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CLASSIFICATION IN GENERAL FINITE DIMENSIONAL SPACES WITH THE NEAREST NEIGHBOR RULE: NECESSARY AND SUFFICIENT CONDITIONS
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Given an n-sample of random vectors (Xi, Yi) 1≤i≤n whose joint law is unknown, the long-standing problem of supervised classification aims to optimally predict the label Y of a given new observation X. In this context, the nearest neighbor rule is a popular flexible and intuitive method in non-parametric situations. Even if this algorithm is commonly used in the machine learning and statistics communities, less is known about its prediction ability in general finite dimensional spaces, especially when the support of the density of the observations is R d . This paper is devoted to the study of the statistical properties of the nearest neighbor rule in various situations. In particular, attention is paid to the marginal law of X, as well as the smoothness and margin properties of the regression function η(X) = E[Y |X]. We identify two necessary and sufficient conditions to obtain uniform consistency rates of classification and derive sharp estimates in the case of the nearest neighbor rule. Some numerical experiments are proposed at the end of the paper to help illustrate the discussion.

1. Introduction. The supervised classification model has been at the core of numerous contributions to statistical literature in recent years. It continues to provide interesting theoretical and practical problems. Supervised classification aims to predict a feature Y ∈ M when a variable of interest X ∈ R d is observed, the set M being finite (M = {0, 1} for a binary classification). In order to provide a prediction of the label Y of X, it is assumed that a training set S n = (X i , Y i ) 1≤i≤n is at our disposal and makes it possible to provide a prediction via an inference on the joint law (X, Y ). Many methods have been proposed over the years and we refer to [START_REF] Boucheron | Theory of classification: a survey of some recent advances[END_REF] for an extended introduction. These methods can be divided in (at least) three families:

• Pure entropy considerations and Empirical Risk Minimization (ERM).

It selects a classifier that yields the ERM among a family of candidates (see e.g. [START_REF] Mammen | Smooth discrimination analysis[END_REF], [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] and [START_REF] Loustau | Minimax fast rates for discriminant analysis with errors in variables[END_REF] for an detailed description). In an almost similar context, aggregation schemes (see e.g. [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] and [START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF]) have been shown to be adaptive to margin and complexity. • Geometric interpretation or information theory. The SVM (see [START_REF] Vapnik | Statistical learning theory[END_REF], [START_REF] Steinwart | Consistency of support vector machines and other regularized kernel classifiers[END_REF] among others) aims to maximize the margin of the classification rule. CART is another intuitive standard method, improved by a bagging procedure in [START_REF] Amit | Shape quantization and recognition with randomized trees[END_REF] and [START_REF] Breiman | Random forests[END_REF], refered to as Random Forest. • Plug-in rules. The main idea is to mimick the Bayes classifier using a plug-in rule after a preliminary estimation of the regression function.

We refer to [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] for a general overview (see also [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]).

In this general overview, the nearest neighbor rule (N.N. for short) belongs to the last two classes: it is a plug-in classifier with a simple geometrical interpretation. It has attracted a great deal of attention for the past few decades, from the seminal work of [START_REF] Fix | Discriminatory analysis, nonparametric discrimination, consistency properties[END_REF]. In particular, a famous positive result of [START_REF] Stone | Consistent nonparametric regression[END_REF] is its universal consistency (see also [START_REF] Devroye | On the strong universal consistency of nearest neighbor regression function estimates[END_REF]), meaning that the N.N. can be carefully tuned to be consistent under mild assumptions on the model. Recently, this algorithm has received further attention and is still at the core of several studies: [START_REF] Cérou | Nearest neighbor classification in infinite dimension[END_REF] identifies the importance of the Besicovitch assumption, [START_REF] Hall | Choice of neighbor order in nearest-neighbor classification[END_REF] is concerned with two notions of the sample structure, [START_REF] Samworth | Optimal weighted nearest neighbour classifiers[END_REF] describes an improvement of the algorithm that allows to deal with smoother regression functions, while [START_REF] Chaudhuri | Rates of convergence for nearest neighbor classification[END_REF] studies the consistency and the rate of convergence of the algorithm in abstract metric spaces.

We investigate here the achievable consistency rate of the N.N. under various conditions. Most of the results obtained for penalized ERM, SVM or plug-in classifiers are based on complexity considerations (entropy or VC dimension). In this paper, we mainly use the asymptotic behavior of the small ball probabilities instead (see [START_REF] Heng | Convergence of functional k-nearest neighbor regression estimate with functional responses[END_REF] and the references therein), which is a dual quantity of the entropy (see [START_REF] Li | Gaussian processes: inequalities, small ball probabilities and applications[END_REF]) and we deal with the intricate situation of not bounded away from zero densities (and non compactly supported measures). For this purpose, we handle smoothness and minimal mass assumptions that will provide a pertinent estimation of the function η. We also consider an additional margin parameter α: [START_REF] Mammen | Smooth discrimination analysis[END_REF] proved that fast rates (faster than √ n -1 ) can be obtained by exploiting the law of (X, Y ) near {η = 1/2}. Our contributions can be gathered in 3 different axes.

Rate for bounded from below densities. We state the optimality of the N.N. Φ n and show that mild assumptions implies the minimax consistency rate sup

F ∈F [R(Φ n ) -R(Φ * )] ≤ Cn -1+α 2+d ,
where α denotes the margin parameter, d the dimension of the problem, R(Φ) the miss-classification error of Φ and Φ * the Bayes classifier.1 

Rate for general densities. We study the behavior of Φ n when the marginal density µ of X is not bounded from below on its support. Such an improvement is of first importance since it corresponds to many practical situations.

To do this, we add an assumption on the tail of µ and prove that generically:

sup F ∈F [R(Φ n ) -R(Φ * )] ≤ Cn -1+α 2+α+d ,
as soon as the bandwidth k involved in the classifier is allowed to depend on the spatial position of X. The tail assumption on µ involved in this result describe the behavior of µ near the set {µ = 0}.

Lower bounds. Finally, we derive some lower bounds for the supervised classification problem, which extends the results obtained in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. We prove that our Tail Assumption is unavoidable to ensure uniform consistency rates for classification in a non-compact case. We then see how these upper and lower bounds are linked and show that a very unfavorable situation of classification occurs when the regression function η oscillates in the tail of the distribution µ: it is even impossible in these situations to obtain uniform consistency rates and thus elucidate two open questions in [START_REF] Cannings | Nearest neighbour classification in the tails of a distribution[END_REF].

The paper is organized as follows. Section 2 reminds some basics of the N.N. rule. Section 3 is devoted to the bounded from below case. We then extend our study to the general (typically non-compact) case in Section 4. Proofs and technical results are included in Appendix A.

We use the following notations throughout the paper. The term P X,Y denotes the distribution of the couple (X, Y ) and P X is the marginal distribution of X, which possesses a density µ w.r.t. the Lebesgue measure. Similarly, we set

P ⊗ n = n i=1 P (X i ,Y i ) and P = P (X,Y ) × P ⊗ n . Naturally, E[.], E X [.
] and E ⊗ n [.] correspond hereafter to the expectations w.r.t. the measures P, P X and P ⊗ n respectively. Finally, given two real sequences (a n ) n∈N and (b n ) n∈N , we write

a n b n (resp. a n ∼ b n ) if a constant C ≥ 1 exists such that a n ≤ Cb n (resp. C -1 b n ≤ a n ≤ Cb n ) for all n ∈ N.

Statistical setting and nearest neighbor classifier.

2.1. Statistical Classification problem. We observe an i.i.d. sample S n := (X i , Y i ) i=1...n ∈ Ω × {0, 1}, whose distribution is P X,Y and where Ω = Supp(µ) is an open set of R d . For a new incoming observation X, our goal is to predict its corresponding label Y . To do this, we use a classifier Φ that provides a decision rule for this problem: Φ is a measurable mapping from R d to {0, 1}, whose corresponding miss-classification error is then defined as

R(Φ) = P (Φ(X) = Y ) .
In practice, the most interesting classifiers are those associated with the smallest error. It is well known that the Bayes classifier Φ * defined as:

(2.1) Φ * (X) = 1 {η(X)> 1 2 } , where η(x) := E [Y |X = x] ∀x ∈ Ω,
minimizes the misclassification error, i.e.

R(Φ

* ) ≤ R(Φ), ∀Φ : R d -→ {0, 1}.
Unfortunately, Φ * is not available since the regression function η depends on the underlying distribution of (X, Y ). The Bayes classifier can be considered as an oracle that provides a benchmark error and the main challenge is to construct a classifier Φ that possesses a small excess risk given by

R(Φ) -R(Φ * ).
We study the properties of the excess risk of a given classifier Φ n through the minimax paradigm. Given a set F of possible distributions F for (X, Y ), we define

δ n (F) := inf Φ sup F ∈F [R(Φ) -R(Φ * )] ,
where the infimum in the above formula is taken over all S n measurable classifiers. A classifier Φ n is then said to be minimax over the set

F if sup F ∈F [R(Φ n ) -R(Φ * )] ≤ Cδ n (F),
for a positive constant C. The considered set F will be detailed later on and will depend on some smoothness, margin and minimal mass assumptions.

