A Bayesian Mallows approach to non-transitive pair comparison data:
 an application to sounds perception

Marta Crispino
Mistis team, Inria Grenoble
marta.crispino@inria.fr

CMStatistics
University of Pisa, December, $16^{\text {th }}, 2018$

Joint work with

Elja Arjas
Dept. of Mathematics, University of Helsinki

Natasha Barrett
Dept. of Musicology, University of Oslo

Valeria Vitelli
Dept. of Biostatistics, University of Oslo

Arnoldo Frigessi

Dept. of Biostatistics, University of Oslo

Ingredients for preference data
A set of items, to be evaluated. ..

Ingredients for preference data
A set of items, to be evaluated. . .
....and a pool of assessors to evaluate them

Ingredients for preference data
A set of items, to be evaluated. . .
....and a pool of assessors to evaluate them

A ranking is a linear ordering of the items (representing e.g. individual preferences).

Basic story

Pair comparisons arise when users state their binary preferences between pairs of items, repeatedly

Typical output we collect when

- number of items is large
- items are difficult to rank or rate

Robust way of collecting data

Basic story

Pair comparisons can lead to a unique ranking.

Items $\{\uparrow, \varphi, \uparrow\}$

Rank

Basic story

Pair comparisons can lead to a partial ranking.

Basic story

Pair comparisons can be non-transitive, no ranking available.

Research goals

From non-transitive and incomplete pair comparison data:
i) estimate the modal ranking of a pool of assessors (rank aggregation task)
ii) estimate individual preferences (personalized recommendation task)
iii) do i) and ii) when the population is heterogeneous, cluster the assessors based on their preferences

Challenge

- Ideally we want to "coherentize" the preferences, and estimate the latent truth.

- Equivalent to the minimum feedback arc set problemon a digraph \equiv remove (or reverse) as few edges as possible so that the remaining graph is acyclic \longrightarrow NP-hard optimization problem

Challenge

- Ideally we want to "coherentize" the preferences, and estimate the latent truth.

- Equivalent to the minimum feedback arc set problemon a digraph \equiv remove (or reverse) as few edges as possible so that the remaining graph is acyclic \longrightarrow NP-hard optimization problem
- Our strategy: sampling rather than optimizing
- Setting: Bayesian Mallows model for ranking data, adapted to pair comparisons

General setting of the Mallows model

- Let \mathcal{P}_{n}, be the space of n-dim permutations
- A ranking, $\boldsymbol{R}=\left(R_{1}, \ldots, R_{n}\right)$, of n labelled items $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ is an element of \mathcal{P}_{n}, where, for all i, R_{i} is the rank assigned to item A_{i}.

$$
\begin{array}{lcccccccccc}
& & A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6} & A_{7} & A_{8} & A_{9}
\end{array} A_{10}
$$

General setting of the Mallows model

- Let \mathcal{P}_{n}, be the space of n-dim permutations
- A ranking, $\boldsymbol{R}=\left(R_{1}, \ldots, R_{n}\right)$, of n labelled items $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ is an element of \mathcal{P}_{n}, where, for all i, R_{i} is the rank assigned to item A_{i}.

$$
\begin{array}{lcccccccccc}
& & A_{1} & A_{2} & A_{3} & A_{4} & A_{5} & A_{6} & A_{7} & A_{8} & A_{9}
\end{array} A_{10}
$$

- The Mallows model (Mallows, 1957) gives the probability density for $R \in \mathcal{P}_{n}$,

$$
P(R \mid \alpha, \rho):=\frac{1}{Z_{n}(\alpha)} \exp \left[-\frac{\alpha}{n} d(R, \rho)\right]
$$

- $\rho \in \mathcal{P}_{n}$: location parameter, shared consensus ranking
- $d(\cdot, \cdot)$: right-invariant (Diaconis, 1988) distance between permutations (example)
- $\alpha \geq 0$: scale parameter
- $Z_{n}(\alpha)$: partition function

Bayesian inference: full rankings

- N users rank n items $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$
- Data $\mathbf{R}=\left\{\mathbf{R}_{j}\right\}_{j=1}^{N} \rightarrow$ full rankings
- $\mathbf{R}_{j}=\left(R_{j 1}, \ldots, R_{j n}\right) \in \mathcal{P}_{n}$: ranking given by user j to the full set of items
- $R_{j i}$: rank given to item A_{i} by user j.

