
HAL Id: hal-01973360
https://hal.science/hal-01973360

Submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear Repairing Codes and Side-Channel Attacks
Hervé Chabanne, Houssem Maghrebi, Emmanuel Prouff

To cite this version:
Hervé Chabanne, Houssem Maghrebi, Emmanuel Prouff. Linear Repairing Codes and Side-Channel
Attacks. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018, 2018 (1),
pp.118-141. �10.13154/tches.v2018.i1.118-141�. �hal-01973360�

https://hal.science/hal-01973360
https://hal.archives-ouvertes.fr

Linear Repairing Codes and Side-Channel
Attacks

Hervé Chabanne1, Houssem Maghrebi2, and Emmanuel Prouff3

1 OT-Morpho, France
herve.chabanne@morpho.com

2 Underwriters Laboratories? ? ?

houssem.maghrebi@ul.com
3 ANSSI†, France

emmanuel.prouff@ssi.gouv.fr

Abstract. To strengthen the resistance of countermeasures based on se-
cret sharing, several works have suggested to use the scheme introduced
by Shamir in 1978, which proposes to use the evaluation of a random d-
degree polynomial into n > d+1 public points to share the sensitive data.
Applying the same principles used against the classical Boolean sharing,
all these works have assumed that the most efficient attack strategy was
to exploit the minimum number of shares required to rebuild the sensi-
tive value; which is d + 1 if the reconstruction is made with Lagrange’s
interpolation. In this paper, we highlight first an important difference
between Boolean and Shamir’s sharings which implies that, for some
signal-to-noise ratio, it is more advantageous for the adversary to ob-
serve strictly more than d + 1 shares. We argue that this difference is
related to the existence of so-called exact linear repairing codes, which
themselves come with reconstruction formulae that need (much) less in-
formation (counted in bits) than Lagrange’s interpolation. In particular,
this result implies that, contrary to what was believed, the choice of the
public points in Shamir’s sharing has an impact on the countermeasure
strength. As another contribution, we exhibit a positive impact of the ex-
istence of linear exact repairing schemes; we indeed propose to use them
to improve the state-of-the-art multiplication algorithms dedicated to
Shamir’s sharing. We argue that the improvement can be effective when
the multiplication operation in the base field is at least two times smaller
than in its sub-fields.

1 Introduction

In the late nineties, attacks called Side-Channel Analysis (SCA) have been exhib-
ited against cryptosystems implemented in embedded devices. Since the seminal

? ? ? This work has been done when the author was working at Safran Identity and
Security.
† This work has been done when the author was working at Safran Identity and

Security.

works [20,21], the attacks have been refined and, in particular, the initial princi-
ple has been generalized in order to exploit several instantaneous leakage points
simultaneously. This led to the introduction of the higher-order SCA attacks
[26]. To defeat the latter ones, whose practicality has been argued in several pa-
pers [23,28,36], secret sharing techniques (aka masking) are currently the most
promising type of countermeasures. They can indeed be applied to get implemen-
tations with a scalable security, parametrized by the number of shares and some
physical properties of the device [7,30]. The core idea of secret sharing, originally
introduced in [34], is to split any sensitive variable a manipulated by the device
into several (say n) shares ai, and to process elementary operations on them
while maintaining the property that any tuple of d < n intermediate results is
independent of any secret-dependent value. The latter property is usually called
dth-order security property and the set of all the tuples of shares allowing for
the reconstruction of a is called reconstruction set and is denoted by Ra (it con-
tains all the tuples I ⊆ [1..n] such that a may be reconstruced from (ai)i∈I)

4. Let
L = (L1, . . . , Ln) denote the random variable in Rn associated to the noisy obser-
vation of the sharing a = (a1, . . . , an) (itself viewed as a random variable) and let
MI denotes the mutual information operator. The core idea behind the dth-order
security is that the complexity of extracting information from a sharing satisfy-

ing the latter property increases linearly with minI∈Ra

(∏
i∈I MI(ai;Li)

)− 1
2 . For

a given order d the security challenge is therefore to minimize the product of
mutual information for every I ∈ Ra. In the literature, the most classical sharing
is the Boolean one in which n is chosen equal to d+ 1 and the shares ai satisfy
a = a1 + · · · + an, with + being the Boolean (xor) addition. To recover a from
a Boolean sharing, the adversary needs information on all the coordinates of a
(i.e. Ra is reduced to the tuple {1, 2, . . . , n}) and the attack complexity, quan-
tified by the minimum number τBool of realizations of a that must be observed
to succeed with some probability β, hence satisfies:

τBool > α×

 ∏
i∈[1..d+1]

MI(ai;Li)

− 1
2

. (1)

where α is a some constant term depending on both β and the cardinality of the
definition set of the ai [11,30].

State of the Art. The simplicity of the Boolean sharing is an advantage from
an implementation complexity point of view but, on the flip side, it helps the
attacker: the information on the shared data is relatively easy to rebuild from the
observed shares. Starting from this remark, Prouff and Roche in [31] and Goubin
and Martinelli in [14] proposed indepedently to apply Shamir’s secret sharing
(SSS for short) instead of Boolean sharing: the core principle of SSS is to split any
sensitive variable a into n > 2d+1 shares ai which correspond to the evaluation,

4 It may be checked that, by construction and due to the dth-order security, every
I ∈ Ra has size at least d+ 1.

2

in n distinct non-zero public elements, of a random degree-d polynomial with
constant term a [34]. The dth-order security property comes as a direct conse-
quence of the so-called collusion resistance of Shamir’s sharing which essentially
ensures that at least d+1 evaluations (aka shares ai) must be involved to recover
a. For an (n, d)-SSS sharing of ai (namely a splitting with n shares and a degree-
d polynomial), Ra is exactly {I ⊆ [1..n]; #I > d} and the reconstruction is done
by polynomial interpolation. At the cost of an increase of the implementation
timing complexity (compared to that obtained for Boolean sharing), the authors
of [14,31] argue, with simulations and experiments, that the intrinsic complexity

of SSS significantly increases the value minI∈Ra;#I=d+1

(∏
i∈I MI(ai;Li)

)− 1
2 and

hence the security. This type of informational argumentation is also the corner-
stone of Balasch et al. ’s work [2], which is based on the concept of Inner Product
(IP) sharing [12], or of Wang et al. ’s work [38]. Implicitely, it assumes that the
minimum of the product of mutual information is achieved for a (d + 1)-tuple
and, under this assumption, the mimimum number τSSS of realizations of the
SSS sharing that must be observed to recover a should satisfiy:

τSSS > α× min
I⊆[1..n];#I=d+1

(∏
i∈I

MI(ai;Li)

)− 1
2

. (2)

Contributions. The previous hypothesis about the lower bound on τSSS is
motivated by the assumption that the most efficient way to attack an (n, d)-
SSS sharing is to observe exactly d+ 1 shares. The underlying remarks are that
(1) observing strictly less than d+ 1 shares leaks no information on the shared
variable (by security property of SSS) and (2) observing strictly more than d+1
shares will merely provide the attacker with more noise than information since
d + 1 shares are already sufficient to rebuild a (by interpolation)5. One of the
goals of this paper essentially aims at coming back on the second point which has
been assumed, without being proved, in all previous works studying SSS in the
SCA context. We actually highlight in the first part of this paper an important
difference between Boolean and SSS sharings which implies that, for some signal-
to-noise ratio, it is more advantageous for the adversary to observe strictly more
than d+ 1 shares. This observation is illustrated in Section 3 and it is confirmed
by real attack experiments on an ATMega328p architecture. For instance, Fig. 1
hereafter shows that for a noise standard deviation σ ∈ [0.2; 0.5], it is more
interesting for the adversary to target 4 shares instead of 3 when attacking a
(5, 2)-SSS sharing6.

5 For the secure multiplication proposed in [19], recent works have shown that attacks
exploiting the n2 shares ai × bj of a × b may lead to more efficient attacks than
targeting only the n shares of a or b, when n is greater than O(1/t) and t is an
upper bound of the mutual information for each share [3,11]. Our work completes
these works by exploiting algebraic dependencies in Shamir’s sharing.

6 Recent works (see e.g. [3] and [16]) have indeed argued that several manipulations
of the same share could be used to improve the efficiency of attacks exploiting only

3

Fig. 1. For a (5, 2)-SSS sharing and different choice of tuples of shares, the number
of observations required to achieve a 100% success rate (in y-axis) versus the noise
standard deviation of the noise (in x-axis).

