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CLASSIFICATION IN GENERAL FINITE DIMENSIONAL
SPACES WITH THE NEAREST NEIGHBOR RULE:
NECESSARY AND SUFFICIENT CONDITIONS.

BY SEBASTIEN GADAT AND THIERRY KLEIN AND CLEMENT MARTEAU

Toulouse School of Economics, Université Toulouse I Capitole
Institut Mathématiques de Toulouse, Université Paul Sabatier

Given an n-sample of random vectors (X;,Y;)1<i<» whose joint
law is unknown, the long-standing problem of supervised classifica-
tion aims to optimally predict the label Y of a given new observation
X. In this context, the nearest neighbor rule is a popular flexible and
intuitive method in non-parametric situations. Even if this algorithm
is commonly used in the machine learning and statistics communities,
less is known about its prediction ability in general finite dimensional
spaces, especially when the support of the density of the observations
is R?. This paper is devoted to the study of the statistical properties
of the nearest neighbor rule in various situations. In particular, at-
tention is paid to the marginal law of X, as well as the smoothness
and margin properties of the regression function n(X) = E[Y|X]. We
identify two necessary and sufficient conditions to obtain uniform
consistency rates of classification and derive sharp estimates in the
case of the nearest neighbor rule. Some numerical experiments are
proposed at the end of the paper to help illustrate the discussion.

1. Introduction. The supervised classification model has been at the core
of numerous contributions to statistical literature in recent years. It contin-
ues to provide interesting theoretical and practical problems. Supervised
classification aims to predict a feature ¥ € M when a variable of inter-
est X € R? is observed, the set M being finite (M = {0,1} for a binary
classification). In order to provide a prediction of the label Y of X, it is
assumed that a training set S,, = (Xj, Yi)1<i<n is at our disposal and makes
it possible to provide a prediction via an inference on the joint law (X,Y).
Many methods have been proposed over the years and we refer to [BBLO5]
for an extended introduction. These methods can be divided in (at least)
three families:

e Pure entropy considerations and Empirical Risk Minimization (ERM).
It selects a classifier that yields the ERM among a family of candidates
(see e.g. [MT99], [AT07] and [LM15] for an detailed description). In
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an almost similar context, aggregation schemes (see e.g. [FS97] and
[Lec07]) have been shown to be adaptive to margin and complexity.

e Geometric interpretation or information theory. The SVM (see [Vap9§|,
[Ste05] among others) aims to maximize the margin of the classifica-
tion rule. CART is another intuitive standard method, improved by a
bagging procedure in [AG97] and [Bre01], refered to as Random Forest.

e Plug-in rules. The main idea is to mimick the Bayes classifier using a
plug-in rule after a preliminary estimation of the regression function.
We refer to [GKKWO02] for a general overview (see also [AT07]).

In this general overview, the nearest neighbor rule (N.N. for short) belongs
to the last two classes: it is a plug-in classifier with a simple geometrical
interpretation. It has attracted a great deal of attention for the past few
decades, from the seminal work of [FH51]. In particular, a famous positive
result of [Sto77] is its universal consistency (see also [DGKL94]), meaning
that the N.N. can be carefully tuned to be consistent under mild assump-
tions on the model. Recently, this algorithm has received further attention
and is still at the core of several studies: [CG06] identifies the importance of
the Besicovitch assumption, [HPS08] is concerned with two notions of the
sample structure, [Sam12] describes an improvement of the algorithm that
allows to deal with smoother regression functions, while [CD14] studies the
consistency and the rate of convergence of the algorithm in abstract metric
spaces.

We investigate here the achievable consistency rate of the N.N. under various
conditions. Most of the results obtained for penalized ERM, SVM or plug-in
classifiers are based on complexity considerations (entropy or VC dimen-
sion). In this paper, we mainly use the asymptotic behavior of the small ball
probabilities instead (see [Liall] and the references therein), which is a dual
quantity of the entropy (see [LS01]) and we deal with the intricate situa-
tion of not bounded away from zero densities (and non compactly supported
measures). For this purpose, we handle smoothness and minimal mass as-
sumptions that will provide a pertinent estimation of the function 7. We
also consider an additional margin parameter a: [MT99] proved that fast
rates (faster than y/n ') can be obtained by exploiting the law of (X,Y)
near {n = 1/2}. Our contributions can be gathered in 3 different axes.

Rate for bounded from below densities. We state the optimality of the N.N.
®,, and show that mild assumptions implies the minimax consistency rate

sup [R(®y) — R(®*)] < On~ 2+,
FeF
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where a denotes the margin parameter, d the dimension of the problem,
R(®) the miss-classification error of ® and ®* the Bayes classifier.!

Rate for general densities. We study the behavior of ®, when the marginal
density p of X is not bounded from below on its support. Such an improve-
ment is of first importance since it corresponds to many practical situations.
To do this, we add an assumption on the tail of p and prove that generically:

sup [R(®,) — R($)] < On~ Frata,
FeF

as soon as the bandwidth k involved in the classifier is allowed to depend on
the spatial position of X. The tail assumption on p involved in this result
describe the behavior of p near the set {u = 0}.

Lower bounds. Finally, we derive some lower bounds for the supervised
classification problem, which extends the results obtained in [AT07]. We
prove that our Tail Assumption is unavoidable to ensure uniform consis-
tency rates for classification in a non-compact case. We then see how these
upper and lower bounds are linked and show that a very unfavorable situa-
tion of classification occurs when the regression function 7 oscillates in the
tail of the distribution u: it is even impossible in these situations to obtain
uniform consistency rates and thus elucidate two open questions in [Canl3].

The paper is organized as follows. Section 2 reminds some basics of the N.N.
rule. Section 3 is devoted to the bounded from below case. We then extend
our study to the general (typically non-compact) case in Section 4. Proofs
and technical results are included in Appendix A.

We use the following notations throughout the paper. The term Px y denotes
the distribution of the couple (X,Y) and Px is the marginal distribution of
X, which possesses a density u w.r.t. the Lebesgue measure. Similarly, we set
Pyn = [Ti, Px,,y;) and P = P(x y) X Pgn. Naturally, E[.], Ex[.] and Egn|.]
correspond hereafter to the expectations w.r.t. the measures P, Px and Pg»
respectively. Finally, given two real sequences (a,)nen and (by )nen, we write
an < by, (resp. ay, ~ by) if a constant C' > 1 exists such that a,, < Cb,, (resp.
C~'b, < a, < Cb,) for all n € N.

2. Statistical setting and nearest neighbor classifier.

2.1. Statistical Classification problem. We observe an i.i.d. sample §,, :=
(Xi,Yi)i=1.n € Q x {0,1}, whose distribution is Pxy and where =

!This result has also been established in the recent work of [Sam12]
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Supp(p) is an open set of R%. For a new incoming observation X, our goal
is to predict its corresponding label Y. To do this, we use a classifier ® that
provides a decision rule for this problem: ® is a measurable mapping from
R< to {0,1}, whose corresponding miss-classification error is then defined as

R(®) =P (B(X) £Y).

In practice, the most interesting classifiers are those associated with the
smallest error. It is well known that the Bayes classifier ®* defined as:

(2.1) " (X) = 1{77(X)>%}7 where n(z) :=E[Y|X = z] Vz € Q,
minimizes the misclassification error, i.e.
R(®*) < R(D), V& : RY — {0,1}.

Unfortunately, ®* is not available since the regression function 7 depends on
the underlying distribution of (X,Y"). The Bayes classifier can be considered
as an oracle that provides a benchmark error and the main challenge is to
construct a classifier ® that possesses a small excess risk given by

R(®) — R(*).

We study the properties of the excess risk of a given classifier ®,, through the
minimax paradigm. Given a set F of possible distributions F' for (X,Y),
we define

O (F) :=inf sup [R(®) — R(®")],
® Fer
where the infimum in the above formula is taken over all S,, measurable
classifiers. A classifier ®,, is then said to be minimax over the set F if

sup [R(®n) — R(®%)] < C6,(F),
FeF

for a positive constant C'. The considered set F will be detailed later on and
will depend on some smoothness, margin and minimal mass assumptions.

2.2. The nearest neighbor rule . The N.N. rule is one of the simplest and
widespread classification procedure. Suppose that the state space is R? with
a reference norm ||.||. Given any sample S,, and for any = € R?, we build the
reordered sample (X ;) (), Y(; (x))lgjgn w.r.t. the distances || X; — z||:

Xy (2) = 2] < [[Xg)(2) =] < ... < | Xy (@) — |-
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In this context X(,,)(x) is the m-nearest neighbor of z w.r.t. the distance ||.||
and Y(m)(x) its corresponding label. Given any integer k in N, the principle
of the nearest neighbor algorithm is to construct a decision rule based on
the k-nearest neighbor of the input X: the S,-measurable classifier ®,, ;. is:

k
. 1 1
(2.2) o= T ; Y00 > 5.

0 otherwise.