Bayesian inference: full rankings

- N users rank n items $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$
- Data $\mathbf{R}=\left\{\mathbf{R}_{j}\right\}_{j=1}^{N} \rightarrow$ full rankings
- $\mathbf{R}_{j}=\left(R_{j 1}, \ldots, R_{j n}\right) \in \mathcal{P}_{n}$: ranking given by user j to the full set of items
- $R_{j i}$: rank given to item A_{i} by user j.
- Statistical model: $\mathbf{R}_{1}, \ldots, \mathbf{R}_{N} \mid \alpha, \rho \stackrel{\text { i.i.d }}{\sim} \operatorname{Mallows}(\alpha, \rho)$

$$
P\left(\mathbf{R}_{1}, \ldots, \mathbf{R}_{N} ; \alpha, \rho\right)=\frac{1}{Z_{n}(\alpha)^{N}} \exp \left\{-\frac{\alpha}{n} \sum_{j=1}^{N} d\left(\mathbf{R}_{j}, \boldsymbol{\rho}\right)\right\}
$$

- Prior: assume independence between ρ and α and no prior information
- ρ : uniform over $\mathcal{P}_{n} \rightarrow \pi(\rho)=\frac{1}{n!} 1_{\mathcal{P}_{n}}(\rho)$
- α : (truncated) exponential prior
- Posterior density

$$
\pi\left(\rho, \alpha \mid \mathbf{R}_{1}, \ldots, \mathbf{R}_{N}\right) \propto \frac{1}{Z_{n}(\alpha)^{N}} \exp \left\{-\alpha\left[n^{-1} \sum_{j=1}^{N} d\left(\mathbf{R}_{j}, \boldsymbol{\rho}\right)+\lambda\right]\right\}
$$

Bayesian inference: transitive pair comparisons

- N users do not see all the possible items, but only express binary preferences between pairs of them
- Data $\left\{\mathcal{B}_{j}\right\}_{j=1}^{N}$ are sets of pair preferences, of the form $\left(A_{m_{1}} \prec A_{m_{2}}\right)$ if $A_{m_{1}}$ preferred to $A_{m_{2}}$

Bayesian inference: transitive pair comparisons

- N users do not see all the possible items, but only express binary preferences between pairs of them
- Data $\left\{\mathcal{B}_{j}\right\}_{j=1}^{N}$ are sets of pair preferences, of the form $\left(A_{m_{1}} \prec A_{m_{2}}\right)$ if $A_{m_{1}}$ preferred to $A_{m_{2}}$
- Define augmented full rankings $\tilde{R}_{1}, \ldots, \tilde{R}_{N}$, where each \tilde{R}_{j} is compatible with the partial informations in the data \mathcal{B}_{j}

$\tilde{\mathbf{R}}=(2,1,3)$
$\tilde{\mathbf{R}}=(3,1,2)$
- Posterior density

$$
\pi\left(\alpha, \rho \mid \mathcal{B}_{1}, \ldots, \mathcal{B}_{N}\right)=\sum_{\tilde{R}_{1} \in \operatorname{tc}\left(\mathcal{B}_{1}\right)} \ldots \sum_{\tilde{R}_{N} \in \operatorname{tc}\left(\mathcal{B}_{N}\right)} P\left(\alpha, \rho \mid \tilde{R}_{1}, \ldots, \tilde{R}_{N}\right)
$$

Idea

When announcing her pairwise preferences, she mentally compares the ranks of the items in her latent ranking \mathbf{R}

Bayesian inference: non-transitive pair comparisons

- Same setting as before BUT users allowed to be inconsistent in their choices

$$
\begin{aligned}
& \tilde{\mathbf{R}}=(1,2,3) \tilde{\mathbf{R}}=(2,3,1) \\
& \tilde{\mathbf{R}}=(1,3,2) \tilde{\mathbf{R}}=(3,1,2) \\
& \tilde{\mathbf{R}}=(2,1,3) \tilde{\mathbf{R}}=(3,2,1)
\end{aligned} ?
$$

Bayesian inference: non-transitive pair comparisons

- Same setting as before BUT users allowed to be inconsistent in their choices

$$
\begin{aligned}
& \tilde{\mathbf{R}}=(1,2,3) \tilde{\mathbf{R}}=(2,3,1) \\
& \tilde{\mathbf{R}}=(1,3,2) \tilde{\mathbf{R}}=(3,1,2) \\
& \tilde{\mathbf{R}}=(2,1,3) \tilde{\mathbf{R}}=(3,2,1)
\end{aligned} ?
$$

- Idea: assume non-transitive patterns arise because of mistakes made by the users
- Identification/correction of mistakes: borrowing strength

Bayesian inference: non-transitive pair comparisons

- Posterior density

$$
\pi\left(\alpha, \rho \mid \mathcal{B}_{1}, \ldots, \mathcal{B}_{N}\right)=\sum_{\tilde{R}_{1} \in \mathcal{P}_{n}} \ldots \sum_{\tilde{R}_{N} \in \mathcal{P}_{n}} P\left(\alpha, \rho \mid \tilde{R}_{1}, \ldots, \tilde{R}_{N}\right) P\left(\tilde{R}_{1}, \ldots, \tilde{R}_{N} \mid \mathcal{B}_{1}, \ldots, \mathcal{B}_{N}\right)
$$