Our observation implies that the complexity of attacks against SSS may be
lower than what was believed in previous studies (i.e. (2)) since the minimum of
the product of mutual information must be processed over the full reconstruction
set (and not only for the tuples of size d+ 1):

τSSS > α× min
I⊆[1..n];#I>d+1

(∏
i∈I

MI(ai;Li)

)− 1
2

. (3)

We argue that this property of SSS is directly related to the existence of linear
exact repairing structures for Reed-Solomon codes [17,39]. The latter ones can
indeed be viewed as polynomial interpolation formula that optimize the amount
of information which needs to be extracted from a reconstruction tuple to recover
the shared value. We exhibit two important consequences of this observation:

– firstly, it implies that the choice of the public points in SSS sharing plays a
role in the security (and the efficiency) of the countermeasure,

– secondly, it implies that it may be more efficient for an adversary to extract
strictly less than m bits of information on d′ > d+ 1 shares, than to extract
m bits of information on exactly d+1 shares (when Lagrange’s interpolation
is applied).

d + 1 shares to defeat a d-secure masking. But they cannot explain the important
difference observed in Fig. 1.

4

The core idea behind the second point is that the difficulty of extracting m/t
bits of information from a noisy observation of an m-bit variable ai decreases
approximately exponentially with t (see the illustration of this assertion in Ap-
pendix A). Consequently, a template attack exploiting d′ > d + 1 shares, but
needing only εm bits of information, ε ∈ [0 : 1), for γ of them (and exactly m
bits for the remaining d′− γ) with γ > d′− d− 1,7 may be more efficient than a
classical template attack exploiting m bits of information on exactly d+1 shares.
Of course, this efficiency gain cannot be true for any amount of noise since it
is known that the complexity of a side-channel attack increases exponentially
with the number of exploited shares, the basis of the exponentiation being the
noise standard deviation σ (assumed to be the same for all the shares). Figure 6
illustrates our argumentation in the particular case (n, d) = (5, 2), d′ = 4, γ = 3
and ε = 0.5. It corresponds to the attack results reported in Fig. 1.

(5,2) Shamir’s Secret Sharing
a in GF(2m)

a1 a2 a3 a4 a5

Coding theory Side Channel Theory

Classical
approach

Mapping from GF(2m)
to GF(2m/2)2

a1 a2 a3 a4 a5 a1 a2 a3 a4 a5

𝑎1
1 𝑎1

2 𝑎2
1 𝑎2

2 𝑎3
1 𝑎3

2 𝑎4
1 𝑎4

2 𝑎5
1 𝑎5

2

Need 𝟑𝒎 bits to rebuild a Need 𝟓
𝒎

𝟐
𝑏𝑖𝑡𝑠 to rebuild a Estimate 𝑃𝑟(𝐿 𝑎1), 𝐿(𝑎2), 𝐿(𝑎3) 𝑎)

Estimate
𝑃𝑟(𝐿 𝑎1), 𝐿(𝑎2), 𝐿(𝑎3), 𝐿(𝑎5) 𝑎)

a1 a2 a3 a4 a5

𝐿(∙)

a1 a2 a3 a4 a5

𝐿(∙)

Classical
approach

Mapping from GF(2m)
to GF(2m/2)2)

𝑎1
1 𝑎1

2 𝑎2
1 𝑎2

2 𝑎3
1 𝑎3

2 𝑎4
1 𝑎4

2 𝑎5
1 𝑎5

2

Fig. 2. Side-channel and linear repairing codes for Shamir’s sharing.

In the second part of the paper, we exhibit a positive impact of the exis-
tence of linear exact repairing schemes for SSS by proposing an improvement
of the state-of-the-art multiplication algorithms dedicated to this sharing. Our
new proposal continues the line of studies made e.g. in [14] and [6] on the orig-
inal scheme by Ben-Or et al. [4], and improves them when the multiplication
operation in GF(2m) is at least two times smaller than in the sub-fields.

7 This condition implies that the amount of information (counted in bits) needed to
rebuild the shared value is bounded above by (d′ − γ)m+ γεm which is lower than
(d+ 1)m.

5

2 Preliminaries on Shamir’s Secret Sharing and Coding
Theory

In this section we introduce the concepts involved in the subsequent sections. In
particular, we recall the principles of linear exact repair schemes and we specify
the recent constructions introduced in [17] to fit with our context (where we
are focussing on the problem of secret reconstruction and not on the problem of
decoding which is more general).

2.1 Shamir’s Secret Sharing and Reed-Solomon Codes

In a seminal paper [34], Shamir proposed to split a secret a ∈ GF(2m) into
n shares such that no tuple of shares with cardinality lower than a so-called
threshold d < n depends on a. Shamir’s protocol consists in associating a with
a random polynomial Pa(X)

.
= a+

∑d
i=1 uiX

i of degree lower than d and with
constant term a = Pa(0) (this essentially amount to randomly generate the
d coefficients ui in GF(2m)). Then, the polynomial Pa(X) is evaluated in n
distinct public non-zero elements α1, . . . , αn in GF(2m) to define a so-called
(n, d)-sharing (a1, a2, · · · , an) of a such that ai = Pa(αi). To re-construct a
from its sharing, polynomial interpolation is first applied to re-construct the
polynomial from a subset U of at least d + 1 among its n evaluations ai and
then, it is evaluated in 0. Actually, using Lagrange’s interpolation formula, the
two steps can be combined in a single one thanks to the equality:

a =
∑
ai∈U

ai × βi , (4)

where the (public) constants βi are defined as

βi =

n∏
k=1,k 6=i

αk
αi + αk

. (5)

The set U is sometimes called reconstruction set. The vector composed of the n
weights βi is denoted by β and (4) is called reconstruction.

As initially observed by McEliece and Sarwate in [25], the sharing of a de-
scribed above may be viewed as an encoding with a Reed-Solomon linear code.
Generally speaking, a linear code C of length n and dimension k over a finite field
K is a k-dimensional subspace of Kn. It is denoted by C[n, k]. A Reed-Solomon
code is a particular linear code whose definition is recalled hereafter.

Definition 1 (Reed-Solomon Code). The Reed-Solomon code RS(S, d+1) ⊆
Kn of dimension d + 1 over a finite field K and with evaluation subset S =
{α0, α1, α2, · · · , αn} of K is the subspace:

RS(S, d+ 1) = {(P (α0), P (α1), . . . , P (αn));P (X) ∈ K[X] and deg(P) 6 d} .

6

Reed-Solomon codes are Maximum Distance Separable (MDS) codes, which
means that any tuple of d+ 1 symbols (that is, any tuple of d+ 1 evaluations of
a polynomial P (X) ∈ RS(S, d+ 1)) can be used to recover the entire codeword
(that is, P (X) itself). In terms of RS codes, the sharing of a variable a with SSS
is an encoding with a Reed-Solomon code RS({0, α1, . . . , αn}, d+ 1):

(a, a1, · · · , an) = (a, u1, · · · , ud)×G , (6)

with G the matrix (αji)i∈[0;n],j∈[0;d] and α0
.
= 0 (with the convention 00 = 1).

After denoting by Gi the ith column of G, it may indeed be checked that we
have:

ai = Pa(αi) = a+

d∑
j=1

ujα
j
i = (a, u1, . . . , ud) ·Gi .

The reconstruction of a then simply corresponds to a simple decoding which
will be the matrix representation of Lagrange’s interpolation recalled in (4). For
simplicity we will sometimes say that a = (a, a1, · · · , an) is a sharing of a, which
will mean that a can be recovered from (a part of) {a1, · · · , an}.

2.2 Linear Exact Repairing Codes

The reconstruction of a by Lagrange’s Interpolation (4) requires the full knowl-
edge of at least d+ 1 shares ai ∈ GF(2m), that is (d+ 1)×m bits. The theory
of Linear Exact Repairing Schemes aims at defining methods allowing for the
reconstruction of a ∈ GF(2m) from its sharing with strictly (much) less than
(d + 1) × m bits. This goal is achieved by exploiting partial information on
strictly more than d + 1 shares. If the total amount of partial information is
strictly less than RBLagrange, the goal is achieved. During the last few years,
there have been several publications tackling this issue in the context of RS
codes (see e.g. [10,35]), or more generally, for MDS codes (see e.g. [5,9,37]). Be-
fore presenting the recent constructions of LERS for RS codes introduced in [17],
let us recall hereafter the definition of a field trace.

