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Abstract

Risk-based investment strategies such as Minimum Variance, Maximum Diversification,
Equal Risk Contribution, Risk Parity, etc. share the common feature of being based on a risk
measure, typically the covariance matrix of the asset returns. When one comes to implement
these strategies, the usual approach consists in using an unconditional covariance matrix,
simply estimated by the sample covariance matrix of past returns over a rolling window. An
alternative consists in using a conditional covariance matrix computed from a multivariate
GARCH-type model and which depends on information available to date. In this paper, we
propose the first unifying and systematic comparison framework for the unconditional and
conditional risk-based investment strategies. We compare their out-of-sample performances
in terms of risk, returns and turnover (trading volume) with 4 criteria across 3 empirical
datasets. Our results show that conditional risk-based strategies do not improve the out-of-
sample Sharpe ratios as well as the ex-post risk, but logically increase the turnover.
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1 Introduction

Risk-based portfolio strategies such as Minimum Variance (MV), Maximum Diversification

(MD), Equal Risk Contribution (ERC), Risk Parity (RP), etc., are largely used by the asset

management industry within many popular investment vehicles (smart beta ETF, mutual fund,

etc.). Jurczenko et al. (2013) mention some of these uses in multi-asset allocation for more ro-

bustness in strategic decisions; in equities as alternatives to market capitalization benchmarks,

which are heavily concentrated in a few stocks and significantly biased towards overvalued stocks

and sectors; in the smart beta exchange-traded funds (ETFs) industry, and so on. Considering

only RP strategies, the asset under management (AUM) of related investments is estimated

at $400Bn (Financial Times, 2015), and in a recent survey of quantitative investment man-

agers (800 clients of JPM in US and Europe), Kolanovic et al. (2015) found that 50% prefer a

Risk Parity approach, versus 15% for traditional fixed weights, 20% Markowitz mean-variance

optimization, and 20% active asset timing.1

Such a success is largely explained by the main common feature of these strategies. Whatever

their definition and objective, the risk-based investment strategies do not require to forecast the

expected returns and only rely on the estimation of a risk measure (volatility, Value-at-Risk, etc.)

for the portfolio returns. Indeed, it is well-known that the traditional mean-variance optimization

turns out to be an “estimation-error maximization" (Michaud, 1989). In particular, it relies on

the estimation of expected returns which are notoriously unstable and hard to predict (Merton,

1980). Furthermore, the mean-variance portfolios are extremely sensitive to the estimation errors

in means (Frankfurter et al., 1971; Chopra and Ziemba, 1993; Kan and Zhou, 2007). In contrast,

risk-based investment strategies only require the estimation of risk and dependencies between

assets, generally through the covariance matrix of asset returns. This is for instance the case

for the MV portfolio, i.e. the portfolio with smallest feasible variance which can be constructed

from the available securities. Similarly, the covariance matrix is the only required input to derive

the MD allocation which maximizes the ratio between undiversified and diversified volatility of

the portfolio (Choueifaty and Coignard, 2008). It is also the case for the ERC and RP strategies

(Maillard et al., 2010) which define a different approach to diversification, by spreading the

ex-ante total risk equally among the portfolio components.2

In practice, all risk-based strategies require an estimate of the covariance matrix Σ, at each

rebalancing date. Asset managers and academics generally consider the unconditional covariance
1Kolanovic et al. (2015) mention a total AUM for the RP strategies equal to $500Bn (40% of these assets are

allocated to equities).
2The RP strategy (Qian, 2005; Roncalli, 2013) can be viewed as a generalization of the ERC in which the risk

contributions are set equal to a risk budgeting target, not necessarily equal to 1/n.
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matrix, the estimator of which is simply defined by the sample covariance matrix of past returns

over a rolling window. However, an alternative consists in using a conditional covariance matrix

that depends on information available to date and a specific model, typically a multivariate

GARCH-type model.

This paper provides the first systematic comparison of unconditional and conditional risk-

based investment strategies. We evaluate the out-of-sample relative performance of these strate-

gies, in terms of ex-post returns, ex-post risk, and portfolio turnover. Both unconditional and

conditional approaches have pros and cons. The unconditional approach has the great advantage

of being model free and simple to implement, since no structure is imposed on the covariance

matrix. However, it suffers from various drawbacks which have been largely documented in the

literature devoted to mean-variance optimization. First, it implies to assume that the asset

returns are stationary and Σ is constant over time. Second, the sample covariance matrix is

a reliable estimator as long as the sample size is much greater than the number of assets. If

this condition is not fulfilled, robustification methods are necessary (see for instance Ledoit and

Wolf (2004) and Ledoit and Wolf (2012), among others). Finally, as noticed by Martellini et al.

(2014), the estimate depends on a particular historical scenario, and may not be fully represen-

tative of the true distribution of returns. In particular, the size of the estimation window plays a

crucial role: increasing the window size diminishes the weight of recent information, and makes

the covariance estimates less reactive to new information. At the limit, they are time-invariant.

On the contrary, a small estimation window may induce estimation problems, as the covariance

estimates are less robust, especially when the number of assets is large.

Conversely, the conditional approach implies to specify a model, typically a multivariate

GARCH-type model, for the dynamics of the conditional covariance matrix (see Bauwens et al.

(2006) for a survey). The variance forecasts, and ultimately the optimal asset allocations,

are likely to be affected by potential model misspecification and estimation errors.3 However,

conditional risk-based strategies have some advantages. The portfolios are likely to be more

reactive as covariance estimates immediately incorporate new information. Thus, we could

expect that they imply less ex-post risk than corresponding unconditional portfolios, even if

the turnover (trading volume) is likely to be higher. The potential gains in terms of return

performances of the conditional approach are a priori unclear.

Here, we propose a systematic and unifying comparison framework for the 3 most popular

risk-based investment strategies, namely MV, ERC, and MD. For each of them, we compare the
3Ardia et al. (2017) recently propose an evaluation, based on Monte Carlo simulations, of the impact of

covariance misspecification in risk-based portfolios.
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out-of-sample performance of the unconditional and conditional risk-based optimal portfolios,

using the 4 standard performance criteria: (1) the out-of-sample Sharpe ratio, (2) the ex-post

return-losses, (3) the turnover, and (4) the ex-post portfolio volatility. We also consider the

equally weighted portfolio as a benchmark, as in DeMiguel et al. (2009). The conditional risk-

based allocations are computed from the out-of-sample covariance matrix forecasts obtained from

a DCC-GARCH model (Engle, 2002), which is considered as a benchmark among the MGARCH

models. In what follows we refer to this model as DCC for sake of simplicity. Applying a rolling-

window estimation procedure, both for the DCC parameters and the sample covariance matrix

of past returns, we consider estimation windows of different lengths (500 or 1, 000 observations,

respectively) and different forecasts horizons. The forecast horizons are determined by the

portfolio rebalancing frequencies, which are fixed at 1 day, 1 week or 1 month. We apply our

comparison procedure on 3 datasets which have been used in the seminal paper of DeMiguel

et al. (2009) in their seminal paper, with additional data to the end of 2016. It is well-known

that the conditional heteroskedasticity (ARCH effect) depends on the return sampling frequency

(intraday, daily, weekly, monthly, etc.). Here, we use daily returns for the estimation procedure

as it is the most favorable for conditional heteroskedasticity, and ultimately for the conditional

approach.