- Assumption: $P\left(\tilde{R}_{1}, \ldots, \tilde{R}_{N} \mid \mathcal{B}_{1}, \ldots, \mathcal{B}_{N}\right)=\prod_{j=1}^{N} P\left(\tilde{R}_{j} \mid \mathcal{B}_{j}\right)$
- $P\left(\tilde{R}_{j} \mid \mathcal{B}_{j}\right)$: Weight of each full rank in the sum
- Interpretation: probability of ordering the pairs as in \mathcal{B}_{j} when the latent ranking for user j is $\tilde{R}_{j} \rightarrow$ probability of making mistakes in the binary choices
- Random mistake: independent of the pair of items
- Logistic model: the likelihood of a mistake increases if the items are perceived as similar by the user (details)

Implementation: Metropolis within Gibbs MCMC, with data augmentation

Application to sound data

How important is 3-D spatial motion to our understanding of human agency?

- $n=12$ abstract sounds, made from the action of a cellist while playing, each obtained starting at the best representation of the original gesture, and then reducing or removing some aspects of the sound

SOUND1

Full sonification, the best one can make to capture motion - based on what we know about our perception and hearing

SOUND7
Like the previous one, with pitch modulation removed

SOUND10
The 'worst' sonification, spatial variation is flattened, both pitch and volume variations removed.

Application to sound data

A group of $N=46$ listeners repeatedly presented with pairs of sounds and asked to choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences?

Application to sound data

A group of $N=46$ listeners repeatedly presented with pairs of sounds and asked to choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences? The percentage of listeners who report at least one non-transitivity is $\mathbf{8 0 \%}$.

Application to sound data

A group of $N=46$ listeners repeatedly presented with pairs of sounds and asked to choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences? The percentage of listeners who report at least one non-transitivity is $\mathbf{8 0 \%}$.

We expect the listeners to be clustered: differences in the interpretation of the test and in how people listen to sounds \rightarrow Mixture model generalization of the main model

Application to sound data

Posterior modal ranking ρ of the 3 clusters

Cluster 2

Cluster 3

Expert explanation of the clusters:

- Cluster 1: listeners who like slower spatial variation
- Cluster 2: listeners who are listening spatially
- Cluster 3: negative preference for spatial motion

Application to sound data

Posterior probabilities for all the sonifications of being ranked among the top-4 for the 3 clusters

Application to sound data

Probability that the best sonified sounds are amongst the top-4 ranked sounds (obtained thanks to the estimated individual rankings).
SAA: index measuring listeners' awareness of spatial audio (3 is highly aware)

Spatial listening is a skill that is enhanced through training

Conclusions

- From non-transitive pair comparisons of a heterogeneous pool of users: ability to estimate both
- the modal ranking of each cluster
- the individual rankings of each user

Conclusions

- From non-transitive pair comparisons of a heterogeneous pool of users: ability to estimate both
- the modal ranking of each cluster
- the individual rankings of each user
- Ongoing work
- $R>$ BayesMallows, available on CRAN (with \varnothing. Sørensen, V. Vitelli, Q. Liu)
- Conjugate prior for $\boldsymbol{\rho}$ (with I. Antoniano-Villalobos) (idea)

Conclusions

- From non-transitive pair comparisons of a heterogeneous pool of users: ability to estimate both
- the modal ranking of each cluster
- the individual rankings of each user
- Ongoing work
- $R>$ BayesMallows, available on CRAN (with \varnothing. Sørensen, V. Vitelli, Q. Liu)
- Conjugate prior for $\boldsymbol{\rho}$ (with I. Antoniano-Villalobos) (idea)
- Future
- Extension to rankings with ties (to model indifference in the preference)
- Integration of covariates (of items and/or of users)

Conclusions

- From non-transitive pair comparisons of a heterogeneous pool of users: ability to estimate both
- the modal ranking of each cluster
- the individual rankings of each user
- Ongoing work
- $R>$ BayesMallows, available on CRAN (with \varnothing. Sørensen, V. Vitelli, Q. Liu)
- Conjugate prior for $\boldsymbol{\rho}$ (with I. Antoniano-Villalobos) (idea)
- Future
- Extension to rankings with ties (to model indifference in the preference)
- Integration of covariates (of items and/or of users)

Thanks for your attention!

Crucial References

Barrett, N., and Crispino, M. (2018), 'The Impact of 3-D Sound Spatialisation on Listeners' Understanding of Human Agency in Acousmatic Music', Journal of New Music Research, pp 1-17

Crispino, M., Arjas, E., Vitelli, V., Frigessi, A. (2016), 'Recommendation from intransitive pairwise comparisons', RecSys 2016, Boston, MA, USA, 15th-19th Sept 2016

Crispino, M., Arjas, E., Barrett, N., Vitelli, V. and Frigessi, A. (2018), 'A Bayesian Mallows approach to non-transitive pair comparison data: how human are sounds?', Forthcoming in the Annals of Applied Statistics

Liu*, Q., Crispino*, M., Scheel, I., Vitelli, V. and Frigessi, A. (2019), 'Model-Based Learning from Preference Data', Annual Review of Statistics and Its Application, 6(1)

Vitelli, V., Sørensen, Ø., Crispino, M., Frigessi, A. and Arjas, E. (2018), 'Probabilistic preference learning with the Mallows rank model', Journal of Machine Learning Research, 18(1), pp 5796-5844.