2.2.

The nearest neighbor rule . The N.N. rule is one of the simplest and widespread classification procedure. Suppose that the state space is R d with a reference norm . . Given any sample S n and for any x ∈ R d , we build the reordered sample X (j) (x), Y (j) (x) 1≤j≤n w.r.t. the distances X i -x :

X (1) (x) -x ≤ X (2) (x) -x ≤ . . . ≤ X (n) (x) -x .
In this context X (m) (x) is the m-nearest neighbor of x w.r.t. the distance . and Y (m) (x) its corresponding label. Given any integer k in N, the principle of the nearest neighbor algorithm is to construct a decision rule based on the k-nearest neighbor of the input X: the S n -measurable classifier Φ n,k is:

(2.2) Φ n,k (X) =      1 if 1 k k j=1 Y (j) (X) > 1 2 , 0 otherwise.
For all x ∈ Ω, the term 1 k k j=1 Y (j) (x) appears to be an estimator of the regression function η(x). In particular, we can write the classifier Φ n,k as:

(2.3) Φ n,k (X) = 1 {ηn(X)>1/2} where ηn (x) = 1 k k j=1 Y (j) (x) ∀x ∈ Ω.
Hence, the N.N. is a plug-in classifier, i.e., a preliminary estimator of the function η is plugged in our decision rule. It is worth noting that the integer k is a regularization parameter. The N.N. is quite robust since universal consistency is obtained as soon as k n → +∞ and k n /n → 0, but a careful tuning of the number of neighbors k n is needed to obtain an acceptable rate of convergence. Indeed, if k is too small, the classifier Φ n,k only uses a small amount of the neighbors of X, inducing a large variance of the classification process. On the other hand, large values of k generate some bias into the decision rule since we use observations that may be far away from the input X.

For this purpose, we introduce some baseline assumptions into the following section that will make it possible to characterize an optimal value for k n .

2.3. Baseline assumptions. It is well known that no reliable prediction can be made in a distribution-free setting (see [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF]). We restrict the class of possible distributions of (X, Y ) below.

Since the nearest neighbor rule is a plug-in classification rule, we expect to take advantage of some smoothness properties of η in order to improve the classification process. In fact, when η is smooth, the respective values of η(x 1 ) and η(x 2 ) are comparable for close enough x 1 , x 2 . In other words, we can infer the sign of η(x) -1 2 from those of the neighbors of x. Assumption A1. (smoothness) The regression function η belongs to the Hölder class of parameter 1 with a radius L, which is denoted C 1,0 (Ω, L) and corresponds to the set of functions such that

∀(x 1 , x 2 ) ∈ Ω 2 |η(x 1 ) -η(x 2 )| ≤ L|x 1 -x 2 |.
Remark 2.1. It would be tempting to consider some more general smoothness classes for the regression function η. Nevertheless, the standard nearest neighbor algorithm does not make it possible to use smoothness indexes greater than 1. An alternative procedure has been proposed in [START_REF] Samworth | Optimal weighted nearest neighbour classifiers[END_REF]: the idea is then to balance the (Y (j) ) j=1..k with a suitable monotonous weighting sequence. However, this modification complicates the statistical analysis and may alter the ideas developed below. We therefore chose to fix the smoothness of η to 1 (i.e. restrict our study to C 1,0 (Ω, L)).

Our second assumption was introduced by [START_REF] Alexandre | Optimal aggregation of classifiers in statistical learning[END_REF] in the binary supervised classification model (see [START_REF] Mammen | Smooth discrimination analysis[END_REF] in a smooth discriminant analysis setting).

Assumption A2. (Margin assumption) Some constants α > 0 and C > 0 exist such that

P X 0 < η(X) - 1 2 < ≤ C α , ∀ > 0.
In such a case, we write (µ, η) ∈ M α .

The Bayes classifier depends on the sign of η(X) -1/2. Intuitively, it would be easier to mimic the behavior of this classifier when the mass around the set {η = 1/2} is small. On the other hand, the decision process may be more complicated when η(X) is close to 1/2 with a large probability. Quantifying this closeness is the purpose of this margin assumption.

For the sake of convenience, we use the set F L,α throughout the paper, which contains distributions that satisfy both Assumptions A1 and A2, namely:

F L,α := P (X,Y ) : L(X) ∼ µ, L(Y |X) ∼ B(η(X)) such that η ∈ C 1,0 (Ω, L) and (µ, η) ∈ M α
We now turn to our last assumption that involves the marginal distribution of the variable X.

2.4. Minimal Mass Assumption. In the sequel, this type of hypothesis will play a very important role.

Assumption A3. (Strong Minimal Mass Assumption)

There exists κ > 0 such that the marginal density µ of X satisfies µ ∈ M mma (Ω, κ) where

M mma (Ω, κ) := {P X : L(X) ∼ µ | ∃δ 0 > 0, ∀δ ≤ δ 0 ∀x ∈ Ω : P X (X ∈ B(x, δ)) ≥ κµ(x)δ d .
This assumption guarantees that P X possesses a minimal amount of mass on each ball B(x, δ), this lower bound being balanced by the level of the density on x. In some sense, distributions in M mma (Ω, κ) will make it possible to obtain reliable predictions of the regression function η according to its Lipschitz property. The Strong Minimal Mass Assumption A3 is much stronger than the so-called Besicovitch assumption that is quite popular in the statistical literature (see e.g. [START_REF] Devroye | On the almost everywhere convergence of nonparametric regression function estimates[END_REF] for a version of the Besicovitch assumption used for pointwise consistency or [START_REF] Cérou | Nearest neighbor classification in infinite dimension[END_REF] for a general discussion on this hypothesis in finite or infinite dimension). It is worth pointing out that the Besicovitch assumption introduced in [START_REF] Cérou | Nearest neighbor classification in infinite dimension[END_REF] states that η satisfies:

(2.4) ∀ > 0 lim δ→0 µ x : 1 µ(B(x, δ)) B(x,δ) |η(z) -η(x)|dµ(z) > = 0.
As pointed by [START_REF] Cérou | Nearest neighbor classification in infinite dimension[END_REF], (2.4) is always true in finite dimensional space. We can also remark that if η is L-Lipschitz (Assumption A1), we have

∀x ∈ Ω B(x,δ) |η(z)-η(x)|µ(z)dz ≤ L B(x,δ)
|x-z|µ(z)dz ≤ Lδµ(B(x, δ)), which implies that the set involved in (2.4) is empty as soon as Lδ ≤ . Hence, (2.4) is true when η ∈ C 1,0 (Ω, L), whatever the dimension of Ω is. We will see that Assumption A3 is necessary to obtain quantitative estimates for any finite dimensional classification problem.

In a slightly different setting, our Assumption A3 is used in the paper of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] when the density µ is lower bounded on its (compact) support, which is assumed to possess some geometrical properties ((c 0 , r 0 ) regularity). This setting is at the core of the study presented in Section 3 below. Assumption A3 also recalls the notion of standard sets used in [START_REF] Rodrguez | Set estimation under convexity type assumptions[END_REF] for the estimation of compact support sets. More generally, the following examples present some standard distributions that satisfy Assumption A3.

Example 2.1.

• In R d , it is not difficult to check that Gaussian measures with non degenerated covariance matrices satisfy M mma (Ω, κ). As a simple example, consider a standard Gaussian law µ ∼ N (0, 1). For any x ∈ R and δ > 0, if x belongs to a compact set K, then a constant

C K exists such that (2π) -1/2 x+δ x-δ e -t 2 /2 dt ≥ C K e -x 2 /2 δ. Now, if x -→ +∞, we can check that (2π) -1/2 x+δ x-δ e -t 2 /2 dt ∼ (2π) -1/2 e -x 2 /2 e xδ x -δ - e -xδ x + δ e -δ 2 /2 .
The bracket above is always greater than δ when (xδ

) -1 = O(1). Now, if δ = o(1/x), a simple Taylor expansion yields (2π) -1/2 x+δ x-δ e -t 2 /2 dt ∼ µ(x) 1 + 2xδ x µ(x)δ.
• The same computations are still possible for symmetric Laplace distributions (e t t+δ t-δ e -x dx = [e δ -e -δ ] ∼ 2δ when δ is small. Thus, any Laplace distributions belongs to M mma (Ω, κ). In a same way, when µ is a standard Cauchy distribution, we can check that

x+δ x-δ dt 1 + t 2 = 1 1 + x 2 δ δ 1 1 + h 2x+h 1+x 2 dh ∼ 1 1 + x 2 2δ - 2 3 δ 3 1 + x 2 + +8 δ 3 x 2 (1 + x 2 ) 2 o(δ 3 ) δ 1 + x 2 .
In the case of compactly supported distribution, it is intuitive to see that M mma (Ω, κ) is related to the regularity of the boundary of the support. For example, consider the uniform law on the 1/2 ball of R 2 given by

Ω := (x 1 , x 2 ) ∈ R 2 | |x 1 | + |x 2 | ≤ 1 .
In this case, we can check that P X (X ∈ B((1, 0), δ) = 4δ 3 /3 for δ ≤ 1, which is much smaller than δ 2 when δ → 0 and this distribution does not belong to M mma (Ω, κ). Other typical distributions that do not satisfy the Strong Minimal Assumption (A3) possess some important oscillations in their tails (when the density µ is close to 0). In such a setting, the alternative set M mma (Ω, κ) defined as follows, may be considered:

M mma (Ω, κ) := P X : L(X) ∼ µ | ∃(ρ, C) ∈]0; +∞[ 2 , ∃δ 0 > 0, ∀δ ≤ δ 0 , ∀x ∈ Ω : µ(x) ≥ e -Cδ -ρ =⇒ µ(B(x, δ)) ≥ κµ(x)δ d .
The interest of the weaker M mma (Ω, κ) compared to M mma (Ω, κ) is that the statistical abilities of the nearest neighbor rule are still the same with M mma (Ω, κ) or M mma (Ω, κ). Moreover, an analytic criterion that ensures M mma (Ω, κ) can be found (see Proposition 4.1). This is not the case for the uniform assumption M mma (Ω, κ) (it is indeed more difficult to ensure the lower bound on the global set Ω).