Definition 2 (Field Trace). Let q be a power of a prime integer and let t be a
strictly positive integer, then the field trace trK/F from K = GF(qt) to F = GF(q)
is defined for every β ∈ K by

trK/F(β) = β + βq + βq
2

+ · · ·+ βq
t−1

.

In a linear repairing scheme, the reconstruction of the shared value a ∈
K involves, for each share ai, zero or more elements of F ⊆ K of the form
trK/F(γi,jai) for some well-chosen field elements γi,j ∈ K. A linear exact repair
scheme can then be described by the field elements γi,j used for all the shares ai,
along with a (linear) repair algorithm. Minimizing the number of these elements
is the main goal when designing an LERS. It is called the Repair Bandwith
RBLERS of the LERS and it is formally defined as the maximum number of
sub-symbols in F which must be exploited to recover Pa(α?) when α? ranges

7

over S. It may be observed that, in the context of SSS, we only need an efficient
reconstruction scheme for α? = 0 (i.e. for a = Pa(0)) and thus, we will use
RBLERS as an upper bound and will denote by LERS0 a repairing scheme trying
to minimize RBLERS only for α? = 0.

In the following section, we give, for the specific case of Reed-Solomon codes
applied for secret sharing, the main outlines of the method recently proposed
in [17] to construct the field elements γi,j described previously together with an
efficient repair algorithm. The presentation is completed in Appendix D by a
detailed presentation of an example given in [17] and by Sage scripts that we
made available at [1].

2.3 Explicit Constructions for Reed-Solomon Codes

In the specific case of Reed-Solomon codes RS({0, α1, . . . , αn}, d+1) defined over
K = GF(2m), [17, Theorem 4] implies that the construction of a LERS0 over
F = GF(2

m
t) for some field extension t is equivalent to find a set {p1, . . . , pt} of

t polynomials of degree n− d− 1 in K such that:

dimF({p1(0), . . . , pt(0)}) = t (7)

and

RBLERS0 >
n∑
i=1

dimF({p1(αi), . . . , pt(αi)}) .

Once such a family of polynomials is found with RBLERS0
< t(d+ 1) (otherwise

the bandwidth is worst than the trivial one), coefficients ζj and µi,j with j ∈ [1..t]
are built so that

ζj = pj(0) (8)

and

µi,j = pj(αi)× βi , (9)

where the βi are defined as in (5).

Then, the last step of the LERS0 design consists in computing, for any αi, a
basis Bi = {γi,j}j for the smallest vector space over F containing {µi,j ; j ∈ [1; t]}
as a subset (by definition the size of the basis is at most t, and actually is fre-
quently strictly lower, which is a core observation to understand the soundness
of the decoding with an LERS scheme). With the bases in hand, the reconstruc-
tion of a = Pa(0) for any polynomial Pa of degree lower than d consists in the
following steps where we recall that each ai equals Pa(αi) by SSS construction:

– for any i ∈ [1..n]; compute8 the values trK/F(µi,jai), with j ∈ [1..t], from the
elements in {trK/F(γi,jai); γi,j ∈ Bi},

8 Since (γj,j)j forms a basis, this can be done by only processing linear combinations
of the trK/F(γi,jai).

8

– for any j ∈ [1; t]; evaluate

trK/F(ζja) =

n∑
i=1

trK/F(µi,jai) (10)

and, eventually, recover the shared value thanks to the following equality

a =

t∑
j=1

νjtrK/F(ζja) , (11)

where {ν1, . . . , νt} is the dual basis of {ζ1, . . . , ζt}.

It may be observed that Equations (10) and (11) together give the following
alternative to Lagrange reconstruction Formula (4)

a =

n∑
i=1

t∑
j=1

νjtrK/F(µi,jai) =

n∑
i=1

t∑
j=1

νjtrK/F(pj(αi)βiai) . (12)

The core observation in [17] is that, surprisingly, for some ai (and hence some
Pa(αi)) the size of all the elements required to build the set {trK/F(µα,jai); j ∈
[1; t]} may be smaller than the size of ai. This implies that the total num-
ber of bits required to recover P (0) from (10) and (11), which actually equals
RBLERS×m

t , may be smaller than (d+1)m (corresponding to a direct polynomial
interpolation).

In the following section we argue that the existence of efficient LERS for
Reed-Solomon codes impacts the security evaluation of Shamir’s sharing in the
context of side-channel analyses. In particular, we argue that the choice of the
public points plays a non-negligible role in the security provided by this sharing
and we exhibit (through several simulations and experiments) contexts in which
state-of-the-art attacks are suboptimal.

3 Side-Channel Analysis of Shamir’s Secret Sharing
Scheme

We first recall that a scheme is said to be dth-order secure if any set of at most d
intermediate results during the processing reveals no information about a secret
(sensitive) value. When the (n, d)-sharing of Shamir is involved to secure the
implementation, the recovery of the shared values requires the knowledge of at
least d + 1 shares among the n = 2d + 1 possible ones. As already discussed in
the introduction, all previous works on SSS assume that the most efficient way
to attack such a sharing of a is to exploit exactly d+1 shares. If the shared value
is assumed to belong to GF(2m), then this implies that the literature implicitly
assumes that, as for Boolean sharing/masking, (d + 1) × m bits are necessary
and sufficient to rebuild a. This section aims at coming back on this assumption
and, more precisely, at answering the two following questions while having in
mind the recent results on LERS described in previous section:

9

Question 1. For a given pair of sharing parameters (n, d) and a given representa-
tion of the base field GF(2m), does any combination of d+1 shares (ai)i∈I,#I=d+1

give the same amount of information an a. Actually, an attacker is spoilt for the
choice of the combination of d + 1 shares to use among the several available
ones. Our goal here is to check if all d+ 1 combination of shares leak the same
amount of information under the same fixed noise level for each share. The re-
sult of this investigation may bring some insights on the choice of the optimal
(d+1)-combination of shares, if any exits, that an attacker should consider when
performing his attack.

Question 2. For a given pair of sharing parameters (n, d) and a given represen-
tation of the base field GF(2m), is there some (d + 2)-combination of shares
whose observation leads to a better attack than any other one with exactly d+1
shares? We shall see that the answer to this question depends on the amount of
noise in each observation (actually we will argue that the answer is positive if
and only if the signal-to-noise ratio is lower than some bound).

3.1 Preliminar Observations from Simulated Leakage Measurements

To address the questions above, we performed profiling attacks against simulated
traces corresponding to the manipulation of the shares of a (n, d)-sharing for
n = 5 and d = 2. This allows us to study the impact of the noise on the attacks
efficiency, and to draw some conclusions. Our analyses are confirmed, in Section
3.3, by practical attack experiments against real acquisitions captured on the
ChipWhisperer platform [27].

Target Implementation. It is assumed that the adversary has access to a
noisy observation of the five elements a1, . . . , a5 of the (5, 2)-sharing of a secret
value a ∈ GF(28).

Leakage Model. The observation `i of each share ai is assumed to be the sum
of two mutually independent parts: a deterministic function f of the share ai
and a Gaussian noise Ni such that `i = f(ai) +Ni. To generate our traces, we
considered two types of deterministic functions: the Hamming weight (which has
been argued to be a sound approximation for many device technologies – see e.g.
[24]) and the identity. The noises Ni are assumed to be mutually independent,
to have zero mean and to have the same fixed variance σ2 (the rationale behind
this assumption is to have the same noise level for each share). It may be checked
that, under our assumptions, the distribution of `i | ai has a normal distribution
with mean f(ai) and variance σ2. Such a normal distribution is hereafter denoted
by x ∈ R 7→ φf(ai),σ2(x).

Attack Strategy. To evaluate the security of the (5, 2)-sharing, we performed
a higher-order template attack following the procedure described in [22]. The
idea behind this choice was to directly address the most powerful adversary

10

who follows a maximum likelihood approach without modelling error. Let `j ∈
R5 denotes the jth observation of the 5-tuple (`1, . . . , `5) and let `1,j , ..., `5,j
denote its coordinates, then for any hypothesis â ∈ GF (28) on a, the likelihood

distinguisher9 is defined as dML(â) =
N∏
j=1

pâ(`j), where N denotes the number

of observations and where pâ denotes the probability density function (pdf) of
the leakage which, under the Gaussian assumption, satisfies:

pâ(`j) =
1

2564

∑
a2∈GF(28)

· · ·
∑

a5∈GF(28)

5∏
i=1

φf(ai),σ2(`i,j) , (13)

where we recall that we have a1 = 1
β1

(â+
∑5
i=2 ai × βi) (see (4)).