Other References

Diaconis, P. (1988), 'Group representations in probability and statistics', Vol. 11 of Lecture Notes - Monograph Series, Institute of Mathematical Statistics, Hayward, CA, USA.

Mallows, C. L. (1957), 'Non-null ranking models. I', Biometrika, 44(1/2), 114-130.
Mukherjee, S. (2016), 'Estimation in exponential families on permutations', The Annals of Statistics, 44(2), 853-875.

Right-invariance

Definition: Right-invariant distance

A distance function is right-invariant, if $d\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}\right)=d\left(\boldsymbol{\rho}_{1} \boldsymbol{\eta}, \boldsymbol{\rho}_{2} \boldsymbol{\eta}\right)$ for all $\boldsymbol{\eta}, \boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2} \in \mathcal{P}_{n}$, where $\boldsymbol{\rho} \boldsymbol{\eta}=\boldsymbol{\rho} \circ \boldsymbol{\eta}=\boldsymbol{\rho} \boldsymbol{\eta}=\left(\rho_{\eta_{1}}, \ldots, \rho_{\eta_{n}}\right)$.

Example

- 4 students, $\left(A_{1}, A_{2}, A_{3}, A_{4}\right)$, admitted in a PhD program
- initial ranking $\rho_{1}=(1,3,4,2)$ (admission)
- final ranking $\rho_{2}=(3,4,1,2)$ (general exam)
- $d\left(\rho_{1}, \rho_{2}\right)$ can be thought of as a measure of the goodness of judgement of the PhD admission board.
- If the students are relabelled in a different ordering, for example $\left(A_{4}, A_{2}, A_{1}, A_{3}\right)$, then $\boldsymbol{\rho}_{1} \boldsymbol{\eta}=(2,3,1,4)$ and $\boldsymbol{\rho}_{2} \boldsymbol{\eta}=(2,4,3,1)$, where $\boldsymbol{\eta}=(4,2,1,3)$ determines the relabelling of the students.
- Natural to assume $d\left(\rho_{1}, \rho_{2}\right)=d\left(\rho_{1} \boldsymbol{\eta}, \rho_{2} \boldsymbol{\eta}\right)$, because the situation depicted is the same.

	A_{1}	A_{2}	A_{3}	A_{4}
ρ_{1}	1	3	4	2
ρ_{2}	3	4	1	2

Right-invariance

Consequence of right-invariance
For any $\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2} \in \mathcal{P}_{n}$, it holds $d\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}\right)=d\left(\boldsymbol{\rho}_{1} \boldsymbol{\rho}_{2}^{-1}, \mathbf{1}_{n}\right)$, where $\mathbf{1}_{n}=(1,2, \ldots, n)$. Then $Z_{n}(\alpha, \rho)$ is free of ρ, as

$$
Z_{n}(\alpha, \boldsymbol{\rho})=\sum_{r \in \mathcal{P}_{n}} e^{-\frac{\alpha}{n} d(\boldsymbol{r}, \boldsymbol{\rho})}=\sum_{r \in \mathcal{P}_{n}} e^{-\frac{\alpha}{n} d\left(r \rho^{-1}, \mathbf{1}_{n}\right)}=\sum_{\boldsymbol{r}^{\prime} \in \mathcal{P}_{n}} e^{-\frac{\alpha}{n} d\left(\boldsymbol{r}^{\prime}, \mathbf{1}_{n}\right)}=Z_{n}(\alpha)
$$

Common right-invariant distances between permutations $\rho_{1}, \rho_{\mathbf{2}} \in \mathcal{P}_{\boldsymbol{n}}$

- Footrule $\left(I_{1}\right): d_{F}\left(\rho_{1}, \rho_{2}\right)=\sum_{i=1}^{n}\left|\rho_{1 i}-\rho_{2 i}\right|$
- Spearman $\left(l_{2}\right): d_{S}\left(\boldsymbol{\rho}_{1}, \boldsymbol{\rho}_{2}\right)=\sum_{i=1}^{n}\left(\rho_{1 i}-\rho_{2 i}\right)^{2}$
- Kendall: minimum number of adjacent transpositions which convert ρ_{1} into ρ_{2}
- Cayley: minimum number of transpositions which convert ρ_{1} into ρ_{2}
- Ulam: minimum number of deletion-insertion operations to convert ρ_{1} into ρ_{2}.
- Hamming: minimum number of substitutions required to convert ρ_{1} into ρ_{2}.
- Go back

Distances: why important

Consider the following two permutations:

$$
\begin{aligned}
& \boldsymbol{\sigma}=(1,2,3,4,5,6,7,8,9,10) \\
& \boldsymbol{\tau}=(9,10,3,4,5,6,7,8,1,2)
\end{aligned}
$$

First and second elements of σ, are at the bottom of τ.