Although all the subsequent results may be established for a weaker version of the minimal mass assumption (based on the set M mma (Ω, κ)), we will restrict ourselves to its strong formulation (Assumption A3). In Section 3, we prove that the nearest neighbor rule is optimal in the minimax sense provided that the margin and smoothness assumptions hold, with a marginal density of the variable X bounded away from 0 and a suitable choice of k.

In Section 4, we will see that M mma (Ω, κ) is not yet sufficient to derive some uniform consistency rates for classifiers with non compactly supported densities and a last additional hypothesis is needed.

Bounded away from zero densities.

3.1. Minimax consistency of the nearest neighbour rule. In this section, we are interested in the special case of a marginal density µ bounded from below by a strictly positive constant µ -. In this context, we can state an upper bound on the consistency rate of the nearest neighbour rule.

Theorem 3.1. Assume that Assumption A1-A3 hold. The nearest neighbour classifier Φ n,kn with

k n = n 2 2+d satisfies sup P X,Y ∈F L,α ∩Mmma(Ω,κ) µ - [R(Φ n,kn ) -R(Φ * )] n -1+α 2+d ,
where M mma (Ω, κ) µ -denotes the subset of densities of M mma (Ω, κ) that are bounded from below by µ -.

Theorem 3.1 establishes a consistency rate of the nearest neighbor rule over

F L,α ∩ M mma (Ω, κ) µ -. A detailed proof of is presented in Section A.2.
Implicitly, we restrict our analysis to compactly supported observations, this assumptions being at the core of several statistical analyses (see, e.g., [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF], [START_REF] Boucheron | Theory of classification: a survey of some recent advances[END_REF], [START_REF] Mammen | Smooth discrimination analysis[END_REF] or [START_REF] Hall | Choice of neighbor order in nearest-neighbor classification[END_REF] among others). It is worth pointing out that this setting falls into the framework considered in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF].

Definition 3.1 (Strong Density Assumption (SDA), [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]). The marginal distribution of the variable X satisfies the Strong Density Assumption if

• it admits a density µ w.r.t. the Lebesgue measure of R d ,

• the density µ satisfies

µ -≤ µ(x) ≤ µ + , ∀x ∈ Supp(µ)
for some constants (µ -, µ

+ ) ∈]0, +∞[ 2 . • The support of µ is (c 0 , r 0 )-regular, namely λ [Supp(µ) ∩ B(x, r)] ≥ c 0 λ[B(x, r)], ∀r ≤ r 0 ,
for some positive constants c 0 and r 0 .

As soon as the marginal density is bounded from below by a strictly positive constant, then both SDA and Strong Minimal Mass Assumption (A3) are equivalent, as stated in the following proposition.

Proposition 3.1. For bounded away from zero density, the SDA is equivalent to the Strong Minimal Mass Assumption.

Proof of Proposition 3.1. As soon as the support of µ is (c 0 , r 0 )-regular and the density is lower bounded by µ -> 0, then SDA implies a minimal mass type assumption:

∀δ ≤ r 0 µ(B(x, δ)) = B(x,δ) µ(z)dz ≥ µ -×λ[B(x, δ)∩Supp(µ)] ≥ c 0 γ d µ -δ d .
Conversely, we can also check the fact that the Strong Minimal Mass Assumption (A3) implies the SDA (including the (c 0 , r 0 )-regularity of µ). Indeed, since for any x and δ ≤ δ 0 :

1 ≥ B(x,δ) µ(y)dy ≥ κµ(x)δ d ,
then the density µ is upper bounded and we obtain that

B(x,δ) µ(y)dy ≤ µ ∞ λ [Supp(µ) ∩ B(x, r)] .
We therefore obtain:

λ [Supp(µ) ∩ B(x, r)] ≥ κ µ(x) µ ∞ δ d ≥ κ µ - µ ∞ δ d .
This concludes the proof of this proposition.

It is possible to link the constants (c 0 , r 0 ) and κ involved in SDA with M mma (Ω, κ) µ -, we have omitted their relationships here for the sake of simplicity. Minimax rates of excess risk under the SDA are established in Theorem 3.5 of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. A consequence of Proposition 3.1 is that the same lower bound is still valid with M mma (Ω, κ) µ -. Consequently, under Assumptions A1-A3 and if a constant µ -> 0 exists such that µ(x) > µ -on Ω, then we obtain that inf

Φ sup P X,Y ∈F L,α ∩Mmma(Ω,κ) µ - [R(Φ) -R(Φ * )] n -1+α 2+d .
This inequality and Theorem 3.1 show that the N.N. achieves the minimax rate of convergence in the particular case where the density µ is lower bounded on its (compact) support. As already discussed in [START_REF] Mammen | Smooth discrimination analysis[END_REF] or [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF], the higher the margin index α is, the smaller the excess risk will be. On the other hand, the performance deteriorates as the dimension of the considered problem increases. The lower bound obtained by [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] is based on an adaptation of standard tools from nonparametric statistics (Assouad's Lemma). This proof is of primary importance for next lower bound results. It is recalled in Section A for the sake of convenience.

4. Non compact finite dimensional case.

4.1. The Tail Assumption. Results of the previous section are designed for the problem of supervised binary classification with compactly supported inputs and lower bounded densities. Such an assumption is an important prior on the problem that may be improper in several practical settings. Various situations involve Gaussian, Laplace, Cauchy or Pareto distributions on the observations, and both the compactness and the boundedness away from zero assumptions may seem to be very unrealistic. This is even more problematic when dealing with functional classification with a Gaussian White Noise model (GWN). In such a case, observations are described through an infinite sequence of Gaussian random variables, and the SDA or M mma (Ω, κ) µ -are far from being well-tailored for this situation (see [START_REF] Heng | Convergence of functional k-nearest neighbor regression estimate with functional responses[END_REF] for a discussion and further references).

This section is dedicated to a more general case of binary supervised classification problems where the marginal density µ of X is no longer assumed to be lower bounded on its support. The main problem related to such a setting is that we have to predict labels in places where few (or even no) observations are available in the training set. In order to address this problem, we take the following assumption.

Assumption A4. (Tail Assumption) A function ψ that satisfies ψ( ) → 0 as → 0 and that increases in a neighborhood of 0 exists such that

P (X,Y ) ∈ P T ,ψ := P X : ∃ 0 ∈ R * + : ∀ < 0 , P X ({µ < }) ≤ ψ( ) ,
where P T ,Id corresponds to the particular case where ψ = Id.

The aim of this Tail Assumption is to ensure that the set where µ is small has a small mass. We use the notation T because of the interpretation on the tail of µ, but P T ,ψ is not just an assumption on the tail of the µ. It is, in fact, an assumption on the behavior of µ near the set {µ = 0}. We provide below some examples of marginal distributions that satisfy this tail requirement. In Section 4.2 below, we prove that the Tail Assumption (A4) is unavoidable in this setting. In Section 4.3, we investigate the performances of the nearest neighbor rule in this context.

Example 4.1. Following are several families of densities in P T ,ψ .

• Laplace distributions obviously satisfy P T ,Id , and a straightforward integration by parts shows that Gamma distributions Γ(k, θ) satisfy P T ,ψ with ψ( ) = log( -1 ) k-1 (the term around x = 0 is on the order of k/(k-1) and thus negligible compared to the term around +∞). • An immediate computation shows that the family of Pareto distributions of parameters (x 0 , k) satisfies P T ,ψ where ψ( ) = k/(k+1) , regardless of the value of x 0 . • The family of Cauchy distributions satisfies P T ,ψ with ψ( ) = √ . • Univariate Gaussian laws γ m,σ 2 with mean m and variance σ 2 satisfy

γ m,σ 2 (x) ≤ ⇐⇒ |x -m| ≥ t σ, := √ 2σ log 1 + log( 1 σ √ 2π ),
and a standard result on the size of Gaussian tails (see [START_REF] Barndorff-Nielsen | Asymptotic techniques for use in statistics[END_REF]) yields

γ m,σ 2 γ m,σ 2 ≤ = t σ, 1 - 1 t 2 σ, + 1.3 t 4 σ, . . . log 1 .
Hence, univariate Gaussian laws satisfy P T ,ψ with ψ( ) = log( -1 ) -1/2 .