Even within such a favorable framework, our empirical results are mitigated for the condi-

tional approach. First, conditional risk-based strategies do not improve the out-of-sample Sharpe

ratios obtained with basic unconditional approaches. We only observe that increasing the esti-

mation windows’ length tends to deteriorate the performance of unconditional portfolios, and as

consequence to improve the relative performances of conditional approaches. The rebalancing

frequency has no clear-cut influence on our diagnostic. Second, as expected, the turnovers are

higher for the conditional strategies than for the corresponding unconditional ones. Third, the

ex-post risk is not reduced by the conditional approach as expected. These results are robust

when we (i) distinguish between crisis and calm estimation periods, and (ii) consider alternative

multivariate GARCH models.

Our paper contributes to the literature devoted to risk-based investments, and especially to

the literature dealing with the issue of their historical performance (Chow et al. (2011), Leote de

Carvalho et al. (2012), Choueifaty et al. (2013), among others). These studies are generally

based on a comparison of the risk-based portfolio returns, with the returns of various alternative

portfolios, including market-capitalization portfolios. However, these historical assessments only

rely on unconditional approaches. To the best of our knowledge, Martellini et al. (2014) is the

only study that proposes a conditional strategy for risk-based investment. The authors introduce

4



three distinct conditional RP strategies, explicitly designed to optimally respond to changes in

state variables that have been used in the literature as proxies for the stochastically time-varying

opportunity set. These strategies are based on three downside risk measures, namely the semi-

variance, Value-at-Risk, and Expected Shortfall. They conclude to the superiority in various

economic regimes of such conditional RP strategies with respect to standard RP techniques based

on unconditional volatility. Their goal and methodological approach is different from ours. First,

they only consider the RP strategy and not the other risk-based investment strategies. Second,

they propose new RP conditional strategies, based on downside risk measures. Our goal is

different and consists in assessing the gains associated to the use of a conditional covariance

matrix for each of the risk-based investments strategies. The negative results that we found

in this paper have direct implications for the asset management industry (see Harvey (2017)

for a general discussion about negative results in finance). They confirm the merits of the

standard approach based on unconditional risk measures, currently used by practitioners, and

its performances in terms of returns and turnover.

The rest of the paper is organized as follows. In Section 2, we present the risk-based strategies.

In Section 3, we detail the implementation of the unconditional and conditional approaches, and

the estimation methodology. We also detail our unifying comparison framework and the criteria

used to assess the out-of-sample performance of the portfolios. In Section 4, we describe the

datasets. In Section 5, we conduct our empirical analysis and display our main results. Section

6 analyses the robustness of our findings. We summarize and conclude our paper in Section 7.

2 Risk based strategies

In this section, we present the main risk-based investment strategies and introduce the distinction

between conditional and unconditional risk-based allocations. Consider a universe of n assets

and denote by rt = (r1t, ..., rnt)
> the n-dimensional vector of returns at time t. Denote by

ω = (ω1, ..., ωn)> the n-dimensional vector of portfolio weights. For sake of simplicity, we

impose no short-selling for all the strategies, meaning that ω ≥ 0. The sum of the weights is

equal to 1, i.e. e>ω = 1 with e the unit vector. Denote by σ2i the variance of asset’s return i and

by σij the covariance between asset i and j for i 6= j. Finally, let Σ be the covariance matrix of

rt and σp = (ω>Σω)1/2 the standard deviation (volatility) of the portfolio returns.

Following Jurczenko et al. (2013), we define a risk-based portfolio as the allocation ω∗ sat-
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isfying the following optimization program:

ω∗ = arg min
ω

D(f(ωi; Σ, γ, δ))

u.c.
{ ∑n

i=1 ωi = 1
ωi ≥ 0

(1)

where f(ωi; Σ, γ, δ) =
ωγi
σδi
× ∂σp

∂ωi
, with γ ≥ 0 and δ ≥ 0 two parameters, and D(.) a dispersion

metric such as the standard-deviation or the mean absolute deviation. The term ∂σp/∂ωi repre-

sents the marginal risk contribution of the ith asset, which corresponds to the sensitivity of the

portfolio volatility to a small change in the weight of asset i. Hence, the function f(ωi; Σ, γ, δ)

can be interpreted as a "modified" risk contribution of asset i. Independently from the dispersion

measure D (.), solving the risk-based optimization program is equivalent to finding the portfolio

allocation that satisfies

ωγi
σδi
× ∂σp
∂ωi

=
ωγj

σδj
× ∂σp
∂ωj

∀(i, j) ∈ {1, ..., n} (2)

with
∑n

k=1 ωk = 1 and ωk ≥ 0,∀k. Given the values for δ and γ (see Appendix A for more

details), this optimization program encompasses the standard risk-based strategies such as MV,

ERC, RP, and MD. Under mild assumptions on the covariance matrix Σ (see Appendix B), the

existence and unicity of the optimal risk-based portfolios are guaranteed.

One advantage of risk-based strategies is that they only depend on the portfolio risk, as

measured by its volatility and ultimately by the covariance matrix Σ. In industry and academic

literature, these strategies are generally based on the unconditional covariance matrix Σ = Σu.

The optimal allocation ω∗u then satisfies

ω∗u ≡ λ (Σu; δ, γ) . (3)

where λ (.) is a function 4.

An alternative consists in using the conditional covariance matrix Σ = Σc,t ≡ V(rt|Ft−h)

where Ft−h denotes the information set available at time t − h, for h ≥ 1. The conditional

approach allows to take into account the changes in economic environment and is generally

more responsive to economic and financial news. In this case, the optimal allocation ω∗c,t is

defined by the same functional λ (.), but is time-varying, with

ω∗c,t ≡ λ (Σc,t; δ, γ) . (4)

The goal of our paper is to assess the advantages of the two approaches and to compare
4For most of cases, the functional λ (.) does not have a closed-form expression. The optimal portfolio is then

the solution of a numerical optimization.
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the relative out-of-sample performances of the portfolios ω∗u and ω∗c,t. To do so, we focus on 3

risk-based strategies, namely MV, ERC and MD. We now present these strategies in details. For

ease of presentation, in what follows we do not make the distinction between conditional and

unconditional approaches, and we denote by Σ the covariance matrix.

2.1 Minimum Variance

Under the MV strategy, we choose the allocation that minimizes the variance of portfolio return.

This strategy is the most popular among all the risk-based strategies. The MV portfolio, denoted

ωMV , is the result of the following optimization program:

ωMV = arg min
ω

ω>Σω

u.c.
{
e>ω = 1
ω ≥ 0

.
(5)

It is straightforward to show that the first order conditions (FOC) of the MV program (5) and

the general risk-based allocation program (Equation 1) are equivalent for γ = 0 and δ = 0. In our

case, there is no closed-form solution for ωMV and the optimal allocation has to be determined

numerically. 5 Since the MV portfolio minimizes the risk (measured by the volatility), it may

induce a high concentration in the less risky assets.

2.2 Equal Risk Contribution

Contrary to the MV strategy, the ERC is a risk diversification strategy defined in terms of

risk contributions. The first formal analysis of the ERC portfolio was given by Maillard et al.

(2010), who establish its existence and uniqueness, derive a number of analytical properties,

and propose numerical algorithms to compute the portfolio. The idea of ERC is to find a risk-

balanced portfolio such that the risk contribution is the same for all assets of the portfolio.

