T
B[ Y 0UmevimogesonT @3y
O eer2—{j)

which implies that, in taking the limit as m — oo, for any (i,7) € T’ and s < T,
Y <Y+ gj(s) for any £ € I'y — {j}. Then

P—a.s.,Vs<T, Y < Y¥ 4+ g, .
a.s., Vs egp;un{]}( <+ Gje(s))
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Next

T T
E Y _ ; v 1 G, dK 1~ Z—E/ yii _ : Vit 1 g, —ad
[0 = min (027 g ())RDT) = B[ (00 = min (0 4 g0()) 0l

T
= lim E[[ (Y™~ min (Y5 +gju(s))) a@™ds] = 0
i B[ (07— min (V7 g,(9) 0
since (™), is weakly convergent to o/ and (Y™ — minger,_(; (Y™ +
Gj¢))m converges strongly in 82 to Y'Y —minger, ;3 (Y +gj0)) . As fOT(Y;j -
mingepz,{j}(YSM + gjg<s)))dK§j’_ < 0 then

T
P—a.s., Y97 — min (Y +g, dK7~ = 0.
e [ 007 = min (VI + gy (9)aK:

In the same way one can show that

T
P—a.s., Y — YE — g (s)dKPT =o0.
wo [ 00— max (V) — g, ()

Thus the processes (Y, Z4, K+, Kij’_)(i’j)er‘ is a solution of the system of
reflected BSDEs (2.3)). O

Remark 3.7.

(i) The constant C such that for any (i,j) € T,
T .. ..
B[ (o + |0 2)ds <
0

depends only on (f9) i jyer, (€7)qjyers (9,.)ikerr and (gji)jiere.

(ii) In our construction of the solution of through the penalization scheme
(13.4), we have penalized the upper barriers. Had we taken the dual scheme of
(3.4) where, instead, the lower barriers are penalized, we would have obtained
another solution (Yij, Zvij,f(ij’i)(i’j)ep of system . Additionally we have
Y <Y for any (i,5) € T.
(iii) The solutions of systems ‘ which we have constructed are comparable.
Actually let us consider (il’”)(i,j)ep, (§17Z])(i7j)61", (g;k)i7kep1 and (g;l)j,lepz
items which satisfy the same assumptions (H1)-(H5) repectively as (f*7)q jyer,
(fij)(i,j)erf (@in)ikerr and (Gji)jiert- Let us denote by (Y14, Z14 K140+, Kl’ij’f)(z‘,j)er
the solution of system ociated with {(il’ij)(i,j)el“a (§1’ij)(i,j)er7 (g:k)i,kel“la (gjl'l>j,lef‘2}
(which exists by Theorem . Assume that for any:
a) (i,7) €T, f9 < fH7 and £9 < €V ;
b)i kel 9y 2 g;k;
¢) 1 €12, Gir < Gy,

Then we have: For any (i,j) € T,

P—a.s., Y9 <ybid,
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This is actually a direct consequence of the constructions of Y and Y% since
for any (i,) €T,

Y9 = lim Y™ and YY" = lim yb%9m
m—r 00 m—r 00

where (Y19™), sep are defined in the same way as (Y9™); yer in (3.3)

but with the items {(ilylj)(id)er,(él’ij)(i’j)ep,(g;k)i,ker‘l,(g;l)j’lerﬂ}. But by
comparison ([11)], pp.190 for more details) we have for any (i,j) € T, Y™ <
YLiim which implies the result in taking the limit as m — oo. O

4 Existence and uniqueness without monotonic-
ity

In this section, we focus on the second main result of this paper. Actually we
are going to show that system of reflected BSDEs with inter-connected obstacles
has a unique solution without assuming the monotonicity Assumption (H5)
on the functions (f*)(; jer. For that we rely deeply on the link between the
solutions of system (2.3) and the zero-sum switching game, which is already
stated in [9].

First let us temporirally assume that for any (i,7) € I, the function f“ do
not depend on (%, z). Therefore by Theorem there is a solution (Y, Z", K”’i)(i)j)ep
of the following system: V(i,7) € T,

Y9 € 8%,79 € HP KPT € A2 KV e A%
ij ij T rij
e o
[ ZPdB +KPT -KPT - (KT KT, ve< Ty (41)
LY <YY <UY, vt e [0,T];
Jo (Y7 — LK =0 and [} (U7 —Y)dKI ™ =0
i kj ij . . il | —
where Ly’ 1= ke%%}){i{xt — g, (1)} and Uy’ := le{lrlg)lfj{lt +9,(O}t<T.
As pointed out previously we are going to represent the process Y as the
value function of a zero-sum switching game which we describe briefly now.