In [22] authors have demonstrated that, for a dth-order Boolean masking,
(13) can be expressed as a higher-order convolution product whose evaluation
complexity is O(d). To continue using this efficient procedure in the context of
Shamir’s secret sharing, we propose hereafter to apply the simple linear change

of variables ai 7→ a′i
.
= ai× βi

β1
and â 7→ â′

.
= â× 1

β1
so that a1 = â′⊕

5⊕
i=2

a′i, which

enables us to apply the convolution trick to compute the score dML(â× β−11).

Attack Results. For each possible combination of 3 shares, the left-hand side
of Fig. 3 plots the number of traces (in y-axis) required to achieve a success
rate of 100% according to an increasing noise standard deviation (in x-axis). We
stress the fact that for each value of the standard deviation, the success rate has
been averaged over 1.000 tries.

It may first be observed that the different triplet of shares that have been
tested leak differently on the shared variable a (even if all the shares have been
affected by the same amount of noise). For instance, for a noise standard devi-
ation comprised in [0.5, 1.5], the number of traces needed to always succeed in
recovering the shared variable is around two times when exploiting the triplet of
shares (a1, a2, a3) instead of (a2, a3, a4). To confirm this observation, we changed
the public points αi used for the sharing (see (2)). Results are plotted in the
right-hand side of Fig. 3, where our previous observation is confirmed but for
a different ordering of the triplets of shares. This simulations led us to answer
positively to Question 1: some combination of d+1 shares bring to the adversary
more information than others in Shamir’s sharing.

To address Question 2, we performed another set of simulations to check if
there exist an SNR range for which exploiting the leakage on 4 shares is more
efficient than any other combination of 3 shares. In Fig. 4, we show a comparison
between the template attack results when considering all combination of 3 and 4
shares. The experiences are repeated 1.000 times for each combination of shares.

9 In practice, one often makes use of the equivalent (averaged) log-likelihood distin-
guisher.

11

0.0 0.5 1.0 1.5 2.0
Noise standard deviation

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

to
 a

ch
ie

v
e
 1

0
0

%
 o

f
su

cc
e
ss

 r
a
te

(0, 1, 2)

(0, 1, 3)

(0, 1, 4)

(0, 2, 3)

(0, 2, 4)

(0, 3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

0.0 0.5 1.0 1.5 2.0
Noise standard deviation

0

10

20

30

40

50

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

to
 a

ch
ie

v
e
 1

0
0

%
 o

f
su

cc
e
ss

 r
a
te

(0, 1, 2)

(0, 1, 3)

(0, 1, 4)

(0, 2, 3)

(0, 2, 4)

(0, 3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

Fig. 3. Evolution of the number of queries (y-axis) to achieve a success rate of 100%
according to an increasing noise standard deviation (in x-axis) for public points
{125, 246, 119, 104, 150} ⊆ GF(28) (on the left-hand side) and {86, 23, 115, 107, 189}
(on the left-hand side).

For a specific interval of noise standard deviation (between 0.3 and 0.5), it may
be observed that some combinations of 4 shares outperform all other combination
of 3 shares. The same observation stands when changing the set of public points
as described in the right-hand side of Fig. 4. We sum-up hereafter our main
observations:

– the shares are not leaking the same amount of leakage despite the fact that
the same quantity of noise has been added to them,

– exploiting the leakage of 4 shares is more efficient than any other attack
strategy based on 3 shares for some values of the noise standard deviation.

– when comparing the two sides of Fig. 4, it may be observed that the optimal
combination of 4 shares to recover the secret value changes with respect to
the used public points. So, the amount of information leaked by the shares
depends on the set of public points used to share the secret value.

3.2 Impact on the Existence of an LERS on the Efficiency of SCA
against SSS

The existence of efficient LERS for some choices of public points and of field
representations (aka the existence of reconstruction formulae as in (10)-(11) or
in (18)) explains the observations made for previous experiments. Indeed, it im-
plies that the statistical dependency between the value a and the tuple of shares
involved in the attack can be revealed by extracting partial information on some
of the shares, which renders the exploitation of the noisy observations of these
shares more tolerant to error. Even if the reconstructions formulae are not di-
rectly involved in the template attacks we have performed, their existence is
implicitly used by the maximum likelihood distinguisher to capture the depen-
dency. From the designer point of view, a direct consequence is that the set of

12

0.0 0.2 0.4 0.6 0.8 1.0
Noise standard deviation

0

5

10

15

20

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

to
 a

ch
ie

v
e
 1

0
0

%
 o

f
su

cc
e
ss

 r
a
te

(0, 1, 2)

(0, 1, 3)

(0, 1, 4)

(0, 2, 3)

(0, 2, 4)

(0, 3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(0, 1, 2, 3)

(0, 1, 2, 4)

(0, 1, 3, 4)

(0, 2, 3, 4)

(1, 2, 3, 4)

0.0 0.2 0.4 0.6 0.8 1.0
Noise standard deviation

0

5

10

15

20

N
u
m

b
e
r

o
f

q
u
e
ri

e
s

to
 a

ch
ie

v
e
 1

0
0

%
 o

f
su

cc
e
ss

 r
a
te

(0, 1, 2)

(0, 1, 3)

(0, 1, 4)

(0, 2, 3)

(0, 2, 4)

(0, 3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

(0, 1, 2, 3)

(0, 1, 2, 4)

(0, 1, 3, 4)

(0, 2, 3, 4)

(1, 2, 3, 4)

Fig. 4. Evolution of the number of queries (in y-axis) to achieve a success rate of
100% according to an increasing noise standard deviation (x-axis) for public points
{5, 237, 175, 221, 198} ⊆ GF(28) (on the left-hand side) and {169, 63, 106, 49, 112} (on
the left-hand side).

public points and the field representation must be carefully chosen to make the
construction of efficient LERS as difficult as possible. In Section 4, we show a
constructive impact of LERS by proposing enhancements of the secure multipli-
cation of data shared with SSS.

3.3 Attack results on Real Device

In order to confirm our observations on simulated traces, we conducted some
practical attacks on the ChipWhisperer platform. The experimental setup is
described in what follows.

We have implemented a (5, 2) secret sharing on an 8-bit AVR micropro-
cessor atxmega128d3 and we acquired power-consumption traces thanks to the
ChipWhisperer-Lite (CW1173) basic board. For the leakage profiling step, we
have collected 128.000 traces to estimate the mean and the variance for each
share. These statistical estimation results have first been used to check that the
shares observations have roughly the same variance (i.e. are impacted by the
same level of noise) which is in-line with our simulation setup. However, the
standard deviation of the noise of the acquired traces was actually outside the
suitable area where the combinations of 4 shares outperform the combination of
3 shares. The estimated noise standard deviation is about 0.7. Thus, we have
acquired 15.000 traces for the attack phase and we have performed the template
attack by exploiting the leakage of all combinations of 4 and 3 shares. As ex-
pected, the attack results have demonstrated that any combinations of 4 shares
is efficient with respect to the measures noise standard deviation. To decrease
the noise level and to fit the suitable interval, we filtered the acquired traces to
reach a noise standard deviation value equal to 0.5. Finally, we re-performed our
higher-order template attack. The success rate of the attack for each combination
of share is shown in Fig. 5.

13

2000 4000 6000 8000 10000 12000 14000
Number of queries

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

 R
a
te

(0, 1, 3, 4)

(0, 1, 2)

(0, 1, 3)

(0, 1, 4)

(0, 2, 3)

(0, 2, 4)

(0, 3, 4)

(1, 2, 3)

(1, 2, 4)

(1, 3, 4)

(2, 3, 4)

Fig. 5. Success rate of the template attack according to an increasing number of traces.

Fig. 5 shows that exploiting the leakage of the shares (0, 1, 3, 4) is more
suitable in terms of attack efficiency than exploiting any other tuple of 3 shares.

4 Impact of LERs to Improve Existing Multiplication
Schemes for SSS

In this section we describe a constructive impact of the existence of an LERS by
showing that they can be used to improve the multiplication of data shared by
SSS.