For all z € Q, the term %Z?:l Y(;j)(z) appears to be an estimator of the
regression function 7(z). In particular, we can write the classifier ®,,;, as:

1 k

(2.3) (I)n,lc(X) = 1{ﬁn(X)>1/2} where f/n(x) = E Zif(])(x) Vo € (.
j=1

Hence, the N.N. is a plug-in classifier, i.e., a preliminary estimator of the
function 7 is plugged in our decision rule. It is worth noting that the inte-
ger k is a regularization parameter. The N.N. is quite robust since universal
consistency is obtained as soon as k, — 400 and k,/n — 0, but a careful
tuning of the number of neighbors k,, is needed to obtain an acceptable rate
of convergence. Indeed, if k is too small, the classifier ®,, ;, only uses a small
amount of the neighbors of X, inducing a large variance of the classification
process. On the other hand, large values of k generate some bias into the de-
cision rule since we use observations that may be far away from the input X.

For this purpose, we introduce some baseline assumptions into the following
section that will make it possible to characterize an optimal value for k,.

2.3. Baseline assumptions. It is well known that no reliable prediction can
be made in a distribution-free setting (see [GKKWO02]). We restrict the class
of possible distributions of (X,Y") below.

Since the nearest neighbor rule is a plug-in classification rule, we expect to
take advantage of some smoothness properties of 7 in order to improve the
classification process. In fact, when 7 is smooth, the respective values of
n(z1) and n(ze) are comparable for close enough 1, z9. In other words, we
can infer the sign of n(z) — % from those of the neighbors of x.

Assumption A1l. (smoothness) The regression function n belongs to the
Holder class of parameter 1 with a radius L, which is denoted C1°(2, L) and
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corresponds to the set of functions such that

V(wn,w2) € Q2 [n(z1) —n(x2)| < Llzt — 2.

REMARK 2.1. It would be tempting to consider some more general smooth-
ness classes for the regression function n. Nevertheless, the standard near-
est netghbor algorithm does not make it possible to use smoothness indexes
greater than 1. An alternative procedure has been proposed in [Sam12]: the
idea is then to balance the (Y(j))jzl”k with a suitable monotonous weighting
sequence. However, this modification complicates the statistical analysis and
may alter the ideas developed below. We therefore chose to fix the smoothness
of n to 1 (i.e. restrict our study to Ct°(), L)).

Our second assumption was introduced by [Tsy04] in the binary supervised
classification model (see [MT99] in a smooth discriminant analysis setting).

Assumption A2. (Margin assumption) Some constants o > 0 and C > 0
exist such that

1
Px <0 < ‘U(X) - 2‘ < 6) < Ce®, Ve>N0.

In such a case, we write (pu,n) € M.

The Bayes classifier depends on the sign of n(X) — 1/2. Intuitively, it would
be easier to mimic the behavior of this classifier when the mass around the
set {n = 1/2} is small. On the other hand, the decision process may be more
complicated when 7(X) is close to 1/2 with a large probability. Quantifying
this closeness is the purpose of this margin assumption.

For the sake of convenience, we use the set Fy, , throughout the paper, which
contains distributions that satisfy both Assumptions A1l and A2, namely:

Fra = {Puxy) : LX)~ pu, L(Y|X) ~ B(n(X))such that
n e CI’O(Q, L)and (u,n) € Ma}

We now turn to our last assumption that involves the marginal distribution
of the variable X.

2.4. Minimal Mass Assumption. In the sequel, this type of hypothesis will
play a very important role.
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Assumption A3. (Strong Minimal Mass Assumption) There erists k > 0
such that the marginal density p of X satisfies pp € Myma(Q, k) where

Miima (2, 6) = {Px : L(X) ~ p|3dp >0, ¥V < g
Ve e Q:Px(X € B(x,0)) > nu(x)dd} .

This assumption guarantees that Px possesses a minimal amount of mass
on each ball B(z,d), this lower bound being balanced by the level of the
density on x. In some sense, distributions in 9M,,,,4(2, ) will make it pos-
sible to obtain reliable predictions of the regression function n according to
its Lipschitz property. The Strong Minimal Mass Assumption A3 is much
stronger than the so-called Besicovitch assumption that is quite popular in
the statistical literature (see e.g. [Dev81] for a version of the Besicovitch as-
sumption used for pointwise consistency or [CG06] for a general discussion
on this hypothesis in finite or infinite dimension). It is worth pointing out
that the Besicovitch assumption introduced in [CGO6] states that 1 satisfies:

. 1
(24) Ve>0 %g%u {x : W(B@.0) /B(xﬁ) In(z) — n(z)|du(z) > e} =0.

As pointed by [CGO06], (2.4) is always true in finite dimensional space.
We can also remark that if 7 is L-Lipschitz (Assumption A1), we have

Vi € Q / In(2)—n(@)u(=)dz < L / le—zlu(=)dz < Lop(B(x,5)),
B(x,0) B(w,0)

which implies that the set involved in (2.4) is empty as soon as Ld < e.
Hence, (2.4) is true when 1 € C19(Q, L), whatever the dimension of € is.
We will see that Assumption A3 is necessary to obtain quantitative esti-
mates for any finite dimensional classification problem.

In a slightly different setting, our Assumption A3 is used in the paper of
[AT07] when the density p is lower bounded on its (compact) support, which
is assumed to possess some geometrical properties ((co,rg) regularity). This
setting is at the core of the study presented in Section 3 below. Assumption
A3 also recalls the notion of standard sets used in [Cas07] for the estima-
tion of compact support sets. More generally, the following examples present
some standard distributions that satisfy Assumption A3.
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ExaMPLE 2.1.

o In R%, it is not difficult to check that Gaussian measures with non
degenerated covariance matrices satisfy Muma (2, k). As a simple ex-
ample, consider a standard Gaussian law p ~ N(0,1). For any x € R
and § > 0, if x belongs to a compact set K, then a constant Ck exists
such that (2m)~1/? ffj; e~ 2dt > Ope2"/25. Now, if ¥ — 400, we
can check that

45 0 —xd
9 1/2/ /204 (o) L/2p—22/2 € _ € —52/2.
(2) xiae (2m)"%e Py e
The bracket above is always greater than § when (z6)~' = O(1). Now,
if 0 = o(1/x), a simple Taylor expansion yields

z+6
2m) 2 [ ()2 2 )

T

e The same computations are still possible for symmetric Laplace distri-
butions (e ftt_? e %dx = [e® — e ~ 20 when § is small. Thus, any
Laplace distributions belongs to Myma (2, k). In a same way, when u
is a standard Cauchy distribution, we can check that

T+ dt 1 ) 1
/ 2 2/ 2x+hdh
1 2 532
~ 20 — —— 88— o(8°
1—1—:172[ 3732 T a0
> 90
~ 1422

In the case of compactly supported distribution, it is intuitive to see that
Myma (2, k) is related to the regularity of the boundary of the support.
For example, consider the uniform law on the ¢;/,, ball of R? given by

QO = {(g;l,x2) c ]R2| |x1| 4+ \/@ < 1}. In this case, we can check that

Px(X € B((1,0),6) = 463/3 for § < 1, which is much smaller than 6 when
0 — 0 and this distribution does not belong to Myma (2, k). Other typical
distributions that do not satisfy the Strong Minimal Assumption (A3) pos-
sess some important oscillations in their tails (when the density p is close
to 0). In such a setting, the alternative set ﬁmma(ﬁ, k) defined as follows,
may be considered:

Monma(Q,6) = {Px : L(X) ~ 1| 3(p,C) €]0; +00[2,36 > 0, V8 < b,
VeeQ:p(z)>e 9" —  u(B(z,0)) > ﬁ,u(ﬂ;)éd} .
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The interest of the weaker ﬁmma(ﬂ,m) compared t0 Mma (€2, k) is that
the statistical abilities of the nearest neighbor rule are still the same with
Mima (2, &) or Mpma(2, k). Moreover, an analytic criterion that ensures
ﬁmma(ﬁ, ) can be found (see Proposition 4.1). This is not the case for the
uniform assumption Mma(Q2, k) (it is indeed more difficult to ensure the

lower bound on the global set 2).

Although all the subsequent results may be established for a weaker version
of the minimal mass assumption (based on the set My (2, k)), we will
restrict ourselves to its strong formulation (Assumption A3). In Section
3, we prove that the nearest neighbor rule is optimal in the minimax sense
provided that the margin and smoothness assumptions hold, with a marginal
density of the variable X bounded away from 0 and a suitable choice of k.
In Section 4, we will see that Mma (€2, k) is not yet sufficient to derive
some uniform consistency rates for classifiers with non compactly supported
densities and a last additional hypothesis is needed.

3. Bounded away from zero densities.

3.1. Minimax consistency of the nearest neighbour rule. In this section, we
are interested in the special case of a marginal density u bounded from below
by a strictly positive constant p_. In this context, we can state an upper
bound on the consistency rate of the nearest neighbour rule.