• If m is any real vector of R d and Σ 2 a covariance matrix whose spectrum is λ 1 ≥ . . . λ d ≥ 0:

γ m,Σ 2 γ m,Σ 2 ≤ = γ 0,Σ 2 γ 0,Σ 2 ≤ γ 0,Σ 2 X ≥ 2λ 1 log 1 .
Careful inspection of Theorem 1 of [START_REF] Hüsler | A formula for the tail probability of a multivariate normal distribution and its applications[END_REF] now yields

γ 0,Σ 2 X ≥ 2λ 1 log 1 ∼ C Σ 2 log 1 r/2-1 ,
where C Σ 2 is a constant that only depends on the spectrum of Σ 2 and r is the multiplicity of the eigenvalue λ 1 . In particular, γ m,Σ 2 satisfy P T ,ψ where ψ( ) = C Σ 2 log( -1 ) r/2-1 .

4.2.

Non-uniform consistency results. We first justify the introduction of the sets M mma (Ω, κ) and P T ,ψ and discuss their influences regarding feasibility to derive lower bounds and even uniform consistency of any estimator.

To do this, we first state that the Minimal Mass Assumption (A3) is necessary to obtain uniformly consistent classification rules. Second, we assert that the Tail Assumption (A4) is also unavoidable.

Theorem 4.1. Assume that the law P X,Y belongs to F L,α , then:

i) No classification rule can be uniformly consistent if Assumptions A1-A3 hold and not A4. For any integer n, any discrimination rule Φ n and for any < 4 -α , a distribution P

(n) (X,Y ) in F L,α ∩M mma (Ω, κ) exists such that: R(Φ n ) -R(Φ * ) ≥ .
ii) No classification rule can be uniformly consistent if Assumption A1, A2, A4 hold and not A3. For any integer n, any discrimination rule Φ n and for any < 4 -α , a distribution P

(n) (X,Y ) in F L,α ∩ P T ,Id exists such that: R(Φ n ) -R(Φ * ) ≥ .
Let us slightly comment the two points raised by this last theorem. First and foremost, Theorem 4.1 does not contradict the seminal result of [START_REF] Stone | Consistent nonparametric regression[END_REF] that establishes the universal consistency of the N.N. as soon as k n → +∞ with k n /n → 0. This positive result corresponds to the consistency of the N.N. (without any rate) as soon as the distribution P (X,Y ) is fixed while the number of observations n is growing to infinity. Theorem 4.1 states that both Assumptions A3 and A4 are necessary to derive uniform consistency rates for a family of distributions . In particular, Theorem 4.1 is obtained via the construction of a set of distributions P

(X,Y ) on the entries that depend on n. To sum up, results obtained in [START_REF] Stone | Consistent nonparametric regression[END_REF] and Theorem 4.1 illustrate essentially the difference between universal convergence and uniform convergence over a class of distribution. The first result i) asserts that even if the Minimal Mass Assumption A3 holds for the underlying density on X, it is not possible to expect a uniform consistency result over the entire class of non-compactly considered densities. In some sense, the support of the variable X seems to be too large to obtain reliable predictions with any classifiers without additional assumptions. As discussed above, the Tail Assumption A4 may make it possible to counterbalance this curse of support effect (see next section). Such statistical damage has also been observed for the estimation of densities that are supported on the real line instead of being compactly supported, even though such dramatic consequences are not shown here. We refer to [START_REF] Reynaud-Bouret | Adaptive density estimation: a curse of support?[END_REF] and the references therein for a more detailed description.

The second result ii) states that the Strong Minimal Mass Assumption A3 cannot be skipped for uniform consistency rates and no compactly supported densities. This is in line with the former studies of [START_REF] Győrfi | On the rate of convergence of nearest neighbor rules[END_REF] and [START_REF] Devroye | On the strong universal consistency of nearest neighbor regression function estimates[END_REF]. In particular, Lemma 2.2 of [START_REF] Devroye | On the strong universal consistency of nearest neighbor regression function estimates[END_REF] takes advantage of some of the positive consequences of this type of assumption. Our proof relies on the construction of a sample size dependent law on (X, Y ) that violates Assumption A3 but that keeps the regression function η in our smoothness class F L,α . This is a major difference with former counter examples built in [START_REF] Devroye | A probabilistic theory of pattern recognition[END_REF] where the non uniform consistency is obtained with a family of non-smooth regression functions η. In our study, we also obtained a family of smooth regression functions for which such phenomena occur. Even in this case, it is still possible to keep the excess risk larger than a fixed positive constant (independent on n) for any classifier Φ n .

Finally, these uniform inconsistency results always occur when building a network of regression functions η that oscillate around the value 1/2 at the neighborhood of the set {µ = 0}. In a sense, Theorem 4.1 contributes to the understanding of one of the open questions put forth in [START_REF] Cannings | Nearest neighbour classification in the tails of a distribution[END_REF] on the behavior of the nearest neighbor rule when η is oscillating about 1/2 in the tail. 4.3. Minimax rates of convergence. In the meantime, when both A2, A3 and A4 hold, we are able to precisely describe the corresponding minimax rate of convergence. 

P (X,Y ) ∈F L,α ∩Mmma(Ω,κ)∩P T ,Id [R(Φ n ) -R(Φ * )] n -1+α 2+α+d .
For the sake of convenience, we briefly outline the proof of Theorem 3.5 borrowed from [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] in Section A.1. It is then adapted to our new set of assumptions.

Theorem 4.5 below provides some lower bounds for different tails of distributions (through the function ψ). It should be noted that we recover the known rate of compactly supported densities with the so-called Mild Density Assumption of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] in the particular case ψ = Id. This implies that in the non-compact case, the rate cannot be improved compared to the compact setting, even with an Additional Tail assumption. 4.3.2. An upper bound for the nearest neighbor rule. When the density is no longer bounded away from 0, the integer k n will be chosen in order to counterbalance the vanishing probability of the small balls in the tail of the distributions. For example, when ψ = Id, we show that a suitable choice of the integer k n is:

k n := n 2 3+α+d
, which appears to be quite different from the one in the previous section.

Theorem 4.3. Assume that A1-A3 hold and if the Tail Assumption A4 is driven by ψ = Id, the choice k n := n 2 3+α+d yields:

sup P (X,Y ) ∈F L,α ∩P T ,Id ∩Mmma(Ω,κ) [R(Φ n,kn ) -R(Φ * )] n - (1+α) (3+α+d) .
The proof of Theorem 4.3 is provided in Section A.3. The above results indicate that the price to pay for the classification from entries in compact sets to arbitrary large sets of R d is translated by the degradation from n -(1+α)/(2+d) to at least n -(1+α)/(2+α+d) (see, e.g., Theorem 4.2 when ψ( ) ∼ ). Our upper bound for the nearest neighbor rule does not exactly match this lower bound since we obtain n -(1+α)/(3+α+d) in a similar situation . At this step, obtaining the appropriate minimax rate requires slight changes inside the construction of the nearest neighbor rule. This is the purpose of the next paragraph. 4.3.3. Minimax upper bound for an optimal nearest neighbor rule. The upper bound proposed in the theorem can be improved if we change the way in which the regularization parameter k n is constructed. We use a nearest neighbor algorithm with a number of neighbors that depends on the position of the observation x according to the value of the density µ(x). More formally, we define for all j ∈ N

Ω n,0 := x ∈ R d : µ(x) ≥ n -α 2+α+d ,
and

Ω n,j = x ∈ R d : n -α 2+α+d 2 j ≤ µ(x) < n -α 2+α+d 2 j+1
.

Setting k n,0 = n 2 2+α+d log(n) , we then use for all j ∈ N (4.1)

k n (x) = k n,0 2 -2j/(2+d) ∨ 1 when x ∈ Ω n,j .
According to (4.1), the number of neighbors involved in the decision process depends on the spatial position of the input X. In some sense, this position is linked to the tail. The statistical performances of the corresponding nearest neighbor classifier is displayed below. Such a construction of this sequence of "slices" may be interpreted as a spatial adaptive bandwidth selection. This bandwidth is smaller at points x ∈ R d such that µ(x) is small. In a sense, this idea is close to the one introduced in [GL14] that provides a similar slicing procedure to obtain an adaptive minimax density estimation on R d .