Let us consider a system which has A = |[I'! x I'?| working modes indexed by
' xI'2. It means that a working mode is a pair (4, j) such that i € I'! and j € T'2.
This system is controlled by two agents or players P1 and P2 by choosing their
own appropriate working mode of the system and switch to another one when
they make the decision to do so (e.g. according to profitability, etc.). The player
P1 (resp. P2) chooses her modes in I'! (resp. I'?). The features of the system
is that when it works in mode (i, 7) from time ¢ to t + dt, it comes with a payoff
which amounts to f%(¢)dt and which is a profit (resp. cost) for P1 (resp. P2).
On the other hand when the player P1 (resp. P2) makes the decision at time ¢
to switch from mode i (resp. j) to k € T — {i} (resp. | € T2 — {4}), she pays
an amount which equals to g, (¢) (resp. g;(t)). Therefore a switching control
for P1 (resp. P2), denoted by u (resp. v) is a sequence of pairs u := (0, 0n)n>0
(resp. v := (Tn, (n)n>0) such that: Vn >0,

i) o, is an F-stopping time such that o,, < 0,41 and d,, is a r.v. with values
in I'! and Fo,-measurable (resp. 7, is an F-stopping time such that 7,, < 7,41
and (, is a r.v. with values in I'> and F, -measurable) ;
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ii) Ploy, < T,¥n > 0] = 0 (resp. Pr, <T,Vn > 0] =0) ;
iii) Let us define the process A" (resp. BY) by

= Zg&nq&n (0n) (o, <t) for t <T and A%} := tli_>nj11 A}

n>1

(resp. BY Z 9e 1cn(Tn)l(¢, <ty for t <T and By := hm B”)
n>1
then E[| A} [?] < oo (resp. E[|Bp|’] < o0).

A control which satisfies the properties i)-iii) is called admissible.

Next let A (resp. BJ) be the set of admissible controls u := (6,8, )n>0
(resp. v := (Tn,Cn)n>0) for P1 (resp. P2) satisfying o9 = ¢,00 = i (vesp.
To = t? 60 = .7)

To proceed let (u,v) € Al x Bf be a pair of switching controls of the players.
We define the coupling of (u,v) by v(u,v) = (pn,¥n)n>0 as the modes under
which the system is run along with time after ¢ when P1 (resp. P2) implements

u (resp. v). In our definition we give the priority of switching to player P1 in
the case when both players make the decision to switch at the same time.

Precisely let:
i)ro=s9=1,r1 =s1 =1 and for n > 2,
Tn =Tp—1+ l(am_lgmn_l)v Sp = Sp—1+ ]]'(Tsn_1<0'7~n_1);
ii)
Vn>0,p, =0y, NTs,;
i) (v, : (%(11) , 7,(1 )))nZO is a sequence of I'—valued random variables defined
as follows: 9 = (0o, (o) and for all n > 1,

(6r,, *yr(i)l) ifo,, <7g,and o, <T}
Tn = (77(Lljla CSn) if Ton < Orp,j
Yn—1 ifrs, =0p, =T.

We associate with y(u,v); the following process (,)scp¢, 77 Which indicates in
which pair of modes the system is along with time: Vs € [t, T,

—'YO]I[pO,pl] +Z'7n (Pnspnt1] (s)

n>1

where (pn; pnt1] = 0 on {pn = pny1} ]

Finally when the player P1 (resp. P2) implements the control u € A} (resp.
v € BY), the payoff in-between, which is a reward for P1 and a cost for P2, is
given by:

T (v(u,v)) = E[E™™ + / [T (s)ds — >1(9V21317511>(Pn) — 9@ @ (pn))|F
(4.2)

where ¢7T = £ if at time T, 77 = (i,) and f™(s) = f¥ if at time s, m(s) =
(i,7), for any s < T.

The following result is stated in [9]:
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Theorem 4.1. ([9], Theorem 8.1) For any t € [0,T] and (i,j) € T,

Y} = esssupessinf J;? (y(u,v)) = essinf esssup J;? (y(u, v)).
uc Al  veB] vEB]  ueAi

As a by-product of this result we have the following one related to uniqueness
of the solution of system (4.1)) which stems from the above characterization of
the component Y* as the value function of the zero-sum switching game.