THEOREM 3.1. Assume that Assumption A1-A38 hold. The nearest neigh-
2
bour classifier ®, i, with k, = |n?+d | satisfies

sup [R(Dp ) — R(®*)] S 7,
]PJX,YE]:L,ammm'ma(Qvﬁ)#_

where Myma (2, k)#— denotes the subset of densities of Myma (L2, k) that are
bounded from below by u_.

Theorem 3.1 establishes a consistency rate of the nearest neighbor rule
over Fro N Mpmma (€2, k). A detailed proof of is presented in Section A.2.
Implicitly, we restrict our analysis to compactly supported observations,
this assumptions being at the core of several statistical analyses (see, e.g.,
[GKKWO02], [BBL05], [MT99] or [HPS08] among others). It is worth pointing
out that this setting falls into the framework considered in [AT07].

DEFINITION 3.1 (Strong Density Assumption (SDA), [AT07]). The marginal
distribution of the variable X satisfies the Strong Density Assumption if
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e it admits a density p w.r.t. the Lebesque measure of RY,
o the density u satisfies

p— < p(x) < py, Vo € Supp(p)

for some constants (u_, py) €]0, +oo[2.
e The support of u is (co,T0)-regular, namely

A[Supp(u) N B(x, )] = coA[B(x,7)],Vr < 1o,
for some positive constants cog and rg.

As soon as the marginal density is bounded from below by a strictly positive
constant, then both SDA and Strong Minimal Mass Assumption (A3) are
equivalent, as stated in the following proposition.

PRrROPOSITION 3.1.  For bounded away from zero density, the SDA is equiv-
alent to the Strong Minimal Mass Assumption.

PROOF OF PROPOSITION 3.1. As soon as the support of p is (¢, ro)-regular
and the density is lower bounded by pu— > 0, then SDA implies a minimal
mass type assumption:

V6 <ro p(B(x,d)) = / w(z)dz > p < A[B(x, §)NSupp()] > coyan_o"
B(z,0)

Conversely, we can also check the fact that the Strong Minimal Mass As-
sumption (A3) implies the SDA (including the (cg, ro)-regularity of u). In-
deed, since for any = and § < §g:

1> / p(y)dy > kp(z)s?,
B(x,0)
then the density p is upper bounded and we obtain that

| )y < A Supp(e) 0 Bl )]
B(z,0)
We therefore obtain:

A [Supp(p) N B(z,r)] > Hméd > Hﬁéd.

This concludes the proof of this proposition.
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g

It is possible to link the constants (cg,r9) and s involved in SDA with
Mima (2, K)H—, we have omitted their relationships here for the sake of
simplicity. Minimax rates of excess risk under the SDA are established in
Theorem 3.5 of [AT07]. A consequence of Proposition 3.1 is that the same
lower bound is still valid with 9%, (€2, k)#~. Consequently, under Assump-
tions A1-A3 and if a constant p_ > 0 exists such that p(z) > p— on Q,
then we obtain that

inf sup [R(®) — R(D¥)] 2 n= T,
@ PX,YG}—L,ammmma(Qvﬁ)ui

This inequality and Theorem 3.1 show that the N.N. achieves the min-
imax rate of convergence in the particular case where the density pu is
lower bounded on its (compact) support. As already discussed in [MT99]
or [AT07], the higher the margin index « is, the smaller the excess risk will
be. On the other hand, the performance deteriorates as the dimension of the
considered problem increases. The lower bound obtained by [AT07] is based
on an adaptation of standard tools from nonparametric statistics (Assouad’s
Lemma). This proof is of primary importance for next lower bound results.
It is recalled in Section A for the sake of convenience.

4. Non compact finite dimensional case.

4.1. The Tail Assumption. Results of the previous section are designed for
the problem of supervised binary classification with compactly supported
inputs and lower bounded densities. Such an assumption is an important
prior on the problem that may be improper in several practical settings.
Various situations involve Gaussian, Laplace, Cauchy or Pareto distribu-
tions on the observations, and both the compactness and the boundedness
away from zero assumptions may seem to be very unrealistic. This is even
more problematic when dealing with functional classification with a Gaus-
sian White Noise model (GWN). In such a case, observations are described
through an infinite sequence of Gaussian random variables, and the SDA or
Myrma (€2, k)#— are far from being well-tailored for this situation (see [Liall]
for a discussion and further references).

This section is dedicated to a more general case of binary supervised
classification problems where the marginal density p of X is no longer as-
sumed to be lower bounded on its support. The main problem related to
such a setting is that we have to predict labels in places where few (or even
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no) observations are available in the training set. In order to address this
problem, we take the following assumption.

Assumption A4. (Tail Assumption) A function i that satisfies ¥(e) — 0
as € = 0 and that increases in a neighborhood of 0 exists such that

Pixy) € Pry = {IP’X : Jeg € RY 1 Ve < e, Px ({1 <e}) < ¢(6)},

where P 1q corresponds to the particular case where ¢ = Id.

The aim of this Tail Assumption is to ensure that the set where y is small
has a small mass. We use the notation 7 because of the interpretation on
the tail of p, but Pry is not just an assumption on the tail of the p. It
is, in fact, an assumption on the behavior of y near the set {u =0}. We
provide below some examples of marginal distributions that satisfy this tail
requirement. In Section 4.2 below, we prove that the Tail Assumption (A4)
is unavoidable in this setting. In Section 4.3, we investigate the performances
of the nearest neighbor rule in this context.

EXAMPLE 4.1.  Following are several families of densities in Py .

o Laplace distributions obviously satisfy Pr 14, and a straightforward in-
tegration by parts shows that Gamma distributions I'(k, 0) satisfy Pr
with 1 (e) = elog(e H)F~1 (the term around x = 0 is on the order of
/=) and thus negligible compared to the term around +00).

o An immediate computation shows that the family of Pareto distribu-
tions of parameters (xo,k) satisfies P, where 1b(e) = /FF1 e
gardless of the value of xq.

o The family of Cauchy distributions satisfies Pt with ¥(€) = /€.

e Univariate Gaussian laws v, 2 with mean m and variance o2 satisfy

1 1
mo2(2) < €<= |z —m| >ty :=V20/log | = | +log(——=—),
Ym,o2 (T) | | : \/ g<€> g(g /727'(')

and a standard result on the size of Gaussian tails (see [BNC89]) yields

€

ot (Gt <€) = [1_1+ L3 ..} <<
' log (1)

2 t4
o,€ 0,€ o,€

Hence, univariate Gaussian laws satisfy Py, with ¢(e) = elog(e~1)~1/2,
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e If m is any real vector of R? and X2 a covariance matriz whose spec-
trum is Ay > ... \g > 0:

€

1
Tms2 (my2 <€) =752 (o2 <€) o2 (”X” > 4/2M 10g< )) :

Careful inspection of Theorem 1 of [HLS02] now yields

1 1 r/2—1
s (112 yf2xtog (1) ) ~ omton (1)

where Csz2 is a constant that only depends on the spectrum of ¥ and
r is the multiplicity of the eigenvalue A1. In particular, vy, 52 satisfy
Pr.y where (€) = Cxpelog(e™1)/27L,

4.2. Non-uniform consistency results. We first justify the introduction of
the sets Mpma (€2, £) and Pr . and discuss their influences regarding feasi-
bility to derive lower bounds and even uniform consistency of any estimator.
To do this, we first state that the Minimal Mass Assumption (A3) is nec-
essary to obtain uniformly consistent classification rules. Second, we assert
that the Tail Assumption (A4) is also unavoidable.

THEOREM 4.1.  Assume that the law Px y belongs to Fr, o, then:

i) No classification rule can be uniformly consistent if Assumptions A1l-
A3 hold and not A4. For any integer n, any discrimination rule ®,
and for any e < 47%, a distribution ]P’&)’Y) in Fr,aNMpmma (2, k) exists
such that:

R(®,) — R(®*) > e.

i1) No classification rule can be uniformly consistent if Assumption A1,
A2, A4 hold and not A3. For any integer n, any discrimination rule
D, and for any € < 47%, a distribution PE}),Y) in Fro NP1 14 exists
such that:
R(®n) — R(®%) = e.

Let us slightly comment the two points raised by this last theorem. First
and foremost, Theorem 4.1 does not contradict the seminal result of [Sto77]
that establishes the universal consistency of the N.N. as soon as k,, — +o0
with k,/n — 0. This positive result corresponds to the consistency of the
N.N. (without any rate) as soon as the distribution P(x v is fized while the
number of observations n is growing to infinity. Theorem 4.1 states that both
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Assumptions A3 and A4 are necessary to derive uniform consistency rates
for a family of distributions . In particular, Theorem 4.1 is obtained via the
(o)
To sum up, results obtained in [Sto77] and Theorem 4.1 illustrate essentially
the difference between universal convergence and uniform convergence over
a class of distribution.