Theorem 4.4. Assume that A1-A3 hold and that the Tail Assumption A4 is driven by ψ = Id. Then, if Φ * n,kn is the classifier associated with (4.1), we have:

sup P (X,Y ) ∈F L,α ∩P T ,Id ∩Mmma(Ω,κ) R(Φ * n,kn ) -R(Φ * ) n - (1+α) (2+α+d) (log n) 1 2 + 1 d .
We stress that the upper bound obtained in Theorem 4.4 nearly matches the lower bound proposed in Theorem 4.2, up to a log-term. This log-term can be removed by the use of additional technicalities that are omitted in our proof. Hence, Theorems 4.4 and 4.2 make it possible to identify the exact minimax rate of classification when the Tail Assumption is driven by ψ = Id, that is: inf

Φ sup P (X,Y ) ∈F L,α ∩P T ,Id ∩Mmma(Ω,κ) R(Φ * n,kn ) -R(Φ * ) ∼ n -1+α 2+α+d .
Remark 4.1. Let us briefly compare our results with those obtained in the recent contribution [START_REF] Chaudhuri | Rates of convergence for nearest neighbor classification[END_REF] on N.N. in general metric spaces. In the particular case of Ω = R d with compactly supported measure, Theorem 3.1 yields an excess risk of the order n -1

d (1+α)/( 2 d +1)
, which is also the result stated in Theorem 4 of [START_REF] Chaudhuri | Rates of convergence for nearest neighbor classification[END_REF]. Both results are obtained with an additional smoothness assumption (see Assumption A1 in our framework and the (α, L) smoothness assumption of [START_REF] Chaudhuri | Rates of convergence for nearest neighbor classification[END_REF] related to the average value of η on small balls of radius r). Now, when the measure is not compactly supported, [START_REF] Chaudhuri | Rates of convergence for nearest neighbor classification[END_REF] describes a geometric set E n,k that involves all points for which a ball of relative mass k/n (in the sense of µ) leads to an average value of η around 1/2 ± k -1/2 . We refer to their Section 2.4 for a complete definition of E n,k . Taking together Theorems 5 and 6 of [START_REF] Chaudhuri | Rates of convergence for nearest neighbor classification[END_REF] shows that the performance of the N.N. classifier is almost proportional to µ(E n,k ) but the excess risk is not explicit.

In our work, M mma (Ω, κ)and our Tail Assumption A4 may be seen as one way to obtain a quantitative description of the set E n,kn and then derive explicit in n consistency rates. Lastly, our lower bound stated in Theorem 4.1 is obtained via a construction of a set of pairs (µ, η) that keep a sufficiently large mass on the associated geometric set E n,k . It is important to note that this lower bound applies not only for the N.N. but for any classifier.

Generalizations.

We propose several extensions of our previous results (lower and upper bounds) for more general tails of distribution. We also propose to enlighten the Minimal Mass Assumption M mma (Ω, κ).

Effect of the tail: from P T ,Id to P T ,ψ .

Theorem 4.5. Assume that Assumptions A1-A4 hold. For any tail T parameterized by a function ψ, we obtain the following results: i) Lower bound: the minimax classification rate satisfies:

inf Φn sup P (X,Y ) ∈F L,α ∩P T ,ψ ∩Mmma(Ω,κ) [R(Φ n ) -R(Φ * )] 1+α n,α,d ,
where n,α,d satisfies the balance

(4.2) n -1 = { n,α,d } 2+d × ψ -1 ({ n,α,d } α ) .
ii) Upper bound: the nearest neighbor rule satisfies sup

P (X,Y ) ∈F L,α ∩P T ,ψ ∩Mmma(Ω,κ) [R(Φ n,kn ) -R(Φ * )] ≤ Cν 1+α n,α,d
with k n = ν -2 n,α,d where ν n,α,d fulfills the balance:

(4.3) n -1 = ψ -1 ({ν n,α,d } 1+α ){ν n,α,d } 2+d .
It would also be possible to propose some generalizations using the sliced nearest neighbor rule presented in Sections 4.3.2 and 4.3.3 for tails driven by a general function ψ, even if we do not include this additional result for the purpose of clarity.

Meeting the Minimal Mass Assumption M mma (Ω, κ). We now obtain similar rates when using the weaker assumption M mma (Ω, κ) instead of M mma (Ω, κ): the lower bounds of µ(B(x, δ)) are only useful for some points x such that µ(x) is large enough. We can state the next corollary.

Corollary 4.1. Assume that A1,A2,A4 hold and P (X,Y ) ∈ M mma (Ω, κ), then sup

P (X,Y ) ∈F L,α ∩P T ,ψ ∩ Mmma(Ω,κ) [R(Φ n,kn ) -R(Φ * )] ν 1+α n,α,d ,
with k n = ν -2 n,α,d where ν n,α,d satisfies the balance

n -1 = ψ -1 ({ν n,α,d } 1+α ){ν n,α,d } 2+d .
The condition M mma (Ω, κ) cannot be easily described through an analytical condition because of its uniform nature over Ω. In contrast, M mma (Ω, κ) is more tractable in view of the criterion given by the next result (Proposition 4.1). Using a log-density model, we write the density µ as

µ(x) = e -ϕ(x) , ∀x ∈ R d .
Proposition 4.1. Let ϕ ∈ C 1 (Ω) and assume that a real number a > 0 exists such that:

lim x:µ(x)-→0 ∇ϕ(x) ϕ(x) a = 0,
then a suitable κ can be found such that µ = e -ϕ ∈ M mma (Ω, κ).

Proof. For any δ > 0, we compute a lower bound of

P X (B(x, δ)) = B(x,δ)
e -ϕ(z) dz.

The Jensen Inequality applied to the normalized Lebesgue measure over B(x, t), which is denoted dz, yields (4.4)

B(x,δ) e -ϕ(z) dz ≥ π d/2 δ d Γ(d/2 + 1) exp -ϕ(x) + B(x,δ) [ϕ(z) -ϕ(x)] dz .
A first order Taylor expansion leads to

B(x,δ) [ϕ(z)-ϕ(x)] dz ≤ sup z∈B(x,δ) ∇ϕ(z) B(x,δ) z-x dz ≤ δ sup z∈B(x,δ) ∇ϕ(z) .
Now, our assumption on ϕ implies that a large enough C a exists such that:

∇ϕ(z) ≤ C a (1 + ϕ(z) a ).
Thus, the lower bound (4.4) becomes:

B(x,δ) e -ϕ(z) dz ≥ π d/2 δ d Γ(d/2 + 1)
e -ϕ(x) e -Caδ(1+sup z∈B(x,δ) ϕ a (z)) .

It is now sufficient to consider points x such that ϕ ≤ δ -1/a (equivalent to µ ≥ e -δ -1/a ) to obtain a meaningful lower bound Hence, M mma (Ω, κ) is satisfied choosing

ρ = 1/a and κ = π d/2 2Γ(d/2 + 1) e -Ca .
4.4. Practical settings on typical examples . The aim of this section is to illustrate the results obtained above. We first describe a location model for which we can derive explicit upper and lower bounds in several different cases. We then propose a small numerical study in order to enhance the discussion regarding the importance of the Tail Assumption and we conclude by drawing a comparison between the standard nearest neighbor and sliced nearest neighbor rules.

Explicit rates for specific location models. We investigate here the influence of the function ψ in P T ,ψ as well as the one of the margin parameter on the convergence rates through several specific location models. These models are defined as follows: given any positive random variable Z (whose cumulative distribution function is denoted as F ) and two real location values a and b, the random variable X is given by: (4.5)

X = Z + Y b + (1 -Y )a,
where is a Rademacher random variable (whose values is ±1) independent of Z, and Y is the label of the observation, sampled independently of and Z with a Bernoulli law B(1/2). Using a translation invariance argument, it is enough in the next study to consider a = 0 and b > 0. Table 1 illustrates the rate reached by the nearest neighbor procedure in each situation.

Law Tail ψ Margin kn ∼ n β Upper bound Gauss ψ( ) ∝ log(1/ ) r/2-1 α = 1 β = 2/(4 + d) n -2/(4+d) log(n) β(r) Laplace ψ( ) ∝ α = 1 β = 2/(4 + d) n -2/(4+d) Gamma ψ( ) ∝ log(1/ ) k-1 α = 1 β = 2/(4 + d) n -2/(4+d) log(n) β(k) Cauchy ψ( ) ∝ √ α = 1 β = 1/(3 + d) n -2/(3+d) Power laws/Pareto ψ( ) ∝ p/(p+1) α = 1 ∧ p β = 2(p+1) p(3+α+d)+2+d n -4(p+1) p(3+α+d)+2+d

Table 1

Convergence rates for locations models with several tail sizes.

A numerical study for 'power laws'. In order to illustrate Equations (4.2) and (4.3), we consider some specific cases of "power laws" such that:

P X (µ(X) < ) = ψ( ) ∼ g when -→ 0 + ,
for some g > 0. In this case, the upper bound on the Nearest Neighbor classifier is given by

R(Φ n ) -R(Φ * ) n - (1+α) 
1+α+ 2+d g although the lower bound derived from (4.2) is:

inf

Φn sup P (X,Y ) ∈F L,α ∩P T ,ψ ∩Mmma(Ω,κ) [R(Φ n ) -R(Φ * )] n - (1+α) α+ 2+d g .
We immediately observe that the classification rates are seriously damaged when g is small. In contrast, for very thin tails, the rate can be arbitrarily close to n -1 . For this purpose, we illustrate this phenomenon with a family of distributions P g , where the parameter g > 0 influences the tail size. We define the cumulative distribution function of the positive random variable Z:

∀t ≥ 0 F g (t) = 1 - 1 (t + 1) g .
Then, for two real values (a, b), we sample n observations (X i , Y i ) according to the previous model and the Bayes classifier is given by: Φ * (X) = 1 {X>(a+b)/2} .