The risk contribution of asset i, denoted by Si(ω,Σ), is defined as the share of total portfolio

volatility attributable to that asset. Formally, we have

Si(ω,Σ) =
ωi
σp
× ∂σp
∂ωi

= ωi
(Σω)i
ω>Σω

(6)

where (Σω)i is the ith row of the n-dimensional vector (Σω). The risk contribution is expressed as

a percentage of the portfolio volatility. Notice that the Euler’s theorem implies
∑n

i=1 Si(ω,Σ) =

5However, when no constraint is imposed on the short-selling, the optimal allocation ωMV has a closed-form
expression given by

ωMV = λMV (Σ; 0, 0) =
Σ−1e

e>Σ−1e
.
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1. The optimal ERC portfolio ωERC equalizes the risk contribution of all assets, such as

Si(ω
ERC ,Σ) =

1

n
∀ i = 1, ..., n. (7)

This condition corresponds to the FOC of the general risk-based allocation program (Equation

1) with γ = 1 and δ = 0.

Except under very restrictive conditions (n = 2 or equal correlations, see Roncalli (2014) for

more details), there is no closed-form solution for ωERC . In the general case, the ERC portfolio

is the numerical solution of the following quadratic optimization program:

ωERC = arg min
ω

n∑
i=1

n∑
j=1

(Si(ω,Σ)− Sj(ω,Σ))2

u.c.
{
e>ω = 1
ω ≥ 0

.

(8)

Maillard et al. (2010) show that the MV, ERC and Equally Weighted (EW) (i.e. the portfolio

that equalizes the weights between assets) portfolio volatilities can be ranked in the following

order σMV ≤ σERC ≤ σEW . Hence, the ERC portfolio is naturally located between MV and

EW and thus appears as a good potential substitute for these traditional approaches.

2.3 Maximum Diversification

The MD strategy has been introduced by Choueifaty and Coignard (2008). The optimal MD

weights are determined in order to maximize the diversification ratio DR(ω; Σ), defined as the

portfolio’s weighted average asset volatility to its actual volatility.

DR(ω; Σ) =
ω>σ

(ω>Σω)
1/2

(9)

with σ = (σ1, ..., σn)> the vector of individual volatilities. This ratio can be interpreted as the

ratio between undiversified and diversified volatility of the portfolio (Choueifaty and Coignard

(2008)). Formally, the optimal portfolio ω∗MD is obtained by solving the following program:

ωMD = arg max
ω

DR(ω; Σ)

u.c.
{
e>ω = 1
ω ≥ 0

(10)

Notice that the FOC of the MD program are equivalent to those of the general risk-based

allocation program for γ = 0 and δ = 1.
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3 Benchmarking method

In this section, we detail the implementation of the conditional and unconditional risk-based

strategies and present the related estimation approaches. Then, we present our comparison

framework and the criteria used to assess the out-of-sample performance of each strategy.

3.1 Conditional and unconditional approaches

In order to compare the conditional and unconditional approaches, we consider a sample {r1, ..., rT }

of historical asset returns. By definition, risk-based strategies depend on the covariance matrix

of returns.6 Under the stationarity assumption for asset returns, the unconditional covariance

matrix is constant over time, meaning that Σu = V(rt),∀t = 1, ..., T . As a consequence, the

optimal portfolio weights ω∗u = λ (Σu; δ, γ) are also constant for t = 1, ..., T and there is no

turnover. This property clearly illustrates the main advantage of the unconditional approach for

risk-based investment. However, such an approach assumes that the volatilities and correlations

are constant whatever the economic and financial conditions (crisis period or not, news, etc.).

On the contrary, the use of a conditional risk measure Σc,t ≡ V(rt|Ft−h) implies a positive

turnover, since the corresponding optimal weights ω∗c,t = λ (Σc,t; δ, γ) are time-varying with the

information set Ft−h. Thus, the conditional approach allows to incoporate the latest informa-

tion in the optimal allocation. This is of great interest within a changing environment. For

instance, Martellini, Milhau and Tarelli (2014) evoke the case of a risk parity strategy used

for asset allocation in a context of low bond yield environment. This strategy will inevitably

involve a substantial overweighting of bonds with respect to equities. Such an allocation may

be problematic when a drop in long-term bond prices is likely to occur. Another difference

between unconditional and conditional approaches, is that the latter necessarily implies the use

of a model for the conditional covariance matrix, and hence raises the issue of misspecification

error and model risk.

In practice, the covariance matrices are unobservable and have to be estimated. Assuming

that returns are independently and identically distributed (i.i.d.), the unconditional covariance

matrix can be estimated by its empirical counterpart, i.e. the sample covariance matrix of asset

returns defined as

Σ̂u =
1

T − 1

T∑
t=1

(rt − r̄)(rt − r̄)>. (11)

However, the i.i.d. assumption is likely to be violated given the stylized facts of the financial
6Other risk measures can be considered here. For instance, Martellini et al. (2014) define a new class of

conditional risk parity portfolios with respect to downside risk measures such as semi-variance, Value-at-Risk
(VaR) or Expected Shortfall.

9



Figure 1: Rolling-window framework

time series. First, volatility of asset returns tends to change over time, and periods of high

and low volatility tend to cluster together. Second, it is well known that in crisis periods the

correlations between assets tend to sharply increase, reducing the diversification opportunities

(Longin and Solnik (2001)). Besides, the sample covariance estimator gives the same weight

to each of the past observations. To adress this issue, practitioners and academics regularly

rebalance their portfolios and re-estimate the unconditional covariance matrix by using the

most recent observations, with a rolling window estimation approach.

Let us assume that the investor rebalances his portfolio every H periods and keeps the

portfolio weights constant between two rebalancing dates. At each rebalancing date s, the

investor forecasts the covariance matrix of the cumulated returns Rs+1:s+H over the period s+1

to s + H. The out-of-sample forecast of the unconditional covariance matrix is simply defined

as the sample covariance matrix of past asset returns. As usual in the literature, we consider

a rolling-window estimator based on M observations of the returns rt, for t = s −M, .., s. As

displayed in Figure (1), the rebalancing dates are set at s = M, M +H, M +2H, ..., T −M −H.

For each rebalancing date s, the out-of-sample forecast of covariance matrix for the cumulated

returns Rs+1:s+H is given by

Σ̂u,s+1:s+H =
H

M − 1

M∑
j=1

(rs−j+1 − r̄s)(rs−j+1 − r̄s)>, ∀s (12)

with r̄s = M−1
∑M

j=1 rs−j+1. 7 Finally, the forecasted covariance matrix Σ̂u,s+1:s+H is used

to determine the optimal portfolio weights ω∗u,t = λ
(

Σ̂u,s+1:s+H ; δ, γ
)
, which are fixed over the

periods t = s+ 1, ..., s+H.

We proceed the same way for the conditional portfolios ω∗c,t. The only difference is that

7An alternative estimator for Σu,s+1:s+H is given by the sample covariance matrix of the past cumulated
returns. Here, we only consider the estimator given by Equation (12), which is based on the past daily returns,
since its precision (i.e. the number of observations used to compute the sample covariance) does not change with
the rebalancing horizon H.