Distances: why important

Consider the following two permutations:

$$
\begin{aligned}
& \boldsymbol{\sigma}=(1,2,3,4,5,6,7,8,9,10) \\
& \boldsymbol{\tau}=(9,10,3,4,5,6,7,8,1,2)
\end{aligned}
$$

First and second elements of σ, are at the bottom of τ.
If $\boldsymbol{\sigma}$ and $\boldsymbol{\tau}$ represent preferences about movies \rightarrow very different profiles.

Distances: why important

Consider the following two permutations:

$$
\begin{aligned}
& \boldsymbol{\sigma}=(1,2,3,4,5,6,7,8,9,10) \\
& \boldsymbol{\tau}=(9,10,3,4,5,6,7,8,1,2)
\end{aligned}
$$

First and second elements of σ, are at the bottom of τ.
If $\boldsymbol{\sigma}$ and $\boldsymbol{\tau}$ represent preferences about movies \rightarrow very different profiles.
If $\boldsymbol{\sigma}$ and $\boldsymbol{\tau}$ represent genomes \rightarrow just one translocation in the genome

Distances: why important

Consider the following two permutations:

$$
\begin{aligned}
& \boldsymbol{\sigma}=(1,2,3,4,5,6,7,8,9,10) \\
& \boldsymbol{\tau}=(9,10,3,4,5,6,7,8,1,2)
\end{aligned}
$$

First and second elements of $\boldsymbol{\sigma}$, are at the bottom of $\boldsymbol{\tau}$.
If σ and $\boldsymbol{\tau}$ represent preferences about movies \rightarrow very different profiles.
If $\boldsymbol{\sigma}$ and $\boldsymbol{\tau}$ represent genomes \rightarrow just one translocation in the genome

Normalized Spearman $\left(l_{2}\right): d_{S}(\sigma, \tau) \approx 0.5$

- Go back

Normalized Cayley: $d_{C}(\sigma, \tau) \approx 0.28$

The Mallows density

- Go back

Exact computation of $Z_{n}(\alpha)$

$$
\begin{aligned}
Z_{n}(\alpha) & =\sum_{r \in \mathcal{P}_{n}} e^{-\frac{\alpha}{n} d\left(r, 1_{n}\right)}= \\
& =\sum_{d_{i} \in \mathcal{D}}\left|L_{i}\right| e^{-\frac{\alpha}{n} d_{i}}
\end{aligned}
$$

where

- $d\left(\mathbf{r}, \mathbf{1}_{n}\right) \in \mathcal{D}=\left\{d_{1}, \ldots, d_{h}\right\}, h$ depends on n and $d(\cdot, \cdot)$
- $L_{i}=\left\{r \in \mathcal{P}_{n}: d\left(\mathbf{r}, \mathbf{1}_{n}\right)=d_{i}\right\} \subset \mathcal{P}_{n}, i=1, \ldots, h$.

Exact computation of $Z_{n}(\alpha)$

$$
\begin{aligned}
Z_{n}(\alpha) & =\sum_{r \in \mathcal{P}_{n}} e^{-\frac{\alpha}{n} d\left(r, 1_{n}\right)}= \\
& =\sum_{d_{i} \in \mathcal{D}}\left|L_{i}\right| e^{-\frac{\alpha}{n} d_{i}}
\end{aligned}
$$

where

- $d\left(\mathbf{r}, \mathbf{1}_{n}\right) \in \mathcal{D}=\left\{d_{1}, \ldots, d_{h}\right\}, h$ depends on n and $d(\cdot, \cdot)$
- $L_{i}=\left\{r \in \mathcal{P}_{n}: d\left(\mathbf{r}, \mathbf{1}_{n}\right)=d_{i}\right\} \subset \mathcal{P}_{n}, i=1, \ldots, h$.

Sufficient to know $\left|L_{i}\right|$, for all values $d_{i} \in \mathcal{D} \rightarrow$ Easier, but still unfeasible for large n

Exact computation of $Z_{n}(\alpha)$

$$
\begin{aligned}
Z_{n}(\alpha) & =\sum_{r \in \mathcal{P}_{n}} e^{-\frac{\alpha}{n} d\left(r, 1_{n}\right)}= \\
& =\sum_{d_{i} \in \mathcal{D}}\left|L_{i}\right| e^{-\frac{\alpha}{n} d_{i}}
\end{aligned}
$$

where

- $d\left(\mathbf{r}, \mathbf{1}_{n}\right) \in \mathcal{D}=\left\{d_{1}, \ldots, d_{h}\right\}, h$ depends on n and $d(\cdot, \cdot)$
- $L_{i}=\left\{r \in \mathcal{P}_{n}: d\left(\mathbf{r}, \mathbf{1}_{n}\right)=d_{i}\right\} \subset \mathcal{P}_{n}, i=1, \ldots, h$.