Corollary 4.2. Let (ﬁj,zj,ﬂj’i)(i,j)ep be another solution of sytem (4.1),
then for any (i,j) € T,

Yy :Xij, Zij :Zij and Kinr [(LJ’ — K”’

Finally thanks to Theorems [3.6] and [{.I} we will prove the existence and
uniqueness of the solution for the system of reflected BSDEs with bilateral inter-
connected obstacles without assuming Assumption (H5) on monotonicity
and we instead assume the following:

[H6]: For any (i,j) € ', the function f¥ does not depend on z.

Theorem 4.3. Assume that (H1)-(H4) and (H6) are fulfilled. Then system of
reflected BSDEs (2.3)) has a solution (Y%, Z%, Kij"“,K”’_)(i,j)ep, i.e., for any
(i,j)eT and t < T,

Y eS8 74 e P KTt e A%
ij ij T rij
Y/ =¢u+ [ f J(S,Tw, (Y kperi xr2)ds— - -
i ZPdB+ KPT - KPP (KT - KYT)y (43)
Ly <Y <U7;
= LOARDT =0 and (O — YRS ~0
where LY := max {Y ki _ g, (1)} and Ufj = min {V}" +9,,(t)}. Moreover it
ke(rt)— le(r2)-J
is unique in the following sense: If (Y Al K”’ K”7 )(i.j)ert xr2 is another

solution of -, then for any (i,7) € F,

Y9 —vyi 79 =z BN _KYT = Kt g

Proof. First let us define the following operator:
o HEN WA
¢ = (¢ij)(i,j)61" = ®(¢) = (Yd)’ij)(i,j)el“ (4.4)

where (Y94, 7% K®:%), o is the solution of the following system (this
solution exists and is unique by Theorem and Corollary : v(i,5) €T,

YU € 82,290 € HA, KOUE € A%
Y =g 4 f f1(s,¢(s))ds—
. Zgdes + KT KPIT (KT KU, < T
LYY <y <upi, vt e [0,T);
Ji (V0 = LEIE T =0 and [ (VP VP IT <o
(4.5)
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where L#% and U®% are defined as previously but with the processes (Y¢’ij)(i7j)er.
First note that by Theorem[4.1|we have the following representation: V(i,j) €
Tand t <T,

Y2 = esssup essinf J (y(u, v)) = essinf esssup J7 (y(u, v))
ucAl  veB] vEB]  ucAl

where

.. T N
TP (y(u, ) = BT + / £ (5, B(s))ds =3 (g0 o (o)~ (0a)IF].

“TnZ17n
n>1

Next let ¢ := (1) ;,jyer be another element of H** and let (Y%, Z¥»1d K¥i0:%),; o p

be defined as in (4.1) but where q/_; is replaced with 1Z Thus we also have:
V(i,j)eT and t < T,

Y,/ = esssupessinf J7 (y(u, v)) = essinf esssup J 7 (v(u, v))
u€ Al veEB] vEB]  uecAl

where J/"7 is defined similarly as J* but with ¢ instead of ¢. Therefore we
have: For any (¢,j) € T'and ¢t < T,

|Yt¢’ij — Yt¢’ij| < esssup ess sup |J,Zb’ij(’y(u7 v)) — Jf)’ij(’y(u, v))|. (4.6)
ucAj} vEB]

But

T (4, 0)) — T (4(u, )] = B / (F(5,5(5)) — £7(s, &(s)))ds| 71|

T
<B[[ S 1f(s,0(s)) - F(s, 3(5))\ds| ]
t o (G,j)er
(,7) . )
< C(f)AE] / 1B(s) — B(s)|ds| ] (4.7)

with C(f) = max; j)er Ci; where Cy; is the Lipschitz constant of f9 wrt .
Thus from (4.6)) we obtain:

T
W< T, [V - Y| < O(f)AE| / () — d(s)lds| ). (48)

Next let 6 > 0 be such that T — 6 < T. For any t € [T — 0,T] we deduce from
the inequality (4.8):

.. - T e g
Yy id| < C(f)A]E[/ | [Y(s) — o(s)|ds|F].