4.1 Basics on the Multiplication for SSS

To define a dth-order masking scheme for a block cipher implementation where
each intermediate result is split with Shamir’s technique, one must specify a
secure method for the processing of field multiplications over GF(2m). Most of
(if not all) existing protocols start from a multiplication scheme introduced by
Ben-Or et al. in the context of the Multi-Party Computation Theory [4]. For this
protocol to work, the number of shares n per variable must be at least 2d + 1
and for n = 2d+1, it is proved that it satisfies a security property encompassing
the dth-order SCA security [31]. We give hereafter the adaptation of [4] in the
SCA context as proposed in [31,33]10.

10 The protocol is an improved version of the protocol originally proposed by Ben-Or
et al. [4], due to Gennaro et al. in [13].

14

Algorithm 1 Secure Multiplication For Shamir’s Secret Sharing

Input: two integers n and d such that n ≥ 2d+1, the (n, d)-sharings (ui)i = (Pu(αi))i
and (vi)i = (Pv(αi))i of u and v respectively. The n distinct points αi, the inter-
polation values β = (β1, · · · , βn).

Output: the (n, d)-sharing (wi)i
.
= (Pw(αi))i of w = u× v.
. Compute a Boolean n-sharing (t1, · · · , tn) of w

1: for i = 1 to n do
2: ti ← βi × Pu(αi)× Pv(αi)
3: end for

. Compute a sharing (Qi(αj))j≤n for every ti
4: for i = 1 to n do
5: for k = 1 to d do
6: ωk ← rand(GF(2n))
7: end for
8: for j = 1 to n do
9: Qi(αj)← ti +

∑d
k=1 ωk × αk

j

10: end for
11: end for

. Compute the share wi = Pw(αi) for w = u× v
12: for i = 1 to n do
13: wi ←

∑n
j=1Qj(αi)

14: end for

The completeness of Algorithm 1 is discussed in [4]. Its dth-order SCA secu-
rity can be straightforwardly deduced from the proof given by Ben-Or et al. in [4]
in the secure multi-party computation context. Eventually, for n = 2d+1 (which
is the parameter choice which optimizes the security/efficiency overhead), the
complexity of Algorithm 1 in terms of additions and multiplications is O(d3).

4.2 Link with Error Correcting Codes Theory and State-Of-The-Art
Improvements

Algorithm 1 may be rewritten in terms of coding theory, essentially because, as
recalled in Section 2, an (n, d)-sharing with Shamir’s scheme exactly corresponds
to an encoding by a Reed-Solomon code with parameters [n+1, d+1] [25]. Let ◦
denote the Hadamard product between vectors (aka the componentwise product)
and let C denote the latter code and let C? denote the code built from C by taking
all the vectors β ◦ c ◦ c′ with c, c′ ∈ C and β = (1, β1, · · · , βn) (recall that the
βi are interpolation values specified for the Reed-Solomon code with parameters
[n+1, d+1]). The code C? is the so-called generalized Reed-Solomon code defined
with respect to the evaluation points S and the multiplier vector β by:

C? = {(βiP (αi))i∈[1;n]; P (X) ∈ GF(2m)[X] and deg(P (X) 6 n} . (14)

On one hand, the tuple (t1, · · · , tn) in Algorithm 1 forms a sharing of w = u× v
such that c? = (w, t1, · · · , tn) ∈ C? and a reconstruction algorithm is simply

15

given by the sum of the ti (this is a direct consequence of Lagrange’s interpola-
tion formula). On the other hand, loop 4-11 (over indices i and j) and loop 12-14
may be viewed as a transcoding transcodingC?→C that securely transforms the
sharing c? ∈ C? of w into a new sharing c in C. Eventually, it can be observed
that the algorithm completeness holds because the constant term of the polyno-
mial Pw(X)

.
=
∑n
j=1Qj(X) associated to the codeword C has constant term the

n-reconstruction
∑
i βi×ti. Algorithm 1 involves n multiplications and the evalu-

ations of n degree-d polynomials in n points (which makes n2×d multiplications
for a naive implementation and O(n log2 n) multiplications using FFT-based
polynomial division11 [8]). In [6], the authors observe that the addition of a ran-
dom sharing c0

.
= (0, c01, . . . , c

0
n) ∈ C? of 0 to c? makes it possible to reduce the

number of polynomials to evaluate from n to d + 1, without compromising the
security at order d. The core idea is to precede the transcoding by a shortening
of the sharing ĉ

.
= (t1 + β1 · c01, · · · , tn + βn · c0n) into (

∑n−d
i=1 ĉi, ĉn−d+1, · · · , ĉn).

The security essentially holds because the sharing c0 may correspond to any
polynomial of degree lower than or equal to n, which implies that at least n− 1
shares/evaluations are required to recover all the information about the sharing
(see [6] for more details about the proof). Eventually, a last improvement can
be obtained by applying to loop 12-14 (in Algorithm 1) an idea initially pro-
posed in [14]: since polynomials Qi(X) (and hence also Pw(X)) all have degree
d, the evaluation can be made in only d + 1 points (e.g. the d + 1 first public
points α1, . . . , αd+1) and Algorithm 1 can output only the d+ 1 shares w1, . . . ,
wd+1. When needed, the remaining evaluations/shares wd+2, . . . , wn can then
be deduced by applying the following formula where the Lagrange’s coefficients
βj,i

.
=
∏d+1
k 6=j,k=1(αi−αk)/(αj−αk) have been pre-computed and can be public12:

wd+1+i =

d+1∑
j=1

wj × βj,i . (15)

This enables to exchange the (d+ 1)dn evaluations (needed for the transcoding)
to d(d + 1)2 + (n − d − 1)(d + 1). Let cu and cv respectively denote the tuples
of shares corresponding to the codewords in C associated to u and v. Bellow, we
sum-up the resulting secure multiplication scheme and the cost in terms of field
multiplications in the case n = 2d+ 1 (which is the optimal choice):

– [build the Sharing in C?] c? = cu ◦ cv ◦ β (4d+ 2 mult.)
– [add the random sharing of 0 in C?] ĉ = c? + c0 ◦ β (2d+ 1 mult.)

– [reduce dimension of the sharing] ĉ− =
(∑n−d

i=1 ĉi, ĉn−d+1, · · · , ĉn
)

– [transcode ĉ− into a sharing in C] (d(d+ 1)2 + d(d+ 1) mult.)

Performances. Clearly, the complexity of the multiplication is driven by the
cost of the transcoding step which is in O(d3) while the other steps are in

11 The constant terms being important in this complexity the naive approach is always
more efficient for practical choices of n and d.

12 As argued in [32], the processing of (15) can be simply made securely at order d
without requiring additional multiplications.

16

O(d). For efficiency reasons, e.g. when the cost of the field multiplication is
significantly lower in GF(2m/2) than in GF(2m), it is preferred to work on the
vector space GF(2m/2)2 instead of GF(2m). This is for instance the case in
software for m = 8, since the field multiplication can be tabulated in GF(16)
(and hence corresponds to a table access) but not in GF(256) (and hence often
takes several dozens of CPU cycles – see e.g. [15] –). Working in GF(2m/2)2

instead of GF(2m) essentially amounts to represent ĉ− ∈ GF(2m)d+1 as the pair
(ĉ−1 , ĉ

−
2) ∈ GF(2m/2)d+1 × GF(2m/2)d+1 and to process the transcoding over

GF(2m/2)2 both for ĉ−1 and ĉ−2 . This leads to exchange d(d + 1)2 + d(d + 1)
multiplications over GF(2m) for the following number of multiplications over
GF(2m/2):

Compsoa = 2d(d+ 1)2 + 2d(d+ 1) .

Before describing how the existence of efficient LERS can be used to improve
the state of the art multiplication algorithms for SSS, we specify hereafter the
description made in Section 2.3 for the particular case involved in the description
of our improvement proposal.

4.3 LERS For Reed-Solomon Codes in the Particular case t = 2

Let us focus on a Reed-Solomon code RS(S, d + 1) defined over K = GF(2m)
and with S .

= {0, α1, . . . , αn}. When t = 2, the basis Bi of {µi,1, µi,2} defined in
Section 2.3 for every i ∈ [1 . . . n] is either of cardinal 2 if µi,1 and µi,2 are linearly
independent over F, or of cardinal 1 otherwise. In the first case, its two elements
γi,1 and γi,2 may simply be set to µi,1 and µi,2 respectively. In the second case,
we fix γi,2 = 0 and the single basis element γi,1 can for instance be defined such
that:

γi,1 =

µi,1 if µi,1 6= 0,
µi,2 if µi,1 = 0 and µi,1 6= 0,
0 otherwise.

