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Ingredients for preference data

A set of items, to be evaluated: : :

: : :and a pool of assessors to evaluate them

A ranking is a linear ordering of the items (representing e.g. individual preferences).
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Basic story

Pair comparisons arise when users state their binary preferences between pairs of items,
repeatedly

Typical output we collect when

number of items is large

items are difficult to rank or
rate

Robust way of collecting data
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Basic story

Pair comparisons can lead to a unique ranking.
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Basic story

Pair comparisons can lead to a partial ranking.
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Basic story

Pair comparisons can be non-transitive, no ranking available.

Marta Crispino Bayesian Mallows model 7 / 23



Research goals

From non-transitive and incomplete pair comparison data:

i) estimate the modal ranking of a pool of assessors (rank aggregation task)

ii) estimate individual preferences (personalized recommendation task)

iii) do i) and ii) when the population is heterogeneous, cluster the assessors based on
their preferences
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Challenge

Ideally we want to “coherentize” the preferences, and estimate the latent truth.

Equivalent to the minimum feedback arc set problemon a digraph � remove (or
reverse) as few edges as possible so that the remaining graph is acyclic �!
NP-hard optimization problem

Our strategy: sampling rather than optimizing

Setting: Bayesian Mallows model for ranking data, adapted to pair comparisons
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General setting of the Mallows model

Let Pn, be the space of n-dim permutations

A ranking, R = (R1; :::;Rn), of n labelled items A = fA1; :::;Ang is an element of
Pn, where, for all i , Ri is the rank assigned to item Ai .

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

( )e.g. R = 1, 7, 8, 2, 10, 4, 6, 9, 3, 5

The Mallows model (Mallows, 1957) gives the probability density for R 2 Pn,

P(R j�;ρ) :=
1

Zn(�)
exp

h
�
�

n
d(R;ρ)

i

o ρ 2 Pn: location parameter, shared consensus ranking

o d(�; �): right-invariant (Diaconis, 1988) distance between permutations (example)

o � � 0: scale parameter
o Zn(�): partition function
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Bayesian inference: full rankings

N users rank n items A = fA1; :::;Ang

Data R = fRjg
N
j=1 ! full rankings

Rj = (Rj1; :::;Rjn) 2 Pn: ranking given by user j to the full set of items

Rji : rank given to item Ai by user j .

Statistical model: R1; : : : ;RN j�;ρ
i:i:d
� Mallows(�;ρ)

P (R1; : : : ;RN ;�;ρ) =
1

Zn(�)N
exp

(
�
�

n

NX
j=1

d(Rj ;ρ)

)

Prior: assume independence between ρ and � and no prior information
ρ: uniform over Pn ! �(ρ) = 1

n!
1Pn (ρ)

�: (truncated) exponential prior

Posterior density

� (ρ; �jR1; : : : ;RN) /
1

Zn(�)N
exp

(
��

"
n�1

NX
j=1

d (Rj ;ρ) + �

#)
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Bayesian inference: transitive pair comparisons

N users do not see all the possible items, but only express binary preferences
between pairs of them

Data fBjg
N
j=1 are sets of pair preferences, of the form (Am1 � Am2 ) if Am1 preferred

to Am2

Define augmented full rankings R̃1; : : : ; R̃N , where each R̃j is compatible with the
partial informations in the data Bj

Posterior density

� (�;ρjB1; : : : ;BN) =
X

R̃12tc(B1)

� � �
X

R̃N2tc(BN )

P
�
�;ρjR̃1; : : : ; R̃N

�
:
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Idea

When announcing her pairwise preferences, she mentally compares the ranks of the items
in her latent ranking R
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Bayesian inference: non-transitive pair comparisons

Same setting as before BUT users allowed to be inconsistent in their choices

Idea: assume non-transitive patterns arise because of mistakes made by the users

Identification/correction of mistakes: borrowing strength
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Bayesian inference: non-transitive pair comparisons

Posterior density

� (�;ρjB1; :::;BN) =
X

R̃12Pn

:::
X

R̃N2Pn

P
�
�;ρjR̃1; :::; R̃N

�
P
�
R̃1; :::; R̃N jB1; :::;BN

�

Assumption: P
�
R̃1; :::; R̃N jB1; :::;BN

�
=
QN

j=1
P
�
R̃j jBj

�
P
�
R̃j jBj

�
: Weight of each full rank in the sum

Interpretation: probability of ordering the pairs as in Bj when the latent ranking for

user j is R̃j ! probability of making mistakes in the binary choices
o Random mistake: independent of the pair of items
o Logistic model: the likelihood of a mistake increases if the items are perceived as

similar by the user (details)