The first result i) asserts that even if the Minimal Mass Assumption A3
holds for the underlying density on X, it is not possible to expect a uniform
consistency result over the entire class of non-compactly considered densi-
ties. In some sense, the support of the variable X seems to be too large to
obtain reliable predictions with any classifiers without additional assump-
tions. As discussed above, the Tail Assumption A4 may make it possible to
counterbalance this curse of support effect (see next section). Such statistical
damage has also been observed for the estimation of densities that are sup-
ported on the real line instead of being compactly supported, even though
such dramatic consequences are not shown here. We refer to [RBRTM11]
and the references therein for a more detailed description.

construction of a set of distributions P on the entries that depend on n.

The second result i7) states that the Strong Minimal Mass Assumption A3
cannot be skipped for uniform consistency rates and no compactly supported
densities. This is in line with the former studies of [Gy678] and [DGKL94]. In
particular, Lemma 2.2 of [DGKL94] takes advantage of some of the positive
consequences of this type of assumption. Our proof relies on the construc-
tion of a sample size dependent law on (X,Y’) that violates Assumption
A3 but that keeps the regression function n in our smoothness class Fr, q.
This is a major difference with former counter examples built in [DGLI6]
where the non uniform consistency is obtained with a family of non-smooth
regression functions 7. In our study, we also obtained a family of smooth
regression functions for which such phenomena occur. Even in this case, it
is still possible to keep the excess risk larger than a fixed positive constant
(independent on n) for any classifier ®,,.

Finally, these uniform inconsistency results always occur when building a
network of regression functions 7 that oscillate around the value 1/2 at the
neighborhood of the set {¢x = 0}. In a sense, Theorem 4.1 contributes to the
understanding of one of the open questions put forth in [Canl3] on the be-
havior of the nearest neighbor rule when 7 is oscillating about 1/2 in the tail.
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4.3. Minimazx rates of convergence. In the meantime, when both A2, A3
and A4 hold, we are able to precisely describe the corresponding minimax
rate of convergence.

4.3.1. Minimaz lower bound.

THEOREM 4.2. Assume that Assumptions A1-A4 hold. Then

1+a
it sup [R(®,) — R(B*)] > n~Foa,
Tn ]P(va) e}—L,ammmma(Q,H)ﬂ'PTJd

For the sake of convenience, we briefly outline the proof of Theorem 3.5
borrowed from [ATO07] in Section A.1. It is then adapted to our new set of
assumptions.

Theorem 4.5 below provides some lower bounds for different tails of
distributions (through the function ). It should be noted that we recover
the known rate of compactly supported densities with the so-called Mild
Density Assumption of [AT07] in the particular case ¢ = Id. This implies
that in the non-compact case, the rate cannot be improved compared to the
compact setting, even with an Additional Tail assumption.

4.3.2. An upper bound for the nearest neighbor rule. When the density is
no longer bounded away from 0, the integer k, will be chosen in order to
counterbalance the vanishing probability of the small balls in the tail of the
distributions. For example, when 1 = Id, we show that a suitable choice of
the integer k,, is:

kp := Ln?ﬂrTerdJ,

which appears to be quite different from the one in the previous section.

THEOREM 4.3. Assume that A1-A8 hold and if the Tail Assumption A4
2
is driven by ¢ = Id, the choice ky, := |n3te+d | yields:

__(+o)
sup [R((I)n,kn) - R((I)*)] 5 n @Gtatd)
P(XJ/) G‘FLYQOPT,Idmmmma(Q,H)

The proof of Theorem 4.3 is provided in Section A.3. The above results indi-
cate that the price to pay for the classification from entries in compact sets to
arbitrary large sets of R? is translated by the degradation from n~(1+)/(2+d)
to at least n~(1+0)/(+atd) (see e.g., Theorem 4.2 when 1)(e) ~ €). Our up-
per bound for the nearest neighbor rule does not exactly match this lower
bound since we obtain n~(1+a)/G+a+d) in 5 gimilar situation . At this step,
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obtaining the appropriate minimax rate requires slight changes inside the
construction of the nearest neighbor rule. This is the purpose of the next
paragraph.

4.3.3. Minimaz upper bound for an optimal nearest neighbor rule. The up-
per bound proposed in the theorem can be improved if we change the way
in which the regularization parameter k,, is constructed. We use a nearest
neighbor algorithm with a number of neighbors that depends on the posi-
tion of the observation x according to the value of the density u(x). More
formally, we define for all j € N

Qo= {x eRY: p(x) > nszC:-d},

and

o d'nm n2+a+d

Setting ky o = Ln2+§+d log(n)|, we then use for all j € N
(4.1) kn(z) = |kno2 2/ V1 when =z € Q.

According to (4.1), the number of neighbors involved in the decision process
depends on the spatial position of the input X. In some sense, this position is
linked to the tail. The statistical performances of the corresponding nearest
neighbor classifier is displayed below. Such a construction of this sequence of
“slices” may be interpreted as a spatial adaptive bandwidth selection. This
bandwidth is smaller at points 2 € R? such that u(z) is small. In a sense,
this idea is close to the one introduced in [GL14] that provides a similar
slicing procedure to obtain an adaptive minimax density estimation on R

THEOREM 4.4. Assume that A1-A38 hold and that the Tail Assumption A4
is driven by ¢ = Id. Then, if @ , is the classifier associated with (4.1),
we have:

_ (4o 11
sup [R((I)Z,kn) - R((I)*)} <n” Ctetd (log n)§+3_
P(X,Y) EFL,aﬂ'PT’]dﬂmm,ma(Q7n)

We stress that the upper bound obtained in Theorem 4.4 nearly matches
the lower bound proposed in Theorem 4.2, up to a log-term. This log-term
can be removed by the use of additional technicalities that are omitted in
our proof. Hence, Theorems 4.4 and 4.2 make it possible to identify the
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exact minimax rate of classification when the Tail Assumption is driven by
¥ = Id, that is:
1+«

inf sup [R(®},1,,) — R(®¥)] ~ n™ 2+atd,
® Pix v)EFLaNPT 1aNMimma (2,k)

REMARK 4.1. Let us briefly compare our results with those obtained in the
recent contribution [CD14] on N.N. in general metric spaces. In the particu-
lar case of Q = R® with compactly supported measure, Theorem 3.1 yields an
excess risk of the order nfé(Ha)/(%H), which is also the result stated in The-
orem 4 of [CD14]. Both results are obtained with an additional smoothness
assumption (see Assumption A1 in our framework and the (o, L) smooth-
ness assumption of [CD14] related to the average value of n on small balls
of radius r).

Now, when the measure is not compactly supported, [CD14] describes a geo-
metric set E, i, that involves all points for which a ball of relative mass k/n
(in the sense of ) leads to an average value of n around 1/2 + k12 We
refer to their Section 2.4 for a complete definition of &, . Taking together
Theorems 5 and 6 of [CD14] shows that the performance of the N.N. classi-
fier is almost proportional to (&, k) but the excess risk is not explicit.

In our work, Myma (2, k)and our Tail Assumption A4 may be seen as one
way to obtain a quantitative description of the set &, and then derive
explicit in n consistency rates. Lastly, our lower bound stated in Theorem 4.1
is obtained via a construction of a set of pairs (,n) that keep a sufficiently
large mass on the associated geometric set &, . It is important to note that
this lower bound applies not only for the N.N. but for any classifier.

4.3.4. Generalizations. We propose several extensions of our previous re-
sults (lower and upper bounds) for more general tails of distribution. We
also propose to enlighten the Minimal Mass Assumption M pma (2, K).

Effect of the tail: from Pt 1q to Pry.
THEOREM 4.5. Assume that Assumptions A1-A4 hold. For any tail T
parameterized by a function ¥, we obtain the following results:

i) Lower bound: the minimax classification rate satisfies:

inf sup [R(®,) — R(®*)] = e;j;f‘d,
@n IP(X,Y)G’FL,QQPT,wmmmma(Q7H)
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where €, .4 satisfies the balance

(4.2) n! = {ema,d}%‘d x )1 ({en,a,dl?) -

it) Upper bound: the nearest neighbor rule satisfies

sup [R(@a,) - R(D")] < Colt
P x,vyEFL,aNPT,Mmma (k)

with k, = v_

n,

i,d where vy, o q fulfills the balance:

(4.3) 0t =9 {Vnadd TN Vnaal T

It would also be possible to propose some generalizations using the sliced
nearest neighbor rule presented in Sections 4.3.2 and 4.3.3 for tails driven
by a general function 1, even if we do not include this additional result for
the purpose of clarity.

Meeting the Minimal Mass Assumption ﬁmma(ﬂ, k).  We now obtain simi-
lar rates when using the weaker assumption Mynma (€2, &) instead of Mpma (2, K):
the lower bounds of p(B(z,0)) are only useful for some points x such that
wu(x) is large enough. We can state the next corollary.