10



this approach implies the use of a dynamic model for the conditional covariance matrix Σc,s =

V(Rs+1:s+H |Fs). Many alternative multivariate GARCH type-models can be considered here

(see Bauwens et al. (2006) for a survey). Here, we consider the Dynamic Conditional Correlation

(DCC) model introduced by Engle (2002) which is the most used in the literature. For ease of

presentation, we consider the case H = 1 and Rs+1:s+H = rs+1. Formally, at each rebalancing

date s = t we assume that

Σc,t = DtCtDt (13)

where Ct denotes the correlation matrix and Dt is a diagonal matrix defined as

Dt = diag{σi,t}. (14)

The conditional variance for the ith asset return, denoted σ2i,t, follows a univariate GARCH(1,1)

process. Let εt = D−1t rt be the standardized returns and define Qt a symmetric positive definite

matrix such that

Ct = (diag{Qt})−1/2 Qt (diag{Qt})−1/2 . (15)

The dynamics of Qt is given by the following GARCH-type expression:

Qt = Q̄ (1− α− β) + α
(
εt−1ε

>
t−1

)
+ βQt−1 (16)

where Q̄ is the unconditional correlation matrix of the standardized returns εt, α and β are

two positive parameters with α + β < 1. At each rebalancing date s, the model parameters

θ = (α, β)> are estimated by quasi-maximum likelihood (QML). As for the unconditional case,

we consider a rolling window estimator based on M past returns rt for t = s −M, .., s. The

conditional covariance matrix forecast Σ̂c,s+1:s+H = V̂(Rs+1:s+H |Fs) is then used to compute

the optimal allocation ω∗c,t = λ
(

Σ̂c,s+1:s+H ; δ, γ
)
for t = s+ 1, ..., s+H.8

This process is repeated for the whole period. Finally, we get T −M out-of-sample (ex-post)

portfolio returns ω∗>u,trt and ω∗>c,t rt, with t = M, ..., T , for both unconditional and conditional

approaches of the risk-based strategies MV, ERC, and MD.

3.2 Rebalancing frequency and sample size

Because parameters H (rebalancing frequency) and M (estimation’s sample size) are key inputs

in our estimation procedure, we discuss how a change in their values may impact our results ex

ante.

First, increasing the estimation window size M diminishes the weight of recent information,
8Various methods can be used to compute the forecast Σ̂c,s+1:s+H , including dynamic forecast, simulation, or

approximation. As for the unconditional case, we consider the approximation Σ̂c,s+1:s+H = H × V̂(rs+1|Fs).
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and makes the covariance out-of-sample estimates less reactive to new information. At the limit,

they tend to be constant over time and to converge to the true unconditional matrix. Under

mild regularity assumptions, as soon as M →∞ with M/n→ k > 0, we get for H = 1:

p lim Σ̂u,s+1
M→∞

= Σu = V(rt) (17)

p lim Σ̂c,s+1(θ̂)
M→∞

= Σc,t+1 (θ0) = V(rt|Ft−1) (18)

with θ0, the true value of the MGARCH model. The optimal unconditional portfolios tend to

be time invariant, i.e. ω∗u,t = λ
(

Σ̂u,s+1; δ, γ
)
→ ω∗uλ (Σu; δ, γ) as M → ∞, since the new H

observations added at each rebalancing date do not change the information set used for the

covariance matrix estimation. Obviously, this is not the case for the conditional portfolios, as

V(rt|Ft−1) changes with information available to date. Consequently, over a long evaluation

period with financial crises and recoveries, we would expect that the relative performances of

the conditional portfolios will improve (relatively to those of the unconditional portfolios) as the

sample size M increases.

Turning to the rebalancing frequency H, its influence on the relative out-of-sample perfor-

mances of the conditional approach is less clear. For simplicity, let us denote by Σ̂u,s+H the

covariance matrix of the daily (instead of cumulated) returns at horizon H. Consider the spe-

cial case in which the sample size M tends to infinity, implying that Σ̂c,s+H(θ̂) converges to

Σc,s+H(θ0). In this case, when the rebalancing horizon H tends to infinity, Σ̂u,s+H converges to

the unconditional covariance matrix, since under stationarity assumptions, we have

lim Σc,s+H(θ0)
H→∞

= Σu (19)

Consequently, when M and H tend to infinity, we have

p lim Σ̂c,s+H(θ̂)
H,M→∞

= p lim Σ̂u,s+H
H,M→∞

= Σu (20)

Under these assumptions, the unconditional and conditional risk-based optimal portfolios tend

to be equivalent, i.e. ω∗u,t → ω∗c,t, as H →∞. Even though these results cannot be extended for

finite sample sizes M , we would expect that the differences in the out-of-sample performances

of both portfolios tend to decrease with M .

3.3 Performance criteria

The objective is to compare the out-of-sample performances of the unconditional and conditional

approaches for each of the three risk-based strategies. For this purpose, we use the same per-

formance criteria as in DeMiguel et al. (2009), namely (1) the Sharpe ratio, (2) the return-loss,
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(3) the turnover, and (4) the portfolio variance. The rest of this section briefly presents these

criteria.

Formally, for each approach (conditional and unconditional), indexed by z = {u, c}, and each

risk-based investment strategy, indexed by g = {MV,ERC,MD}, we have

µ̂ =
1

T −M

T−M∑
t=1

(
ωgz,t
)>
rt

σ̂2 =
1

T −M − 1

T−M∑
t=1

((
ωgz,t
)>
rt − µ̂

)2
For ease of presentation, we do not index the returns and the standard deviation for each strategy

and each approach.

The out-of-sample Sharpe ratio (SR thereafter) represents the expected return by unit of

risk and is computed as

SR =
µ̂

σ̂
(21)

with µ̂ the empirical mean and σ̂ the standard deviation of the (ex-post) returns of the risk-based

portfolio. For each risk-based investment strategy, we also compute the p-value associated to

the test of the null hypothesis of no-difference between the Sharpe ratios of unconditional and

conditional approaches. To do so, we use the test methodology used by DeMiguel et al. (2009),

initialy introduced by Jobson and Korkie (1981) with the correction proposed by Memmel (2003).

Formally, given two portfolios i and j, with µ̂i, µ̂j , σ̂i, σ̂j and σ̂i,j their estimated mean, variance

and covariance over a sample of size T −M , the test of the hypothesis H0: µ̂i/σ̂i − µ̂j/σ̂j = 0

is obtained by the following test statistic, which is asymptotically distributed as a standard

normal:

ẑ =
σ̂jµ̂i − σ̂iµ̂j√

θ̂
, with θ̂ =

1

T −M

(
2σ̂2i σ̂

2
j − 2σ̂iσ̂j σ̂i,j +

1

2
µ̂2i σ̂

2
j +

1

2
µ̂2j σ̂

2
i −

µ̂iµ̂j
σ̂iσ̂j

σ̂2i,j

)
. (22)

Second, we consider the return-loss (RL thereafter) of the unconditional approach with re-

spect to the conditional approach. This criterion represents the additional return needed for the

unconditional approach to perform as well as the conditional one. The RL is defined as

RL =
µ̂c
σ̂c
× σ̂u − µ̂u (23)

with µ̂c, σ̂c, µ̂u and σ̂u respectively denote the empirical mean and standard deviation of the

conditional and unconditional approaches (ex-post) returns.

Then, we compare the turnover of the conditional and unconditional approaches. For that,
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many indicators can be used. Here, we measure the average turnover by

Turnover =
1

S

S∑
s=1

n∑
i=1

∣∣ωi,M+(s+1)H − ωi,M+SH

∣∣ (24)

with ωi,s the weight of ith asset at rebalancing date s and S = (T −M−H)/H the total number

of rebalancing dates.

Finally, in order to evaluate the ex-post portfolio risk, we compute the empirical variance

of the ex-post returns. We compute the p-value of the difference of variances between the

unconditional and conditional approaches. To do so, we conduct a Levene’s test of equality of

variances, which is less sensitive about the hypothesis of normality.

4 Data

In order to apply our benchmarking method, we consider 3 empirical datasets used by DeMiguel

et al. (2009) to compare the out-of-sample performance of the naive portfolio to the sample-

based mean-variance model. We extend their datasets to the end of 2016. Notice that DeMiguel

et al. (2009) consider monthly returns. Instead, we consider daily returns as it is well-known

that it is the most favorable sampling frequency to identify conditional heteroskedasticity, i.e.