Implementation: Metropolis within Gibbs MCMC, with data augmentation
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Application to sound data

How important is 3-D spatial motion to our understanding of human agency?

n = 12 abstract sounds, made from the action of a cellist while playing, each
obtained starting at the best representation of the original gesture, and then
reducing or removing some aspects of the sound

SOUND1
Full sonification, the best one can make to capture motion - based on what we
know about our perception and hearing

SOUND7
Like the previous one, with pitch modulation removed

SOUND10
The ‘worst’ sonification, spatial variation is flattened, both pitch and volume
variations removed.

Marta Crispino Bayesian Mallows model 16 / 23



Application to sound data

A group of N = 46 listeners repeatedly presented with pairs of sounds and asked to
choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences?

The percentage of listeners who report at least one non-transitivity is 80%.

We expect the listeners to be clustered: differences in the interpretation of the test and
in how people listen to sounds ! Mixture model generalization of the main model
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Application to sound data

Posterior modal ranking ρ of the 3 clusters

Expert explanation of the clusters:
Cluster 1: listeners who like slower spatial variation

Cluster 2: listeners who are listening spatially

Cluster 3: negative preference for spatial motion
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Application to sound data

Posterior probabilities for all the sonifications of being ranked among the top-4 for the 3
clusters
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Application to sound data

Probability that the best sonified sounds are amongst the top-4 ranked sounds (obtained
thanks to the estimated individual rankings).
SAA: index measuring listeners’ awareness of spatial audio (3 is highly aware)

Spatial listening is a skill that is enhanced through training
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Conclusions

From non-transitive pair comparisons of a heterogeneous pool of users: ability
to estimate both

o the modal ranking of each cluster

o the individual rankings of each user

Ongoing work

o R > BayesMallows, available on CRAN (with Ø. Sørensen, V. Vitelli, Q. Liu)

o Conjugate prior for ρ (with I. Antoniano-Villalobos) (idea)

Future

o Extension to rankings with ties (to model indifference in the preference)

o Integration of covariates (of items and/or of users)

Thanks for your attention!
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Right-invariance

Definition: Right-invariant distance
A distance function is right-invariant, if d(ρ1;ρ2) = d(ρ1η;ρ2η) for all η;ρ1;ρ2 2 Pn,
where ρη = ρ � η = ρη = (��1 ; :::; ��n ).

Example

4 students, (A1;A2;A3;A4), admitted in a PhD program

initial ranking ρ1 = (1; 3; 4; 2) (admission)

final ranking ρ2 = (3; 4; 1; 2) (general exam)

d(ρ1;ρ2) can be thought of as a measure of the goodness of judgement of the PhD
admission board.

If the students are relabelled in a different ordering, for example (A4;A2;A1;A3),
then ρ1η = (2; 3; 1; 4) and ρ2η = (2; 4; 3; 1), where η = (4; 2; 1; 3) determines the
relabelling of the students.

Natural to assume d(ρ1;ρ2) = d(ρ1η;ρ2η), because the situation depicted is the
same.

A1 A2 A3 A4

�!
A4 A2 A1 A3

ρ1 1 3 4 2 ρ1η 2 3 1 4
ρ2 3 4 1 2 ρ2η 2 4 3 1
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Right-invariance

Consequence of right-invariance
For any ρ1;ρ2 2 Pn, it holds d(ρ1;ρ2) = d(ρ1ρ

�1
2 ; 1n), where 1n = (1; 2; :::; n).

Then Zn(�;ρ) is free of ρ, as

Zn(�;ρ) =
X
r2Pn

e�
�

n
d(r ;ρ) =

X
r2Pn

e�
�

n
d(rρ�1

;1n) =
X
r 02Pn

e�
�

n
d(r 0;1n) = Zn(�)

Common right-invariant distances between permutations ρ1;ρ2 2 Pn

Footrule (l1): dF (ρ1;ρ2) =
Pn

i=1
j�1i � �2i j

Spearman (l2): dS(ρ1;ρ2) =
Pn

i=1
(�1i � �2i )

2

Kendall: minimum number of adjacent transpositions which convert ρ1 into ρ2

Cayley: minimum number of transpositions which convert ρ1 into ρ2

Ulam: minimum number of deletion-insertion operations to convert ρ1 into ρ2.