COROLLARY 4.1.  Assume that A1,A2,A4 hold and Pix yy € ﬁmma(ﬁ, K),
then
— R(®y,) — R(B)] < v+,
]P)(ny)EfL’aﬁPTywﬂmmma(Q,R)

with ky, = v_2 , where Un,a,d Satisfies the balance

n,a,d
0"t = (el T vn el T

The condition M,me (€2, k) cannot be easily described through an analytical
condition because of its uniform nature over €. In contrast, ﬁmma(ﬁ, K) is
more tractable in view of the criterion given by the next result (Proposition
4.1). Using a log-density model, we write the density p as

u(z) = e #@) Vo e RY.

PROPOSITION 4.1. Let ¢ € CYH(Q) and assume that a real number a > 0
exists such that:

L Ve

im

= 07
zp(x)—0 ()

then a suitable k can be found such that = e ¥ € /ﬁmma(ﬂ, K).
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PRrROOF. For any § > 0, we compute a lower bound of

Px (B(z,6)) = / e @z,
B(z,0)

The Jensen Inequality applied to the normalized Lebesgue measure over
B(x,t), which is denoted dz, yields
(4.4)

rd/25d

S SR s RN
/B(z,é) o Z T2+ 1) p( a H/B(x,a)[@() o( )]d>

A first order Taylor expansion leads to

/ o(2)—p(@)dz < sup Vo)l / le—cldz <5 sup [Vl
B(z,5) 2€B(z,0) B(z,5) z€B(z,0)

Now, our assumption on ¢ implies that a large enough C, exists such that:
IVe(2)|| < Ca(l + ¢(2)%).
Thus, the lower bound (4.4) becomes:

7.‘.cl/25d
/ D gy > 07 —p(a) - Cad(15UD, e pa,s) #°(2))
B(x,5) — I(d/2+1)

It is now sufficient to consider points z such that ¢ < §—1/@ (equivalent
to u > e*‘s_l/a) to obtain a meaningful lower bound Hence, 9,4 (82, k) is
satisfied choosing

/2 —C,

—1 d S
p=lfa and K= orE e

O]

4.4. Practical settings on typical examples . The aim of this section is to
illustrate the results obtained above. We first describe a location model for
which we can derive explicit upper and lower bounds in several different
cases. We then propose a small numerical study in order to enhance the
discussion regarding the importance of the Tail Assumption and we conclude
by drawing a comparison between the standard nearest neighbor and sliced
nearest neighbor rules.
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Ezxplicit rates for specific location models. We investigate here the influence
of the function v in Py, as well as the one of the margin parameter on the
convergence rates through several specific location models. These models are
defined as follows: given any positive random variable Z (whose cumulative
distribution function is denoted as F') and two real location values a and b,
the random variable X is given by:

(4.5) X=eZ+Yb+(1—-Y)a,

where € is a Rademacher random variable (whose values is +1) independent
of Z, and Y is the label of the observation, sampled independently of € and
Z with a Bernoulli law B(1/2). Using a translation invariance argument, it
is enough in the next study to consider a = 0 and b > 0. Table 1 illustrates
the rate reached by the nearest neighbor procedure in each situation.

Law Tail Margin kpn ~nP Upper bound
Gauss () o elog(1/e)™/?~1 a=1 B=2/(4+4d) n =2/ 1og(n)Bf)
Laplace P(e) x € a=1 B=2/(4+4d) n~2/(+d)
‘ Gamma H P(e) o< elog(1/e)*~ ‘ a=1 ‘ B=2/(4+4d) ‘ n~ 2/ 44D og(n)BK) ‘
‘ Cauchy H P(e) ox /€ ‘ a=1 ‘ B=1/(3+4d) ‘ n~%/G+d) ‘
‘ Power laws/Pareto H P(€) o e/ P+ ‘ a=1Ap ‘ B = p(gféiﬂ% ‘ nm ‘

TABLE 1
Convergence rates for locations models with several tail sizes.

A numerical study for ‘power laws’. In order to illustrate Equations (4.2)
and (4.3), we consider some specific cases of “power laws” such that:

Px(u(X) <€) =1(e) ~€¢/ when e— 0%,
for some g > 0. In this case, the upper bound on the Nearest Neighbor

classifier is given by

(+a)
2+d

R(®n) = R(Q*) S "7

although the lower bound derived from (4.2) is

inf sup [R(®,) — R(®H)] =n “F7o
Pn P x yv)EFL NPT 5N Mmma (Qk)

We immediately observe that the classification rates are seriously damaged
when ¢ is small. In contrast, for very thin tails, the rate can be arbitrarily
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o o
10 20 30 40 50 60 70 8 90 100 110 10 20 % 40 5 60 70 8 90 100
Size of the training set n

Fic 1. Example of observed empirical rates and upper bound theoretical rates given by
(4.3) for several power law distributions of parameter g.

close to n~!. For this purpose, we illustrate this phenomenon with a family
of distributions P,, where the parameter g > 0 influences the tail size. We

define the cumulative distribution function of the positive random variable

Z: 1

Vi >0 F,t)=1— ———.
Then, for two real values (a, b), we sample n observations (Xj,Y;) according
to the previous model and the Bayes classifier is given by:

O*(X) = Lyxs(atb)/2}-

In this example, the margin « is equal to 1 and 7 is L-Lipschitz. We then
consider k, = [n?/®] + 1 to assess the statistical performance of the Near-
est Neighbor classifier. Figure 1 represents the excess risk obtained by the
Nearest Neighbor classifier and the successive degradation of the conver-
gence rate when g decreases to 0 (on the left, the empirical performance
of the Nearest Neighbor rule with the underlying distributions and on the
right for the upper bound theoretically derived from Theorem (4.3)). These
numerical experiments are consistent with the theoretical result obtained in
Theorem 4.5 .

Comparison between the standard nearest neighbor and its sliced counterpart.
We provide here a short numerical study that aims to compare the results
reached by the standard nearest neighbor rule described in Theorem 4.3 and
the ones obtained by its sliced counterpart described in Section 4.3.3 and
in Theorem 4.4. To measure such an improvement, we have chosen to once
again use some non-compactly supported distributions and several different
location models.
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On the one hand, as pointed out in Theorem 4.3, the standard nearest
neighbor will be tuned with a number of neighbor k&, := Ln3+37+dj + 1.

On the other hand, the sliced nearest neighbor rule described in Theorem
4.4 requires a preliminary estimation of the law of observation Px. To do
this, we used the recent kernel density estimation package? provided by
[BGK10], which is an adaptive estimator based on linear diffusion processes.
Given any training set (X, Y;)1<i<p, we first built the preliminary estimator
fin, of the unknown density p. This estimator is interesting because of its
adaptive smoothing properties and because it includes a very fast automatic
bandwidth selection algorithm.

The sliced nearest neighbor rule then uses a number of neighbors that de-
pends on the design point X. If the density estimate is large enough, that
is, if fin,(X) > n” TFatd;

kn(X) := |nZFavd | + 1,
Otherwise, when 2-0+1D) < i, (X)n7Fata < 2-0) the number ky,(X) is:
22
kn(X) := |nZtetd2724d | + 1.

To draw some reliable comparisons, we also used some various univariate
laws (d = 1) for the random variable Z involved in the definition of the lo-
cation model (4.5) (Normal distributions, Cauchy distributions, and Power
laws) whose parameters are described in Table 1. The two location param-
eters are still denoted a and b and fixed such that a = —b.

In each situation, we used a Monte-Carlo strategy with 1000 replications
to compute the mean excess risk of each nearest neighbor rule. We used a
training set of cardinal n, as well as a test set of size 200. Results are given
in Table 2.

Law of Z n =100 n = 500 n = 1000
Gauss, a = 1,0 = 2 451 [ 447 ] 89% | 334 [ 248 [ 25.7% | 2.71 | 1.81 | 33%
Cauchy, a= 5,y =5 | 243 | 2.08 | 14.5% | 1.26 | 1.07 | 14.8% 1 0.83 | 16%

| Cauchy,a=3,y=1 ] 46 | 3.78 [ 17.8% | 2.89 | 2.08 [ 27% | 2.3 [ 1.55 | 32.5% |
Power, a = 3,7y =1 | 413 [ 332 ]19.6% | 248 | 1.9 [ 23.7% | 2.06 | 1.49 | 27.3% |
| Power, a=3,y=2 [218 [ 1.92 [ 121% [ 1.09 [ 0.95 | 12.4% | 0.79 | 0.69 | 12.6% |

TABLE 2
Mean excess risk multiplied by 100 (left: standard nearest neighbor; middle: sliced nearest
neighbor; right: percentage of improvement). Standard errors are lower than 0.2

*kde.m is available on the author’s Website of [BGK10].
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We may observe in Table 2 that the sliced version of the nearest neighbor
always outperforms the standard one. Such a numerical result is consistent
with the theoretical ones of Theorem 4.3 and 4.4. Note also that the relative
improvement of the sliced nearest neighbor rule seems to increase when the
number of observations n growth, meaning that each excess risk of the two
procedures varies with a different power of n.