ARCH effects. Hence, we consider the most favorable framework to identify the gains of the

conditional risk-based investment strategies.

These 3 datasets include various number of assets and types of exposure: (1) Industry, (2)

International and (3) Size and Book-to-Market. The portfolios included in these 3 datasets are

exactly similar to those considered by DeMiguel et al. (2009). The value-weighted portfolios

are constructed at the end of each June using the June market equity and NYSE breakpoints.

A value weighted portfolio computes assets’ weight based on its absolute and relative value as

compared to other stocks in the portfolio.

Industry. The dataset "Industry" is composed of daily value-weighted returns on 10 industries

(n = 10) in the United Sates. Formally, each NYSE, AMEX and NASDAQ stock is assigned

to an industry. Industries considered are: Consumer-Discretionary, Consumer-Staples, Manu-

facturing, Energy, High-Technology, Telecommunication, Wholesale and Retail, Health, Utilities

and Others. The portfolios are constructed at the end of June of each year. The portfolios’ daily

returns from January 2, 1996 to December 30, 2016 are taken from Kenneth French’s website.

International. The dataset "International" contains n = 8 international equity indices from

MSCI (Morgan Stanley Capital International) for Canada, France, Germany, Italy, Japan,
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Switzerland, the UK and the US. Data range from June 1, 1994 to October 6, 2016.

Size and Book-to-Market. The SMB dataset is composed of twenty porfolios (n = 20)

sorted by size and book-to-market ratio. As in DeMiguel et al. (2009) we exclude the five

portfolios containing the largest firms. This results in the intersection of 4 portfolios formed

on size (market equity) and 5 portfolios formed on the book-to-market ratio (book equity over

market equity). Portfolios are constructed at the end of each June. Data from January 2, 1996

to December 30, 2016 are taken from Kenneth French’s website.

5 Empirical results

In this section, we compare the different criteria for each risk-based strategy on unconditional

and conditional frameworks and for each database. We also consider the naive strategy (or

equally weighted portfolio) as a benchmark. This strategy involves holding a portfolio weight

ω = 1/n in each of the n assets (DeMiguel et al., 2009). For each strategy, we consider different

rebalancing frequencies: H = 1 for daily, H = 5 for weekly, and H = 22 for monthly rebalancing,

respectively. We also consider two rolling window sizes, M = 500 and M = 1, 000, in order to

assess the influence of the estimation’s sample size on the out-of-sample performances of the

portfolios.

Insert Table 1

Table 1 reports the results for the out-of-sample SR for each rebalancing frequency H and

sample sizeM, for the 3 datasets. It also displays the p-value of the difference between conditional

and unconditional portfolios. P-values in bold indicate significant differences between SRs.

The main takeaway is that the conditional approach does not improve the performance of the

portfolio in terms of SR and even worse, it can deteriorate it. Most of the SR differences are not

significant at the 5 or 10% level. Furthermore, within the rare cases for which the differences

are significant, the SRs of the unconditional strategies are higher than those of the conditional

ones. For instance, for the portfolio ’International’ with M = 500, the SR differences observed

for all the strategies are significant for H = 1, but in these cases, the SRs of the unconditional

strategies are largely higher than those of the conditional ones: 0.0285 versus 0.0168 for the MV

strategy, 0.0239 versus 0.0206 for the MD strategy. As expected, the SRs of the unconditional

approaches are stable with the rebalancing frequency H, but we observe a small improvement

for the SRs of the conditional strategies. Hence, the performance differences of both approaches

tend to decrease with H. However, as expected, the difference between the SRs of the two
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approaches increases globally with the sample size M . For instance, the SR difference between

the unconditional and conditional RP of the ’Size’ portfolio for H = 1, becomes significant for

M = 1, 000, while it was not in the case with M = 500. Notice that this is the only case where

the conditional performs better than the unconditional approach. We can also notice that SRs

of both approaches improves with M .

Insert Table 2

Table 2 shows the results for the return-loss (RL), i.e. the additional return needed for

the unconditional approach to perform as well as the conditional one. Recall that when RL is

negative, the unconditional approach performs better than the conditional one. We report the

results for each rebalancing frequency H and sample sizeM. The conclusions here confirm those

obtained with the SR. Our main result is that, whether the RL positive or negative, the gains

or losses in terms of returns are negligible. In fact, whatever the portfolio, the rebalancing fre-

quency, and the estimation window size, the RL is always close to 0. For the portfolio ’Size’, the

conditional approach dominates the unconditional approach, whereas the unconditional seems

to be better for the portfolio ’International’. The RL is generally decreasing with M . For in-

stance, for the portfolio ’Size’, with H = 22 for the MV strategy, the RL is going from 0.0033

with M = 500 to −0.0041 with M = 1000, many positive RL with M = 500 become negative

when M = 1000. Finally, there is no clear-cut conclusion as regards the relationship between

the rebalancing horizon H and the out-of-sample gains in terms of returns.

Insert Table 3

As expected, the unconditional approach has a lower turnover than the conditional one.

Table 3 reports the turnover for each strategy, each rebalancing date and each M . We also

display the difference between unconditional and conditional turnovers. We can observe that

the turnover of the conditional approach is always higher than that of the unconditional one. For

all the strategies, the turnover increases sharply with H for the conditional approach, going for

instance from 0.3743 for daily rebalancing to 1.1465 for monthly rebalancing for the MV strategy

applied to the portfolio ’Size’, with M = 500. The turnover of the unconditional approach is

logically more stable with H, which leads to a decreasing gap. Then, increasing the rebalancing

horizon H benefits to the unconditional approach, while the estimation sample size M shows no

effect on the gaps between conditional and unconditional turnovers but a general reduction of

both.
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Insert Table 4

Table 4 reports the empirical variance of the out-of-sample portfolio returns. For each strat-

egy, we also display the p-value of the difference between the variances of the unconditional and

conditional portfolios based on the Levene’s test. For all the portfolios and investment strate-

gies, the differences between the variances of the conditional and unconditional approaches are

never statistically different. Despite the higher reactiveness of the conditional portfolios, the

gain in terms of ex-post variance is negligible. In other words, we conclude that the conditional

approach for risk-based investment doesn’t reduce the ex-post portfolio risk.

To sum up, the implementation of a conditional approach shows no improvement of the

risk dimension, while the performance is not enhanced and the turnover is largely increased.

These negative results are robust to the type of assets and portfolios considered, the rebalancing

horizon, and the estimation window size considered.

6 Robustness check

In this section, we analyse the robustness of our results to (i) the choice of the multivariate

GARCH model used for the conditional approach and to (ii) the business cycles.

6.1 Robustness to the conditional risk model

We apply the same methodology as in Section 3, but we consider the Constant Conditional

Correlation (CCC) model of Bollerslev (1990). The CCC model belongs to the same type

of dynamic model as the DCC. The only difference relates to the correlation matrix, which is

supposed constant in the CCC model, whereas it is assumed to be time-varying within the DCC.

Formally, at each rebalancing date, the covariance matrix of the CCC model Σ̃c,t is defined as:

Σ̃c,t = DtQ̄Dt (25)

with Q̄ the unconditional correlation matrix of returns defined in Section 3. Imposing a constant

correlation matrix means that the only difference between the conditional and unconditional risk-

based investment strategies comes from the volatility forecasts used to predict the individual

risks of the assets.