The set of pairs (i, j) such that γi,j has been assigned a non-zero value by the
latter process is denoted by R and is called reconstruction set. By construction,
we have R ⊆ {(i, j);αi ∈ S\{0}, j ∈ [1; 2]} and #R = RBLERS. Moreover,
we denote by R1 (resp. R2) the subset of R containing the pairs (i, j) with
j = 1 (resp j = 2). They form a partition of R and they are the same for any
polynomial P of degree lower than or equal to d.

Eventually, for the case t = 2, we may conclude that for any polynomial Pa
of degree lower than or equal to d:

Fact 1 (memory) To reconstruct a = Pa(0) thanks to the Formula (12), it is
sufficient to store the elements wi,j = trK/F(γi,jai) ∈ F with the (i, j) ∈ R.
Hence, the overall scheme leads to replace the storage of the (d+ 1)×m bits
needed for the classical reconstruction with Lagrange Interpolation, by the
storage of RBLERS × m

2 bits.

17

Fact 2 (processing) The reconstruction of a = Pa(0) can always be done thanks
to the following formula which is deduced from (9)-(10):

a = ν1
(∑
(i,1)∈R1

wi,1
)

+ ν2
(∑
(i,2)∈R2

wi,2 +
∑

(i,1)∈R1,#Bi=1

µi,2
µi,1

wi,1
)
. (16)

where {ν1, ν2} is the dual basis of {ζ1, ζ2}. Note that the coefficients µi,2/µi,1
belong to F by construction.

Fact 3 (security) The elements wi,j form a sharing of a and this sharing still
satisfies the dth-order security property since, by construction, at least d+ 1
shares are necessary to rebuild w.

Remark 1. For the new multiplication protocol exhibited in Section 4.4, we will
prefer to use the following equation which is equivalent to (16):

P (0) = ν1
(∑
(i,1)∈R1

τi × wi,1︸ ︷︷ ︸
trK/F(ζ1w)

)
+ ν2

(∑
(i,2)∈R2

wi,2︸ ︷︷ ︸
trK/F(ζ2w)

)
. (17)

where τi is constant with respect to P (X) and is defined such that:

τi =

{
1 +

ν2µi,2

ν1µi,1
if #Bi = 1

1 otherwise.
(18)

In [17, Theorem 10] it is proved that for Reed-Solomon codes RS(S, d + 1)
with #S = n and t = 2, there always exits an LERS with the bandwidth RBLERS

being at most 3n/2n (which leads to a reconstruction of a with strictly less than
3n
4 m bits instead of (d+ 1)m).

As an illustration of the concepts presented in this section, the example given
in [17] is detailed in Appendix D. It corresponds to the case of a code RS(S, 9+1)
over the field K ' GF(256) with S = {g0, . . . , g13} where g is a primitive element
of K. This example is completed by Sage scripts available at [1].

4.4 Improvement From LERS

To simplify the presentation, we apply our proposal in the particular case where
the linear exact repairing codes recalled in Sec. 2.3 are applied for K = GF(2m),
F = GF(2m/2) and t = 2. For this parameters, we assume that an LERS exists
for a Reed-Solomon code with evaluation set S = {α1, . . . , αn′} and order 2d+1
(this implies that n′ is greater than n = 2d+1). We assume that the latter LERS
has repair bandwidth RBLERS < 2(2d + 1) and we denote by (ζ1, ζ2} the basis
defined in (8) and by (ν1, ν2) the corresponding dual basis over GF(2m/2). For our
description we assume that coefficients µαi,j and γi,j , and also the reconstruction
set R, have been defined as specified in Sec. 4.3. Eventually, to properly define
the evaluation of polynomials in GF(2

m
2)[X] in the public elements αi ∈ S, we

shall assume that they belong to F = GF(2m/2) and, when needed, that their

18

m
2 -bit representation is (artificially) extended to an m-bit representation (in
GF(2m)) by simply left-padding with 0 (e.g. the element 3 ∈ GF(2

m
2) becomes

03 in GF(2m)).13

For our new proposal, we assume that the two values u and v whose mul-
tiplication has to be secured are respectively represented by the (n′, d + 1)-
polynomial sharings (Pu(αi))αi∈S and (Pv(αi))αi∈S (we hence have u = Pu(0)
and v = Pv(0)). Note that contrary to the classical SSS sharing, we need n′ to
be strictly greater than 2d+ 1 in order to get an efficient LERS.

Sharing of w = uv in C?. As in Algorithm 1, we start by building a sharing
(w1, . . . , wn′) of w = uv in the product code C? by simply defining wi, for
i ∈ [1;n′], such that:

wi = Pu(αi)× Pv(αi)
.
= Pw(αi)

By construction, it may be observed that C? is a sub-code of the Reed-Solomon
code with parameters [n′ + 1, 2d + 1]; this implies that w can be rebuild from
RBLERS coordinates wi,j ∈ GF(2m/2) of the wi’s, by applying Formula (16)
(instead of 2d+1 elements wi ∈ GF(2m) when classical Lagrange’s interpolation
is applied). From the coefficients γi,j associated to our LERS for the code RS(n′+
1, 2d+1) (hence with (i, j) in the reconstruction setR), we deduce the new shares
wi,j ∈ GF(2m/2) from the the shares wi ∈ GF(2m) by processing14:

wi,j = trK/F(γi,jwi) . (19)

We recall that R1 and R2 respectively denote {(i, j) ∈ R, j = 1} and {(i, j) ∈
R, j = 2}. The set {wi,j ; (i, j) ∈ R1} may hence be viewed as a sharing of
the first coordinate of P (0) in GF(2m/2)2 (aka trK/F(ζ1P (0)) with the notations
in Section 2.3), while the set {wi,j ; (i, j) ∈ R2} is the sharing of the second
coordinate (aka trK/F(ζ2P (0))). By construction, the sharing of w defined by
evaluating (19) for (i, j) ∈ R has size RBLERS.

Now, applying the same ideas as described in previous section:

Reduce dimension of the sharings. We generate two independent Boolean
sharings of 0 in GF(2m/2) that we respectively denote by {c0i,j ; (i, j) ∈ R1} and

{c0i,j ; (i, j) ∈ R2}. Then, we build the two following new sharings of trK/F(ζ1P (0))
and trK/F(ζ2P (0)) respectively:

ĉ1 = {ĉ1,1, ĉ1,2, . . . , ĉ1,#R1
} = {τi × wi,j + c0i,j ; (i, j) ∈ R1}

13 This introduces the restriction #S < 2
m
2 − 1 which has no important impact in

practice.
14 Note that this processing is for free if the field representation of GF(2m) has been

carefully chosen.

19

and
ĉ2 = {ĉ2,1, ĉ2,2, . . . , ĉ2,#R2

} = {wi,j + c0i,j ; (i, j) ∈ R2} ,
where τi is defined as in (18). Then, if #R1 and/or #R2 are greater than d+ 1,
we shorten the sharings as described in previous section. For j = 1, 2, we get:

ĉ−j =
(#Rj−d∑

i=1

ĉj,i, ĉj,#Rj−d+1, · · · , ĉj,#Rj

)
.

Transcodings in C over GF(2
m
2). Eventually, we conclude the processing as

in previous section by transcoding ĉ−1 and ĉ−2 into two new sharings in the Reed-
Solomon code with parameters [n′ + 1, 2d+ 1] over GF(2m/2) which themselves
form a sharing of w in the Reed-Solomon code with parameters [n′ + 1, 2d + 1]
over GF(2m) (with basis (ν1, ν2)).

Completeness. By construction, it may be checked that we have:

∑
i

ĉ−1,i =

#R1−d∑
i=1

ĉ1,i + ĉ1,#R1−d+1 + · · ·+ ĉ1,#R1 (20)

=
∑

(i,j)∈R1

τi × wi,j +
∑

(i,j)∈R1

c0i,j = trK/F(ζ1w) , (21)

which comes at a direct consequence of (17) and the fact that the c0i,j forms a

Boolean sharing of 0. Since the same holds for the sharing ĉ−2 , we deduce that the
input of the first (resp. second) transcoding is a sharing of the first (resp. second)
coordinate of w in GF(2

m
2). If one denote by Pw,1(X) (resp. Pw,2(X)) the random

degree-d polynomial in GF(2
m
2) corresponding to the sharing at input of the first

(resp. second) transcoding, then it may be checked that Pw(X)
.
= ν1Pw,1(X) +

ν2Pw,1(X) is a random degree-d polynomial over GF(2m) and (d+ 1, d+ 1)-SSS
sharing is given by its evaluation Pw(X)(αi) = ν1Pw,1(αi) + ν2Pw,2(αi) in the
public elements αi ∈ S.