Finally, it should be mentioned that we have not tried to modify the di-
mension of the observations X. Indeed, the difference of the upper bounds
given by Theorems 4.3 and 4.4 becomes more and more negligible when the
dimension is increasing. This should also be the case in the empirical study
that will be in the subject of a future work. Likewise, the statistical study
of the empirical sliced nearest neighbor rule should also be addressed in a
future study, since a balance between the estimation fi,, of the density u and
the excess risk of classification with the sliced rule may exist. We have left
this problem open for a future study.

SUPPLEMENTARY MATERIAL

Supplement A: Main proofs for this paper : Classification with the
nearest neighbor rule in general finite dimensional spaces: neces-
sary and sufficient conditions.

(doi: COMPLETED BY THE TYPESETTER,; .pdf). See in the temporary

Appendix section after references.
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APPENDIX A: PROOFS

Recall that E (resp. Ex, Egn) denote the expectation with respect to the
measure P (resp. Px, Pgn).

A.1. Proofs of the lower bounds. The proofs of the lower bounds pre-
sented in both Theorem 4.1 and Theorem 4.2 are inspired from the construc-
tion proposed in [AT07]. It is based on Assouad’s cube method (see [Ass83],
and [BH79]). This approach reduces the problem of obtaining a lower bound
on the minimax risk to the problem of testing several couples of hypotheses.
We refer to [Tsy09] for a comprehensive introduction to this useful method
for deriving lower bounds on minimax risk.

A.1.1. Baseline structure of the network. We present here the common
structure of the network of laws on (X,Y), that is, the definition of the
underlying measure P(x y) on R? x {0,1} (through the density x and the
regression function 7).

Definition of . Let (¢,m) € (N*)? and (21,...,2,) € R We denote by
B; the Euclidean ball of center x; and of radius 2/q, such that for any 4
and j we have B;(B; = 0 (we choose |z; — xj| > 5/¢). Now consider a
C* function ¢ such that ||¢|lcc = 1, ¢ is compactly supported in [0, 2]
such that ¢(z) = 1 when x < 1, and ¢(x) = 0 for any =z > 3/2. Now
let ®;(x) = cpq 'o(glz — x;]) so that ®;(z) is also C*° and supported in
Bj = B(z;,2/q). Denote by Ay = |JjL, Bj and let A; = [0, 119N A and
A = Ag|J A1 be the support of the density u.

Definition of the Assouad Hypercube of regression functions. We define
Y ={-1,1}"", and for any o € X,,:

_1+0;2(z)

1
5 , and ng(x)ziifxeAl.

V1<j<m, VoeBj: n.(x)
Figure 2 shows the regression function 7, for two opposite values of o; and
for a particular ball B;.

The density p. We use in the sequel a measure p that does not depend
on 0. Indeed, we even consider only some constant densities on each B;. In
particular, the measure p of each ball B is w (that will be chosen later) and
the density p is then given by
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F1a 2. Example of function n. on a particular ball B; of size 1/q. The value of ns oscillates
either between 1/2 and 1 if o5 =1 or 0 and 1/2 if o5 = —1.

where 74 is the Lebesgue measure of the unit Euclidean ball of R?. We now
define p on A; as
(z) = 1—mw
TN Ay

A schematic representation of this measure can be seen on the left of Figure
3.

Margin condition. For the sake of convenience, for any o € 3,,,, we denote
P, := P(xy),, the law of the couple (X,Y’). Following the arguments of
[ATO07], consider any o € 3,,:

1
P, <0<|na(X)—§\§t) Py (0 < coplqlX — 1) < ),
- 1 - z)dzx.
/B(ml,z/q) {0<epplalla—eil)<2tq ()

Since ¢ is equal to 1 on [0, 1], we then obtain that:

1
P, <O<\na(X)—§!§t) < m /B oo Mo
T1,4/4

Lic, <atgyme S T°
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s
% +
L L JREL

Fic 3. Simplified representation of the measure Px, the gray level is proportional to the
value of the density p. Left: measure used in Section A.1.1 or A.1.2 (compactly supported
measure or not) and in Section A.1.3 (Mmma(Q, ) is fulfilled and not the Tail Assump-
tion). Right: measure used in Section A.1.} when the tail is fulfilled and not Myma (2, K).

+

as soon as:
mw = O(q™?).

Smoothness of n,. We briefly check that the regression functions are Lips-
chitz, uniformly with respect to any choice of ¢g. First, it should be observed
that:

|@)(2) = 25(@)| _ coll#lloo

V@) € By [no(@) —no(@)| = —EE SR < S

[l = Z[].

On the contrary, when (z,%) € A1, n,(x) = 1n,(Z) = 1/2. It now remains to
study the situation when x € Ay and € Bj for one j. When 7 is in the
exterior ring of size 3/(2q) (the set B; N B(x;,3/(2¢))¢), we have:

Mo () = 0o (2) = 1/2.

Now, if & belongs to B(xj,3/(2q)):

’770(37) - na(j)‘ = ‘q)]é(‘%) = 2q

Hence, we can deduce the uniform Lipschitz bound (note that the case x €
Bj and & € By, can be treated in the same way):

- - 90/ oo T [|@]loo ~
V(e 7)€ @) Yo €Sy no(e) = o (@)] < e 08 e TPl 5y
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Minoration of the risk. Following the arguments of Theorem 3.5 in [AT07],
we have that: w
Rn > m— (1 —q ! nw) .
q

A.1.2. Proof of Theorem 4.2 and of Theorem 4.5, i). We first study the
situation of rates when MM ,mq(§2, k) and Py are in force and use a measure
similar to the one represented on the left of Figure 3.

Besicovitch-like condition Mymq (2, £):.  We aim to show that our network
satisfies the lower bound involved in Myyma (€2 k). Consider § — 01 and
q — +oo. If z € Ap and § = o(1/q) then one ball B; intersects at the least
half of B(z,d) and since u is stepwise constant:

AN(B(z, o
Py (B(z,d)) > W > %,u(a:)&d
If § is now proportional to 1/¢, the last inequality is still true up to a constant
(which is not illustrated here for the sake of simplicity). Now if ¢~! = o(6),

B(z,6) contains a number N, of balls (B})1<j<m such that N5, > C’dffdd.
In this case, we still have

Px (B(z,9)) > Px (B(m,d) N U;-"ZlBj) > Nsg X w > Cy6%w = fc;ju(x)éd.

Hence, the measure Px belongs to 9,ma (2, k) with a constant x indepen-
dent of q.

Tail Assumption Pr rq or Pry. First, note that Py is built such that if
r € Ay

Py (<€) =0 if € <wq?/(742%) and Px (i < €) = mw if € > wq?/(742%).

Note that the density on A; is bounded from below and, as a result, we will
not take the tail property on this set into account.
Since 1) is increasing in a neighborhood of 0, the tail property Px(u < €) <

Y(e) is fulfilled as soon as:
d
wq
mes Y <’Yd2d> '

Calibration for the minoration. Recall that R, > m% (1 — qilw/nw) and
that we must satisfy the following constraints

d
— wq
_ [ < et
mw = O0(q™ %) andmwNw<7d2d>.
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The lower bound above is meaningful as soon as we choose w < %. If we
denote €, o4 = g~ !, the values of m, ¢, w that provide a tradeoff between all
these constraints are obtained with

2

_— = -1 :q—
P YT mw), w = o

wqd

—2
3 3 3 : —d.—1 6'n,oz,ol —d
In particular, the constraints are optimized when €, g solves 27 %y~ =5~ nod

Y~ (e ), which leads to the lower bound

n,a,d

I+a . -1 _ d+2 ,—1/ «
anen,md with n™" =€, 7 (€nad)-

In the above calibration, we obtain that:

—Q

—d,~1( —a a__ 4
w=q " (g and m=¢"——.
(@) vHg™)
This ends the proof of Theorem 4.2 and Theorem 4.5, i). (|

Looking carefully at the proof of the theorem above, we can see that the
influence of 1 is as follows:

o If ¢ = o(¢(€)), then the construction of the network yields a non com-
pactly supported distribution since:

—
A(Supp(p)) = mg™4 = 4 4% as q — +o0.

»Hg™)
As pointed out in paragraph 4.4, a polynomial decay of the density
when x grows to oo yields such a tail size.
e In the opposite situation, when ¢ (e) = O(e), the corresponding density
has a compact support. In particular, when ¥ (€) ~ €, our network is

exactly the same as the one used in [AT07] and we naturally recover
the lower bound n~(+a)/(+atd),

A.1.3. Proof of Theorem 4.1, item i). We study the specific case where
Myma (2, k) has to be fulfilled although the Tail Assumption is no longer
necessary. In such a case, we still use the construction shown on the left of
Figure 3 and provided in Section A.1.2 but m can be chosen much greater
than q%. For example, for a parameter 7 > 0 chosen in the sequel, we assume
that m = ¢%*™ >> ¢% as ¢ — +o00. In such a case, the underlying measure
Px is no longer compactly supported.
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Using the same argument as above, Assumption A3 is still satisfied since
the number m of balls B; does not influence the minoration of Px (B(z,d)).
We have to satisfy the following constraints:

7
mw=0(q¢ %),w < —.
n

We keep the value of w as:
W = q2/(2n)a

and the calibration of ¢ with respect to m yields
1
q = n2tdtatr,

We then obtain the lower bound

_ 14+«
Rn > con 24atdtT |

By increasing the size of 7 (7, = n for example), it can then be observed
that it is possible to obtain any arbitrary value between 0 and cg. Hence,
for any classifier ®,, a distribution on (X,Y") exists such that Assumptions
A1-A3 hold and that the classifier ®,, cannot be consistent.