The results are reported in Table 5 for M = 500. Note that we conduct our methodology

comparison for each of the 3 databases, and we report for each case the Sharpe ratios, the

turnovers, and the variance. We consider the cases of daily (H = 1) and monthly (H = 22)

rebalancing frequencies for comparison purpose. The results are similar to the ones with the
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DCC model. As for the DCC model, the Sharpe ratios are globally identical for conditional

and unconditional approaches, as the differences are not significant. When the differences are

significant, as for the portfolio "International" with H = 1 for instance, the Sharpe ratio of the

unconditional risk-based portfolio is higher than the for the conditional one. We also observe

the higher turnover of the conditional approach. However, the conditional approach brings no

improvement in terms of ex-post risk. The difference between the ex-post variances of conditional

and unconditional portfolios are generally not significant. The only exception is for the portfolio

"Industry" and the MD strategy. In this case, the conditional approach performs better in terms

of ex-post risk.

Insert Tables 5

6.2 Conditional versus unconditional approaches within business cycles

We now analyse the relative performances of the two approaches depending on the economic

conditions. Indeed, we could expect that the conditional risk-based portfolios perform better

in period of crisis that unconditional risk-based portfolios. In order to assess the robustness of

our negative results to the business cycles, we define two subsamples, one associated with crisis

periods (i.e. periods with high volatility) and another sample of calm periods. For the crisis

sample, we consider data from January 3, 2000 to December 31, 2001 and from January 2, 2008

to December 31, 2009; and we choose January 2, 2004 to December 30, 2005 and January 2,

2013 to December 31, 2014 for the calm periods. Results for H = 1 and M = 500 are reported

in Table 6.9

During the crisis periods, the differences between the SR of conditional and unconditional

portfolios are significant. Surprisingly, the unconditional RP, MV or MD exhibit a larger SR than

their conditional benchmarks for 2 portfolios out of 3. For instance, for the MV strategy and the

"Industry" dataset, the SR goes from 0.0186 with the unconditional approach to 0.0077 with

the conditional approach. The only exception is the dataset "Size" for which the conditional

approach seems to improve the performance of the risk-based portfolios. For instance, the

SR is equal to 0.0211 for the unconditional MV strategy whereas it is equal to 0.0277 for the

conditional approach. During the calm periods, the differences of SRs are globally not significant

or in favor of the unconditional approach. Note that in some cases, the SR of the naive strategy

(EW) is higher than that of the conditional approach for risk-based strategies. For instance, for

the portfolio "Size", the naive SR is 0.0130 while it is 0.0100 for the conditional MD strategy.

Concerning the ex-post risk, the conditional approach does not bring any improvement whatever
9Further results are available upon request.
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the business cycle. During the crisis and calm periods, the ex-post variances of the conditional

and unconditional portfolios are very close and the differences are not significant. We only

observe one case where the difference is significant: for calm periods and the MV strategy.

Insert Table 6

7 Conclusion

It is a well established fact that negative scientifc results may be relevant both for the academic

community and industry (Harvey, 2017). We think that is the case for our study. In this

paper, we propose the first systematic comparison of unconditional and conditional risk-based

investment strategies. Our conclusion is clear: using a conditional risk measure does not improve

the performance of the risk-based investment strategies. It does not improve the performance,

it does not reduce the ex-post risk, but it increases the portfolio turnover. This result suggests

that fund managers as well as asset managers should continue to give priority to model free

approaches based on unconditional moments estimated on a rolling-window basis.

These conclusions are drawn from a comparison study based on 3 empirical datasets, 3 risk-

based strategies (namely the MV, MD and ERC), various rebalancing horizons, and different

estimation window lengths. They are robust to the use of different multivariate GARCH models

to estimate the conditional covariance matrix. Our conclusions are also robust to the influence

of business cycles: the conditional approach does not exhibit better performances than the

unconditional one, even during crisis periods.

A natural extension of our work consists in using of Monte Carlo simulations. Using a

theoretical framework with conditional heteroskedasticity and/or time-varying correlations for

the asset returns, we could derive the optimal conditional portfolios for different risk-based

strategies (MV, MD, ERC, etc.). By using Monte Carlo simulations for the returns, we could

compute the estimates of the unconditional covariance matrix and determine the corresponding

unconditional portfolios. By comparing both, we could asses the losses due to neglecting the

heteroskedasticity and/or the time-varying property of correlations.
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Table 1: Sharpe Ratio

Sharpe Ratio M=500

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

Uncond RP 0.0354 0.0355 0.0356 0.0227 0.0227 0.0229 0.0366 0.0368 0.0370
Cond RP 0.0350 0.0353 0.0357 0.0201 0.0220 0.0222 0.0371 0.0370 0.0374
P-value 0.5780 0.8906 0.9614 0.0512 0.7948 0.8965 0.3022 0.8398 0.8181

Uncond MV 0.0431 0.0433 0.0429 0.0285 0.0291 0.0293 0.0466 0.0466 0.0464
Cond MV 0.0430 0.0436 0.0423 0.0168 0.0226 0.0209 0.0534 0.0487 0.0492
P-value 0.9860 0.9164 0.9678 0.0005 0.3737 0.5776 0.0596 0.9310 0.8990

Uncond MD 0.0344 0.0346 0.0347 0.0239 0.0239 0.0238 0.0313 0.0314 0.0319
Cond MD 0.0348 0.0350 0.0348 0.0206 0.0222 0.0231 0.0320 0.0315 0.0321
P-value 0.4577 0.7165 0.8467 0.0169 0.5275 0.8599 0.8732 0.7899 0.9399

EW 0.0335 0.0336 0.0336 0.0209 0.0208 0.0211 0.0347 0.0349 0.0350

Sharpe Ratio M=1,000

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

Uncond RP 0.0325 0.0327 0.0320 0.0168 0.0168 0.0165 0.0367 0.0367 0.0360
Cond RP 0.0320 0.0319 0.0309 0.0137 0.0154 0.0157 0.0371 0.0373 0.0364
P-value 0.5323 0.6556 0.7766 0.0352 0.6539 0.8887 0.6582 0.5432 0.8669

Uncond MV 0.0443 0.0444 0.0436 0.0238 0.0242 0.0239 0.0478 0.0478 0.0469
Cond MV 0.0419 0.0413 0.0410 0.0098 0.0145 0.0153 0.0466 0.0474 0.0435
P-value 0.3600 0.6164 0.8426 0.0003 0.2495 0.5825 0.7329 0.6597 0.7224

Uncond MD 0.0322 0.0324 0.0317 0.0188 0.0189 0.0184 0.0295 0.0295 0.0288
Cond MD 0.0319 0.0313 0.0311 0.0144 0.0162 0.0173 0.0321 0.0302 0.0295
P-value 0.2645 0.4749 0.7830 0.0072 0.4358 0.8386 0.5189 0.9842 0.9975

EW 0.0297 0.0299 0.0292 0.0154 0.0152 0.0150 0.0349 0.0349 0.0342

For each empirical dataset, this table reports the Sharpe ratio for each strategy for the conditional and
unconditional approach and for eachH andM . It also displays the p-value of the difference between unconditional
and conditional Sharpe ratios. P-values are in bold when the difference is statistically significant.
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Table 2: Return-loss

Return-loss M=500

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

RP -0.0004 -0.0002 0.0002 -0.0025 -0.0008 -0.0007 0.0006 0.0002 0.0005
MV -0.0001 0.0002 -0.0006 -0.0100 -0.0056 -0.0072 0.0079 0.0025 0.0033
MD 0.0005 0.0004 0.0001 -0.0029 -0.0015 -0.0006 0.0010 0.0002 0.0004

