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Introduction

à Ranking and comparing items: crucial for col-
lecting information about preferences in many areas:
e.g. marketing, business, politics, genetics.

à Mallows model: powerful model for rankings

à Question: How to include expert opinions into
the analysis? How to elicit a meaningful prior on
the consensus ranking of a population?

1. The Mallows model with

Spearman distance

The Mallows model (Mallows 1957) is a class of
non-uniform distributions for R ∈ Pn, the set of n-
dimensional permutations, of the form

P (R|θ,ρ) =
e−θd(R,ρ)

Z(θ)

àρ ∈ Pn: consensus ranking, location parameter

à θ ≥ 0: precision parameter

à d(·, ·): right-invariant (Diaconis 1988) distance

àZ(θ) =
∑

r∈Pn e
−θd(r,1n): partition function (inde-

pendent of ρ because of right-invariance of d(·, ·))

Spearman distance: the squared l2 norm on Pn

dS(ρ,σ) =

n∑
i=1

(ρi − σi)2, ρ,σ ∈ Pn

Consider n items, ranked by N assessors.
Denote by Rj = (R1j, R2j, . . . , Rnj) ∈ Pn, the ranking
of user j, j = 1, ..., N .

Under the Mallows model with Spearman distance
(MMS), given θ, the likelihood can be written as

P (R1, ...,RN |ρ) ∝ exp

(
2θN

n∑
i=1

ρiR̄i

)
where R̄i = 1

N

∑N
j=1Rij, i = 1, ..., n, is the sample

average of the i-th rank.

2. Sufficient statistics and mle
The sufficient statistic for ρ = (ρ1, ..., ρn), when θ is
known, is R̄ = (R̄1, ..., R̄N).

Proposition 1. Let R1, ...,RN |ρ, θ ∼ Mall(θ,ρ),
and define the vector of sample ranks R̄ as above.
Assume R̄i 6= R̄j, for each i 6= j, and denote by
Y (R̄) = [Y1(R̄), · · · , Yn(R̄)] ∈ Pn the rank vector of
R̄, i.e. Yi(R̄) = Yi =

∑n
h=1 1(R̄h ≤ R̄i), i = 1, ..., n.

Then the unique mle of ρ is

ρmle = argmax
ρ∈Pn

n∑
i=1

ρiR̄i = Y (R̄).

Notice that, in general, R̄ 6∈ Pn. However R̄ lives in
the permutohedron of order n.

Definition 1. The permutohedron of order n,
ppn, is an (n − 1)-dimensional polytope embedded
in an n-dimensional space, the vertices of which are
formed by permuting the coordinates of the vector
(1, 2, 3, ..., n). Equivalently, it is the convex hull of
the points ρ ∈ Pn, the set of n-dim permutations.

Figure 1: Left: The permutohedron of order 3 is a regular hexagon, filling
a cross-section of a 2 × 2 × 2 cube; Right: The permutohedron of order 4 is a
truncated octahedron.

3. The Bayesian Mallows

Vitelli et al. (2018) proposed a framework for perform-
ing Bayesian inference on the Mallows model.

They assume that ρ is a priori uniformly distributed,
ρ ∼ Unif(Pn).

Contribution: the objective prior in the sense of
Villa & Walker (2015) is the uniform prior density on
the space of permutations ρ ∼ Unif(Pn).

Can we go further?
How to put an informative prior on ρ?

A: θ given: conjugate prior for ρ

B: θ not given: conjugate conditioned on θ + clever
prior on θ →MH sampling scheme to approximate
the posterior

3.A Conjugate prior for ρ

(given θ)

Proposition 2. Keeping θ fixed, the conjugate
prior for ρ ∈ Pn is

π(ρ|ρ0, θN0) =
exp
[
−θN0

∑n
i=1(ρi − ρ0i)

2
]

Z∗(θN0, ρ0)
,

where ρ0 ∈ ppn, and N0 ∈ N. We call π(·|ρ0, θN0)
the extended Mallows density: it is a Mallows model
where the consensus ρ0 belongs to ppn.

Posterior consensus: weighted average of prior param-
eter and observed mean (recall Diaconis et al. 1979):

ρN =
N

N0 + N
R̄ +

N0

N0 + N
ρ0 ∈ ppn

θN = θ(N0 + N) ∈ [0,∞)

Then N0 can be interpreted as an equivalent sample
size (recall the Gaussian).

Remark 1. When N0 = 0, the conjugate prior
reduces to the uniform, for all ρ0. When ρ0 =(
n+1

2 , ...,
n+1

2

)
the conjugate prior reduces to the uni-

form, for all θ0.

3.A.bis Toy example 1

Sample N = 30 rankings from the MMS with ρ =
(3, 1, 2) and θ = 0.18. Conjugate prior with ρ0 =
(1, 2, 3), and varying θ0 = θN0.

Figure 2: The balls have radius proportional to the frequency of rankings in
the posterior sample.

3.A.bis Toy example 2

Same model. Increasing sample size (N). Conjugate
prior with ρ0 = (1, 2, 3) and θN0 = 3 (i.e. N0 ≈ 16).

Figure 3: The balls have radius proportional to the frequency of rankings in
the posterior sample.

3.B Prior when θ not given

When θ is unknown, the partition function of
π(·|ρ0, θN0) depends on the model parameters and
cannot be avoided.

Solution: Let π(θ) ∝ Z∗(θN0,ρ0), so that the poste-
rior full conditional is treatable.

3.B Prior when θ not given

Same model. Increasing sample size (N). ρ0 = (1, 2, 3)
and N0 = 16.

Figure 4: The balls have radius proportional to the frequency of rankings in
the posterior sample.

Ongoing work

à Can we say something about the convergence rate?
→ Can we say something about Z∗(·, ·)?

à Applications?

Interesting data to test our methods on?
Please take contact!
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