A.1.4. Proof of Theorem 4.1, item ii). We then study what could happen
when the Tail Assumption is satisfied but Assumption A3 can be violated.
The idea is to pick the density of observations to ensure the validity of the
Tail Assumption. To do this, we consider the new marginal on X whose
defined as:

¢ (1~ |z —a5lq7),

fB(o,1) (1- |$|)+ dx

/B- w(x)dr = w.

J

Vo € Bj w(x) =w

so that:

The obtained measure is represented on the right of Figure 3. We proceed
in the same way as in paragraph A.1.1: ¢ is still lower bounded by a strictly
positive constant (as soon as v > 1) and the Margin Assumption is satisfied
as soon as mw = O(q™%).

It should also be observed that Assumption A3 is not satisfied here. In fact,
when we choose 7 > 1 and the reference radius 0 as 6 = ¢~ for a € [1,7][:

Px(B(zj,q¢") =w and §u(x;) = cg“wq = cwq®0=,
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where
1

- fB(o,l) (1 = [z]), d=

The left hand side becomes negligible with respect to the right hand side as
soon as ¢ — +0o0.

We now check that such a definition of density u satisfies the Tail Assump-
tion. Consider any € > 0. We then have:

Px ({u <e})

d
= mw/ g’ (1= |z = 21lq") | Vewgra(i—|z—a;lg), <y
B(z1,1/q)

Cc

= mw/ (1 — |z — r1lq”) 4 1{(1_\x—zj|q7)+SC—1w71qﬂde}d:§.
B(z1,1/q)
Consider the variable y = ¢7(x — x1). We then obtain

Px ({0 < ) =mw [

B(0,1)

—d
¢(L=[yD 4 Lia-pyp, <c1w-1g-apdy < yamg™ e
As a consequence, the Tail Assumption is true as soon as m = O(q?%). We
point out that since we chose v > 1 in the sequel, m is then greater than ¢?
and the support of i is no longer compact since ¢ — +00.
Following the roadmap of paragraph A.1.2, we then obtain the lower bound
calibrations of ¢ and w such that:

R, > n_ 2+1ctrf'yd_
Again, a sufficiently large value of v makes it possible to obtain arbitrarily
slow rates (and even non-consistent classifiers).

A.2. Proof of Theorem 3.1. Let € > 0 be a given real number (whose
value will be specified later), and define:

Be = {:1; eR? | In(z)—1/2| < 6}.

Applying Proposition A.1 in Section A.5, the excess risk can be decomposed
as follows:

R(®n) — R(®*) = E[20(X) — 11e,(x)207(x)}] »
= E[120(X) — 11{e,x)20*(x)} 1xeB. ]

3:T1,€

+E[120(X) = 1L(s, (x) 20+ (x)} Lxene] -

=Th ¢
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Now, the Margin Assumption A2 yields:
(A1) Tie <2E[n(X) — 1/21xep,.] < 2ePx(X € B.) < 20+,

In order to control 75, define:

Vi>1  Bei= {ac eR? | Y le<|n(z) —1/2| < 2je}.

T = 2ZE[IW(X)—1/2\1{c1>n(x>¢<1>*(X>}1{XeBe,j}]
i>1

< QeZQjEX {1{Xe85,j}E®” (1{<I>n(X)7é<I>*(X)})} :
j>1

We can apply Proposition A.2 (see Section A.5 below) to obtain:

(A2)  Th.<4ey 2Ey [1{X€B€7j} exp (— 2k, |27t — An(X)Ji)] .
i>1

Since p is lower bounded by a > 0 on €2, we can apply Proposition A.3 with
a = p— to obtain:

1/d
An(X)<C ((l;”u1> + exp (—3l<:n/14)> .

Now, we consider € = ¢, > 2A,,(X) , for example by choosing:

/
(A.3) e = 2C ((k;jal)l . (_3kn/14)> |

With ¢, defined as in (A.3), we deduce that 2/~te, — A, (X) > 277 1¢, — o>
€, (2771 = 3) > 0. Thus, (A.2) becomes:

. P 2
T27€n < 46n Z2JEX |:1{0<|77(X)—1/2|<2j6n} €exXp (—2/€n€z (2] - 1/2) )] .
j>1

Now, in order to control the previous bound, we get the constraint on kj:
(A.4) kn =€,
Thanks to (A.3), the constraint (A.4) then yields:

(A.5) €n ~ n® 4  and kp ~ nTH,
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We then obtain that:

Tye, < den) 2Ex {1{o<|n<X>—1/2l<2jen} =P <8>] ’
j=>1
042 22N By (In(X) — 1/2] <
< 2 _ |
S eXp( 8) © (0 =< ze)

Jj=1

The Margin Assumption applied to Px (|n(X) — 1/2| < 2’¢,) leads to:

. 225
Too, < ebte Y oillta)izeg (_8> |
Jj=21

The series on the right hand side converges. This last bound associated with
(A.1) leads to:

sup [R(®,) — R(P¥)] < Cn™ 2+d.
FeF

A.3. Proof of the upper bounds: Theorem 4.3 and Theorem 4.5
ii).

PrOOF OF THEOREM 4.3. We consider a constant v and use the following
decomposition of R? for a suitable v > 0 (that will be chosen later on):

RE={z:0<p(z)<n }U{z:p>n"}.
Rn Qn

We follow the roadmap of the proof of Theorem 3.1 and keep the notation Be,
which refers to B, := {z € R? : n(z) — 1/2| < €}. Thanks to Proposition
A.1, we obtain:
R(®n) = R(D) = E[2n(X) — 1(a,(x)2a(x)}]
= E[]2n(X) — 11{e, (x)2e*(x)} 1xeR,]

::TRn

+E [12n(X) — 11{a, (x)20-(x)1 1 XeQn ] -

=Tq,

Study of R,,. The Tail Assumption A4 in the particular case where v = Id
leads to:

Tr, <Px (X € Rn) = Px(,u(X) < n_“’) <n7 7.
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Study of QQ,,. Following the proof of Theorem 3.1 with a = n™", Equations
(A.2)-(A.4) yield:

(A.6) Ty, < Cekte,

where €, and k, satisfy the balance equations

1/d 1/d
en ~ 2C <k”a1> =2C ( o > and  k, =¢,°

n nl=7
The equilibria are met in the two terms above with

2(1—~) A=)

(A.7) kp ~ Cn 2+ and €n ST 2.

Final control of the risk.. From the previous bounds, we obtain that:

(=) (ta)

(A.8) R(®,) —R(®*) Sn™ 20 4 n 7.
We optimize the last expression with respect to v by setting

1+«

(1—7)(1+a):7(2+d)<:>7:m.

The above choices allow us to conclude that:

sup [R(®p) — R(B*)] < Cn~ Fata,
FeF

O]

PROOF OF THEOREM 4.5. ii) We follow the roadmap of the previous proof
and replace the threshold n~7 with a,, which should be carefully chosen.
The key balance is still k, = v, 2 on the set {u > a,} with the optimal
setting:

Fn v

~

Ny,

Since we want to obtain a minimal value for v, this last equation leads to
the choice:

1
A9 an = ———,
(A.9) 0=

and the upper bound of the excess risk we obtained is then

sup [R(®n) — R(®")] S v, ™ + ¥ (an).
FeF
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The natural equilibrium is found when plug-in (A.9) in this last upper bound

and v, are be fixed so that 1~! (V}ﬁo‘) = n*1V;(2+d). We then obtain the
rate v}t with the balance equation:

A A B

A.4. Proof of Theorem 4.4 (sliced nearest neighbor).

Proor. We use the partition of 2 naturally derived from the slices 2,
and (2,5)j>1:
Qno = {zlp(z) >n7} and Q,;:= {x|n_72_(j+1) < p(z) < n_72_]}.

For this purpose, let v € (0,1) (that will be specified later) and:

) 2(1—~)
bing = kn, 0272/ @D with kg =250 log(n).