Next squarring both hand-sides, using Jensen conditionnal inequality and then
standard Jensen inequality yields: For any ¢ € [T — 6, T

T

V29— Y22 < O(f)? AR /T | [6(s) — &(s)|*ds|.F]
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and taking expectation we obtain

T
BV~ YPUP) < COPNE([  [0(s) - de)Pdsl. (49)
T—6
Finally integrating w.r.t ¢ yields:
T .. .. T - -
B[ Y - YR < AL () - 3(s) P
-5 T—06

and by summing w.r.t (¢,7) € T yields

T .. .. T = =
B[S W ¥R < CUPNSEL[ 1) - Bl

T8 (; er T—6
Now by choosing § := 3 < (4C(f)A2) we have that C(f)A26 = 3 =4 and
then the mapping ® is a contraction from ’H[ZTAf 5.7 into itself. So let us define
(Y9™)(; jyer)n>0 as follows: Y0 =0 for any (¢,5) € I' and for n > 0,

ijmn DY) yer))(s) if s € [T —6,T)
(Y*™(8)) s, gyer = { 0 else. (t.5)e
Therefore the sequence ((Y")(; jjer)n>0 converges in H?* to (?ij)(i7j)€p such
that:
crij Yi9) 4 ifse[T—06,T
(P9 per = { §qunner) ol =01)

where (Y*); iyer is the unique fixed point of ® in ’H[272A_5 )0 e, it verifies

B((Y7) G jyer)(s) = (Y(s)) @ jyer for any s € [T — 6,T]. Thus there exist
processes (Z); ier, (K%%); jyer such that (Y, 29, K%), o verify: For
any t € [T —6,T] and (4,j) €T,

ij ij T tij T i T ij ij,—
}/tj :€]+ft f](S, (}/skl)(k,l)er‘)ds_ft ZsdeS_‘_ft (d[(sjv_‘—_dl(sj7 ) ;

Wevi<uy
T ij WG\ 177, T ij WG\ 3 7id—
Jro sV —L7)dK?T =0 and [, (U7 —Y}Y)dK”~ = 0.
(4.10)

By the uniqueness of the fixed point of ® on H[QZ’FA_&T]‘ ‘if (}_”'7", Z, Kij’i)(i7j)er‘
verifies the previous system of RBSDEs (4.10) then Y/ = Y for any (i,j) € T
and s € [T — 4, T]. Therefore we have also Z% = Z¥ ds @ dP on [T — §,T] x Q
and [, _ (dK9+ — dK9~) = [ (dK3T — dKP~) for any t € [T — §,T].

It means that (Y, 2% K"%), o is the unique solution of (2.3) over the
time interval [T — §, 7).

Next as 6 does not depend on (5”')(1-7]')@, then arguing in the same way as
previously, there exist processes (Y14, Z14, Kl’ij’i)(ivj)er (in the appropriate
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spaces) such that for any (i,7) € I" and ¢ € [T'— 2§, T — 4], it holds:

ij ij T—3 ,is T—6 1.4
YA =Y [0 (s, (VY er)ds — [, ZLUdB+
K};i]{r _ Ktl’”’+ _ (Kjlﬂijé* _ Ktlﬂj’*) :

LY <yl <yl (4.11)

T—5 /v ij ij i, T—5 ,7ij ij ij,—
1Y — Ly )dKY T=0 and Jr_os(Uy = Y{7)dE™ = 0.
Thus in setting, for (¢,j) € I' and t € [T — 24, T,

Yy =Y s () + Y g s (1),
27 = 27\ r_s () + Z U r_as s (1),

Jroas K = [ {1 s (8) AR 4 1 _os g (s)dK L%}

we get that (Xij,zij,ﬁij’i)(i,j)ep is a solution of system (2.3) over [T' — 24, T].
Moreover it is unique since the solution of (4.10]) is unique on [T' — §,T] and the
one of ({4.11)) is unique on [T — 26, T — 4] since <I> is.’?‘ corllltraction on H[QTA_ 5.7] and
H[2TA72 5.7—3] respectivelyi 4Fin{a{111y 1}0te that (Y*, 2", K” ,i)(i’,j,)eF) 1s nothing but
the concatenation of (Y, Z% K'%); syep) and (Y19, ZV4 KL0E) G o
Repeating now this procedure as many times as necessary on [T — 30, T — 24],
[T — 45, T — 30], etc. we obtain, by concatenation, the unique solution of ([2.3)
on [0,7]. The proof of the theorem is now complete. O

As a by-product of the above result we also have:

Corollary 4.4. The A-tuple of processes (Yij)(i’j)er is the unique fized point
of the mapping ® on H>N.