Sufficient to know $\left|L_{i}\right|$, for all values $d_{i} \in \mathcal{D} \rightarrow$ Easier, but still unfeasible for large n

Special cases solution (from the computer programming field)

- Footrule distance; $\mathcal{D}=\left\{0,2,4, \ldots,\left\lfloor n^{2} / 2\right\rfloor\right\},\left|L_{i}\right|$ is the sequence A062869 tabulated for $n \leq 50$ in the On-Line Encyclopedia of Integer Sequences (OEIS)
- Spearman's distance: $\mathcal{D}\left\{0,2,4, \ldots, 2\binom{n+1}{3}\right\},\left|L_{i}\right|$ is the sequence $A 175929$ tabulated only until $n \leq 14$ in the OEIS
- Go back

Importance Sampling approximation of $Z_{n}(\alpha)$
Let $\mathbf{R}^{1}, \ldots, \mathbf{R}^{K}$ sampled from auxiliary distribution $q(\mathbf{R})$, then

$$
\hat{Z}_{n}(\alpha)=K^{-1} \sum_{k=1}^{K} \exp \left[-(\alpha / n) d\left(\mathbf{R}^{k}, \mathbf{1}_{n}\right)\right] q\left(\mathbf{R}^{k}\right)^{-1} .
$$

Pseudo-likelihood approach: Let $\left\{i_{1}, \ldots, i_{n}\right\}$ be a uniform sample from \mathcal{P}_{n}, giving the order of the pseudo-likelihood factorization. Then

$$
\begin{aligned}
& P\left(R_{i_{n}} \mid \mathbf{1}_{n}\right)=\frac{\exp \left[-(\alpha / n) d\left(R_{i_{n}}, i_{n}\right)\right] \cdot \mathbb{1}_{[1, \ldots, n]}\left(R_{i_{n}}\right)}{\sum_{r_{n} \in\{1, \ldots, n\}} \exp \left[-(\alpha / n) d\left(r_{n}, i_{n}\right)\right]} \\
& P\left(R_{i_{n-1}} \mid R_{i_{n}}, \mathbf{1}_{n}\right)=\frac{\exp \left[-(\alpha / n) d\left(R_{i_{n-1}}, i_{n-1}\right)\right] \cdot \mathbb{1}_{\left[\{1, \ldots, n\} \backslash\left\{R_{i_{n}}\right\}\right]}\left(R_{i_{n-1}}\right)}{\sum_{r_{n-1} \in\{1, \ldots, n\} \backslash\left\{R_{i_{n}}\right\}} \exp \left[-(\alpha / n) d\left(r_{n-1}, i_{n-1}\right)\right]}, \\
& \vdots \\
& P\left(R_{i_{2}} \mid R_{i_{3}}, \ldots, R_{i_{n}}, \mathbf{1}_{n}\right)=\frac{\exp \left[-(\alpha / n) d\left(R_{i_{2}}, i_{2}\right)\right] \cdot \mathbb{1}_{\left[\{1, \ldots, n\} \backslash\left\{R_{i_{3}}, \ldots, R_{i_{n}}\right\}\right]}^{\left(R_{i_{2}}\right)}}{\sum_{r_{2} \in\{1, \ldots, n\} \backslash\left\{R_{i_{3}}, \ldots, R_{i_{n}}\right\}} \exp \left[-(\alpha / n) d\left(r_{2}, i_{2}\right)\right]}, \\
& P\left(R_{i_{1}} \mid R_{i_{2}}, \ldots, R_{i_{n}}, \mathbf{1}_{n}\right)=\mathbb{1}\left[\{ 1 , \ldots , n \} \backslash \left\{R_{\left.\left.i_{2}, \ldots, R_{i_{n}}\right\}\right]}\left(R_{i_{1}}\right) .\right.\right.
\end{aligned}
$$

- Go back

IS approximation of $Z_{n}(\alpha)$

Example: $n=50$, footrule distance

Mukherjee (2016) limit: asymptotic approximation of $Z_{n}(\alpha)$

- Go back

Effect of the approximation of $Z_{n}(\alpha)$ on inference

Exact

IS $\mathbf{K}=10^{8}$

IS $K=10^{4}$

Asymptotics

- Go back

Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Consider a sample of rankings $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{N} \mid \boldsymbol{\rho}, \theta \stackrel{\text { i.i.d }}{\sim} \mathcal{M}_{S}(\theta, \rho)$, where $\mathcal{M}_{S}(\cdot, \cdot)$ is the Mallows density with $\theta=\alpha / n$, and Spearman ($/ 2$) distance,

$$
d(\rho, \sigma)=\sum_{i=1}^{n}\left(\rho_{i}-\sigma_{i}\right)^{2}
$$

Assume θ known, then

$$
P\left(\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{N} ; \theta, \boldsymbol{\rho}\right)=\prod_{j=1}^{N} \frac{1}{Z(\theta)} \exp \left\{-\theta \sum_{i=1}^{n}\left(R_{i}-\rho_{i}\right)^{2}\right\} \propto \exp \left\{2 \theta N \sum_{i=1}^{n} \rho_{i} \bar{R}_{i}\right\}
$$

where $\bar{R}_{i}=\frac{1}{N} \sum_{j=1}^{N} R_{j i}, i=1, \ldots, n$, is the sample average of the $i-$ th rank.