In this example, the margin α is equal to 1 and η is L-Lipschitz. We then consider k n = n 2/5 + 1 to assess the statistical performance of the Nearest Neighbor classifier. Figure 1 represents the excess risk obtained by the Nearest Neighbor classifier and the successive degradation of the convergence rate when g decreases to 0 (on the left, the empirical performance of the Nearest Neighbor rule with the underlying distributions and on the right for the upper bound theoretically derived from Theorem (4.3)). These numerical experiments are consistent with the theoretical result obtained in Theorem 4.5 .

Comparison between the standard nearest neighbor and its sliced counterpart. We provide here a short numerical study that aims to compare the results reached by the standard nearest neighbor rule described in Theorem 4.3 and the ones obtained by its sliced counterpart described in Section 4.3.3 and in Theorem 4.4. To measure such an improvement, we have chosen to once again use some non-compactly supported distributions and several different location models.

On the one hand, as pointed out in Theorem 4.3, the standard nearest neighbor will be tuned with a number of neighbor k n := n 2 3+α+d + 1. On the other hand, the sliced nearest neighbor rule described in Theorem 4.4 requires a preliminary estimation of the law of observation P X . To do this, we used the recent kernel density estimation package2 provided by [START_REF] Botev | Kernel density estimation via diffusion[END_REF], which is an adaptive estimator based on linear diffusion processes. Given any training set (X i , Y i ) 1≤i≤n , we first built the preliminary estimator μn of the unknown density µ. This estimator is interesting because of its adaptive smoothing properties and because it includes a very fast automatic bandwidth selection algorithm. The sliced nearest neighbor rule then uses a number of neighbors that depends on the design point X. If the density estimate is large enough, that is, if μn (X) ≥ n -α 2+α+d : j) , the number k n (X) is:

k n (X) := n 2 2+α+d + 1. Otherwise, when 2 -(j+1) ≤ μn (X)n α 2+α+d ≤ 2 -(
k n (X) := n 2 2+α+d 2 -2j 2+d + 1.
To draw some reliable comparisons, we also used some various univariate laws (d = 1) for the random variable Z involved in the definition of the location model (4.5) (Normal distributions, Cauchy distributions, and Power laws) whose parameters are described in We may observe in Table 2 that the sliced version of the nearest neighbor always outperforms the standard one. Such a numerical result is consistent with the theoretical ones of Theorem 4.3 and 4.4. Note also that the relative improvement of the sliced nearest neighbor rule seems to increase when the number of observations n growth, meaning that each excess risk of the two procedures varies with a different power of n.

Finally, it should be mentioned that we have not tried to modify the dimension of the observations X. Indeed, the difference of the upper bounds given by Theorems 4.3 and 4.4 becomes more and more negligible when the dimension is increasing. This should also be the case in the empirical study that will be in the subject of a future work. Likewise, the statistical study of the empirical sliced nearest neighbor rule should also be addressed in a future study, since a balance between the estimation μn of the density µ and the excess risk of classification with the sliced rule may exist. We have left this problem open for a future study.
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(doi: COMPLETED BY THE TYPESETTER; .pdf). See in the temporary Appendix section after references. where γ d is the Lebesgue measure of the unit Euclidean ball of R d . We now define µ on A 1 as µ(x) = 1 -mω λ (A 1 ) .

A schematic representation of this measure can be seen on the left of Figure 3.

Margin condition. For the sake of convenience, for any σ ∈ Σ m , we denote P σ := P (X,Y ),σ the law of the couple (X, Y ). Following the arguments of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF], consider any σ ∈ Σ m :

P σ 0 < |η σ (X) - 1 2 | ≤ t = mP σ (0 < c ϕ ϕ(q[|X -x 1 |]) ≤ 2tq) , = m B(x 1 ,2/q) 1 {0≤cϕϕ(q[|x-x 1 |])≤2tq} µ(x)dx.
Since ϕ is equal to 1 on [0, 1], we then obtain that: as soon as: mω = O(q -α ).

P σ 0 < |η σ (X) - 1 2 | ≤ t ≤ m B(x 1 ,2/q) 1 {cϕ≤2tq} µ(x)dx, = 1 {cϕ≤2tq} mω t α .
Smoothness of η σ . We briefly check that the regression functions are Lipschitz, uniformly with respect to any choice of q. First, it should be observed that:

∀(x, x) ∈ B j |η σ (x) -η σ (x)| = |Φ j (x) -Φ j (x)| 2 ≤ c ϕ ϕ ∞ 2 x -x .
On the contrary, when (x, x) ∈ A 1 , η σ (x) = η σ (x) = 1/2. It now remains to study the situation when x ∈ A 1 and x ∈ B j for one j. When x is in the exterior ring of size 3/(2q) (the set B j ∩ B(x j , 3/(2q)) c ), we have:

η σ (x) = η σ (x) = 1/2. Now, if x belongs to B(x j , 3/(2q)): |η σ (x) -η σ (x)| = Φ j (x) 2 ≤ c ϕ ϕ ∞ 2q ≤ c ϕ ϕ ∞ x -x .
Hence, we can deduce the uniform Lipschitz bound (note that the case x ∈ B j and x ∈ B k can be treated in the same way):

∀(x, x) ∈ (R d ) 2 , ∀σ ∈ Σ n |η σ (x) -η σ (x)| ≤ c ϕ ϕ ∞ + ϕ ∞ x -x .
Minoration of the risk. Following the arguments of Theorem 3.5 in [AT07], we have that: R n ≥ m ω q 1 -q -1 √ nω .

A.1.2. Proof of Theorem 4.2 and of Theorem 4.5, i). We first study the situation of rates when M mma (Ω, κ) and P T ,ψ are in force and use a measure similar to the one represented on the left of Figure 3.

Besicovitch-like condition M mma (Ω, κ):. We aim to show that our network satisfies the lower bound involved in M mma (Ω, κ). Consider δ → 0 + and q → +∞. If x ∈ A 0 and δ = o(1/q) then one ball B j intersects at the least half of B(x, δ) and since µ is stepwise constant:

P X (B(x, δ)) ≥ µ(x)λ (B(x, δ)) 2 ≥ γ d 2 µ(x)δ d
If δ is now proportional to 1/q, the last inequality is still true up to a constant (which is not illustrated here for the sake of simplicity). Now if q -1 = o(δ), B(x, δ) contains a number N δ,q of balls (B j ) 1≤j≤m such that N δ,q ≥ C d δ d q -d . In this case, we still have

P X (B(x, δ)) ≥ P X B(x, δ) ∩ ∪ m j=1 B j ≥ N δ,q × ω ≥ C d δ d q d ω = C d γ d µ(x)δ d .
Hence, the measure P X belongs to M mma (Ω, κ) with a constant κ independent of q.

Tail Assumption P T ,Id or P T ,ψ . First, note that P X is built such that if

x ∈ A 0 P X (µ < ) = 0 if < ωq d /(γ d 2 d ) and P X (µ < ) = mω if > ωq d /(γ d 2 d ).
Note that the density on A 1 is bounded from below and, as a result, we will not take the tail property on this set into account. Since ψ is increasing in a neighborhood of 0, the tail property P X (µ < ) ψ( ) is fulfilled as soon as:

mω ψ ωq d γ d 2 d .
Calibration for the minoration. Recall that R n ≥ m ω q 1 -q -1 √ nω and that we must satisfy the following constraints

mω = O(q -α ) and mω ψ ωq d γ d 2 d .
The lower bound above is meaningful as soon as we choose ω ≤ q 2 n . If we denote n,α,d = q -1 , the values of m, q, ω that provide a tradeoff between all these constraints are obtained with

mω = q -α , ωq d γ d 2 d = ψ -1 (mω), ω = q 2 2n .
In particular, the constraints are optimized when n,α,d solves 2

-d γ -1 d -2 n,α,d 2n -d n,α,d = ψ -1 ( α n,α,d
), which leads to the lower bound

R n 1+α n,α,d with n -1 = d+2 n,α,d ψ -1 ( α n,α,d ).
In the above calibration, we obtain that: ω = q -d ψ -1 (q -α ) and m = q d q -α ψ -1 (q -α ) .

This ends the proof of Theorem 4.2 and Theorem 4.5, i).

Looking carefully at the proof of the theorem above, we can see that the influence of ψ is as follows:

• If = o(ψ( ))
, then the construction of the network yields a non compactly supported distribution since:

λ(Supp(µ)) mq -d = q -α ψ -1 (q -α ) -→ +∞ as q -→ +∞.

As pointed out in paragraph 4.4, a polynomial decay of the density when x grows to ∞ yields such a tail size. • In the opposite situation, when ψ( ) = O( ), the corresponding density has a compact support. In particular, when ψ( ) ∼ , our network is exactly the same as the one used in [AT07] and we naturally recover the lower bound n -(1+α)/(2+α+d) .