Hamming: minimum number of substitutions required to convert ρ1 into ρ2.

Go back
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Distances: why important

Consider the following two permutations:

σ = (1; 2; 3; 4; 5; 6; 7; 8; 9; 10)

τ = (9; 10; 3; 4; 5; 6; 7; 8; 1; 2)

First and second elements of σ, are at the bottom of τ .

If σ and τ represent preferences about movies ! very different profiles.

If σ and τ represent genomes ! just one translocation in the genome

Normalized Spearman (l2): dS(σ; τ ) � 0:5
Normalized Cayley: dC (σ; τ ) � 0:28

Go back
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The Mallows density

Go back
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Exact computation of Zn(�)

Zn(�) =
X
r2Pn

e�
�

n
d(r ;1n) =

=
X
di2D

jLi je
��

n
di

where

d(r; 1n) 2 D = fd1; :::; dhg, h depends on n and d(�; �)

Li = fr 2 Pn : d(r; 1n) = dig � Pn, i = 1; :::; h.

Sufficient to know jLi j, for all values di 2 D ! Easier, but still unfeasible for large n

Special cases solution (from the computer programming field)

Footrule distance; D = f0; 2; 4; :::; bn2=2cg, jLi j is the sequence A062869 tabulated
for n � 50 in the On-Line Encyclopedia of Integer Sequences (OEIS)

Spearman’s distance: Df0; 2; 4; :::; 2
�
n+1

3

�
g, jLi j is the sequence A175929 tabulated

only until n � 14 in the OEIS
Go back
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Importance Sampling approximation of Zn(�)

Let R1; : : : ;RK sampled from auxiliary distribution q(R), then

Ẑn(�) = K�1

KX
k=1

exp
�
�(�=n)d(Rk ; 1n)

�
q(Rk )�1:

Pseudo-likelihood approach: Let fi1; : : : ; ing be a uniform sample from Pn; giving the
order of the pseudo-likelihood factorization. Then

P (Rin j1n) =
exp [�(�=n)d (Rin ; in)] � 1[1;:::;n](Rin )P

rn2f1;:::;ng
exp [�(�=n)d (rn; in)]

;

P
�
Rin�1 jRin ; 1n

�
=

exp
�
�(�=n)d

�
Rin�1 ; in�1

��
� 1[f1;:::;ngnfRin

g](Rin�1 )P
rn�12f1;:::;ngnfRin

g
exp [�(�=n)d (rn�1; in�1)]

;

.

.

.

P
�
Ri2 jRi3 ; : : : ;Rin ; 1n

�
=

exp
�
�(�=n)d

�
Ri2 ; i2

��
� 1�

f1;:::;ngnfRi3
;:::;Rin

g

�(Ri2 )P
r22f1;:::;ngnfRi3

;:::;Rin
g

exp [�(�=n)d (r2; i2)]
;

P
�
Ri1 jRi2 ; : : : ;Rin ; 1n

�
= 1�

f1;:::;ngnfRi2
;:::;Rin

g

�(Ri1 ):

Go back
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IS approximation of Zn(�)

Example: n = 50, footrule distance

Mukherjee (2016) limit: asymptotic approximation of Zn(�)
Go back
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Effect of the approximation of Zn(�) on inference
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Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Consider a sample of rankings R1; :::;RN jρ; �
i:i:d
� MS(�;ρ), where MS(�; �) is the

Mallows density with � = �=n, and Spearman (l2) distance,

d(ρ;σ) =

nX
i=1

(�i � �i )
2

Assume � known, then

P(R1; :::;RN ; �;ρ) =

NY
j=1

1

Z(�)
exp

(
��

nX
i=1

(Ri � �i )
2

)
/ exp

(
2�N

nX
i=1

�i R̄i

)
;

where R̄i = 1
N

PN

j=1
Rji , i = 1; :::; n, is the sample average of the i�th rank.