We then use the following decomposition of the excess risk:

R(®p) — R(D")
“+o00
= E |120(X) - UL{g,(x)2e )} | Louo + D Lo, | |
j=1

= E[2n(X) — 1|1(s, (x)20*(x)} L 0]

+oo
+ > E[20(X) — 11{e, (x)£0-(x)} 100,
j=1

+00
= Th+ Y Rny.
j=1

Study of T,,. The density is lower bounded by n™7 on €, . The proof of
Theorem 4.3 yields (see (A.6) and (A.7)):

T, < L=

Study of Ry, ;. Forany j > Jo(n) = (1—7) llgiig)) and for any = € Q,, ; with
j > Jy, we have:
—yg=(1=7) 1G5y
pu(x) <n= 72 log(2) = 1/n.
The Tail Assumption with ¢ = Id leads to:
> Ruy <Px [p(X)<n ] Snlh
7>Jo
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Study of Ry j,j < Jo(n). We consider the intermediary slices, and for 1 <
j < Jo(n):

=Rn ;1

Rn; = E [|277(X) — 11, (x)20%(x)} [1|n(X)f1/2|gen,J 1X€Qn,j]

+E [|2TI(X) — 11a, (x)22* (X))} [1|n(X)_1/2|>en,J ]-XEQn,j]

=Rp j2

where €, ; will be chosen later. To bound R, ;1, we use the fact that |n —
1/2| < €p,j as well as the Tail Assumption on the set €, ; C {p(X) <n~7277}
to obtain:

(A.10) Ryj1 < 2,0 7277

Thanks to Proposition A.2, we can bound the term R, ;2 as follows:

Ry j2 < 4K [1Xeﬂn,j exp (—%n,j Lenj — An(X)Jfﬂ :
The term €, ; is then chosen such that €, ; — A, (X) < €, /2. According to

Proposition A.3, we obtain:

7201\ 14
n )

€nj =C <kw~

where ¢ is chosen large enough. With this value, we obtain the following
simplifications:

(A.11)
142 gt 1+2
k .42 d ; ,
& oy =l = T2 k‘nl,i 9= (143)9(2j42)/d _ 292/d log(n)!*+2/4,
n 4 n 4

Taken together, (A.10) and (A.11) lead to:

Ry < 2€,, ;077277 4 dexp(—c22¥log(n) TV YP(X € O, ).
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We then sum up all these terms for j > 1:

Jo 1/2+1/d . L
log(n) n-Y92J + l E P(X € Qn,j)7
n

j=1 VEnj j=1

Jo
I 1
S 07 log(n)2HVEN 9 1Py o
n

R, S

n,j
j=1
1 Jo j+1 1
—— g lrd
S n'n 2w log(n)l/QH/dZQ Itora 4 =
n

j=1
S n~n" log(n)'/2+1/d 4 l

n
We can see in this last upper bound that we obtain an improvement between

the standard rule and the one fixed here since the term n~" that appears in
1

the tail of x on the right hand side of (A.8) is transformed into n=7 xn~ 25d
up to a log term.

Final equilibrium. We now fix the optimal value of « with the conjunction
of the upper bounds for R, and T},:

R(®,) — R(®*) < n~ 55 4 ™77 254 log(n) /24 1 O(1/n).

The balance equilibrium is reached with (1 + a);—g =v+ ;T;, meaning

that v This concludes the proof. O

_ 1
T 24a+td’

A.5. Technical results. In the following, we use the result reported in
[Gy678] that compares the excess risk of any classifier with the Bayes pro-
cedure.

ProOPOSITION A.1 ([Gy&78]). For any classifier ¥, we have:

R(¥) - R(®*) =E [|277(X) - 1|1{\II(X)7£<I>*(X)}] .

The following lemma is concerned with the concentration of the plug-in
estimator 7, (see (2.3)).

LEMMA A.1 (Concentration of 7). In the classification model,

Pa ([fin(X) — Egn (2(X)) | > 5) < 2exp (~2kys?).
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PROOF. Once again, we can observe that conditionally to the (X(;)1<i<n,
the corresponding labels (Y(;)(X))1<i<n are independent Bernoulli random
variables with respective parameters 7(X(;)). We can now use the Hoeffding
inequality as follows:

Pgn (1 — Egn (1n(X)) | > s)
= Egn (Pon ([nn(X) = Egr (1a(X)) [ > s|(X1,..., X)) -

k
1 n
" Li=1
< Egn (2exp(—2kns?)|(X1,. .., Xn)) < 2exp(—2k,s?).

We first state an important upper bound of the error rate when the design
point X is fixed.

PROPOSITION A.2.  Foranye > 0 and any X € Q, if Ap(X) 1= |Egnin(X)—
n(X)|, we have:

— 2k le—An(X) |42
L) -Lize Bor [Lia,(x)zes (] < 2100 -1 jnq € 2ol 8n 001,

where |a] 4 refers to the positive part of any real number a.

PROOF. In the event {®,(X) # ®*(X)}, 7,(X) — 1/2 and n(X) — 1/2 do
not have the same sign. Therefore:
Lotz Hea0ze (0} = L{in0) 172126} i () —n(X) |2}

Then:

Egn [1{‘1>n(X)#¢’*(X)}1{In(X)—%\Ze}}
< Eer [10)-1/2120 1] 00-n(0)]2¢}]
Linx)-11za Par ([02(X) = n(X)[ = €)
Lnx)—11za Per ([12(X) = Egn (72(X)) | 2 € = An(X))

IN

where the last line follows from the triangular inequality and the definition
of A, (X). Lemma A.1 applied with s = [e — A, (X)|+ now leads to the
conclusion of the proof. d
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This last proposition clearly underlines the effect of the bias term A, (X)
in the misclassification error rate. This bias term is then upper bounded by
the next result.

PROPOSITION A.3. Assume that p belongs to Mypma (2, k) and n belongs
to CH0(Q, L). Then, a constant C > 0 exists such that for any a > 0:

n — <L[Z -n o
|Egniin(z) — n(z)| _L<E> <na> +2exp< 14),

for all x € K, where

K, := {mGRdm(x)Za}.

PRrROOF. We first propose a control of the bias and then use a concentration
inequality in order to obtain the bound.

Decomposition of the bias. Let x € K, be fixed. According to the definition
of N, (x) (see (2.3)):

N 1
B [n(2)] = Eor Z Yip(@)| =Een | 1= > n(X()
Hence:

An(z) = [Egn [in(2)] —n(x)| =

For any t > 0, we write:

= [Eer < Z” X@) = )) <1uxkn—xn<t + 1||an—X||zt> :

Using the fact that n and 7, belong to [0, 1], we then have:

1 —x||<t o
Egr ('Xg; > (X)) - n<x>>>

=1

Ap(x)

An(z) < +Pgn [|| X () — Il > 2] -
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Now, since 7 € C}0(9, L):

k
1 n
An(z) < ka Egn [1||X(kn)7mH<t‘77(X(i))_77(‘7:)‘}
" i=1

P [ Xy — 2ll 2 1],

L o
—Egn llllX(kn)th > 11X — =
n =1

(A12) < tL+Pgn (|| X, — ] >1).

IN

+ Por ([ X (k) — 2l > 1),

Concentration inequality. We now turn our attention to the control of the
last term in the r.h.s. of (A.12). In the following, for all x € Q and for all
t >0, pu(B(z,t)) will denote the mass of the ball B(z,t) w.r.t the measure
Px, i.e.

W(B.0)i= [ e

B(z,t)
Within this context, we sometimes omit the dependency of this quantity
w.r.t. the point = and write p; = p(B(z,t)). Then:

Por (|| Xk, — 2| = t)

= Pgn (Z Lix.eB@y < kn) ;

=1

1< kn,
= Pgn ( Z [1{)(1.63(35,1;)} - #t] < z - ,ut> ,

n
k
< P®n< >ut—7j>,

i=1
as soon as fiy > %" Since Px € Myma(2, k) and x € K,

15 ]
n = {XiEB(x,t)} Mt

e > kp(x)td > kat?,

We therefore choose t such that:

n n ra

1/d
(A.13) ratd > 2Fn oy > <2k""1> .

In particular, with the choice of ¢ given by (A.13), we obtain:

kn Mt
A.14 - > =,
( ) Kt n = 9
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We then apply the Bennett inequality (sometimes called Bernstein’s inequal-
ity, see for example Theorem 2.9 page 35 and Equation (2.10) page 36 in

[BLM13]) to the random variables Z; = logenen) mpe exponential bound
nue

pt(1—pt)
. M) |
- 2
4(1—pe)

1 1 Vit
2(17’“ * Ve (1—pe) 2\/(1—Mt)/3)

9 3nu
exX — .
P78

Now, using (A.14) p; > 2k, /n, we obtain:

obtained is then

Per (|| Xk =2l 2 ¢)

1 n
< Pgn <|n Z [LixieB(eny — ]

=1

< 2exp | —

IN

Sk
(A.15) Pon (|| Xk =2l 21) < 2exp (—14> .

Final Bound. According to (A.12) and (A.15), we obtain:

14
1/d 1/d
L <2> <kn> + 2 exp <—3kn> .
K na 14

This concludes the proof of Proposition A.3. O

kn
Ap(z) < Lt—i—2€xp<—3 ),

IN
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