A.1.3. Proof of Theorem 4.1, item i). We study the specific case where M mma (Ω, κ) has to be fulfilled although the Tail Assumption is no longer necessary. In such a case, we still use the construction shown on the left of Figure 3 and provided in Section A.1.2 but m can be chosen much greater than q d . For example, for a parameter τ > 0 chosen in the sequel, we assume that m = q d+τ >> q d as q -→ +∞. In such a case, the underlying measure P X is no longer compactly supported.

where c = 1 B(0,1) (1 -|x|) + dx The left hand side becomes negligible with respect to the right hand side as soon as q -→ +∞. We now check that such a definition of density µ satisfies the Tail Assumption. Consider any > 0. We then have:

P X ({µ < }) = mω B(x 1 ,1/q)
cq γd (1 -|x -x 1 |q γ ) + 1 {cωq γd (1-|x-x j |q γ ) + ≤ } dx = mω B(x 1 ,1/q) cq γd (1 -|x -x 1 |q γ ) + 1 {(1-|x-x j |q γ ) + ≤c -1 ω -1 q -γd } dx.

Consider the variable y = q γ (x -x 1 ). We then obtain P X ({µ < }) = mω B(0,1) c (1 -|y|) + 1 {(1-|y|) + ≤c -1 ω -1 q -γd } dy ≤ γ d mq -γd .

As a consequence, the Tail Assumption is true as soon as m = O(q γd ). We point out that since we chose γ > 1 in the sequel, m is then greater than q d and the support of µ is no longer compact since q -→ +∞. Following the roadmap of paragraph A.1.2, we then obtain the lower bound calibrations of q and ω such that:

R n ≥ n -1+α 2+α+γd .
Again, a sufficiently large value of γ makes it possible to obtain arbitrarily slow rates (and even non-consistent classifiers).

A.2. Proof of Theorem 3.1. Let > 0 be a given real number (whose value will be specified later), and define:

B := x ∈ R d | |η(x) -1/2| ≤ .
Applying Proposition A.1 in Section A.5, the excess risk can be decomposed as follows:

R(Φ n ) -R(Φ * ) = E |2η(X) -1|1 {Φn(X) =Φ * (X)} , = E |2η(X) -1|1 {Φn(X) =Φ * (X)} 1 X∈B :=T 1, + E |2η(X) -1|1 {Φn(X) =Φ * (X)} 1 X∈B c :=T 2, .
Proof. Once again, we can observe that conditionally to the (X (i) ) 1≤i≤n , the corresponding labels (Y (i) (X)) 1≤i≤n are independent Bernoulli random variables with respective parameters η(X (i) ). We can now use the Hoeffding inequality as follows:

P ⊗ n (|η n -E ⊗ n (η n (X)) | > s) = E ⊗ n (P ⊗ n (|η n (X) -E ⊗ n (η n (X)) | > s|(X 1 , . . . , X n )))
.

≤ E ⊗ n P ⊗ n 1 k n kn i=1
Y (i) (X) -η(X (i) ) > s|(X 1 , . . . , X n ) .

≤ E ⊗ n 2 exp(-2k n s 2 )|(X 1 , . . . , X n ) ≤ 2 exp(-2k n s 2 ).

We first state an important upper bound of the error rate when the design point X is fixed.

Proposition A.2. For any > 0 and any X ∈ Ω, if ∆ n (X) := |E ⊗ n ηn (X)η(X)|, we have:

1 {|η(X)-1 2 |≥ } E ⊗ n 1 {Φn(X) =Φ * (X)} ≤ 21 {|η(X)-1 2 |≥ } e -2kn -∆n(X) + 2

, where a + refers to the positive part of any real number a.

Proof. In the event {Φ n (X) = Φ * (X)}, ηn (X) -1/2 and η(X) -1/2 do not have the same sign. Therefore:

1 {|η(X)-1 2 |≥ } 1 {Φn(X) =Φ * (X)} ≤ 1 {|η(X)-1/2|≥ } 1 {|ηn(X)-η(X)|≥ } . Then:

E ⊗ n 1 {Φn(X) =Φ * (X)} 1 {|η(X)-1 2 |≥ } ≤ E ⊗ n 1 {|η(X)-1/2|≥ } 1 {|ηn(X)-η(X)|≥ } = 1 {|η(X)-1 2 |≥ } P ⊗ n (|η n (X) -η(X)| ≥ ) ≤ 1 {|η(X)-1 2 |≥ } P ⊗ n (|η n (X) -E ⊗ n (η n (X)) | ≥ -∆ n (X))
where the last line follows from the triangular inequality and the definition of ∆ n (X). Lemma A.1 applied with s = -∆ n (X) + now leads to the conclusion of the proof. This last proposition clearly underlines the effect of the bias term ∆ n (X) in the misclassification error rate. This bias term is then upper bounded by the next result.

Proposition A.3. Assume that µ belongs to M mma (Ω, κ) and η belongs to C 1,0 (Ω, L). Then, a constant C > 0 exists such that for any a > 0:

|E ⊗ n ηn (x) -η(x)| ≤ L 2 κ 1/d k n na 1/d
+ 2 exp -3k n 14 , for all x ∈ K a where

K a := x ∈ R d | µ(x) ≥ a .
Proof. We first propose a control of the bias and then use a concentration inequality in order to obtain the bound.

Decomposition of the bias. Let x ∈ K a be fixed. According to the definition of ηn (x) (see (2.3)):

E ⊗ n [η n (x)] = E ⊗ n   1 k n kn j=1 Y (j) (x)   = E ⊗ n   1 k n kn j=1
η(X (j) )   .

Hence:

∆ n (x) = |E ⊗ n [η n (x)] -η(x)| = E ⊗ n 1 k n kn i=1
η(X (i) ) -η(X) .

For any t ≥ 0, we write:

∆ n (x) = E ⊗ n 1 k n kn i=1 η(X (i) ) -η(X) 1 X kn -X <t + 1 X kn -X ≥t .
Using the fact that η and η n belong to [0, 1], we then have:

∆ n (x) ≤ E ⊗ n 1 X (kn) -x <t k n kn i=1
(η(X (i) ) -η(x)) +P ⊗ n X (kn) -x ≥ t .

We then apply the Bennett inequality (sometimes called Bernstein's inequality, see for example Theorem 2.9 page 35 and Equation (2.10) page 36 in [START_REF] Boucheron | Concentration Inequalities: A Nonasymptotic Theory of Independence[END_REF]) to the random variables Z i =

1 {X i ∈B(x,t)} √ µt(1-µt)
. The exponential bound obtained is then 

P ⊗ n X (

4.3. 1 .

 1 Minimax lower bound. Theorem 4.2. Assume that Assumptions A1-A4 hold. Then inf Φn sup

Fig 1 .

 1 Fig 1. Example of observed empirical rates and upper bound theoretical rates given by (4.3) for several power law distributions of parameter g.

Fig 2 .

 2 Fig 2.Example of function ησ on a particular ball Bj of size 1/q. The value of ησ oscillates either between 1/2 and 1 if σj = 1 or 0 and 1/2 if σj = -1.

Fig 3 .

 3 Fig 3. Simplified representation of the measure PX , the gray level is proportional to the value of the density µ. Left: measure used in Section A.1.1 or A.1.2 (compactly supported measure or not) and in Section A.1.3 (Mmma(Ω, κ) is fulfilled and not the Tail Assumption). Right: measure used in Section A.1.4 when the tail is fulfilled and not Mmma(Ω, κ).

Table 1 .

 1 The two location parameters are still denoted a and b and fixed such that a = -b.In each situation, we used a Monte-Carlo strategy with 1000 replications to compute the mean excess risk of each nearest neighbor rule. We used a training set of cardinal n, as well as a test set of size 200. Results are given in Table2.

	Law of Z		n = 100			n = 500	n = 1000
	Gauss, a = 1, σ = 2	4.51 4.47	8.9%	3.34 2.48 25.7% 2.71 1.81	33%
	Cauchy, a = 1 2 , γ = 1 2	2.43 2.08 14.5% 1.26 1.07 14.8%	1	0.83	16%
	Cauchy, a = 1 2 , γ = 1	4.6	3.78 17.8% 2.89 2.08	27%	2.3.2 1.55 32.5%
	Power, a = 1 2 , γ = 1	4.13 3.32 19.6% 2.48	1.9	23.7% 2.06 1.49 27.3%
	Power, a = 1 2 , γ = 2	2.18 1.92 12.1% 1.09 0.95 12.4% 0.79 0.69 12.6%
				Table 2	
	Mean excess risk multiplied by 100 (left: standard nearest neighbor; middle: sliced nearest
	neighbor; right: percentage of improvement). Standard errors are lower than 0.2

  kn) -x ≥ t Final Bound. According to (A.12) and (A.15), we obtain:

	≤ P ⊗ n	1 n		n i=1	1 {X i ∈B(x,t)} -µ t ≥	µ t 2	,
									nµt	
	≤ 2 exp	 -	2( 1 1-µt +	4(1-µt) 1 µt(1-µt) √	√ µt √ 2 (1-µt)	/3)	 
	≤ 2 exp -	3nµ t 28	.		
	(A.15)								3k n 14	.
	∆ n (x) ≤ Lt + 2 exp -	3k n 14	,
	≤ L		2 κ	1/d	k n na	1/d	+ 2 exp -	3k n 14	.