Return-loss M=1,000

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

RP -0.0006 -0.0009 -0.0012 -0.0032 -0.0015 -0.0009 0.0006 0.0008 0.0004
MV -0.0022 -0.0029 -0.0024 -0.0125 -0.0086 -0.0077 -0.0014 -0.0005 -0.0041
MD -0.0004 -0.0012 -0.0007 -0.0041 -0.0024 -0.0010 0.0037 0.0011 0.0010

For each empirical dataset, this table reports the return-loss for the unconditional approach and for each H and
M . The RL is in bold when the conditional approach performs better (i.e. when it is positive).
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Table 3: Turnover

Turnover M=500

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

Uncond RP 0.0014 0.0039 0.0112 0.0019 0.0052 0.0143 0.0008 0.0026 0.0085
Cond RP 0.0317 0.0670 0.1050 0.0348 0.0753 0.1249 0.0253 0.0545 0.0792
Difference -0.0303 -0.0631 -0.0938 -0.0329 -0.0701 -0.1106 -0.0245 -0.0519 -0.0707

Uncond MV 0.0100 0.0269 0.0716 0.0100 0.0268 0.0716 0.0163 0.0480 0.1431
Cond MV 0.2296 0.4854 0.6846 0.1601 0.3502 0.5747 0.3743 0.7928 1.1465
Difference -0.2196 -0.4585 -0.6130 -0.1502 -0.3234 -0.5031 -0.3580 -0.7448 -1.0033

Uncond MD 0.0113 0.0310 0.0793 0.0090 0.0237 0.0549 0.0184 0.0497 0.1292
Cond MD 0.0743 0.1630 0.2778 0.0579 0.1302 0.2257 0.0727 0.1727 0.3138
Difference -0.0630 -0.1320 -0.1985 -0.0489 -0.1065 -0.1708 -0.0543 -0.1230 -0.1845

EW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Turnover M=1,000

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

Uncond RP 0.0007 0.0021 0.0063 0.0010 0.0027 0.0079 0.0014 0.0014 0.0049
Cond RP 0.0278 0.0630 0.1041 0.0319 0.0720 0.1163 0.0790 0.0484 0.0766
Difference -0.0271 -0.0609 -0.0978 -0.0309 -0.0694 -0.1084 -0.0775 -0.0470 -0.0717

Uncond MV 0.0055 0.0150 0.0425 0.0052 0.0142 0.0401 0.0257 0.0257 0.0882
Cond MV 0.2131 0.4815 0.6966 0.1447 0.3351 0.5341 0.9331 0.7273 1.0999
Difference -0.2076 -0.4665 -0.6540 -0.1395 -0.3209 -0.4940 -0.9074 -0.7016 -1.0117

Uncond MD 0.0062 0.0171 0.0448 0.0047 0.0125 0.0304 0.0290 0.0290 0.0814
Cond MD 0.0716 0.1749 0.3224 0.0559 0.1334 0.2417 0.1983 0.1844 0.3657
Difference -0.0654 -0.1578 -0.2777 -0.0512 -0.1209 -0.2113 -0.1694 -0.1554 -0.2843

EW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

For each empirical dataset, this table reports the turnover for each strategy for the conditional and un-
conditional approach and for each H and M . It also displays the gap between unconditional and conditional
turnovers. Gaps are in bold when the conditional approach performs better than the unconditional one (i.e.
when the conditional turnover is smaller).
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Table 4: Ex-post variance

Variance M=500

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

Uncond RP 1.2131 1.2140 1.2183 0.9931 0.9938 0.9973 1.7722 1.7731 1.7776
Cond RP 1.1849 1.1874 1.1949 0.9542 0.9491 0.9602 1.7397 1.7415 1.7466
P-value 0.7352 0.7507 0.7802 0.4797 0.4130 0.5014 0.7408 0.7482 0.7538

Uncond MV 0.8086 0.8096 0.8151 0.7323 0.7331 0.7406 1.3469 1.3516 1.3688
Cond MV 0.8147 0.8237 0.8209 0.7119 0.7026 0.7117 1.2522 1.2600 1.2999
P-value 0.9148 0.8112 0.9199 0.5889 0.4208 0.4402 0.2628 0.2757 0.4394

Uncond MD 1.2877 1.2898 1.2938 0.7985 0.7968 0.7991 1.8568 1.8594 1.8717
Cond MD 1.1888 1.1919 1.2041 0.7651 0.7608 0.7674 1.7858 1.7917 1.8102
P-value 0.2986 0.3071 0.3496 0.4110 0.3692 0.4289 0.5276 0.5485 0.5900

EW 1.3488 1.3492 1.3518 1.1698 1.1710 1.1730 1.8437 1.8441 1.8472

Variance M=1,000

Industry International Size

H=1 H=5 H=22 H=1 H=5 H=22 H=1 H=5 H=22

Uncond RP 1.2572 1.2580 1.2632 1.0802 1.0812 1.0834 1.8960 1.8960 1.9024
Cond RP 1.2215 1.2237 1.2290 1.0197 1.0155 1.0282 1.8548 1.8490 1.8621
P-value 0.6980 0.7102 0.7112 0.3244 0.2818 0.3735 0.7063 0.6666 0.7132

Uncond MV 0.8693 0.8702 0.8781 0.7940 0.7950 0.8016 1.4912 1.4912 1.5043
Cond MV 0.8453 0.8505 0.8616 0.7459 0.7372 0.7570 1.4168 1.3410 1.4164
P-value 0.7077 0.7633 0.7986 0.2540 0.1680 0.3034 0.4328 0.1050 0.3692

Uncond MD 1.3568 1.3585 1.3637 0.8441 0.8440 0.8489 2.0395 2.0395 2.0494
Cond MD 1.2442 1.2473 1.2537 0.8026 0.8000 0.8158 1.9013 1.9339 1.9553
P-value 0.2815 0.2925 0.2940 0.3456 0.3139 0.4609 0.2750 0.4101 0.4681

EW 1.3815 1.3819 1.3863 1.2526 1.2541 1.2544 1.9532 1.9532 1.9583

For each empirical dataset, this table reports the variance for each strategy for the conditional and unconditional
approach and for each H and M . It also displays the p-value of the Levene’s test of equality of variances.
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Table 5: Comparison of unconditional and conditional risk-based portfolios: the case of a CCC
model with M = 500

CCC Model H=1; M=500

Industry International Size

SR Turnover Variance SR Turnover Variance SR Turnover Variance

Uncond RP 0.0354 0.0014 1.2131 0.0227 0.0019 0.9931 0.0366 0.0008 1.7722
Cond RP 0.0353 0.0315 1.1759 0.0197 0.0336 0.9667 0.0369 0.0252 1.7453
P-value/Difference 0.9522 -0.0301 0.6550 0.0246 -0.0316 0.6335 0.5611 -0.0244 0.7846

Uncond MV 0.0431 0.0100 0.8086 0.0285 0.0100 0.7323 0.0466 0.0163 1.3469
Cond MV 0.0457 0.2164 0.8371 0.0150 0.1825 0.7340 0.0521 0.3730 1.2653
P-value/Difference 0.2891 -0.2064 0.6241 0.0006 -0.1725 0.9670 0.1471 -0.3567 0.3375