Proposition

Let Pp_{n} be the n-dim permutation polytope, that is, the convex hull of the elements of \mathcal{P}_{n}. Then $\overline{\boldsymbol{R}}=\left(\bar{R}_{1}, \ldots, \bar{R}_{n}\right) \in \mathfrak{p p}_{n}$.

Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Keeping θ fixed, the conjugate prior for $\rho \in \mathcal{P}_{n}$ is

$$
\begin{aligned}
\pi\left(\boldsymbol{\rho} \mid \rho_{0}, \theta_{0}\right) & =\frac{1}{Z^{*}\left(\theta_{0}, \boldsymbol{\rho}_{0}\right)} \exp \left[-\theta_{0} \sum_{i=1}^{n}\left(\rho_{0 i}-\rho_{i}\right)^{2}\right] \mathbb{1}\left(\boldsymbol{\rho}_{0} \in \operatorname{ppp}_{n}\right) \mathbb{1}\left(\theta_{0} \in \mathbb{R}^{+}\right) \\
& \propto \exp \left[2 \theta_{0} \sum_{i=1}^{n} \rho_{i} \rho_{0 i}\right]
\end{aligned}
$$

The posterior density for ρ is

$$
\pi\left(\rho \mid \boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{N}\right) \propto \exp \left\{2\left(\theta_{0}+\theta N\right) \sum_{i=1}^{n} \rho_{i}\left[\frac{\theta N}{\theta_{0}+\theta N} \bar{R}_{i}+\frac{\theta_{0}}{\theta_{0}+\theta N} \rho_{0, i}\right]\right\}
$$

i.e. $\pi\left(\rho \mid R_{1}, \ldots, R_{N}\right)$ same parametric density of the prior, with updated parameters

$$
\begin{aligned}
& \rho_{N}=\frac{\theta N}{\theta_{0}+\theta N} \bar{R}+\frac{\theta_{0}}{\theta_{0}+\theta N} \rho_{0} \\
& \theta_{N}=\theta_{0}+\theta N
\end{aligned}
$$

The result reminds Diaconis and Ylvisaker (1979)

Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Example: $n=3, N=40, \theta=0.5, \rho=(3,2,1)$.
Sample and obtain $\overline{\boldsymbol{R}}=(2.25,2.125,1.625)$.
$\rho_{0}=(1,2,3)$, varying $\theta_{0}=0,10,20,30$.

$$
\rho_{0}=(1,2.5,2.5), \text { varying } \theta_{0}=0,10,20,30 .
$$

- Go back

Non-transitive pairwise preferences

- Mouse click mistake:

$$
P\left(\text { mistake } \mid \theta, R_{j}\right)=\theta, \quad \theta \in[0,0.5)
$$

- Logistic model

$$
\begin{gathered}
\text { logit } P\left(\text { mistake } \mid R_{j}, \beta_{0}, \beta_{1}\right)=-\beta_{0}-\beta_{1} \frac{d_{R_{j}, m}}{n-1} \\
\text { where } d_{R_{j}, m}=\left|R_{j 1}-R_{j 2}\right| \text { if } \mathcal{B}_{j, m}=\left(O_{1} \prec O_{2}\right) \text {. }
\end{gathered}
$$

- Go back

Sound data: non-transitive pair comparisons (with N. Barrett)

How important is 3-D spatial motion to our understanding of human agency?

- $n=12$ abstract sounds, made from the action of a cellist while playing, each obtained starting at the best representation of the original gesture, and then reducing or removing some aspects of the sound

SOUND1

Full sonification, the best one can make to capture motion - based on what we know about our perception and hearing

SOUND7
Like the previous one, with pitch modulation removed

SOUND10
The 'worst' sonification, spatial variation is flattened, both pitch and volume variations removed.

- Go back

Sound data: non-transitive pair comparisons (with N. Barrett)

A group of $N=46$ listeners repeatedly presented with pairs of sounds and asked to choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences?

Sound data: non-transitive pair comparisons (with N. Barrett)

A group of $N=46$ listeners repeatedly presented with pairs of sounds and asked to choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences? The percentage of listeners who report at least one non-transitivity is $\mathbf{8 0 \%}$.

Sound data: non-transitive pair comparisons (with N. Barrett)

A group of $N=46$ listeners repeatedly presented with pairs of sounds and asked to choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences? The percentage of listeners who report at least one non-transitivity is $\mathbf{8 0 \%}$.

