Development of a NO_x and NH₃ sensor for automotive exhaust applications and control of industrial process

NEMATBAKHSH ABKENAR Gita^{a*}, VIRICELLE Jean-Paul^a, RIEU Mathilde^a, BREUIL Philippe^a ^aMines Saint-Etienne, Univ Lyon, CNRS, UMR 5307 LGF, Centre SPIN, F - 42023 Saint-Etienne, France École des mines de Saint-Étienne, 158 Cours Fauriel, CS62362, 42023, Saint-Étienne, France

Abstract

According to new European driving cycle, while the vehicular emissions of NO_x and CO have decreased over the past years, ammonia emissions have considerably increased. Among all NOx reduction approaches that have been developed, selective catalyst reduction (SCR) system using ammonia as a reductant is one the most reliable ways to control the NO_x emissions from diesel engine vehicles and trucks. In order to optimize the conversion rates of NO_x and to prevent inducing excessive NH_3 to the air, an NH_3 and NO_x sensor is required to control the SCR system. Ivan Romanytsia et al. in 2015 have developed three-electrode mixed-potential selective NO₂ sensors. Based on this study, we aim to develop sensors for selective detection of both NO_x and NH_3 for the exhaust of automotive. In this work, mixed potential gas sensors are fabricated by using two sensing materials of Au and Au-V₂O₅ as working electrodes, YSZ as electrolyte and platinum as reference and counter electrode. In order to evaluate the performance of the fabricated planar sensors, the response to different pollutant gases such as CO, NH₃, NO₂ and NO in respective amounts of 100, 20, 100 and 100 ppm are studied in a base gas composed of 12% O₂ and 1.5% H₂O, balanced with N₂. The sensor signal (ΔV_{ref}) is the difference of potential between the reference (Pt) and the working electrode. In order to take into account irreproducibility of the sensors due to fabrication process, all tests are reproduced with two sensors (A and B). Since NO₂ is an oxidizing gas, the galvanostatic mode can only produce the electro-chemical reduction of NO₂ at working electrode. Figure 1a shows the variations of the potential at 450 °C for different gases by applying a polarization current of 25nA from working to counter electrode. In these conditions, the responses to other interfering gases such as CO and NH_3 are removed while there is relatively a good selectivity towards NO_2 . Concerning ammonia gas sensors, Au-V₂O₅ working electrodes displayed a high sensitivity to NH₃ as well as fast response and recovery times at 600 °C (figure 1b). In order to achieve an integrated NO_x and ammonia sensor, which works simultaneously at the same temperature, further investigations are needed.

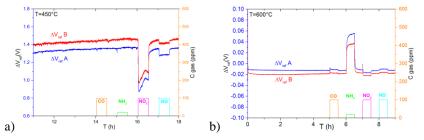


Figure 1. Response of the (a) Au sensors at 450°C with I=25 nA and (b) Au-V₂O₅ sensors at 600°C for pulses of CO (100 ppm), NH₃ (20 ppm), NO₂ (100 ppm) and NO (100 ppm) in base gas (12% O₂, 1.5% H₂O, balance N₂).

References

- I. Romanytsia, J.P. Viricelle, Ph. Vernoux and C. Pijolat (2015): Application of advanced morphology AuX (X=YSZ, ZrO2) composites as sensing electrode for solid state mixed-potential exhaust NOx sensor. Sensors and Actuators B: Chemical 207, 391-397.Hertel T., H. Over, H. Bludau, M. Gierer et G. Ertl, 1994a, Surf. Sci. 301, 1.
- L. Dai, Y. Liu, W. Meng, G. Yang, H. Zhou, et al. (2016): Ammonia sensing characteristics of La10Si2MgO26-based sensors using In2O3 sensing electrode with different morphologies and CuO reference electrode. Sensors and Actuators B: Chemical 228, 716-724.

^{*} gita.nematbakhsh@emse.fr