Uncond MD 0.0344 0.0113 1.2877 0.0239 0.0090 0.7985 0.0313 0.0184 1.8568
Cond MD 0.0363 0.0334 1.1045 0.0166 0.0347 0.8148 0.0308 0.0271 1.9083
P-value/Difference 0.7669 -0.0221 0.0458 0.0012 -0.0257 0.6993 0.9788 -0.0087 0.6504

EW 0.0335 0.0000 1.3488 0.0209 0.0000 1.1698 0.0347 0.0000 1.8437

CCC Model H=22; M=500

Industry International Size

SR Turnover Variance SR Turnover Variance SR Turnover Variance

Uncond RP 0.0356 0.0112 1.2183 0.0229 0.0143 0.9973 0.0370 0.0085 1.7776
Cond RP 0.0358 0.1029 1.1851 0.0216 0.1215 0.9688 0.0372 0.0788 1.7519
P-value/Difference 0.9371 -0.0917 0.6904 0.8215 -0.1072 0.6076 0.8997 -0.0703 0.7952

Uncond MV 0.0429 0.0716 0.8151 0.0293 0.0716 0.7406 0.0464 0.1431 1.3688
Cond MV 0.0436 0.6404 0.8301 0.0187 0.6403 0.7318 0.0505 1.1205 1.3161
P-value/Difference 0.9392 -0.5688 0.7943 0.5556 -0.5687 0.8197 0.8024 -0.9774 0.5558

Uncond MD 0.0347 0.0793 1.2938 0.0238 0.0549 0.7991 0.0319 0.1292 1.8717
Cond MD 0.0372 0.1085 1.1117 0.0191 0.1248 0.8201 0.0292 0.0888 1.9266
P-value/Difference 0.9790 -0.0292 0.0466 0.6577 -0.0699 0.6153 0.6553 0.0404 0.6330

EW 0.0336 0.0000 1.3518 0.0211 0.0000 1.1730 0.0350 0.0000 1.8472

For each empirical dataset, this table reports the criteria for each strategy for the conditional and unconditional
approach and for H = 1; 22 andM = 500. It also displays the gap/p-value between unconditional and conditional
criteria. Gaps/p-values are in bold when the conditional approach performs better than the unconditional one
or when the difference is statistically significant.
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Table 6: Sharpe ratio and ex-post variance in crisis and calm periods

Crisis period H=1; M=500

Industry International Size

SR Variance SR Variance SR Variance

Uncond RP 0.0009 2.5285 -0.0411 2.0277 0.0161 3.6665
Cond RP -0.0015 2.4348 -0.0458 1.9731 0.0172 3.5597
P-value 0.0018 0.7897 0.0000 0.8160 0.0519 0.7837

Uncond MV 0.0186 1.5880 -0.0483 1.4192 0.0211 2.8829
Cond MV 0.0077 1.6127 -0.0582 1.4828 0.0277 2.6424
P-value 0.0026 0.9177 0.0203 0.6890 0.0508 0.4854

Uncond MD 0.0065 2.9166 -0.0526 1.5299 0.0078 4.1664
Cond MD 0.0044 2.5595 -0.0562 1.5244 0.0100 3.9200
P-value 0.2769 0.3899 0.0552 0.9740 0.0516 0.5947

EW -0.0025 2.8278 -0.0374 2.3376 0.0130 3.8391

Calm period H=1; M=500

Industry International Size

SR Variance SR Variance SR Variance

Uncond RP 0.0888 0.4635 0.0787 0.4040 0.0781 0.8154
Cond RP 0.0882 0.4577 0.0771 0.4002 0.0794 0.8032
P-value 0.4720 0.8659 0.3731 0.9199 0.0000 0.8251

Uncond MV 0.0959 0.3791 0.0884 0.4005 0.0815 0.6616
Cond MV 0.0957 0.3707 0.0806 0.3238 0.1049 0.6151
P-value 0.9550 0.7744 0.2471 0.0289 0.0000 0.3134

Uncond MD 0.0988 0.4859 0.0856 0.4200 0.0839 0.7638
Cond MD 0.0954 0.4674 0.0897 0.3677 0.0821 0.7757
P-value 0.0252 0.6056 0.1602 0.1744 0.0987 0.8282

EW 0.0841 0.4911 0.0719 0.4581 0.0773 0.8321

For each empirical dataset, this table reports the Sharpe ratio and the variance for each strategy for the conditional
and unconditional approach for H = 1 and M = 500 in case of crisis and calm periods. It also displays the p-
values of the difference between conditional and unconditional Sharpe ratios and variances. P-values are in bold
when the difference is statistically significant.
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Appendix

A Risk-based generalized strategies

Denote by MRCi the following expression:

MRCi =
∂σp
∂ωi

=
(Σω)i
ω>Σω

, (26)

which represents the marginal risk contribution of asset i. The marginal risk contribution of

asset i can be seen as the sensitivity of the portfolio total risk to a small change in the weight

of asset i. It is straightforward to find the first order condition of the optimization program (1):

ωγi
σδi
×MRCi =

ωγj

σδj
×MRCj = τ ∀(i, j) = 1, ..., N (27)

with
N∑
i=1

ωi = 1

where τ is a positive target constraint which is not necessary known to solve the program.

In Table 7, the way to obtain our different risk-based portfolios with respect to γ and δ from

the program (1) is reported.

Table 7: Risk-based strategies
Portfolio (γ,δ) Strategy definition
ERC (1,0) ωiMRCi = ωjMRCj
MV (0,0) MRCi = MRCj
MD (0,1) σ−1i MRCi = σ−1j MRCj (ρip = ρjp)

1/N (∞,0) ωi = ωj = N−1

B Existence and uniqueness

In order to discuss the existence and uniqueness of the optimal risk-based portfolios, we use an

alternative expression of the optimization program suggested by Jurczenko et al. (2013):

ω∗ = arg min
ω

1
2ω
>Σω

u.c.
n∑
i=1

σδi (ω
1−γ
i −1)

(1−γ) ≥ c,
(28)

where c is a constant that depends on the risk-based strategy. The associated Lagrangian

function is:

L(ω;λ) =
1

2
ω>Σω − λ

{
n∑
i=1

σδi (ω
1−γ
i − 1)

(1− γ)
− c

}
(29)
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whith λ the associated Lagrange multiplier. The first order condition is then given by:

∂L(ω;λ)

∂ω
= Σω − λν, (30)

with ν = (σδ1/ω
γ
1 ...σ

δ
n/ω

γ
n)>. For each asset, this condition can be rewritten as:

(ω∗i )
γ

σδi
× (Σω)i = λ ∀i = 1, ..., n (31)

where (Σω)i denotes the ith row of the matrix Σω.

Define σp = (ω>Σω)1/2 the portfolio volatility and ∂σp/∂ωi = (Σω)i/σp the marginal risk

contribution of asset i. Then, for each asset, the first order condition can be rewritten as:

(ω∗i )
γ

σδi
× ∂σp
∂ωi

=
λ

σp
∀i = 1, ..., n. (32)

The optimal solution leads to equalize the modified risk contributions. We see that the first

order condition of (1) and (28) are the same, that proves the equivalence of the two optimization

programs. The uniqueness of the solution is guaranteed by the convexity of the program. The

computation of the second order conditions gives:

∂2L(ω;λ)

∂ω2
= Σ + γλκ (33)

with κ = (σδ1/ω
γ+1
1 ...σδn/ω

γ+1
n )>. The solution exists and is unique as long as this expression is

positive. As γ and δ are positive parameters, the solution exists as long as Σ is a definite-positive

matrix. Under this assumption, all optimal risk-based portfolios considered in this paper (MV,

ERC, MD, 1/N) will be uniquely defined.
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