We expect the listeners to be clustered: differences in the interpretation of the test and in how people listen to sounds \rightarrow Mixture model generalization of the main model

- Go back

Sound data: non-transitive pair comparisons (with N. Barrett)

Posterior consensus ranking ρ of the 3 clusters

Cluster 2

Cluster 3

Expert explanation of the clusters:

- Cluster 1: listeners who like slower spatial variation
- Cluster 2: listeners who are listening spatially
- Cluster 3: negative preference for spatial motion

Sound data: non-transitive pair comparisons (with N. Barrett)

Posterior probabilities for all the sonifications of being ranked among the top-4 for the 3 clusters

- Go back

Sound data: non-transitive pair comparisons (with N. Barrett)

Probability that the best sonified sounds are amongst the top-4 ranked sounds (obtained thanks to the estimated individual rankings).
SAA: index measuring listeners' awareness of spatial audio (3 is highly aware)

Spatial listening is a skill that is enhanced through training

- Go back

Sushi data: full rankings

$N=5000$ Japanese people interviewed: each gives his/her complete ranking of $n=10$ sushi variants (items)

Sushi data: full rankings

$N=5000$ Japanese people interviewed: each gives his/her complete ranking of $n=10$ sushi variants (items)

- Go back

Sushi data: full rankings

MAP estimate

	$c=1$	$c=2$	$c=3$	$c=4$	$c=5$	$c=6$
τ_{c}	0.243 (0.23,0.26)	0.131 (0.12,0.14)	0.107 (0.1,0.11)	0.117 (0.11,0.12)	0.121 (0.11,0.13)	0.278 (0.27,0.29)
α_{c}	3.62 (3.52,3.75)	2.55 (2.35,2.71)	3.8 (3.42,4.06)	4.02 (3.78,4.26)	4.46 (4.25,4.68)	1.86 (1.77, 1.94)
1	fatty tuna	shrimp	sea urchin	fatty tuna	fatty tuna	fatty tuna
2	sea urchin	sea eel	fatty tuna	salmon roe	tuna	tuna
3	salmon roe	egg	shrimp	tuna	tuna roll	sea eel
4	sea eel	squid	tuna	tuna roll	shrimp	shrimp
5	tuna	cucumber roll	squid	shrimp	squid	salmon roe
6	shrimp	tuna	tuna roll	egg	sea eel	tuna roll
7	squid	tuna roll	salmon roe	squid	egg	squid
8	tuna roll	fatty tuna	cucumber roll	cucumber roll	cucumber roll	sea urchin
9	egg	salmon roe	egg	sea eel	salmon roe	egg
10	cucumber roll	sea urchin	sea eel	sea urchin	sea urchin	cucumber roll

- Go back

Beaches data: pairwise comparisons

- $n=15$ images of tropical beaches shown in pairs to $N=60$ users (25 random pairs each)
- Question: "Which of the two beaches would you prefer to go to in your next vacation?"

Beaches data: pairwise comparisons

- $n=15$ images of tropical beaches shown in pairs to $N=60$ users (25 random pairs each)
- Question: "Which of the two beaches would you prefer to go to in your next vacation?"

- Go back

Beaches data: pairwise comparisons

- We can also estimate the individual rankings

- Go back

Meta-analysis in Genomics: top-k rankings

Context:

- Studies of differential gene expression between two conditions produce a list of genes, ranked according to their level of differential expression as measured by some test statistics.

Meta-analysis in Genomics: top-k rankings

Context:

- Studies of differential gene expression between two conditions produce a list of genes, ranked according to their level of differential expression as measured by some test statistics.
- Little agreement among gene lists found by independent studies comparing the same conditions leads to difficulties in finding a consensus list over all available studies. This situation raises the question of whether a consensus top list over all available studies can be found.

Meta-analysis in Genomics: top-k rankings

Context:

- Studies of differential gene expression between two conditions produce a list of genes, ranked according to their level of differential expression as measured by some test statistics.
- Little agreement among gene lists found by independent studies comparing the same conditions leads to difficulties in finding a consensus list over all available studies. This situation raises the question of whether a consensus top list over all available studies can be found.
- Biologists are often concerned with the few most relevant genes in the specific context of the pathology, to set in place further more detailed lab experiments.
- $N=5$ studies comparing prostate cancer patients with healthy controls, based on differential gene expression
- Each study produces top-25 (i.e. $k=25$) list of genes (unique genes $n=89$)

Meta-analysis in Genomics: top-k rankings

- The fact that $n \gg N$, and having partial data, both contribute to keeping precision small
- However, the posterior probability for each gene to be among the top-10 or top-25 is not so low, thus demonstrating that our approach can provide a valid criterion for consensus (with uncertainty quantification).
- Go back

Bayesian Mallows model VS Collaborative Filtering (with Q. Liu)