Proposition
Let ppn be the n-dim permutation polytope, that is, the convex hull of the elements
of Pn. Then R̄ = (R̄1; :::; R̄n) 2 ppn.
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Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Keeping � fixed, the conjugate prior for ρ 2 Pn is

�(ρjρ0; �0) =
1

Z�(�0;ρ0)
exp

"
��0

nX
i=1

(�0i � �i )
2

#
1(ρ0 2 ppn)1(�0 2 R+)

/ exp

"
2�0

nX
i=1

�i�0i

#

The posterior density for ρ is

�(ρjR1; :::;RN) / exp

(
2(�0 + �N)

nX
i=1

�i

h
�N

�0 + �N
R̄i +

�0

�0 + �N
�0;i

i)

i.e. �(ρjR1; :::;RN) same parametric density of the prior, with updated parameters

ρN =
�N

�0 + �N
R̄ +

�0

�0 + �N
ρ0

�N = �0 + �N

The result reminds Diaconis and Ylvisaker (1979)
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Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Example: n = 3, N = 40, � = 0:5, ρ = (3; 2; 1).
Sample and obtain R̄ = (2:25; 2:125; 1:625).

ρ0 = (1; 2; 3), varying �0 = 0; 10; 20; 30. ρ0 = (1; 2:5; 2:5), varying �0 = 0; 10; 20; 30.

Go back
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Non-transitive pairwise preferences

Mouse click mistake:

P(mistake j �;Rj) = �; � 2 [0; 0:5)

Logistic model

logitP(mistake jRj ; �0; �1) = ��0 � �1

dR j ;m

n � 1

where dR j ;m = jRj1 � Rj2j if Bj;m = (O1 � O2).

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

How important is 3-D spatial motion to our understanding of human agency?

n = 12 abstract sounds, made from the action of a cellist while playing, each
obtained starting at the best representation of the original gesture, and then
reducing or removing some aspects of the sound

SOUND1
Full sonification, the best one can make to capture motion - based on what we know
about our perception and hearing

SOUND7
Like the previous one, with pitch modulation removed

SOUND10
The ‘worst’ sonification, spatial variation is flattened, both pitch and volume variations
removed.

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

A group of N = 46 listeners repeatedly presented with pairs of sounds and asked to
choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences?

The percentage of listeners who report at least one non-transitivity is 80%.

We expect the listeners to be clustered: differences in the interpretation of the test and
in how people listen to sounds ! Mixture model generalization of the main model

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

Posterior consensus ranking ρ of the 3 clusters

Expert explanation of the clusters:
Cluster 1: listeners who like slower spatial variation

Cluster 2: listeners who are listening spatially

Cluster 3: negative preference for spatial motion

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

Posterior probabilities for all the sonifications of being ranked among the top-4 for the 3
clusters

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

Probability that the best sonified sounds are amongst the top-4 ranked sounds (obtained
thanks to the estimated individual rankings).
SAA: index measuring listeners’ awareness of spatial audio (3 is highly aware)

Spatial listening is a skill that is enhanced through training Go back
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Sushi data: full rankings

N = 5000 Japanese people interviewed: each gives his/her
complete ranking of n = 10 sushi variants (items)

Go back
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Sushi data: full rankings

MAP estimate

Go back
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Beaches data: pairwise comparisons

n = 15 images of tropical beaches shown in pairs to N = 60 users (25 random pairs
each)

Question: “Which of the two beaches would you prefer to go to in your next
vacation?”

Go back
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Beaches data: pairwise comparisons

We can also estimate the individual rankings

Go back
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Meta-analysis in Genomics: top�k rankings

Context:

Studies of differential gene expression between two conditions produce a list of
genes, ranked according to their level of differential expression as measured by some
test statistics.

Little agreement among gene lists found by independent studies comparing the same
conditions leads to difficulties in finding a consensus list over all available studies.
This situation raises the question of whether a consensus top list over all available
studies can be found.

Biologists are often concerned with the few most relevant genes in the specific
context of the pathology, to set in place further more detailed lab experiments.

N = 5 studies comparing prostate cancer patients with healthy controls, based on
differential gene expression

Each study produces top�25 (i.e. k = 25) list of genes (unique genes n = 89)
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Meta-analysis in Genomics: top�k rankings

The fact that n >> N, and having partial data, both contribute to keeping precision
small

However, the posterior probability for each gene to be among the top-10 or top-25 is
not so low, thus demonstrating that our approach can provide a valid criterion for
consensus (with uncertainty quantification).

Go back
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Bayesian Mallows model VS Collaborative Filtering (with Q. Liu)
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