Extension to t > 2. The construction can be directly generalized to any
extension order t = 2k (i.e. under the assumption that there exists an efficient
LERS for the Reed-Solomon code C = RS(S, 2d+ 1) with K = GF(2m) and F =
GF(2m/t)). This will lead to the construction of t sharings ĉ−1 , ĉ−2 , . . . , ĉ−t instead
of 2, and to t transcodings in the code C over GF(2m/t). The corresponding
reconstruction sets are denoted by R1, R2, . . . , Rt.

Efficiency. A core observation here is that the size of each sharing ĉ−j is
min(#Rj , d+ 1). Hence, the complexity of the transcoding step is:

Compnew = d(d+ 1)
(t∑
j=1

min(#Rj , d+ 1)
)

+ t(n′ − d− 1)(d+ 1)

20

which is, in the least favourable case, comparable to the complexity Compsoa of
the state-of-the-art schemes and which is better, for almost all choices of d and
n, if one of the Rj has cardinality lower than d+ 1.

5 Conclusion

In this paper, we highlighted an important difference between Boolean and
Shamir’s sharings which implies that, for some signal-to-noise ratio, it is more ad-
vantageous for the adversary to observe strictly more than d+1 shares. We argue
that this difference is related to the existence of so-called exact linear repairing
codes, which themselves come with reconstruction formulae that need (much)
less information (counted in bits) than Lagrange’s interpolation. In particular,
this result implies that, contrary to what was believed, the choice of the public
points in Shamir’s sharing has an impact on the countermeasure strength. In the
second part of the paper, we then exhibited a positive impact of the existence
of linear exact repairing schemes; we indeed proposed to use them to improve
the state-of-the-art multiplication algorithms dedicated to Shamir’s sharing. We
think that this work opens promising avenues on the design of LERS taking into
account the constraints of the SCA contexts.

References

1. Anonymous. Sage Scripts for Examples of Exact Linear Re-
pairing Codes, 2017. Available at https://cloud.sagemath.com/

projects/bae91571-60b3-4815-b911-aa3090b81a47/files/. Login:
Ches2017sis@gmail.com and password: ches2017.

2. J. Balasch, S. Faust, and B. Gierlichs. Inner Product Masking Revisited. In E. Os-
wald and M. Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056
of Lecture Notes in Computer Science, pages 486–510. Springer, 2015.

3. A. Battistello, J. Coron, E. Prouff, and R. Zeitoun. Horizontal side-channel at-
tacks and countermeasures on the ISW masking scheme. In B. Gierlichs and A. Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES 2016
- 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, volume 9813 of Lecture Notes in Computer Science, pages 23–39.
Springer, 2016.

4. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 1–10, New
York, NY, USA, 1988. ACM.

5. V. R. Cadambe, C. Huang, S. A. Jafar, and J. Li. Optimal repair of MDS codes
in distributed storage via subspace interference alignment. CoRR, abs/1106.1250,
2011.

6. G. Castagnos, S. Renner, and G. Zémor. High-order masking by using coding
theory and its application to AES. In M. Stam, editor, Cryptography and Coding

21

https://cloud.sagemath.com/projects/bae91571-60b3-4815-b911-aa3090b81a47/files/
https://cloud.sagemath.com/projects/bae91571-60b3-4815-b911-aa3090b81a47/files/

- 14th IMA International Conference, IMACC 2013, Oxford, UK, December 17-
19, 2013. Proceedings, volume 8308 of Lecture Notes in Computer Science, pages
193–212. Springer, 2013.

7. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A Cautionary Note Regarding Evalu-
ation of AES Candidates on Smart-Cards. In Second AES Candidate Conference
– AES 2, Mar. 1999.

8. J.-S. Coron, E. Prouff, and T. Roche. On the use of shamir’s secret sharing against
side-channel analysis. In S. Mangard, editor, CARDIS, volume 7771 of Lecture
Notes in Computer Science, pages 77–90. Springer, 2012.

9. A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchan-
dran. Network coding for distributed storage systems. IEEE Trans. Inf. Theor.,
56(9):4539–4551, Sept. 2010.

10. A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network codes
for distributed storage. Proceedings of the IEEE, 99(3):476–489, 2011.

11. A. Duc, S. Faust, and F. Standaert. Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In E. Oswald and M. Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes in
Computer Science, pages 401–429. Springer, 2015.

12. S. Dziembowski and S. Faust. Leakage-resilient circuits without computational as-
sumptions. In R. Cramer, editor, TCC, volume 7194 of Lecture Notes in Computer
Science, pages 230–247. Springer, 2012.

13. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty
computations with applications to threshold cryptography. In PODC, pages 101–
111, 1998.

14. L. Goubin and A. Martinelli. Protecting aes with shamir’s secret sharing scheme.
In Preneel and Takagi [29], pages 79–94.

15. V. Grosso, E. Prouff, and F. Standaert. Efficient masked s-boxes processing - A
step forward -. In D. Pointcheval and D. Vergnaud, editors, Progress in Cryptology
- AFRICACRYPT 2014 - 7th International Conference on Cryptology in Africa,
Marrakesh, Morocco, May 28-30, 2014. Proceedings, volume 8469 of Lecture Notes
in Computer Science, pages 251–266. Springer, 2014.

16. V. Grosso and F. Standaert. Masking Proofs are Tight (and How to Exploit it in
Security Evaluations). IACR Cryptology ePrint Archive, 2017:116, 2017.

17. V. Guruswami and M. Wootters. Repairing reed-solomon codes. In D. Wichs and
Y. Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 216–226. ACM, 2016.

18. W. Huang and J. Bruck. Secret Sharing with Optimal Decoding and Repair Band-
width. Unpblished. Available at http://www.paradise.caltech.edu/papers/

etr135.pdf., 2016.
19. Y. Ishai, A. Sahai, and D. Wagner. Circuits: Securing Hardware against Probing

Attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

20. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In N. Koblitz, editor, Advances in Cryptology – CRYPTO ’96,
volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

21. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

22

http://www.paradise.caltech.edu/papers/etr135.pdf
http://www.paradise.caltech.edu/papers/etr135.pdf

22. V. Lomné, E. Prouff, M. Rivain, T. Roche, and A. Thillard. How to estimate the
success rate of higher-order side-channel attacks. In L. Batina and M. Robshaw,
editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th In-
ternational Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
volume 8731 of Lecture Notes in Computer Science, pages 35–54. Springer, 2014.

23. V. Lomné, E. Prouff, and T. Roche. Behind the Scene of Side Channel Attacks.
In ASIACRYPT 2013, pages 506–525. Springer, 2013.

24. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks – Revealing the
Secrets of Smartcards. Springer, 2007.

25. R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes.
Commun. ACM, 24(9):583–584, 1981.

26. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant soft-
ware. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

27. C. O’Flynn and Z. D. Chen. Chipwhisperer: An open-source platform for hardware
embedded security research. Cryptology ePrint Archive, Report 2014/204, 2014.
http://eprint.iacr.org/2014/204.

28. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In D. Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 192–207. Springer, 2006.

29. B. Preneel and T. Takagi, editors. Cryptographic Hardware and Embedded Sys-
tems, 13th International Workshop – CHES 2011, volume 6917 of Lecture Notes
in Computer Science. Springer, 2011.

30. E. Prouff and M. Rivain. Higher-Order Side Channel Security and Mask Refresh-
ing. In T. Johansson and P. Q. Nguyen, editors, Advances in Cryptology - EURO-
CRYPT 2013 - 32nd Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,
volume 7881 of Lecture Notes in Computer Science, pages 142–159. Springer, 2013.

31. E. Prouff and T. Roche. Higher-order glitches free implementation of the aes using
secure multi-party computation protocols. In Preneel and Takagi [29], pages 63–78.

32. S. Renner. Protection des algorithmes cryptographiques embarqués. PhD
thesis, Bordeaux, 2013. Available at https://tel.archives-ouvertes.fr/

tel-01149061/document.
33. T. Roche and E. Prouff. Higher-order glitch free implementation of the AES using

secure multi-party computation protocols - extended version. J. Cryptographic
Engineering, 2(2):111–127, 2012.

34. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
35. K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire. A repair

framework for scalar MDS codes. CoRR, abs/1312.2135, 2013.
36. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,

M. Kasper, and S. Mangard. The world is not enough: Another look on second-
order dpa. Cryptology ePrint Archive, Report 2010/180, 2010. http://eprint.

iacr.org/.
37. C. Suh and K. Ramchandran. On the existence of optimal exact-repair MDS codes

for distributed storage. CoRR, abs/1004.4663, 2010.
38. W. Wang, F. Standaert, Y. Yu, S. Pu, J. Liu, Z. Guo, and D. Gu. Inner product

masking for bitslice ciphers and security order amplification for linear leakages. In
K. Lemke-Rust and M. Tunstall, editors, Smart Card Research and Advanced Appli-
cations - 15th International Conference, CARDIS 2016, Cannes, France, November

23

http://eprint.iacr.org/2014/204
https://tel.archives-ouvertes.fr/tel-01149061/document
https://tel.archives-ouvertes.fr/tel-01149061/document
http://eprint.iacr.org/
http://eprint.iacr.org/

7-9, 2016, Revised Selected Papers, volume 10146 of Lecture Notes in Computer
Science, pages 174–191. Springer, 2016.

39. M. Ye and A. Barg. Explicit constructions of MDS array codes and RS codes
with optimal repair bandwidth. In IEEE International Symposium on Information
Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages 1202–1206. IEEE,
2016.

A Information Extraction from Noisy Observations of
8-bit Values

In the following figure, we plot the number of queries to achieve a success rate
of 100% when performing a template attack which tries to recover, from noisy
observations, either the full value of the manipulated data a or its 4 least signif-
icant bits. The observations ` have been simulated to satisfy ` = f(a) + b where
b is drawn from the normal distribution N (0, σ2) with σ ∈ [1, 5] and where the

deterministic part f(a) has been defined such that f(a)
.
=
∑8
i=1 αia[i] with the

αi generated at random from the normal distribution N (1, 0.22) and kept fixed
for all the attacks15.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Noise standard deviation

101

102

103

104

Nu
m

be
r o

f q
ue

rie
s t

o
ac

hi
ev

e
10

0%
 o

f s
uc

ce
ss

 ra
te

Template attack targeting 8 bits among 8
Template attack targeting 4 bits among 8
Template attack targeting 2 bits among 8

Fig. 6. Number of queries (in y-axis) to achieve a success rate of 100% for the extraction
of either 8 bits or 4 bits or 2 bits with respect to the noise standard deviation (in x-axis).

15 The idea was to simulate a leakage close to the Hamming weight model but with the
weights associated to the bit-coordinates of a differing with an average amplitude in
[−0.2,+0.2].

24

B Bounds for the Bandwidth of Exact Linear Repairing
codes

When t is sufficiently large, RBLERS is bounded below by (t × RL)/(RL − d),
where RL denotes the repair locality and corresponds to the maximum number
of αi ∈ S that are required to recover P (α?) whatever α? ∈ S. For very large
values of t, several schemes have been proposed for which the lower bound is
achieved (see e.g. [5,37]).

When t is small, it is clear that the lower bound above cannot be achieved
since we have RBLERS > d + t. It must however be observed that this latter
bound is much better than the naive one t× (d+ 1). Explicit constructions have
recently been proposed that lead to good RBLERS in practice (e.g. [17], [18] and
[39]).

C Formal Definition of an Exact Linear Repairing
Schemes

Definition 3 (Linear Exact Repair Scheme). Let S = {α1, α2, · · · , αn}
be an evaluation subset of a finite field K and let RS(S, d + 1) ⊆ Kn be the
corresponding Reed-Solomon code. A linear exact repair scheme for this code
over a subfield F of K is composed of the following steps:

– for each α? ∈ S, and for each α ∈ S\{α?}, a set of queries Qα(α?) ⊆ K,
– for each α ∈ S and any polynomial P (X) ∈ K[X] with degree lower than
d+ 1, a linear reconstruction algorithm that computes

P (α?) =

t∑
i=1

λi × νi ,

for coefficients λi ∈ F and a basis {ν1, ν2, · · · , νt} for K over F, so that the
coefficients λi are F-linear combinations of the queries in⋃

α∈S/{α?}

{trK/F(γ × P (α); γ ∈ Qα(α?)} .

The repair bandwith RBLERS of an LERS is the maximum number of sub-
symbols which must be returned by the nodes to recover P (α?). It is defined
by:

RBLERS = max
α?∈S

∑
α∈S/{α?}

#Qα(α?) .

D Example

Let us consider the example given in [17]. Let latter example considers the code
RS(S, 9 + 1) over the field K ' GF(256) with S = {g0, . . . , g13} where g is a

25

primitive element of K (which implies n = 14 and d = 9 for the notations used
in previous section). It is assumed that α? = g0 = 1 and αi = gi for i ∈ [1; 13]
and t = 2 (hence F ' GF(16)). To build the family of two polynomials satisfying
(7) and (8), [17] proposes a pretty restrictive (but yet effective) approach: they
randomly generate two polynomials p1(X) and p2(X) of degree n − d − 1 =
3 with roots16 in S and test (1) if the space spanned by p1(α?) and p2(α?)
has full rank and (2) if the sum of the dimensions of the spaces spanned by
the pairs (p1(αi), p2(αi)) when i ranges in [1; 13] is lower than some threshold
judged as good (at least smaller than 20 in order to get a reconstruction better
than the simple interpolation which needs 10 bytes, or identically 20 nibbles,
corresponding to 10 polynomial evaluations). In the paper, the authors fix the
threshold to 16.

For this example, we have ζ1 = p1(1) and ζ2 = p2(1). For the field rep-
resentation GF(256) ' GF(2)[X]/(X8 + X4 + X3 + X2 + 1), we found that
the 3-degree polynomials p1(X) = X3 + 38X2 + 200X + 29 and p2(X) =
X3 + 105X2 + 213X + 58 enables to achieve our fixed threshold (16).

1 2 3 4 5 6 7 8 9 10 11 12 13

µαi,1 0 0 76 68 0 238 57 157 220 80 115 204 131

µαi,2 248 21 120 0 127 0 211 56 0 171 33 147 45

By using the coefficients ζ1, ζ2 and (µαi,j)i∈[1;13],j∈[1;2] as specified in Formula
(10) and (11), it is possible to reconstruct P (1) for any polynomial P (X) of
degree lower than or equal to 9 with only 64 bits of information17 on the 14
shares P (αi) (instead of the 80 bits required by using Lagrange’s Interpolation
Formula). Indeed, from the table above and Equations (10) and (11), we get
that:

– the 4-bit field elements trK/F(µαi,jP (α)) corresponding to µαi,j = 0 do not
need to be stored,

– for all pairs of 4-bit field elements µαi,1 and µαi,2 which are linearly de-
pendent over GF(16) (these are the elements with light-gray background),
it is only necessary to save a single trace evaluation, say trK/F(µα,1P (α)),
and the second one can be deduced by simply multiplying it by the value
τi ∈ GF(16) such that τiµαi,1 = µαi,2 (which necessarily exists since they
linearly dependent over GF(16)).

With the notations defined in Section 4.3, a reconstruction set for the code
RS(S, 9 + 1) is given by:

R1 = {(3, 1), (4, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1)}

and
R2 = {(1, 2), (2, 2), (5, 2), (8, 2), (11, 2), (13, 2)}

16 The intuition is that having polynomials such that at least p1(αi) = 0 or p2(αi) = 0
for some i ∈ [1; 13] automatically reduces the dimension of the corresponding set
{pj(αi) : j ∈ [1; 2]}, which helps to satisfy (8).

17 always the same whatever P (X)

26

and R = R∪R2.

Eventually, we may conclude that for any polynomial P (X) of degree lower
than or equal to 9:

Fact 1 (memory) To reconstruct w = P (1), it is sufficient to store the 4-bit
elements wi,j = trK/F(γi,jP (α)) with (i, j) ∈ R. Since #R = RBLERS = 16,
the overall scheme leads to save 10∗4 = 40 bits for the storage of the sharing
of P (1) in RS(S, 9 + 1) (and the set R is the same for any P (X)).

Fact 2 (processing) The reconstruction of P (1) can always be done by evalu-
ating (16) at the cost of RBLERS = 16 additions over GF(16) and 2 + 4
multiplications by a constant scalar over GF(16).

27

	Linear Repairing Codes and Side-Channel Attacks