Remark 4.5. Assume that for any (i,7) € T, the function f¥ does not depend
on z and verify the monotonicity Assumption (H5), then the solution constructed
in Section 3, Theorem[3.6, is unique.

5 Connection with systems of PDEs with bilat-
eral interconnected obstacles

It is well-known that BSDEs, through the Feynman-Kac representation of solu-
tions in the markovian framework of randomness, provide solutions for partial
differential equations. Similarly, in this section we are going to show that, in
this very markovian framework, the component (Y% )ijer of the solution of sys-
tem , has a Feynman-Kac representation which, besides, provides a unique
solution in viscosity sense of the following system of PDEs with bilateral inter-
connected obstacles: For any (i,7) € T,

min {v% (t,} 9:) — maXye(r)-i [v¥ (¢, :z:) - gik(t, x)]; max [vij (t,z) — minge p2)- [vi(t, ) + §jl(t, x)];
—Op (t,x) — LX (v (t, ) — fY(t, x, (vFU(¢, .’I}'))(k,l)er‘)]} =0;

vI(T,z) = h¥(x).
(5.1)
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So first let us fix the framework:

i) A function o : (t,z) € [0,T] — o(t,x) € R™ (m > 1) is called of polynomial
growth if there exist two non-negative real constants C' and -y such that V(¢, z) €
[0,T] x R¥,

lo(t, )| < C(1+[=]").

Hereafter this class of functions is denoted by II,.

ii) Let C12([0,T] x R¥)(or C1+2 for short) denote the set of real-valued functions
defined on [0, 7] x R¥ which are respectively once and twice differentiable w.r.t.
t and z, with continuous derivatives.

iii) Let b(t,z) and o(¢,z) be two functions from [0,7] x R¥ into R* jointly
continuous and Lipschitz w.r.t x, i.e., for any (¢,z,2') € [0,T] x RF*¥ there
exists a non-negative constant C' such that

lo(t,2) — o(t, 2")| + [b(t, 2) — b{t,2”)| < Clw — 2] (5:2)
Therefore b and o are of linear growth w.r.t z, i.e.,
[b(t, )| + |o(t,z)| < C(A + |z]). (5.3)

Under (5.2)-(5.3)), for any (¢,2) € [0, 7] x R¥, there exists a unique process X*®
solution of the following standard SDE:

dXb* =b(s, Xb*%)ds + o (s, Xb*%)dBs, s € [t, T;

Xbe =g, Vs <t (5.4)
Besides X%% satisfies the following estimates: Vy > 1,
E[sup | XL < C(1 + |=|7) (5.5)
s<T

and its infinitesimal generator £ is given by: for any (t,x) € [0,T] x R*¥, ¢ €
CH2 ((.)T is the transpose),

k k
Lot ) : = % S (00T (4,0))i502,, 6t 3) + S bilt, )0 Bt 7). (5.6)
=1 i=1

We are now going to decline the assumptions (H1)-(H4) of Section 2 in this
markovian framework of randomness. So let us introduce deterministic functions
fi(t, x,4), h(x), gik(t,x) and gj(t,z), i,k € ', j,1 € T? and t,z,7 in [0, 7],
R* and R® respectively.

[H1b]: For any (i,j) € T,
i) There exist non negative constants C' and ~y such that

[t 2, )] < CA+ [ + 7))

ii) f% is Lipschitz continuous w.r.t.  uniformly in (¢,7), i.e. there exists a
constant C such that for any i1, 7> € R,

|fw(t>x7371) - fl](t,gj7:[72)| < C|gl - 172|
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[H2b]: For any (i,j) € T, the function h%, which stands for the terminal
condition, is continuous w.r.t. x, belongs to class 11, and satisfies the following
consistency condition: V(i,j) € I' and = € R¥,

kj ij : il —
s (W9 () = g, (M) SHY(@) < min (@) +G(T.).  (57)

[H3b]: For all iy,is € I'! (resp. ji,j2 € I'?), the function 9ii (resp. Gj,,)
ili) is non-negative, continuous and belong to Il ;

iv) For any k € T'! (vesp. ¢ € I'?) such that |{i1, i, k}| = 3 (vesp. [{j1,J2,¢}| =
3) it holds: V(¢,) € [0,7] x R¥,

giliQ (tv x) < gilk(t, 'T) + Qkiz (t