Now, using (A.14) µ t ≥ 2k n /n, we obtain:

P ⊗ n X (kn) -x ≥ t ≤ 2 exp -

This result has also been established in the recent work of[START_REF] Samworth | Optimal weighted nearest neighbour classifiers[END_REF] 

kde.m is available on the author's Website of[START_REF] Botev | Kernel density estimation via diffusion[END_REF].

APPENDIX A: PROOFS

Recall that E (resp. E X , E ⊗ n ) denote the expectation with respect to the measure P (resp. P X , P ⊗ n ).

A.1. Proofs of the lower bounds. The proofs of the lower bounds presented in both Theorem 4.1 and Theorem 4.2 are inspired from the construction proposed in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. It is based on Assouad's cube method (see [START_REF] Assouad | Deux remarques sur l'estimation[END_REF], and [START_REF] Bretagnole | Estimation des densités: risque minimax[END_REF]). This approach reduces the problem of obtaining a lower bound on the minimax risk to the problem of testing several couples of hypotheses. We refer to [START_REF] Alexandre | Introduction to nonparametric estimation[END_REF] for a comprehensive introduction to this useful method for deriving lower bounds on minimax risk.

A.1.1. Baseline structure of the network. We present here the common structure of the network of laws on (X, Y ), that is, the definition of the underlying measure P (X,Y ) on R d × {0, 1} (through the density µ and the regression function η).

Definition of η. Let (q, m) ∈ (N * ) 2 and (x 1 , . . . , x m ) ∈ R d . We denote by B i the Euclidean ball of center x i and of radius 2/q, such that for any i and j we have

such that ϕ(x) = 1 when x ≤ 1, and ϕ(x) = 0 for any x > 3/2. Now let Φ j (x) = c ϕ q -1 ϕ(q|x -x j |) so that Φ j (x) is also C ∞ and supported in B j := B(x j , 2/q). Denote by A 0 = m j=1 B j and let A 1 = [0, 1] d A c 0 and A = A 0 A 1 be the support of the density µ.

Definition of the Assouad Hypercube of regression functions. We define Σ m = {-1, 1} m , and for any σ ∈ Σ m :

Figure 2 shows the regression function η σ for two opposite values of σ j and for a particular ball B j .

The density µ. We use in the sequel a measure µ that does not depend on σ. Indeed, we even consider only some constant densities on each B j . In particular, the measure µ of each ball B j is ω (that will be chosen later) and the density µ is then given by

Using the same argument as above, Assumption A3 is still satisfied since the number m of balls B i does not influence the minoration of P X (B(x, δ)).

We have to satisfy the following constraints:

We keep the value of ω as:

and the calibration of q with respect to m yields

We then obtain the lower bound

By increasing the size of τ (τ n = n for example), it can then be observed that it is possible to obtain any arbitrary value between 0 and c φ . Hence, for any classifier Φ n , a distribution on (X, Y ) exists such that Assumptions A1-A3 hold and that the classifier Φ n cannot be consistent.

A.1.4. Proof of Theorem 4.1, item ii). We then study what could happen when the Tail Assumption is satisfied but Assumption A3 can be violated.

The idea is to pick the density of observations to ensure the validity of the Tail Assumption. To do this, we consider the new marginal on X whose µ defined as:

The obtained measure is represented on the right of Figure 3. We proceed in the same way as in paragraph A.1.1: ϕ is still lower bounded by a strictly positive constant (as soon as γ ≥ 1) and the Margin Assumption is satisfied as soon as mω = O(q -α ). It should also be observed that Assumption A3 is not satisfied here. In fact, when we choose γ > 1 and the reference radius δ as δ = q -a for a ∈ [1, γ[:

Now, the Margin Assumption A2 yields:

In order to control T 2, , define:

We can apply Proposition A.2 (see Section A.5 below) to obtain:

Since µ is lower bounded by a > 0 on Ω, we can apply Proposition A.3 with a = µ -to obtain:

Now, we consider = n ≥ 2∆ n (X) , for example by choosing:

With n defined as in (A.3), we deduce that 2 j-1 n -∆ n (X) ≥ 2 j-1 n -n 2 ≥ n 2 j-1 -1 2 > 0. Thus, (A.2) becomes:

Now, in order to control the previous bound, we get the constraint on k n :

Thanks to (A.3), the constraint (A.4) then yields:

We then obtain that:

The Margin Assumption applied to P X |η(X) -1/2| < 2 j n leads to:

The series on the right hand side converges. This last bound associated with (A.1) leads to: sup

A.3. Proof of the upper bounds: Theorem 4.3 and Theorem 4.5 ii).

Proof of Theorem 4.3. We consider a constant γ and use the following decomposition of R d for a suitable γ > 0 (that will be chosen later on):

We follow the roadmap of the proof of Theorem 3.1 and keep the notation B , which refers to B := x ∈ R d : |η(x) -1/2| ≤ . Thanks to Proposition A.1, we obtain:

Study of R n . The Tail Assumption A4 in the particular case where ψ = Id leads to:

Study of Q n . Following the proof of Theorem 3.1 with a = n -γ , Equations (A.2)-(A.4) yield:

where n and k n satisfy the balance equations

The equilibria are met in the two terms above with

, and

Final control of the risk.. From the previous bounds, we obtain that:

We optimize the last expression with respect to γ by setting

The above choices allow us to conclude that:

Proof of Theorem 4.5. ii) We follow the roadmap of the previous proof and replace the threshold n -γ with a n , which should be carefully chosen.

The key balance is still k n = ν -2 n on the set {µ ≥ a n } with the optimal setting:

Since we want to obtain a minimal value for ν n , this last equation leads to the choice:

and the upper bound of the excess risk we obtained is then sup

The natural equilibrium is found when plug-in (A.9) in this last upper bound and ν n are be fixed so that

. We then obtain the rate ν 1+α n with the balance equation:

A.4. Proof of Theorem 4.4 (sliced nearest neighbor).

Proof. We use the partition of Ω naturally derived from the slices Ω n,0 and (Ω n,j ) j≥1 :

For this purpose, let γ ∈ (0, 1) (that will be specified later) and:

We then use the following decomposition of the excess risk:

Study of T n . The density is lower bounded by n -γ on Ω n,0 . The proof of Theorem 4.3 yields (see (A.6) and (A.7)):

Study of R n,j . For any j > J 0 (n) := (1 -γ) log(n) log(2) and for any x ∈ Ω n,j with j > J 0 , we have:

The Tail Assumption with ψ = Id leads to:

Study of R n,j , j ≤ J 0 (n). We consider the intermediary slices, and for 1 ≤ j ≤ J 0 (n):

where n,j will be chosen later. To bound R n,j,1 , we use the fact that |η -1/2| ≤ n,j as well as the Tail Assumption on the set Ω n,j ⊂ µ(X) ≤ n -γ 2 -j to obtain:

Thanks to Proposition A.2, we can bound the term R n,j,2 as follows:

The term n,j is then chosen such that n,j -∆ n (X) ≤ n,j /2. According to Proposition A.3, we obtain:

, where c is chosen large enough. With this value, we obtain the following simplifications:

Taken together, (A.10) and (A.11) lead to:

We then sum up all these terms for j ≥ 1:

We can see in this last upper bound that we obtain an improvement between the standard rule and the one fixed here since the term n -γ that appears in the tail of µ on the right hand side of (A.8) is transformed into n -γ × n -1-γ 2+d up to a log term.

Final equilibrium. We now fix the optimal value of γ with the conjunction of the upper bounds for R n and T n :

The balance equilibrium is reached with (1 + α) 1-γ 2+d = γ + 1-γ 2+d , meaning that γ = 1 2+α+d . This concludes the proof.

A.5. Technical results. In the following, we use the result reported in [START_REF] Győrfi | On the rate of convergence of nearest neighbor rules[END_REF] that compares the excess risk of any classifier with the Bayes procedure.

Proposition A.1 ([Győ78]). For any classifier Ψ, we have:

The following lemma is concerned with the concentration of the plug-in estimator ηn (see (2.3)).

Lemma A.1 (Concentration of ηn ). In the classification model,

X (i) -x + P ⊗ n X (kn) -x ≥ t , ≤ tL + P ⊗ n X (kn) -x ≥ t . (A.12) Concentration inequality. We now turn our attention to the control of the last term in the r.h.s. of (A.12). In the following, for all x ∈ Ω and for all t > 0, µ(B(x, t)) will denote the mass of the ball B(x, t) w.r.t the measure P X , i.e. µ(B(x, t)) := B(x,t) µ(z)dz.

Within this context, we sometimes omit the dependency of this quantity w.r.t. the point x and write µ t = µ(B(x, t)). Then: