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Abstract. The purpose of this article is to introduce a gradient-flow algorithm for solving equality and in-

equality constrained optimization problems, which is particularly suited for shape optimization applications.
We rely on a variant of the Ordinary Differential Equation (ODE) approach proposed by Yamashita [65] for

equality constrained problems: the search direction is a combination of a null space step and a range space

step, aiming to decrease the value of the minimized objective function and the violation of the constraints, re-
spectively. Our first contribution is to propose an extension of this ODE approach to optimization problems

featuring both equality and inequality constraints. In the literature, a common practice consists in reducing

inequality constraints to equality constraints by the introduction of additional slack variables. Here, we
rather solve their local combinatorial character by computing the projection of the gradient of the objective

function onto the cone of feasible directions. This is achieved by solving a dual quadratic programming

subproblem whose size equals the number of active or violated constraints. The solution to this problem
allows to identify the inequality constraints to which the optimization trajectory should remain tangent. Our

second contribution is a formulation of our gradient flow in the context of—infinite-dimensional—Hilbert

spaces, and of even more general optimization sets such as sets of shapes, as it occurs in shape optimization
within the framework of Hadamard’s boundary variation method. The cornerstone of this formulation is the

classical operation of extension and regularization of shape derivatives. The numerical efficiency and ease
of implementation of our algorithm are demonstrated on realistic shape optimization problems.

Keywords. nonlinear constrained optimization, gradient flows, shape and topology optimization, null space
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1. Introduction

The increasing popularity encountered by shape and topology optimization algorithms in industry calls for
their use in more and more realistic physical contexts. In such applications, the optimized designs are often
subjected to a large number of complex engineering constraints. To name a few of them, it is often required
that the stress developed inside mechanical structures do not exceed a prescribed safety threshold [6, 28, 40];
it is also customary to impose constraints on the geometry of the optimized shape—e.g. on the thickness of
its structural members, on its curvature radius, etc. [8, 55]—, or in keeping with manufacturability issues;
see for instance [7, 4, 63], or [42] for an overview. This raises the need for advanced constrained optimization
algorithms, adapted to the specificities of shape optimization.

Over the past decades, many iterative algorithms have been devised to solve for generic constrained
optimization problems of the form:

min
x∈V

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(1.1)

where V is typically a Hilbert space, J : V → R is a differentiable objective function, g : V → Rp and
h : V → Rq are differentiable functions accounting for p equality and q inequality constraints, respectively.
‘Classical’ gradient-based algorithms for the numerical resolution of (1.1) include, e.g., Penalty, Lagrangian,
Interior Point and Trust Region Methods, Sequential Quadratic or Linear Programming (SQP or SLP)
[17, 48, 66, 34, 61], the Method of Moving Asymptotes (MMA) [58], the Method of Feasible Directions
(MFD) [68, 60].

As a matter of fact, advanced mathematical programming methods are not frequently described in the
literature devoted to shape optimization based on Hadamard’s method (see [35, 56] for an introduction).
In most contributions, where, usually, only one constraint is considered, standard Penalty and Augmented
Lagrangian Methods are used for the sake of implementation simplicity [9, 23]. Morin et. al. introduced
a variant of SQP in [46] but the volume constraint featured in the optimization problem is treated with a
Lagrange Multiplier method. When it comes to more complex applications, some authors have introduced
adapted variants of Sequential Linear Programming [27] or of the Method of Feasible Direction [30]. However,
a major difficulty related to the practical use of these algorithms in topology optimization lies in that the
aforementioned techniques require fine tuning of the algorithm parameters in order to actually solve the
minimization problem. These parameters are e.g. the penalty coefficients in the Augmented Lagrangian and
Interior Point methods, the size of the trust region in SLP algorithms, the strategy for approximating the
Hessian matrix in SQP, the bounds on the asymptotes in MMA and the Topkis parameters in MFD. The
correct determination of these parameters is strongly case-dependent and often unintuitive: for instance, the
penalty coefficients must be neither ‘too large’ nor ‘too small’ in Lagrangian methods, the SLP trust region
size—which acts as a step length—cannot be chosen too small (otherwise the involved quadratic subproblems
may not have a solution). In shape and topology optimization practice, a fair amount of trials and errors is
often required in order to obtain satisfying minimizing sequences of shapes. Since every optimization step
depends on the resolution of partial differential equations, such tunings are very tedious, time consuming for
2-d cases, and downright unaffordable for realistic 3-d applications.
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Figure 1. An example of optimization trajectory produced by our null space gradient flow (1.2)

(labeled ‘NLSPACE’). Trajectories travel tangentially to an optimal subset Î(x) ⊂ Ĩ(x) of the active

constraints Ĩ(x), which is determined by a dual problem (see Section 3). A less optimal trajectory

(labeled ‘NLSPACE (no dual)’) is obtained if the set Î(x) is not identified, because it is unable to

escape the tangent space to the constraints labeled by Ĩ(x).

The first main contribution of this article is to propose a novel algorithm for constrained optimization
which is rather easy to implement and reliable in the sense that it allows to solve (1.1) without the need
for tuning non physical parameters; it is therefore particularly well adapted to the specificities of shape and
topology optimization applications. The essence of our method is a modification of the celebrated gradient
flow which enables it to ‘see the constraints’: optimization trajectories x(t) are obtained by solving an
Ordinary Differential Equation (ODE):

ẋ(t) = −αJξJ(x(t))− αCξC(x(t)), (1.2)

where the descent direction ẋ is a combination of a so-called ‘null space’ direction ξJ(x) and a ‘range space’
direction ξC(x), lying respectively in the null space of the constraint set and in its orthogonal complement
(for this reason, we call the ODE (1.2) a ‘null space’ gradient flow). The null space direction ξJ(x) is
the projection of the gradient ∇J(x) onto the cone of feasible directions (see Figure 1). The range space
direction ξC(x) is a Gauss-Newton direction, aimed to smoothly drive the optimization path toward the
feasible domain. Finally, αJ , αC > 0 are two (optional) parameters scaling the imposed decrease rates of the
objective function and of the violation of the constraints; we shall see in particular that the latter quantity
decreases along trajectories x(t) at least as fast as e−αCt. In numerical practice, (1.2) is solved by using a
suitable discretization scheme; one which works well to solve a number of shape optimization examples or in
Rd is proposed in Algorithm 1 below.

The cornerstone of our method is the computation of the null space direction ξJ(x); it relies on the

resolution of a dual program to identify an ‘optimal’ subset Î(x) of the set of active inequality constraints

Ĩ(x) ⊂ {1, . . . , q} to which the optimization path must remain tangent. The remaining constraints Ĩ(x)\ Î(x)
become inactive, allowing the trajectory to naturally re-enter the feasible domain. More specifically, for a
given subset of indices I ⊂ {1, . . . , q}, let us denote by hI(x) := (hi(x))i∈I the collection of those inequality
constraints indexed by I and by CI(x) the vector:

CI(x) :=

 g(x)

hI(x)

 . (1.3)

Then, for inequality constrained problems, the directions ξJ(x) and ξC(x) in (1.2) are defined as follows:

ξJ(x) = (I−DCT
Î(x)

(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (1.4)

ξC(x) = DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (1.5)

where I is the identity matrix and (DC(x))ij = ∂jCi(x) denotes the Jacobian matrix of a vector function
C(x) = (Ci(x))i (the dependence with respect to x is omitted when the context is clear). The symbol
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T denotes the transposition operator; it may differ from the usual transpose T if the optimization set V
is infinite-dimensional (see below and Section 2). Formulas (1.4) and (1.5) involve two different subsets

Î(x) ⊂ Ĩ(x) ⊂ {1, ..., q} of indices of inequality constraints: the first one Ĩ(x) is the set of all saturated or
violated constraints, defined by

Ĩ(x) = {i ∈ {1, . . . , q} |hi(x) ≥ 0}. (1.6)

The set Î(x) ⊂ Ĩ(x) is characterized thanks to the introduction of the following ‘dual’ quadratic optimization
subproblem:

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (1.7)

The problem (1.7) amounts to computing the projection of ∇J(x) onto the cone of feasible directions. The

set of indices Î(x) involved in the definition (1.4) of ξJ(x) is inferred from the positive entries of the optimal
Lagrange multiplier µ∗(x):

Î(x) := {i ∈ Ĩ(x) |µ∗i (x) > 0}. (1.8)

Proposition 4 shows that this definition of Î(x) is somehow ‘optimal’ since it ensures that −ξJ(x) is the
‘best’ descent direction for J(x) respecting locally equality and inequality constraints. This approach turns
out to be very efficient when dealing with a large number of (possibly violated) inequality constraints (see
Figure 1).

Our ODE (1.2) is a generalization of rather classical dynamical system approaches to nonlinear constrained
optimization [44, 59, 65, 51], which seem to be little known within the topology optimization community.
The flexibility of these methods lies in that, in principle, an admissible local minimizer to (1.1) is reached as
the stationary point x∗ of the continuous trajectory x(t), for almost any (feasible or not) initialization x(0),
regardless of the value of the coefficients αJ , αC > 0 (a formal proof for the ODE (1.2) is out of the scope
of this work, but we refer to [39, 41, 50, 51] for related results when inequality constraints are not present).
The descent properties of (1.2) are expected to be preserved at the discrete level provided it is discretized
with a sufficiently small Euler step size ∆t (see Remark 13 below). As a result, the success of the use of
our method depends truly only on the selection of a sufficiently small step ∆t, and to a less extent on the
physically interpretable, dimensionless parameters αJ , αC , whose tuning by the user is quite intuitive.

When the problem (1.1) features no constraint, (1.4) and (1.5) read simply ξJ(x) = ∇J(x) and ξC(x) = 0,
so that the ODE (1.2) reduces to the standard gradient flow

ẋ(t) = −∇J(x(t)). (1.9)

When (1.1) features only equality constraints g(x) = 0, but no inequality constraint (in that case CĨ(x)(x) =

CÎ(x)(x) = g(x)), the same ODE (1.2) as ours was previously derived and studied in the early 1980s by

Tanabe [59] (without the use of the Gauss-Newton direction ξC(x(t))) and by Yamashita [65] (where a
combination of both directions ξJ(x(t)) and ξC(x(t)) is brought into play), in the finite-dimensional setting
V = Rk. In this particular case, the solution to our dual problem (1.7) has a closed-form expression and
(1.2) reads with our notation:

ẋ(t) = −αJ(I−DgT (DgDgT )−1Dg)∇J(x(t))− αCDgT (DgDgT )−1g(x(t)). (1.10)

In the general situation where (1.1) features both inequality and equality constraints, variants of the ODE
(1.10) have been considered by various authors, with a different method from ours, however [51, 37, 38, 54].
The most common approach in the literature consists in introducing q slack variables {zi}1≤i≤q ∈ Rq to

transform the q inequalities hi(x) ≤ 0 for 1 ≤ i ≤ q into as many equality constraints hi(x) + z2
i = 0, before

solving the ODE (1.2) in the augmented space (x, z) ∈ V ×Rq. This approach offers convergence guarantees
[51] and could also be beneficial for shape optimization, however this is not the strategy we have retained.
Indeed, our method does not need to resort to slack variables for handling inequality constraints, and it
presents additional advantages described in Section 3.5.

Our second main contribution is the exposure of our dynamical system strategy in a setting compatible
with the inherently infinite-dimensional nature of shape optimization based on the method of Hadamard.
In such a context, a clear distinction between the Fréchet derivative DJ(x(t)) (which is an element of the
dual space V ′) and the gradient ∇J(x(t)) (which is an element of V ) is in order: the gradient ∇J(x(t)) is
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obtained by identifying DJ(x(t)) with an element of V thanks to the Riesz representation theorem. The same
distinction is also needed between the differential of a vector valued function DC(x(t)) and its transpose
DC(x(t))T ; see Definition 1.

For shape optimization applications, the minimization set in (1.1) is the set of all open Lipschitz domains Ω
enclosed in some ‘hold-all’ domain D ⊂ Rd. This set is not a vector space, but it can be locally parameterized
by the Sobolev space W 1,∞(D,Rd). More precisely, for a given Lipschitz open set Ω ⊂ D, one can restrict
the minimization to the space

O =
{

(I + θ)(Ω) with θ ∈W 1,∞(D,Rd)
}

(1.11)

of variations of Ω parametrized by vector fields θ. This space O is a Banach space (but not a Hilbert space),
after being identified with W 1,∞(D,Rd). The vector field θ can be interpreted as a displacement field,
and the minimized shape functional Ω 7→ J(Ω) (like the constraint functionals) is restricted to a functional
θ 7→ J((I + θ)(Ω)) defined on O, whose derivative can be computed in the sense of Fréchet [47, 56, 35]. The
space W 1,∞(D,Rd) can be interpreted as a ‘tangent space’ for the ‘manifold’ of all open Lipschitz domain
Ω ⊂ D. In practice, the identification of the aforementioned Fréchet derivative with a gradient is achieved
by solving an extension and regularization problem, which has major consequences in numerical practice,
see e.g. [21, 24]. This step is naturally and consistently included in our algorithm thanks to the suitable
definition of the transposition operator T . So far, this matter does not seem to have been clearly addressed in
the literature concerned with constrained shape optimization: common approaches rather compute a descent
direction first, before performing a regularization, see e.g. [27, 30].

Several contributions in the field of shape and topology optimization can be related to ours. In fact, our
method is very close in spirit to the recent work of Barbarosie et. al. [16], where an iterative algorithm for
equality constrained optimization is devised, which turns out to be a discretization of (1.2) with a variable
scaling for the parameter αC . When dealing with inequality constraints, the authors propose an active set
strategy which is based—like ours— on the extraction of an appropriate subset of the active constraints
(without convergence guarantee, however). This strategy relies on a different algorithm from ours, which

generally yields a different (suboptimal) set than Î(x) whose mathematical properties are a little unclear; see
Remark 4 below for more details. Finally, Yulin and Xiaoming also suggested in [67] to project the gradient
of the objective function onto the cone of feasible directions; nevertheless, they remained elusive regarding
how the projection problem is solved or how violated constraints are tackled.

An open-source implementation of our null space algorithm is made freely available online at

https://gitlab.com/safrandrti/null-space-project-optimizer.

The repository includes demonstrative pedagogical examples for the resolution of optimization problems in
Rd, but can also serve as a basis for the resolution of more complicated applications; it has been used as is
for the realisation of the shape optimization test cases of this article and other of our related works [32, 31].

The present article is organized as follows. In Section 2, we review the definition and the properties
of the gradient flow (1.2) for equality constrained optimization, in the case where the minimization set
V is a Hilbert space. We detail then in Section 3 the necessary adaptations to account for inequality
constraints and in particular the introduction of the dual subproblem allowing to determine the null space
direction ξJ(x). Under some technical assumptions, we prove in Proposition 5 the convergence of our
‘null space’ gradient flow (1.2) towards points satisfying the full Karush Kuhn Tucker (KKT) first-order
necessary conditions for optimality. Several algorithmic implementation aspects of our method are discussed
in Section 4. From Section 5 on, we then concentrate on shape optimization applications. After clarifying
the necessary adaptations required to extend the discretization of (1.2) when the optimization set V is only
locally a Banach space such as W 1,∞(D,Rd), we explain how our algorithm can be integrated within the
level set method for shape optimization [9, 62]. Numerical examples are eventually proposed in Section 6: we
first solve an optimal design problem in thermoelasticity inspired from [64] for which the optimized solutions
feature active and inactive inequality constraints—an example meant to emphasize the key role of our dual
problem in the identification of the optimal subset of inequality constraints which need to be enforced at each
stage of the optimization process. Then, we consider the shape optimization of a bridge structure subject to
multiple loads, which involves up to ten constraints. Many more shape optimization applications built upon
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this algorithm, including 3-d multiphysics test cases, are provided in the PhD dissertation [31]. The article
ends with a technical appendix containing the proofs of two theoretical results stated in the main text.

2. Gradient flows for equality-constrained optimization in Hilbert spaces

Before turning to the general shape optimization setting in Section 5, we first consider in this section (and
the next ones) the case where the optimization takes place in a Hilbert space V with inner product 〈·, ·〉V
and relative norm || · ||V = 〈·, ·〉1/2V . The first focus of our study is the minimization problem (1.1) in a
simplified version where only equality constraints are present, namely:

min
x∈V

J(x)

s.t. g(x) = 0,
(2.1)

where J : V → R and g : V → Rp are Fréchet differentiable functions. Our purpose is to recall how the ODE
approach (1.2) works in the present Hilbertian setting. Let us emphasize that, although this section is quite
elementary and not new per se, it is not easily found as is in the literature. Since it is key in understanding
our method for handling inequality constraints in Section 3, the present context is thoroughly detailed for
the reader’s convenience.

2.1. Notation and first-order optimality conditions

We start by setting notation about differentiability and gradients in Hilbert spaces that we use throughout
this article. As we have mentioned indeed, a clear distinction between gradients and Fréchet derivatives
proves crucial in our shape optimization applications in Section 5.

Definition 1.

(1) A vector-valued function g : V → Rp is differentiable at a point x ∈ V if there exists a continuous
linear mapping Dg(x) : V → Rp such that

g(x+ h) = g(x) + Dg(x)h+ o(h) with
o(h)

||h||V
h→0−−−→ 0. (2.2)

Dg(x) is called the Fréchet derivative of g at x.
(2) If g : V → Rp is differentiable, for any µ ∈ Rp, the Riesz representation theorem [18] ensures the

existence of a unique function Dg(x)T µ ∈ V satisfying

∀µ ∈ Rp,∀ξ ∈ V, 〈Dg(x)T µ, ξ〉V = µTDg(x)ξ, (2.3)

where the superscript T stands for the usual transpose of a vector in the Euclidean space Rp. The
linear operator Dg(x)T : Rp → V thus defined is called the transpose of Dg(x) .

(3) If J : V → R is a scalar function which is differentiable at x ∈ V , the Riesz representation theorem
ensures the existence of a unique vector ∇J(x) ∈ V satisfying

∀ξ ∈ V, 〈∇J(x), ξ〉V = DJ(x)ξ. (2.4)

This vector ∇J(x) is called the gradient of J at x.

Throughout the following, we shall sometimes omit the explicit mention to x in the notation for differentials
or gradients when the considered point x ∈ V is clear, so as to keep expressions as light as possible.

Remark 1.

(1) If V is the (finite-dimensional) Euclidean space Rk, and 〈·, ·〉V is the usual inner product, the Fréchet
derivative (resp. its transpose) of a vector function g : Rk → Rp are respectively given by the
Jacobian matrix (Dg)ij = ∂jgi (resp. (DgT )ij = (DgT )ij = ∂igj). In the literature, the differential
matrix Dg is often denoted with the nabla notation ∇g. For the sake of clarity, we reserve the ∇
symbol for the gradient of scalar functions J : V → R. The calligraphic transpose notation T
appearing in the objects DJ(x)T or Dg(x)T encodes at the same time the operator transposition
(reversing the input and range spaces) and the Riesz identifications. In particular, it holds that
∇J(x) = DJ(x)T 1.
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(2) Still in the case where V = Rk is finite-dimensional, but the inner product 〈·, ·〉V is given by a
symmetric positive definite matrix A (that is, 〈ξ, ξ〉V = ξTAξ), the calligraphic transpose of a p× k
matrix M : Rk → Rp with respect to 〈·, ·〉V now reads MT = A−1MT . In shape optimization
applications, the inner product 〈·, ·〉V often stands for the bilinear form associated to an elliptic
operator, and the calligraphic transpose T encompasses the extension and regularization steps of the
shape derivative, see Section 5.2 below.

(3) If V is replaced by the tangent space to a Riemannian manifold, the bilinear form 〈·, ·〉V can be
interpreted as a metric and ∇J(x), as given by (2.4), is the covariant gradient with respect to this
metric.

(4) When V is a general Hilbert space, for a vector-valued function g : V → Rp with components g(x) =
(gi(x))1≤i≤p, Dg : V → Rp is the ‘row’ matrix whose entries are the p linear forms Dgi(x) : V → R.
The transpose Dg(x)T is the ‘column’ matrix gathering the p vectors (∇gi(x))1≤i≤p obtained by
solving the p identification problems, similar to (2.4), 〈∇gi(x), ξ〉V = Dgi(x)ξ for any ξ ∈ V . More

precisely, Dg(x)T µ =
p∑
i=1

µi∇gi(x) for any µ ∈ Rd. In particular, the p × p matrix DgDgT has

entries (DgDgT )ij = 〈∇gi,∇gj〉V = Dgi(x)(∇gj(x)).

In the present section, the equality constraints are said to satisfy the “Linear Independence Constraint
Qualification” (LICQ) condition at a point x ∈ V if

rank(Dg(x)) = p, or equivalently Dg(x)Dg(x)T is an invertible p× p matrix. (2.5)

Note that (2.5) makes sense even at points x ∈ V where g(x) 6= 0, an essential fact in the sequel: as we have
mentioned in the introduction, realistic shape optimization problems are often initialized with an unfeasible
design. Under the above notation, let us recall the classical first-order necessary optimality conditions
(KKT) for the equality-constrained problem (2.1) at some point x∗ ∈ V where the constraints are satisfied
and qualified: there exists λ(x∗) ∈ Rp such that, ∇J(x∗) + Dg(x∗)T λ(x∗) = 0,

g(x∗) = 0;
(2.6)

see for instance [17, 48].

2.2. Definitions and properties of the null space and range space steps ξJ and ξC

We are now in position to define the null space and range space steps ξJ(x) and ξC(x) featured in the ODE
(1.2) for equality constrained problems in the present Hilbert space setting.

Definition 2. Consider the optimization problem (2.1). For any point x ∈ V satisfying the LICQ condition
(2.5), we define the null space and range space directions ξJ(x) and ξC(x) by, respectively:

ξJ(x) := (I−DgT (DgDgT )−1Dg)∇J(x), (2.7)

ξC(x) := DgT (DgDgT )−1g(x). (2.8)

In the finite-dimensional case where V = Rk, it is well-known that the null space step ξJ(x) in (2.7) is
the orthogonal projection of the gradient ∇J(x) onto the null space of the constraints

Ker(Dg(x)) = {ξ ∈ V |Dg(x)ξ = 0},

which is also the tangent space at x to the manifold {y ∈ V | g(y) = g(x)}. This is still true when V is a
Hilbert space, as we recall in the next lemma.

Lemma 1. Let x ∈ V be a point where the LICQ condition (2.5) is satisfied. Then:

(1) The space V has the following orthogonal decomposition:

V = Ker(Dg(x))⊕ Ran(Dg(x)T ),

where the range is defined as Ran(Dg(x)T ) := {Dg(x)T λ |λ ∈ Rp}. Moreover, the operator Πg(x) :

V → V defined by Πg(x) = I−DgT (DgDgT )−1Dg(x) is the orthogonal projection onto Ker(Dg(x)).
7



(2) When Πg(x)(∇J(x)) 6= 0, ξJ(x) = Πg(x)(∇J(x)) is the best feasible descent direction for J from x
(up to a normalization) in the sense that

− ξJ(x)

||ξJ(x)||V
= arg min

ξ∈V
DJ(x)ξ

s.t.

{
Dg(x)ξ = 0

〈ξ, ξ〉V ≤ 1.

(2.9)

(3) The null space direction ξJ(x) = Πg(x)(∇J(x)) is the closest least-squares approximation of ∇J(x)
within the space Ker(Dg(x)). It alternatively reads

ξJ(x) = ∇J(x) + Dg(x)T λ∗(x), (2.10)

where the Lagrange multiplier λ∗(x) := −(DgDgT )−1Dg∇J(x) ∈ Rp is the unique solution to the
dual problem of (2.9), which reads:

λ∗(x) = arg min
λ∈Rp

||∇J(x) + Dg(x)T λ||V . (2.11)

Proof.

(1) Any ξ ∈ V may be decomposed as ξ = Πg(x)(ξ) + (I − Πg(x))(ξ), where it is straightforward to

verify that Πg(x)(ξ) ∈ Ker(Dg(x)), and (I−Πg(x))(ξ) ∈ Ran(Dg(x)T ). In addition, Ker(Dg(x)) and

Ran(Dg(x)T ) are orthogonal for the inner product a since from (2.3), one has,

∀ζ ∈ Ker(Dg(x)), ∀λ ∈ Rp, 〈Dg(x)T λ, ζ〉V = λTDg(x)ζ = 0.

(2) It follows from the first point that for any ξ ∈ Ker(Dg(x)) such that ||ξ||V ≤ 1,

DJ(x)ξ = 〈∇J(x), ξ〉V = 〈Πg(x)(∇J(x)), ξ〉V ≥ −||Πg(x)(∇J(x))||V ,
whence we easily infer that ξ := −Πg(x)(∇J(x))/||Πg(x)(∇J(x))||V is the global minimizer of (2.9).

(3) The Pythagore identity yields, for any ξ ∈ Ker(Dg(x)),

||∇J(x)− ξ||2V = ||(I−Πg(x))∇J(x)||2V + ||Πg(x)∇J(x)− ξ||2V ≥ ||∇J(x)−Πg(x)∇J(x)||2V .
Hence the orthogonal projection Πg(x)(∇J(x)) is the best approximation of∇J(x) within Ker(Dg(x)).

On the other hand, recalling from the first point that Ran(Dg(x)T ) is the orthogonal complement
of Ker(Dg(x)), we obtain also, for any λ ∈ Rp,

||Πg(x)(∇J(x))||V = ||∇J(x)− (I−Πg(x))(∇J(x))||V ≤ ||∇J(x) + Dg(x)T λ||V ,
whence the expression (2.10) and the minimization property (2.11) follow. Note that the uniqueness
of the solution λ∗(x) to (2.11) results from the LICQ condition (2.5).
Finally, the optimization problem (2.9) can be rewritten as

min
ξ∈V

〈ξ,ξ〉V ≤1

max
λ∈Rp

DJ(x)ξ + λTDg(x)ξ.

Hence the (formal) dual problem of (2.9) reads:

max
λ∈Rp

min
ξ∈V

〈ξ,ξ〉V ≤1

DJ(x)ξ + λTDg(x)ξ.

According to the definitions (2.3) and (2.4) of the gradient and of the Hilbertian transpose, the latter
problem rewrites:

max
λ∈Rp

min
ξ∈V

〈ξ,ξ〉V ≤1

〈∇J(x) + Dg(x)T λ, ξ〉V = −max
λ∈Rp

||∇J + DgT λ||V , (2.12)

where for given λ ∈ Rp, the value

ξ∗ :=
∇J(x) + Dg(x)T λ

||∇J(x) + Dg(x)T λ||V
is that achieving the minimum in the inner minimization problem at the left-hand side of (2.12).
This shows that (2.11) is the dual problem of (2.9).
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The next lemma is also fairly classical in the literature, at least in the finite-dimensional case. It character-
izes the range space step ξC(x), defined by (2.8), as the unique Gauss-Newton direction for the cancellation
of the constraint function g(x) which is orthogonal to the (linearized) set of constraints:

Lemma 2. Let x ∈ V be a point where the LICQ condition (2.5) is satisfied. Then:

(1) The range space step ξC(x) = DgT (DgDgT )−1g(x) is orthogonal to Ker(Dg(x)):

∀ξ ∈ Ker(Dg(x)), 〈ξC(x), ξ〉V = 0.

(2) −ξC(x) is a descent direction for the violation of the constraints:

Dg(x)(−ξC(x)) = −g(x). (2.13)

(3) The set of solutions to the Gauss-Newton program

min
ξ∈V
||g(x) + Dg(x)ξ||2 (2.14)

is the affine subspace {−ξC(x) + ζ | ζ ∈ Ker(Dg(x))} of V .

Proof. Point (1) is an immediate consequence of point (1) in Lemma 1. Point (2) is obvious from the
definition (2.8) of ξC(x). Note that (2.13) means that −ξC(x) is a descent direction for the violation of
the constraints in the sense that it ensures that any coordinate gi(x), i = 1, ..., p, decreases along −ξC(x) if
gi(x) ≥ 0 and increases if gi(x) ≤ 0.

To prove point (3), since (2.14) is a convex optimization problem, a necessary and sufficient condition for
ξ ∈ V to be one solution is given by the usual first-order condition:

∀ζ ∈ V, (g(x) + Dg(x)ξ)T (Dg(x)ζ) = 〈Dg(x)T (g(x) + Dg(x)ξ), ζ〉V = 0,

which rewrites:
Dg(x)T Dg(x)ξ = −Dg(x)T g(x).

Since the matrix (DgDgT ) is invertible, this is in turn equivalent to Dg(x)ξ = −g(x). Finally, we know
from point (2) that −ξC(x) is one particular solution to this last equation. Thus, point (3) follows from the
fact that any two solutions of this problem differ up to an element ζ ∈ V such that Dg(x)ζ = 0. �

2.3. Decrease properties of the equality constrained gradient flow

The main features of the definitions of ξJ(x) and ξC(x) are the facts that ξJ(x) is orthogonal to the set of
constraints, i.e. Dg(x)ξJ(x) = 0, and that −ξC(x) decreases the violation of the constraints while being
orthogonal to ξJ(x). These ensure that the entries of the constraint functional g(x(t)) tend to 0 along the
trajectories of the ODE (1.2), independently of the value of ξJ(x). Then, as soon as the violation of the
constraints becomes sufficiently small, the objective function J(x(t)) decreases without compromising the
asymptotic vanishing of g(x(t)). We review these properties in the next proposition, which was also observed
in [65] in the finite-dimensional context; see Appendix A for the proof.

Proposition 1. Assume that the trajectories x(t) of the flow{
ẋ = −αJ(I−DgT (DgDgT )−1Dg(x))∇J(x)− αCDgT (DgDgT )−1g(x)

x(0) = x0

(2.15)

exist on some time interval [0, T ] for T > 0, and that the LICQ condition (2.5) holds at any point x(t),
t ∈ [0, T ]. Then the following properties hold true:

(1) The violation of the constraints vanishes at exponential rate:

∀t ∈ [0, T ], g(x(t)) = e−αCtg(x0). (2.16)

(2) The value J(x(t)) of the objective decreases ‘as soon as the violation (2.16) of the constraints is
sufficiently small’ in the following sense: assume that rank(Dg) = p on K = {x ∈ V | ||g(x)||∞ ≤
||g(x0)||∞} and that

sup
x∈K
||∇J(x)||V |σ−1

p (x)| < +∞, (2.17)
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where σp(x) is the smallest singular value of Dg(x). Then there exists a constant C > 0 such that

∀t ∈ [0, T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αCt ⇒ d

dt
J(x(t)) < 0. (2.18)

(3) Any stationary point x∗ of (2.15) satisfies the first-order KKT conditions (2.6) of the optimization
program (2.1), that is:{

g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.
(2.19)

3. Extension to equality and inequality constraints

We now proceed to extend the dynamical system (1.2) or (2.15) so as to handle inequality constraints as well.
We return to the full optimization problem (1.1), still posed in a Hilbert space V with inner product 〈·, ·〉V ,
and where the objective J : V → R, equality constraints g : V → Rp and inequality constraints h : V → Rq
are differentiable functions.

Inspired by the methodology developed in Section 2, we still propose to solve the equality and inequality
constrained problem (1.1) by means of a dynamical system of the form:{

ẋ(t) = −αJξJ(x(t))− αCξC(x(t))

x(0) = x0,
(3.1)

whose forward Euler discretized version reads:

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)). (3.2)

After introducing notation conventions related to inequality constraints in Section 3.1, the range space
step ξC(x) is defined in Section 3.2 from a formula analogous to (1.5). The definition of the null space
step ξJ(x) is examined in details in Section 3.3; it involves a procedure for identifying a relevant subset

Î(x) ⊂ Ĩ(x) of the saturated or violated constraints, which relies on the dual problem (1.7). Finally, the
properties of the resulting flow (3.1) are outlined in Section 3.4.

3.1. Notation and preliminaries

Let us recall the definition (1.6) for the set Ĩ(x) of saturated or violated inequality constraints at x ∈ V . We

denote by q̃(x) := Card(Ĩ(x)) the number of such constraints. For a given subset I ⊂ {1, ..., q}, the vector
hI(x) = (hi(x))i∈I collects the inequality constraints indexed by I. The vector CI(x), defined by (1.3),
collects all equality constraints g(x) and those selected inequality constraints hI(x).

In the present context, the constraints are said to satisfy the “Linear Independence Constraint Qualifica-
tion” (LICQ) condition at x ∈ V if the linearized saturated or violated constraints are independent, namely
if

rank(DCĨ(x)(x)) = p+ q̃(x). (3.3)

If the point x satisfies the constraints, (3.3) is one usual LICQ condition (of course, there are other possible
qualification conditions, see [17, 48]), but (3.3) also applies to points x where constraints are not satisfied.
Define ΠCI : V → V , the orthogonal projection operator onto Ker(DCI(x)), by

ΠCI = I −DCI(x)T (DCI(x)DCI(x)T )−1DCI(x), (3.4)

and let (λI(x),µI(x)) ∈ Rp × RCard(I)
+ be the corresponding Lagrange multipliers:λI(x)

µI(x)

 := −(DCIDC
T
I )−1DCI(x)∇J(x). (3.5)

Last but not least, let us recall that in the present context of the equality and inequality constrained
problem (1.1), the necessary first-order optimality conditions (the KKT conditions) at a given point x∗ ∈ V
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satisfying the LICQ condition (3.3), read as follows: there exist λ(x∗) ∈ Rp and µ(x∗) ∈ Rq+ such that
∇J(x∗) + Dg(x∗)T λ(x∗) + Dh(x∗)T µ(x∗) = 0,

g(x∗) = 0, h(x∗) ≤ 0,

∀i = 1, ..., q, µihi(x
∗) = 0;

(3.6)

see again [17, 48].

3.2. Definition of the range step direction

Definition 3 (range space step). For the optimization problem (1.1), the range step ξC(x) is defined at any
x ∈ V satisfying the LICQ condition (3.3) by

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (3.7)

where Ĩ(x) is the set of all saturated or violated constraints, defined by (1.6).

The purpose of the range space step ξC(x) is to decrease the violation of the constraints as we shall see
in Proposition 5 below. The exact counterpart of Lemma 2 holds in this context, in particular:

(1) ξC(x) is orthogonal to Ker(DCĨ(x)).

(2) −ξC(x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ(x)(−ξC(x)) = −CĨ(x)(x).

3.3. Definition and properties of the null space step

The definition of the null space direction ξJ(x) is slightly more involved in the present context, as it is not

obtained by simply replacing Dg(x) by DCĨ(x) in (2.7). It requires the introduction of a subset Î(x) ⊂ Ĩ(x)

of saturated or violated inequality constraints, as we now discuss.

Like in the equality-constrained case discussed in Section 2, the rationale behind the definition of the null
space step ξJ(x) is that it is sought, up to a change of sign, as a best normalized descent direction diminishing
violated or saturated inequality constraints: −ξJ(x) is set positively proportional to the solution ξ∗(x) of
the following minimization problem (compare with Lemma 1):

min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ(x)(x)ξ ≤ 0

||ξ||V ≤ 1.

(3.8)

The problem (3.8) could be solved directly with standard quadratic programming algorithms. However, it
is convenient to characterize explicitly the minimizer ξ∗(x) of (3.8) by examining the dual problem. This
will allow us to obtain in Definition 4 an explicit formula for the null space direction ξJ(x), under the form
(1.4).

We now introduce the dual optimization problem to (3.8), which is analogous to that (2.11) in the previous
section.

Proposition 2. Let x ∈ V satisfy the LICQ condition (3.3). There exists a unique couple of multipliers

λ∗(x) ∈ Rp and µ∗(x) ∈ Rq̃(x)
+ solving the following quadratic optimization problem which is the dual of

(3.8):

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.9)

Proof. At first, (3.8) is equivalent to the following min-max formulation:

min
ξ∈V
||ξ||V ≤1

max
λ∈Rp
µ∈Rq̃(x)+

(
DJ(x)ξ + λTDg(x)ξ + µTDhĨ(x)(x)ξ

)
.
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Exchanging formally the min and the max and solving explicitly the inner minimization problem with respect
to ξ (see the proof of Lemma 1) yields that (3.9) is the dual problem of (3.8) up to a change of signs (the
duality gap between (3.9) and (3.8) will be shown to vanish in Proposition 3). The program (3.9) brings

into play the closed convex set Rp × Rq̃(x)
+ and the least-squares functional

(λ,µ) 7→

∣∣∣∣∣∣
∣∣∣∣∣∣∇J(x) + DCĨ(x)(x)T

λ
µ

∣∣∣∣∣∣
∣∣∣∣∣∣
V

.

The latter is strictly convex over Rp × Rq̃(x)
+ by virtue of (3.3). Hence, (3.9) has a unique solution. �

The optimization problem (3.9) belongs to the class of non negative least-squares problems; it can be
solved efficiently with a number of dedicated solvers, such as cvxopt [12] or IPOPT [61]. One nice feature of
(3.9) lies in that its dimension is the number p+ q̃(x) of saturated or violated constraints (and not the total
number p+ q of constraints), which can be small for many practical cases, as e.g. in our shape optimization
applications of Section 5. It is also possible to exploit the sparsity of the constraints if p+ q̃(x) is large, see
Remark 5 below.

The next proposition relates the optimal values and the solutions ξ∗(x) and (λ∗(x),µ∗(x)) of the primal
and dual problems (3.8) and (3.9). Roughly speaking, it claims that the optimal feasible descent direction
ξ∗(x) of (3.11) is the projection of the gradient ∇J(x) onto the cone of feasible directions. The proof follows
classical arguments of duality theory in linear programming and it is detailed for the convenience of the
reader.

Proposition 3. Let x ∈ V satisfy the LICQ condition (3.3) and denote by

m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V

the value of the dual problem (3.9), where (λ∗(x),µ∗(x)) is the unique solution to the latter. Then the value
of the primal problem (3.8) is p∗(x) = −m∗(x) and the following alternative holds:

(1) m∗(x) = 0: the first line of the KKT conditions (3.6) for the minimization problem (1.1) holds with

(necessarily unique) Lagrange multipliers (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x) = 0. (3.10)

One particular minimizer of (3.8) is ξ∗(x) = 0.
(2) m∗(x) > 0: (3.10) does not hold and (3.8) has a unique minimizer ξ∗(x) given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V
. (3.11)

Proof. Let ξ ∈ V be a feasible direction for the problem (3.8), i.e. Dg(x)ξ = 0, DhĨ(x)(x)ξ ≤ 0 and

||ξ||V ≤ 1. Then for any (λ,µ) ∈ Rp × Rq̃(x)
+ , it holds

DJ(x)ξ ≥ DJ(x)ξ + λTDg(x)ξ + µTDhĨ(x)(x)ξ

= 〈∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ, ξ〉V
≥ −||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V

(3.12)

Since (3.12) holds for any feasible direction ξ for (3.8), and for any (λ,µ) ∈ Rp × Rq̃(x)
+ , it follows:

min
ξ∈V

ξ feasible for (3.8)

DJ(x)ξ ≥ − min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.13)

Therefore, we have proven that p∗(x) ≥ −m∗(x). We now examine the alternative m∗(x) = 0 or m∗(x) > 0:

(1) If m∗(x) = 0, then (3.13) implies p∗(x) ≥ 0. Therefore, the value of (3.8) is p∗(x) = −m∗(x) = 0,
attained in particular at ξ∗ = 0. Furthermore, the KKT condition (3.10) is satisfied by definition of
m∗(x) = 0.
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(2) Assume now m∗(x) > 0. The KKT condition for the convex problem (3.8) states that for any local

optimum ξ′, there exists (λ′,µ′) ∈ Rp × Rq̃(x)
+ and α ≥ 0 such that,

∀ξ ∈ V, (DJ(x) + λ′TDg(x) + µ′TDhĨ(x)(x))ξ = −α〈ξ′, ξ〉V . (3.14)

Using Riesz identifications of the gradient and the differentials, we obtain

αξ′ = −(∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′),

and since m∗(x) > 0, it is necessary that α 6= 0. The complementarity condition α(〈ξ′, ξ′〉V − 1) = 0
yields then ||ξ′||V = 1, which readily implies:

ξ′ = −
∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′

||∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′||V
.

Then the complementarity condition for (3.8) implies µ′TDhĨ(x)(x)ξ′ = 0. Therefore it holds that

DJ(x)ξ′ = DJ(x)ξ′ + λ′TDg(x)ξ′ + µ′TDhĨ(x)(x)ξ′

= 〈∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′, ξ′〉V
= −||∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′||V .

(3.15)

The previous equation together with the inequality (3.12) with ξ = ξ′ then implies that (λ′,µ′)
achieves the minimum of (3.9). By uniqueness (see Proposition 2), this implies λ′ = λ∗(x) and
µ′ = µ∗(x), and so ξ′ = ξ∗(x), as defined by (3.11). Furthermore, p∗(x) = DJ(x)ξ∗(x) = DJ(x)ξ′ =
−m∗(x).

�

Finally, the next proposition characterizes explicitly the optimal descent direction ξ∗(x) from the signs
of the multiplier µ∗(x), and highlights in which sense the problem (3.8) is combinatorial. Recalling the
definitions (3.4) and (3.5) of the projection operator ΠCI and the multipliers (λI(x),µI(x)), we have:

Proposition 4. In the situation of point (2) in Proposition 3, let ξ∗(x) and (λ∗(x),µ∗(x)) be the unique

minimizers of the primal and dual problems (3.8) and (3.9). Define the subset Î(x) ⊂ Ĩ(x) by

Î(x) := {i ∈ Ĩ(x) |µ∗i (x) > 0}. (3.16)

(1) (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î(x) by:λ∗(x)

µ̂∗(x)

 =

λÎ(x)(x)

µÎ(x)(x)

 = −(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x)∇J(x), (3.17)

ξ∗(x) = −
ΠCÎ(x)(∇J(x))

||ΠCÎ(x)(∇J(x))||V
, (3.18)

where µ̂∗(x) := (µ∗i (x))i∈Î(x) is the vector collecting all positive components of µ∗(x).

(2) Î(x) is equivalently the unique solution to each of the following discrete optimization problems:

Î(x) = arg max
I⊂Ĩ(x)

||ΠCI (∇J(x))||V

s.t. DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0,
(3.19)

Î(x) = arg min
I⊂Ĩ(x)

||ΠCI (∇J(x))||V

s.t. µI(x) ≥ 0.
(3.20)

In particular, Î(x) is the unique subset I ⊂ Ĩ(x) satisfying simultaneously both feasibility conditions

DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0 and µI(x) ≥ 0.

Proof.
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(1) The complementarity condition for the primal and dual problems (3.8) and (3.9) reads

∀i ∈ Ĩ(x), µ∗i (x)Dhi(x)ξ∗(x) = 0. (3.21)

Therefore, Dhi(x)ξ∗(x) = 0 for all indices i ∈ Î(x), which implies that DCÎ(x)(x)ξ∗(x) = 0. Then,

after left multiplication of (3.11) by (DCÎ(x)DC
T
Î(x)

)−1DCÎ(x), we obtain (3.17), whence (3.18) fol-

lows.
(2) For any subset I ⊂ Ĩ(x) satisfying DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0, the direction

ξ = − ΠCI (∇J(x))

||ΠCI (∇J(x))||V
is feasible for the primal problem (3.8), and we obtain by definition of ξ∗(x) that

− ||ΠCÎ(x)(∇J(x))||V = DJ(x)ξ∗(x) ≤ DJ(x)ξ = −||ΠCI (∇J(x))||V , (3.22)

whence the maximization property (3.19).

For I ⊂ Ĩ(x) satisfying µI(x) ≥ 0, we obtain feasible multipliers (λ,µ) for the dual problem (3.9)
by taking the components of µ to coincide with those of µI on the indices of I and assigning them

the value 0 in the complementary subset Ĩ(x) \ I. Then the optimality of (λ∗(x),µ∗(x)) for (3.9)
reads:

||ΠCÎ(x)(∇J(x))||V = ||∇J + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V
≤ ||∇J(x) + Dg(x)T λ+ DhT

Ĩ(x)
µ||V = ||ΠCI (∇J(x))||V ,

(3.23)

whence the minimization property (3.20).

�

Remark 2. In view of (3.16), the optimal multiplier µ∗(x) can be interpreted as an indicator specifying which

constraints of Ĩ(x) are ‘not aligned’ with the gradient ∇J(x) and should be kept in the subset Î(x). The
best descent direction (in the sense of (3.8)) is obtained by projecting the gradient ∇J(x) onto the tangent

space of the constraint subset Î(x) rather than onto the full set of violated or saturated constraints Ĩ(x).
Indeed, the descent direction ξ = −ΠCĨ(x)

∇J(x) that would be obtained by projecting ∇J(x) on the whole

set Ĩ(x) would only keep them constant at first order, i.e. Dhi(x)ξ = 0, (see Remark 6 for more details),

whereas considering ξ = −ΠCÎ(x)
∇J(x) instead allows the inequality constraints associated to i ∈ Ĩ(x)\ Î(x)

to decrease, which is much more efficient.

Remark 3. Note that actually, the use of a dual problem such as (3.9) in order to obtain information about
which constraints should remain active is quite classical in active set methods, see e.g. [19, 36, 48].

In principle, the subset Î(x) could be found by solving the discrete problems (3.19) or (3.20). However,
we expect that in practice, it is more efficient to rely on iterative solvers based on gradient descent strategies
for the dual problem (3.9), e.g. a cone programming solver or a non negative least-squares algorithm such
as that in [19]. This is what we do in the sequel.

Having introduced the subset Î(x) (defined in (3.16)), we are now in position to define the null space
direction ξJ(x) in the present context: −ξJ(x) is set to be a positive multiple of the optimal descent
direction ξ∗(x) supplied by (3.18).

Definition 4. For any point x ∈ V satisfying the LICQ condition (3.3), the null space direction ξJ(x) at x
for the optimization problem (1.1) is defined by:

ξJ(x) := ΠCÎ(x)(∇J(x)) = (I −DCÎ(x)(x)T (DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (3.24)

where Î(x) is the set defined by (3.16).

Observe that all violated and saturated constraints are taken into account in the Gauss-Newton direction
ξC(x) defined by (3.7), while only those constraints in Î(x), not aligned with the gradient ∇J(x), occur in
the definition of ξJ(x).
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Remark 4. With our notation conventions, the discrete optimization scheme proposed by Barbarosie et. al.
[15, 16] reads{

xn+1 = xn −∆t∇J(xn)−DCTI(xn)νn

νn = −∆t(DCI(xn)DC
T
I(xn))

−1DCI(xn)∇J(xn) + (DCI(xn)DC
T
I(xn))

−1CI(xn),
(3.25)

where the set I(xn) is obtained by removing indices from Ĩ(xn) one by one, starting from the index i0
associated with the most negative multiplier νn,i0 < 0, until all of them become non negative. Therefore,

the set I(xn) used in the latter strategy and that Î(xn) featured in ours (given by (3.16)) do not coincide
in general; one could think of configurations where the procedure of [16] would fail to find the optimal set

Î(xn) (for example if i0 ∈ Î(xn)) and would project the gradient on a less optimal subset of constraints. We
note that no convergence result is given by the authors of [15, 16] about their procedure.

Remark 5. Let us discuss two extreme cases related to the involved computational effort in the numerical
implementation of (3.24). Upon discretization, we may assume that V = Rk is a finite-dimensional space.

(1) If the total number p+ q̃ of saturated or violated constraints is small compared to the dimension k
of V , it is best, for numerical efficiency, to assemble the small square matrix (DCĨ(x)DC

T
Ĩ(x)

) and to

invert it by a direct method.
(2) If V = Rk is equipped with an inner product encoded by a matrix A, and if p + q̃ is of the order

of k or larger, the computation of the inverse of (DCÎ(x)DC
T
Î(x)

) can be expensive. However, it

is still tractable if both DC and A are sparse matrices (i.e. matrices with many 0 entries). For
instance, this occurs in the case of bound constraints on the optimization variable x = (x1, ..., xk),
i.e. constraints of the form αi ≤ xi ≤ βi, i = 1, ..., k.

Recalling from Remark 1 that in this setting, DCT
Î(x)

= A−1DCT
Î(x)

, the calculation of ξJ(x) can

be carried out thanks to the following procedure: at first, the vector

X := A−1DCT
Î(x)

(DCÎ(x)A
−1DCT

Î(x)
)−1DCÎ(x)∇J(x)

is computed as the solution to the sparse linear system A −DCT
Î(x)

DCÎ(x) 0

X
Z

 =

 0

DCÎ(x)∇J(x)

 ,
where Z ∈ Rp+Card(Î(x)) is an extra slack variable. Then, the desired null space direction is obtained
as ξJ(x) = ∇J(x)−X. A similar strategy, exploiting the sparsity of A and DCÎ(x), can be used to

compute the range space direction ξC(x) of (3.7), or to solve the dual quadratic subproblem (3.9).

Remark 6. As we have already mentioned, the Lagrange multiplier µ∗(x) given by (3.17) may be understood
as an indicator of which inequality constraints are aligned with the gradient of J at x. This insight is especially
intuitive in the particular situation where the gradients of the constraint functions are orthogonal to one
another, i.e.:

〈∇gi(x),∇gj(x)〉V = 0, for i, j = 1, ..., p, i 6= j,

〈∇hi(x),∇hj(x)〉V = 0, for i, j = 1, ..., q, i 6= j,

〈∇gi(x),∇hj(x)〉V = 0, for i = 1, ..., p, j = 1, ..., q.

Indeed, in this case, it easily follows from the Pythagore theorem that for any (λ,µ) ∈ Rp × Rq̃(x)
+ ,

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||2V =

∣∣∣∣∣∣
∣∣∣∣∣∣∇J(x) +

p∑
i=1

λi∇gi(x) +
∑
j∈Ĩ(x)

µj∇hj(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

V

= ||∇J(x)||2V +

p∑
i=1

(
λ2
i ||∇gi(x)||2V + 2λi〈∇J(x),∇gi(x)〉V

)
+
∑
j∈Ĩ(x)

(
µ2
j ||∇hj(x)||2V + 2µj〈∇J(x),∇hj(x)〉V

)
.

15



Therefore the minimization problem (3.9) is separable with respect to the components of (λ,µ) ∈ Rp×Rq̃(x)
+ :

(λ∗i (x))1≤i≤p and (µ∗i (x))i∈Ĩ(x) are the respective solutions to the minimization problems:

∀i ∈ 1 . . . p, λ∗i (x) = arg min
t∈R

(
t2||∇gi(x)||2V + 2t〈∇J(x),∇gi(x)〉V

)
,

∀i ∈ Ĩ(x), µ∗i (x) = arg min
t∈R
t≥0

(
t2||∇hi(x)||2V + 2t〈∇J(x),∇hi(x)〉V

)
,

which yields eventually:

λ∗i (x) = −〈∇J(x),∇gi(x)〉V
||∇gi(x)||2V

, µ∗i (x) =

 0 if 〈∇J(x),∇hi(x)〉V ≥ 0,

− 〈∇J(x),∇hi(x)〉V
||∇hi(x)||2V

otherwise.

Hence, µ∗i (x) is positive if and only if following the descent direction −∇J(x) leads to an increase (i.e.
violation) of the ith inequality constraint.

In the general case where all the constraint gradients are not mutually orthogonal, the interpretation of
µ∗(x) is similar, up to the additional complication that (3.9) accounts for the possible alignments between
different constraint gradients. In the following, with a slight abuse of language, we shall nevertheless refer

to the indices i ∈ Ĩ(x) \ Î(x) as those associated to constraints which are ‘aligned’ with ∇J(x), in the sense
that −Dhi(x)ξJ(x) ≤ 0, i.e. the violation hi(x) decreases along −ξJ(x) (or, at least, stays constant).

3.4. Decrease properties of the trajectories of the null space ODE

The final result of this section is the counterpart of Proposition 1 in the case of the equality and inequality
constrained optimization problem (1.1); see Appendix A for the proof and further remarks.

Proposition 5. Assume that the trajectories x(t) of the flow{
ẋ(t) = −αJξJ(x(t))− αCξC(x(t))

x(0) = x0,
(3.26)

with ξJ and ξC given by (3.7) and (3.24) exist on some interval [0, T ] for T > 0 and are such that:

(a) the set Ĩ(x(t)) defined in (1.6) is constant over [0, T ]:

∀t ∈ [0, T ], Ĩ(x(t)) = Ĩ(x0);

(b) the constraints remain qualified along the flow x(t), in the sense of the LICQ condition (3.3).

Then the following properties hold true:

(1) The violation of the constraints decreases exponentially:

∀t ∈ [0, T ], g(x(t)) = e−αCtg(x0) and hĨ(x0)(x(t)) ≤ e−αCthĨ(x0)(x0). (3.27)

(2) J(x(t)) decreases ‘as soon as the violation (3.27) of the constraints is sufficiently small’ in the fol-
lowing sense. Assume that rank(DCĨ(x0)(x)) is maximal for all x in K = {x ∈ V | ||CĨ(x0)(x)||∞ ≤
||CĨ(x0)(x0)||∞} and that:

sup
x∈K
||∇J(x)||V |σ−1

p (x)| < +∞. (3.28)

where σp(x) is the smallest singular value of DCĨ(x)(x). Then there exists a constant C > 0 such

that

∀t ∈ [0, T ], ||ΠCÎ(x(t))
(∇J(x(t)))||2V > Ce−αCt ⇒ d

dt
J(x(t)) < 0. (3.29)

(3) Any stationary point x∗ of the flow (3.26) satisfies the KKT optimality conditions (3.6) which equiv-
alently rewrite: {

∇J(x∗) + Dg(x∗)T λ∗(x∗) + DhĨ(x∗)(x
∗)T µ∗(x∗) = 0,

g(x∗) = 0 and hĨ(x∗)(x
∗) = 0⇔ CĨ(x∗)(x

∗) = 0,
(3.30)

where (λ∗(x∗),µ∗(x∗)) ∈ Rp × Rq̃(x
∗)

+ are defined in (3.9) or (3.17).
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3.5. Comparison with the method of slack variables for inequality constraints

One popular method in the literature to address inequality constraints in problems such as (1.1), which is
significantly different from ours, is to introduce slack variables so as to turn them into equality constraints
of an augmented problem. In this section, we briefly review this idea which was investigated by [51] in the
context of dynamical system approaches to constrained optimization, and we compare it with our method
based on the dual problem (3.9).

The method of slack variables consists in replacing (1.1) with the following equivalent equality-constrained
problem, involving as many extra variables (z1, . . . , zq) ∈ Rq as there are inequality constraints in (1.1):

min
x∈V
z∈Rq

J(x)

s.t. C(x, z) = 0,
(3.31)

where the augmented vector of constraints C(x, z) reads:

C(x, z) :=


g(x)

h1(x) + 1
2z

2
1

...

hq(x) + 1
2z

2
q

 ∈ Rp+q.

Problem (3.31) is an equality constrained optimization problem of the form (2.1), set over the Hilbert space

Ṽ = V ×Rq with inner product 〈(x, z), (x′, z′)〉Ṽ = 〈x, x′〉V + zT z′. It can be solved thanks to the proposed
algorithm in Section 2; the associated gradient flow for (3.31) reads:

ẋ(t)

ż(t)

 = −αJ(I−DCT (DCDCT )−1DC)

∇J(x(t))

0

− αCDCT (DCDCT )−1C(x(t), z(t)),

x(0) = x0 and z(0) = z0,

(3.32)

where x0 ∈ V is the considered initial point in the resolution of (1.1), and the variable z is initialized with a
value z0 ∈ Rq in such a way that the inequality constraints of (1.1) which are inactive for x0 (i.e. hi(x0) < 0)

are associated with satisfied equality constraints Cp+i(x0, z0) = 0 in (3.31), namely z0,i =
√

2|hi(x0)|. In

the finite-dimensional setting V = Rk and when J , g and h are C2 functions, Schropp and Singer proved in
[51] that:

(i) Stationary points of the extended flow (3.32) are exactly critical points of (1.1), that is points x∗

satisfying (3.6) but whose multiplier µ(x∗) ∈ Rq may have negative entries.
(ii) Among all possible critical points of (1.1), only KKT points (fulfilling all three conditions (3.6) with

µ(x∗) ∈ Rq+) are asymptotically stable equilibria. As a consequence, the solution vector x(t) to (3.32)
converges in practice to a KKT point for problem (1.1).

The main differences between this slack variable approach and our new approach in Section 3.2 for dealing
with equality and inequality constrained problems can be summarized as follows.

(1) Any point xcrit satisfying the constraints (CĨ(xcrit)(x
crit) = 0) and ΠCĨ(xcrit)(∇J(xcrit)) = 0 is a

stationary point of the slack variable dynamical system (3.32), although it might violate the full KKT
condition (because (3.5) may yield negative values of the multiplier µĨ(xcrit)(x

crit)). BY contrast,

only true, feasible KKT points are stationary points of our flow (3.26), see Proposition 5.
(2) The computation of the directions ξJ(x) and ξC(x) involved in our flow (3.26) requires to invert

a matrix of size at most (p + q̃(x))-by-(p + q̃(x)) where q̃(x) is the number of active or violated
constraints at x. The process of equalizing inequality constraints as in [51, 54] rather requires to
invert the full (p+ q)-by-(p+ q) matrix DC(x, z)DC(x, z)T . Our method is therefore more efficient
if q̃(x)� q, that is, if a lot of inequality constraints are inactive.
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(3) At feasible points, our ODE (3.26) follows the best locally admissible descent direction (with respect
to the norm of V ), which is not the case for the extended ODE (3.32). Therefore, from a common
feasible point x, the ODE (3.26) always decreases the objective function with a ‘steeper slope’.

All in all, our numerical observations (not reported in the present article, but extensively discussed in [31])
tend to illustrate that both flows (3.26) and (3.32) may have equivalent performances for solving the non
linear optimization problem (1.1), this performance being measured in term of the total length covered by the
optimization path to reach the optimum. However, the two ODEs (3.26) and (3.32) yield optimization paths
of essentially different natures. Our null space flow (3.26) ignores inactive constraints and those aligned with
the gradient of the objective function. As a result, it produces non smooth paths that are more likely to reach
quickly the saturation of the constraint. The extended flow (3.32) yields smoother trajectories that more
likely stay away from the constraints, at the cost of inverting at every step the full matrix DC(x, z)DC(x, z)T

whose size equals the total number of constraints (active and inactive).

4. Numerical discretization and time-stepping schemes for the null space ODE

This short section describes practical implementation details for the discretization of the ODE (1.2) by an
explicit Euler scheme. Two important issues are discussed in Sections 4.1 and 4.2, respectively. First, we
propose small adaptations in the computation of ξJ(x) and ξC(x) in order to account for the discontinuous
changes of the right-hand side −(αJξJ + αCξC). Then, a merit function is proposed for adapting the time
step ∆t. The complete implementation of the algorithm is summarized in Section 4.3 below.

4.1. Accounting for discontinuities near the inequality constraint barriers

A potential issue when implementing the above Algorithm 1 comes from the fact that the vector fields ξJ and

ξC given by (3.7) and (3.24) suffer from the same discontinuities as the discrete index mapping x 7→ Ĩ(x).
As a result, abrupt oscillations of the discrete optimization path (xn) may occur near the boundary of the

feasible set: if hi(xn) = 0 and i ∈ Î(xn) for some index i ∈ {1, . . . , q}, then in the definition (3.24) of ξJ(xn),
the gradient ∇J(xn) is projected tangentially to the constraint hi, but it is not projected after any slight
deviation (e.g. due to the discretization) making this constraint inactive (hi(xn+1) < 0). This kind of issue
is very classical in the discretization of ODEs with discontinuous vector fields and can be tackled by various
methods, see e.g. [25] for a review.

In this section, we suggest a simple alternative: constraints are felt from a short distance by replacing the

set Ĩ(xn) in (1.6) with the set Ĩε(xn) of inequality constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ −εi}. (4.1)

The tolerances εi > 0 can be estimated in an automatic fashion, independently of an arbitrary rescaling
of the constraints, thanks to an posteriori bound which we now detail. Let h be a user-defined parameter,
representing the distance from a point x to the boundary of the feasible set at which we desire that the
constraints should be ‘felt’. This characteristic length h should be defined in accordance with the typical
distance ||xn+1 − xn||V between two successive iterates of the algorithm. For our shape optimization appli-
cations in Section 5, h is typically of the order of the size of the mesh discretizing the shape, see Section 5.3.2
below.

Assume now that the current point xn satisfies the constraint hi up to the uncertainty h on its location: by
this we mean that there exists some unknown point x∗n such that ||x∗n−xn|| ≤ h, hi(xn) > 0 and hi(x

∗
n) = 0.

Then the error h for the location of xn propagates to the constraint values hi(xn) according to the following
inequality:

hi(xn) = |hi(xn)− hi(x∗n)| ' |Dhi(xn)(x∗n − xn)| ≤ ||∇hi(xn)||V h. (4.2)

It is therefore natural to set
εi := ||∇hi(xn)||V h (4.3)

for the value of εi in (4.1).
Note that more generally, the a posteriori bound (4.2) allows to assert whether a constraint Ci(xn) can

be considered as satisfied or not with respect to the numerical discretization.

The dual problem (3.9) is then solved with Ĩε(xn) instead of Ĩ(xn) in order to obtain a new subset of

indices Îε(xn) which indicates which constraints are likely to be not aligned with the gradient ∇J(xn) when
18



approaching the barrier
{
hi = 0 | i ∈ {1, . . . , q}\Ĩ(xn)

}
. The null space and range space directions ξJ(xn)

and ξC(xn) in Definitions 3 and 4 are finally replaced with ξJ,ε(xn) and ξC,ε(xn) computed as follows:

ξJ,ε(xn) := (I−DCT
Îε(xn)

(DCÎε(xn)DC
T
Îε(xn)

)−1DCÎε(xn))∇J(xn), (4.4)

ξC,ε(xn) := DCTI∗ε (xn)(DCI∗ε (xn)DC
T
I∗ε (xn))

−1CI∗ε (xn)(xn), (4.5)

where I∗ε (xn) = Ĩ(xn)∪ Îε(xn) is the set of constraints that are either violated, saturated or not aligned with

the gradient ∇J(xn) at h = −(ε1, ..., εq)
T . The use of Îε(xn) in the definition of ξJ,ε(xn) ensures that the

gradient ∇J(xn) is being projected tangentially to the constraint in a small neighborhood of the boundary of

the feasible set. The use of I∗ε (xn) in (4.5) (instead of Ĩ(xn)) helps ensuring that the optimization trajectory

eventually stabilizes on the constraint barrier {hi = 0 | i ∈ Îε(xn)\Ĩ(xn)} (and not on the εi-level set). As a
result, no abrupt discontinuity occurs for ξJ,ε and ξC,ε when crossing the boundary of the feasible domain
as long as the optimization path stays in this neighborhood. Including inequality constraints indexed by

i ∈ Îε(xn) in the Gauss-Newton direction ξC,ε(xn) even if they are satisfied (i.e. if −εi ≤ hi(xn) ≤ 0) further
allows to stabilize the values of these constraints closer to zero.

4.2. Time step adaptation based on a merit function.

The ODE (1.2) is discretized by an explicit scheme of the form:

xn+1 = xn −∆tn
(
αJξJ(xn) + αCξC(xn)

)
, (4.6)

with a variable time step ∆tn > 0. The practical implementation of such a strategy is often guided by a
merit function, i.e. an indicator allowing to detect when a step has been too large, a situation where a choice
has to be made regarding whether the step should be reduced or accepted. For our null space algorithm, a
merit function which resembles very much that of the Augmented Lagrangian Method is readily available,
however with a specific choice of multipliers:

Lemma 3. For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn(x) := αJ

(
J(x) + Λ(xn)TCĨ(xn)(x)

)
+
αC
2
CĨ(xn)(x)TS(xn)CĨ(xn)(x) (4.7)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to the dual problem

(3.9) (see (3.17)) and S(xn) = (DCĨ(xn)(xn)DCĨ(xn)(xn)T )−1 is symmetric positive definite. Then (4.6) is

a gradient step for the decrease of the function meritxn , namely:

∇meritxn(xn) = αJξJ(xn) + αCξC(xn).

Proof. It is a straightforward computation of the gradient of (4.7). �

One possible implementation of an optimization strategy of the form (4.6) based on this merit function
is summarized in Algorithm 1, which requires the introduction of a few extra parameters:

• time step: choose a fixed time step ∆t > 0.
• maxtrials: the optimization time step is decreased up to maxtrials times until the value of the

merit function has decreased. If the merit function has not decreased after all maxtrials steps, the
smallest step is accepted.

• tolLag: a small threshold for the values of the Lagrange multipliers µ∗i under which these are
considered to be 0 (in our examples, we took tolLag=1e-8). This value should be set in accordance
with the machine precision and that of the quadratic programming solver for the dual problem (3.9).

Let us emphasize that these parameters have a quite intuitive and physical meaning, so that the task of
assigning their values does not involve fine tuning in practice.

Importantly, the rescaling induced by the inverse of the correlation matrix (DCĨ(xn)DC
T
Ĩ(xn)

)−1 normalizes

all the constraints; in particular, the whole Algorithm 1 as outlined below is invariant under multiplication of
the constraints by arbitrary positive constants (up to the machine precision for the step 3) and no preliminary
rescaling of the constraints is required from the user.
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4.3. Overall algorithm pseudo code

The resulting algorithmic implementation of our null space gradient flow taking into account both adaptations
of Section 4.1 and (4.2) is summarized in Algorithm 1 below.

Algorithm 1 Discretization of the null space gradient flow (3.26).

for n = 1 . . . maxiter do
1. Compute the gradients ∇J(xn), ∇gi(xn) and ∇hj(xn) for 1 ≤ i ≤ p, 1 ≤ j ≤ q by solving the

identification problems (2.3) and (2.4).
2. For all inequality constraints 1 ≤ i ≤ q, compute the tolerance

εi := ||∇hi(xn)||V h.

3. Determine the set Ĩ(xn) of active or violated constraints and the set Ĩε(xn) of constraints violated
“up to εi”:

Ĩ(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ 0}
Ĩε(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ −εi}.

4. Denoting by q̃ε := Card(Ĩε), solve the dual problem

(λ∗ε (xn),µ∗ε (xn)) := arg min
λ∈Rp

µ∈Rq̃ε(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨε(x)(x)T µ||V

to obtain the optimal Lagrange multiplier µ∗(xn). Infer the subset Îε(xn) ⊂ Ĩε(xn) indicating which
constraints must remain active (Proposition 4) :

Îε(xn) = {i ∈ Ĩε(xn) |µ∗ε,i(xn) > tolLag}. (4.8)

5. Let I∗ε (xn) := Ĩ(xn) ∪ Îε(xn). Extract the vectors CÎε(xn)(xn) and CI∗ε (xn)(xn) (defined by (1.3))

and compute
ξJ(xn) = (I−DCT

Îε(xn)
(DCÎε(xn)DC

T
Îε(xn)

)−1DCÎε(xn))∇J(xn),

ξC(xn) = DCTI∗ε (xn)(DCI∗ε (xn)DC
T
I∗ε (xn))

−1CI∗ε (xn).
(4.9)

for k = 1 . . . maxtrials do
Compute the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC(xn)).

if meritxn(xn+1) < meritxn(xn) then
break

end if
end for

end for

5. Application to shape optimization

With the previous material at hand, we are now in position to present our optimization strategy dedicated
to shape and topology optimization problems. In such applications, the optimization takes place within a
set of shapes in Rd (d = 2 or 3):

X = {Ω ⊂ D | Ω open and Lipschitz}, (5.1)

where D ⊂ Rd is an enclosing ‘hold-all’ domain. Since X is not even a vector space, the present context
does not fall into the optimization framework described in Sections 2 and 3. However, X can be locally
replaced by a subset which is naturally identified to the (infinite-dimensional) Banach space W 1,∞(D,Rd)
(see below). This is achieved in the framework of Hadamard’s method of boundary variations, as explained
in Section 5.1. Introducing a suitable Hilbert space V ⊂ W 1,∞(D,Rd), the set X can be endowed with a
manifold structure, where V plays the role of a tangent space, as we outline in Section 5.2. These facts make

20



it possible to extend our dynamical system (3.1) to this context, up to small adaptations, as described below.
Section 5.3 explains several implementations details of Algorithm 1 that are specific to shape optimization.
In particular, we highlight how the classical extension and regularization procedures of shape derivatives are
naturally included in our method when using the definition (2.3) of the Hilbertian transposition T .

5.1. Hadamard’s framework for gradient-based shape optimization

The essence of Hadamard’s method (see for instance [3, 35, 47, 57]) is to replace the complicated set of
shapes X in (5.1), by the set O defined in (1.11). which has the simpler structure of a Banach space. The
induced parametrization of shapes by vector fields θ ∈W 1,∞(D,Rd) gives rise to the following definition of
shape derivative.

Definition 5. A function F : X → R; Ω 7→ F (Ω) is shape differentiable at Ω ∈ X if the underlying mapping
θ 7→ F ((I+θ)Ω), from W 1,∞(D,Rd) into R, is Fréchet differentiable at θ = 0. The corresponding derivative,
denoted by DF (Ω) : W 1,∞(D,Rd)→ R, is called the shape derivative of F at Ω and the following expansion
holds in the vicinity of θ = 0:

F ((I + θ)Ω) = F (Ω) + DF (Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(D,Rd)

θ→0−−−→ 0. (5.2)

When dealing with shape optimization problems of the form (1.1), we consider objective and constraint
functions J : O → R, g : O → Rp and h : O → Rq which are shape differentiable in the sense of
Definition 5.

Since W 1,∞(D,Rd) is not a Hilbert space, the shape derivative DJ(Ω) of J at Ω (and those of g and
h) cannot be readily identified with a gradient vector ξ ∈ W 1,∞(D,Rd). To circumvent this drawback,
we introduce a Hilbert space of vector fields V ⊂ W 1,∞(D,Rd), with inner product 〈·, ·〉V , and where the
inclusion is continuous. This ensures that DJ(Ω), Dg(Ω) and Dh(Ω) are also continuous linear operators
on V , hence the definitions of the gradient ∇J(Ω) ∈ V and of the transposed operators DgT (Ω) : Rp → V ,
DhT (Ω) : Rq → V with respect to the inner product 〈·, ·〉V make sense; see Definition 1. For instance, the
gradient ∇J(Ω) ∈ V is obtained by solving the so-called identification problem:

∀θ ∈ V, 〈∇J(Ω),θ〉V = DJ(Ω)(θ). (5.3)

A typical choice as for the Hilbert space V ⊂ W 1,∞(D,Rd) is the Sobolev space V = Hm(D,Rd) with
m > 1 + d/2, equipped with its standard inner product (the inclusion Hm(D,Rd) ⊂ W 1,∞(D,Rd) being a
consequence of the Sobolev embedding theorem, see [18]). In this case, the identification problem (5.3) boils
down to a linear elliptic problem of order 2m.

Let us recall that, under mild regularity assumptions on the objective function J(Ω), the shape derivative
of J(Ω) can be written in the form of a boundary integral involving only the normal component of the
deformation θ (this is the so-called Hadamard structure theorem [35, 47, 56]). In practice, in all the considered
applications hereafter, there exists vJ(Ω) ∈ L1(∂Ω) such that:

∀θ ∈W 1,∞(D,Rd), DJ(Ω)θ =

∫
∂Ω

vJ(Ω) θ · nds. (5.4)

A common strategy in the literature (see for instance [10, 14, 21, 32, 24, 45]) consists in taking simply
H1(D,Rd) as for the Hilbert space V , equipped with the inner product

∀θ,θ′ ∈ V, 〈θ,θ′〉V =

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx, (5.5)

where γ > 0 is a user-defined parameter which can physically be interpreted as a length-scale for the
regularity of deformations θ (typically, γ = 3 hmin where hmin is the minimum edge length of the mesh
discretization). Note that this choice of V is an abuse of the above framework since H1(D,Rd) is not a
subspace of W 1,∞(D,Rd). However, under the very mild assumption vJ(Ω) ∈ L2(∂Ω), (which is for instance
satisfied in the situations considered in Section 6), the identification problem (5.3) is still well-posed because
(5.4) defines a continuous linear form on H1(D,Rd). In such a situation, the identification (5.3) to (5.5) is
interpreted as an extension and regularization of the normal velocity vJ(Ω) to the whole domain D. This
practice and its consistency with respect to optimization are very classical issues in shape optimization, see
[10, 14, 21, 24, 45]. In particular, variants can be considered for tuning more finely the smoothness of such
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xn+1

xn

∆tξn

TxnM

M

ρxn

Figure 2. Optimization on a manifold M : a retraction map ρxn is used to project a tangential
motion ∆tξn ∈ TxnM from xn ∈M back onto the optimization domain M .

extensions, or to prescribe non optimizable boundaries by imposing a zero Dirichlet boundary condition in
(5.4). Eventually, the choice V = H1(D,Rd) is quite convenient because this space is easily discretized with
P1 finite elements. Since this leads to very good results in practice, we shall rely on this strategy in the
following.

In light of the previous discussion, the proposed dynamical system (3.1) for tackling shape optimization
problems of the form (1.1) is extended and discretized as follows.

(1) The null space and range space directions ξJ(Ω) and ξC(Ω) are computed as elements of V =
H1(D,Rd) thanks to the formulas (3.7) and (3.24). This requires the computation of the gradient
∇J(Ω) and of the transposes DgT (Ω), DhT (Ω) via the resolution of identification problems such as
(5.3). In particular, steps 1 to 4 of Algorithm 1 including the resolution of the dual problem (3.9)
are achieved from the knowledge of the Fréchet derivatives and of their transposes.

(2) The update (3.2) of the design from one iteration to the next is performed by

Ωn+1 := (I −∆t(αJξJ(Ωn) + αCξC(Ωn)))Ωn, (5.6)

and the step 5 of Algorithm 1 is adapted accordingly.

The numerical procedure to account for the deformation from Ωn to Ωn+1 is presented in Section 5.3.

5.2. Manifold structures for shape optimization

Another interpretation of the Hadamard framework of Section 5.1 can be made in terms of manifold struc-
tures, see e.g. [13, 52]. This allows to extend the material of Sections 2 and 3 to shape optimization purposes
by using ‘classical’ optimization strategies on smooth embedded manifolds M ⊂ Rk. In such a context, a de-
scent direction at a point xn ∈M for some objective functional is typically sought as an element ξn ∈ TxnM
of the tangent space TxnM to M at xn; see e.g. [29, 1]. Then one relies on a retraction, i.e., a mapping
ρxn : TxnM →M , satisfying the following two consistency conditions:

ρxn(0) = xn

∀ξ ∈ TxnM ,
d

dt

∣∣∣∣
t=0

ρxn(tξ) = ξ.

The mapping ρxn then allows to convert ξn into a practical update on M :

xn+1 := ρxn(∆tξn), (5.7)

where ∆t > 0 is the descent step; see [2] and Figure 2. Since the new point xn+1 belongs to M , this
procedure can be repeated iteratively.

In the context of Section 5.1, the set of shapes X plays the role of the manifold M and, by Hadamard’s
method, in view of (1.11), the tangent space to X at Ω can be identified to W 1,∞(D,Rd). The corresponding
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retraction is, for any θ ∈W 1,∞(D,Rd),

ρΩ(θ) := (I + θ)(Ω). (5.8)

Formally, the set W 1,∞(D,Rd) may be interpreted as the tangent space to X at Ω and the mapping ρΩ,
which is defined by (1.11) on a neighborhood of θ = 0 in W 1,∞(D,Rd), plays the role of a retraction. Finally,
the bilinear form 〈·, ·〉V introduced in (5.3), can be interpreted as a metric on the ‘manifold of shapes’ X ,
see e.g. [52, 53] about this idea.

5.3. Implementation of the constrained gradient flow for level set based shape optimization

The employed level set framework for numerical shape and topology optimization is recalled in Section 5.3.1.
Further technical details about the practical implementation of Algorithm 1 are then presented in Sec-
tion 5.3.2.

5.3.1. Numerical shape optimization using the level set method and a mesh evolution strategy

Our numerical representation of shapes and their deformations relies on the level set method, pioneered in
[49], then introduced in the shape optimization context in [9, 62]. A given shape Ω inside the fixed ‘hold-all’
domain D is represented by means of a scalar, level set function φ : D → R such that:

φ(x) < 0 if x ∈ Ω,

φ(x) = 0 if x ∈ ∂Ω,

φ(x) > 0 if x ∈ D \ Ω.

(5.9)

The motion of a domain Ω(t) in D evolving over a period of time (0, T ), starting from a known shape
Ω(0) = Ω, according to a velocity field θ : D → Rd translates in terms of an associated level set function
φ(t, x) (i.e. (5.9) holds at every time t ∈ (0, T )) by the following advection equation:

∂φ

∂t
(t, x) + θ(x) · ∇φ(t, x) = 0, t ∈ (0, t), x ∈ D,

φ(0, x) = φ0(x), x ∈ D,
(5.10)

where φ0 is one level set function for Ω.
In the implementation of the discretized optimization flow (1.2), passing from the current iteration, indexed

by n to the next one n + 1 implies the motion of the corresponding shape Ωn along the descent direction
θn ∈ H1(D,Rd) given by

θn := −(αJ,nξJ(Ωn) + αC,nξC(Ωn)), (5.11)

for a small time step ∆tn. Here, the coefficients αJ and αC of the update procedure (5.6) may vary from
one iteration to the next, as reflected by the n subscript (this slight modification of Algorithm 1 is detailed
in Section 5.3.2 below). The level set function φn, corresponding to the current shape Ωn, is updated by
solving equation (5.10) on the current mesh Tn of D with θ = θn and φ0 = φn. After a time step ∆t the
new shape Ωn+1 is defined as {x ∈ D |φ(∆tn, x) < 0}.

In the implementation, we use the mesh evolution technique of our previous works [5, 32]. In a few words,
at every iteration n, the current shape Ωn is explicitly discretized as a submesh of a triangulated mesh Tn
of D as a whole (see e.g. Figure 10 below). After solving equation (5.10) thanks to an adapted solver (in
practice we use that of our previous work [20]), Tn is remeshed adaptively into a new mesh Tn+1 featuring
a discretization of Ωn+1 as a submesh, by using the open-source library Mmg [22].

Remark 7. In our method, the velocity θ ∈ H1(D,Rd) is a vector field, in contrast with more classical level
set methods [9, 62] that rather rely on a non linear Hamilton-Jacobi equation, which contrary to (5.10)
involves only the normal component of θ. In the latter case, it is enough to regularize only the normal
component θ · n (a scalar field) of the shape derivative; see [31] for more details.

23



5.3.2. Adaptive normalizations for the null space and range space directions

A few comments are in order regarding the appropriate scaling of the null and range space steps with respect
to the size of the mesh discretization in the practice of Algorithm 1, and the choice of variable coefficients
αJ,n and αC,n in the descent direction θn given by (5.11).

For stability reasons, the vertices of the current mesh Tn accounting for Ωn should move by a distance
which equals at most a few mesh elements in order to produce the subsequent shape Ωn+1. Hence, the
minimum edge length hmin of the computational mesh is a natural candidate for the limiting step size value
h in the discussion in Section 4.1. In our practical implementation, we set ∆t = 1 and a descent direction
θn ∈ H1(D,Rd) is computed by estimating

θn := −(αJ,nξJ(Ωn) + αC,nξC(Ωn)), (5.12)

where αJ and αC of the update (5.6) have been replaced by dynamic coefficients αJ,n and αC,n.

The parameters αJ,n and αC,n scaling the null space and range space steps ξJ(Ωn) and ξC(Ωn) are updated
dynamically in order to control the step size ||θn||L∞(D,Rd). Note that the || · ||L∞(D,Rd) norm is considered
because all values of the displacement θn should be of the order of the mesh size. We consider AJ and AC
two user-defined parameters, which are expressed in terms of the minimum edge length hmin for a clearer
intuitive meaning. The coefficients αJ,n and αC,n are updated at every iteration according to the following
rules:

αJ,n :=


AJhmin

||ξJ(Ωn)||L∞(D,Rd)

if n < n0

AJhmin

max(||ξJ(Ωn)||L∞(D,Rd), ||ξJ(Ωn0)||L∞(D,Rd))
if n ≥ n0

(5.13)

αC,n := min

(
0.9,

AChmin

max
(
1e-9, ||ξC(Ωn)||L∞(D,Rd)

)) . (5.14)

These normalizations ensure that the null space and range space steps always remain smaller than multiples
AJ and AC of the mesh size:

∀n ≥ 0, ||αJ,nξJ(Ωn)||L∞(D,Rd) ≤ AJhmin and ||αC,nξC(Ωn)||L∞(D,Rd) ≤ min(0.9, AChmin).

Actually, the null space contribution αJ,nξJ(Ωn) of θn is scaled so that its size is exactly AJhmin during the
first n0 iterations:

∀1 ≤ n ≤ n0, ||αJ,nξJ(Ωn)||L∞(D,Rd) = AJhmin.

Then, ξJ(Ωn) is allowed to converge to 0 as n→∞.
The range step αC,nξC(Ωn) is also set to remain smaller than the constant 0.9, in view of the stability

condition 0 < αC∆t < 2 (see Remark 13). The role of the constant 1e-9 is only to avoid division by 0 when
no constraint is active.

Remark 8. Since we measure step sizes with the norm ||θn||L∞(D) rather than with the Hilbertian norm
||θn||V = ||θn||H1(D,Rd), the tolerance bounds (4.3) need to be updated with respect to this norm as follows:

εi := hmin

∫
∂Ω

|vCi(Ωn)|ds,

where it is assumed that the shape derivative of each constraint functional Ci(Ωn) can be written as a
boundary integral, as in (5.4), featuring the scalar field vCi(Ωn):

DCi(Ωn)(θ) :=

∫
∂Ω

vCi(Ωn)θ · nds .

6. Applications to shape optimization in the design of mechanical structures

In this final section, we illustrate the efficiency of our optimization strategy with practical structural design
examples. We first treat in Section 6.1 a structural design problem in thermoelasticity which was tackled in
[64] with an Augmented Lagrangian Method. This case study is interesting because it features a situation
where an initially violated inequality constraint is not saturated by the final design. Then, we treat in
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Section 6.2 a multiple load bridge test case in order to show the ability of the method to handle multiple
objective criteria or multiple constraint functions.

6.1. Minimum compliance problem in thermoelasticity: detection of unsaturated constraints

In this section, we reproduce a test case coming from Xia and Wang [64] concerned with compliance min-
imization in thermoelasticity. The objective of our study is to illustrate (i) the efficiency of our null space
optimization scheme in contrast with the classical Augmented Lagrangian strategy used in [64] and (ii) the
importance of the use of the dual problem (3.9) for discriminating the inequality constraints which must
remain saturated in the course of the optimization process.

The structure Ω ⊂ D is sought within the fixed ‘hold-all’ domain D = [0, 2] × [0, 1]. It is made of an
elastic material characterized by Lamé parameters λ = 11510, µ = 7673, thermoelastic coefficient α = 0.77
and reference temperature Tref = 0. A constant temperature field T = Tref + ∆T is applied on the whole

ΓD

u = 0

D

T = Tref + ∆T

Γg

g

1

2

Figure 3. Setting for the thermoelastic compliance minimization problem of Section 6.1, issued from [64].

structure, which induces thermal expansion of the material. The boundary of the considered shape is divided
into three parts:

∂Ω = ΓD ∪ Γg ∪ Γ,

where:

• ΓD is the reunion of the (non optimizable) left and right-hand boundaries of D on which the structure
Ω is clamped.

• Γg is a (non optimizable) small portion of the middle of the bottom boundary on which a vertical
traction load g = (0,−1/|Γg|) is applied. In our implementation, we set |Γg| = 0.0125.

• Γ is the remaining part of ∂Ω which is traction-free; it is the only part of ∂Ω which is subject to
optimization.

The setting is reproduced on Figure 3. Both thermal and traction loads ∆T and g induce an elastic
displacement u ∈ H1(Ω,Rd) which is given by the solution of the linearized thermoelasticity system:

−div(σs(u,∆T )) = 0 in Ω

σs(u,∆T )n = g on Γg

σs(u,∆T )n = 0 on Γ

u = 0 on ΓD,

(6.1)

where σs(u,∆T ) is the thermoelastic tensor given by

σs(u,∆T ) := Ae(u)− α∆Tdiv(u)I,

associated to the Hooke’s law

Ae(u) := 2µe(u) + λTr(e(u))I, with e(u) = (∇u+∇uT )/2.
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Our goal is to minimize the compliance of the structure (that is, to maximize its rigidity) under a volume
inequality constraint:

min
Ω∈X

J(Ω,u(Ω)) :=

∫
Ω

Ae(u) : e(u)dx

s.t. Vol(Ω) :=

∫
Ω

dx ≤ Vtarget.

(6.2)

The shape derivatives of J and Vol are classically given by (see [64, 31]):

DJ(Ω)(θ) =

∫
Γ

(−Ae(u) : e(u) + 2α∆Tdiv(u))θ · nds, DVol(Ω)(θ) =

∫
Γ

θ · nds,

where n denotes the normal vector to ∂Ω, pointing outward Ω.
The upper bound for the volume of the structure is set to Vtarget = 0.4. This problem is particularly

interesting when it comes to illustrate the relevance of our dual problem strategy in the determination of
whether an active constraint is aligned with the minimization of the objective function or not. Indeed, as
we shall see below, the optimized design may not saturate the volume constraint Vol(Ω) ≤ Vtarget depending
on the considered value of the parameter ∆T .

Following [64], the optimization problem is solved for four values of ∆T (∆T = 0, 5, 10 or 20). In
order to illustrate the importance of the resolution of the dual problem (3.9), we also consider a strategy
(labeled ‘no-dual ’) obtained by ignoring the corresponding step 4 in Algorithm 1 and by setting ‘naively’

Îε(xn) = Ĩε(xn) in the subsequent steps.

Results are shown on Figure 4 where the convergence histories for the objective function and the volume
constraint are plotted for each test case. The numerical values for the final objective and constraint func-
tionals are provided in Table 1, while the initial and optimized shapes are shown on Figs. 5 and 6. Note that
our numerical values do not coincide exactly with those in [64] because their original physical parameters
were multiplied by nondimensionalization constants which are more compatible with our setting. However
we clearly retrieve very similar optimized shapes.

Notice the smooth and rather fast convergence of our optimization strategy, whereas in the original paper
(Figure 8 of [64]), convergence is obtained in about 1000 iterations, after a lot of oscillations of the constraint
function.

Interestingly, and as observed in [64], we retrieve the fact that the volume constraint Vol(Ω) ≤ Vtarget
is saturated for the first two test cases ∆T = 0 and ∆T = 5, and is not saturated otherwise. In the

first two cases, the sets Îε(Ωn) and Ĩε(Ωn) remain identical, hence no difference is observed between the
strict application of Algorithm 1 and its ‘no-dual’ variant (the corresponding convergence histories for the
latter strategy are therefore not represented on Figure 4 in these cases). However, significant differences are
observed for the two situations ∆T = 10 and ∆T = 15: the strategy labeled ‘no-dual’ proceeds by enforcing

all saturated or violated constraints in Ĩε(Ωn), and not only those in Îε(Ωn) (which is empty in the present
case). As a result, it is not able to detect that a better descent direction could be obtained by allowing
the constraint to become unsaturated (and as a matter of fact, to become ‘better’ satisfied): the constraint
remains saturated and a worse optimal final design is obtained at convergence.

6.2. Shape optimization of a bridge structure subjected to multiple loads

Let us now consider the shape optimization of a bridge-like structure Ω contained in a two-dimensional
rectangular hold-all domain D ⊂ R2 with size 10× 2. The purpose of this part is to show that the null space
gradient flow is able to handle multiple constraints.

The boundary ∂Ω of the bridge is divided into disjoint regions as:

∂Ω = Γ ∪ ΓD ∪
8⋃
i=0

Γi,

where

• ΓD is a non-optimizable part of the boundary on which the structure Ω is clamped, made of two
segments with unit length at the lower extremities of D.
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(a) Objective function J .
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(b) Volume constraint Vol(Ω) ≤ 0.4.

Figure 4. Convergence histories for the thermoelasticity test case of Section 6.1.

∆T Final J(Ω,u(Ω)) Final Vol(Ω)

0 0.0004891 0.4

5 0.0008546 0.4003

10 0.001451 0.3814

15 0.002169 0.2462

10 (no dual) 0.001457 0.4001

15 (no dual) 0.002522 0.4004

Table 1. Optimized compliance and volume values for the thermoelasticity test case of Section 6.1.
The results are analogous to those of [62].

Figure 5. Initial design considered for each of the test cases of Section 6.1

• For i = 0, ..., 8, Γi is a non-optimizable subset of the upper side of D with respective abscissa[
i 10

9 , (i+ 1) 10
9

]
; Γi is subjected to a unit, vertical downward traction load gi = (0,−1).

• The remaining region Γ is traction-free and it is the only region of ∂Ω which is subject to optimization.

Non-optimizable material layers of width 0.1 are additionally imposed on the upper part of the domain D
and above each component of ΓD and we impose that the structure do not infringe on a thin layer of void
at the bottom of ∂D; see Figs. 7 and 8. We consider nine different load cases, that are obtained by applying
successively and exclusively each of the loads gi on the region Γi. In each situation, the corresponding elastic
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(a) ∆T = 0 (b) ∆T = 5 (c) ∆T = 10

(d) ∆T = 15 (e) ∆T = 10 (no dual) (f) ∆T = 15 (no dual)

Figure 6. Final designs computed for each of the test cases of Section 6.1.

ΓD ΓD

g0

Γ0

g1

Γ1

g2

Γ2

g3

Γ3

g4

Γ4

g5

Γ5

g6

Γ6

g7

Γ7

g8

Γ8

Figure 7. Geometric setting for the multiple load case test case

displacement ui is the unique solution in H1(Ω,Rd) to the linearized elasticity system:

−div(Ae(ui)) = 0 in Ω

Ae(ui)n = 0 on Γ

Ae(ui)n = gi on Γi

Ae(ui)n = 0 on Γj for j 6= i

ui = 0 on ΓD.

(6.3)

The Young’s modulus and the Poisson’s ratio are set to E = 15 and ν = 0.35, which corresponds to λ = 12.96
and µ = 5.56. Let us emphasize once again (see Section 5.3.1) that the shape is exactly meshed at each
iteration (see Figure 10 below), so that each state equation (6.3) is solved by means of a standard finite
element method on the meshed subdomain Ωn (without resorting to ersatz material approaches as in e.g.
[9]).

Starting from the initial structure Ω0 depicted in Figure 8, we minimize the volume Vol(Ω) of the structure
Ω and maximize the collection of compliances Ci(Ω) (for each load case gi), which are defined by:

Ci(Ω) :=

∫
Ω

Ae(ui) : e(ui)dx. (6.4)

Their shape derivatives read (see e.g. [9, 35]):

DVol(Ω)(θ) =

∫
Γ

θ · nds, DCi(Ω)(θ) = −
∫

Γ

Ae(ui) : e(ui)θ · nds. (6.5)
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Figure 8. Initialisation Ω0 (solid in black) for the shape optimization examples of Section 5. The
thin white layer at the bottom is a non optimizable part of the domain.

In what follows, two possible configurations are investigated for the shape optimization of the bridge
structure, featuring either multiple constraint functions (in Section 6.2.1) or multiple objective criteria (in
Section 6.2.2).

6.2.1. Volume minimization with maximum compliance constraint

At first, the volume Vol(Ω) is minimized and we require that each individual compliance Ci(Ω) do not exceed
a given threshold C:

min
Ω∈X

Vol(Ω)

s.t. Ci(Ω) ≤ C for all i ∈ I
(6.6)

where I ⊂ {0, 1, . . . , 8} is a set of indices selecting the considered load cases. We solve (6.6) in the following
three configurations:

(1) Case 1: single load case: I = {4} (only the central load g4 is applied)
(2) Case 2: three load case: I = {0, 4, 8} (only the central load g4 and the two extreme loads g0 and g8

are applied).
(3) Case 3: all load cases: I = {0, 1, . . . , 8} (all nine loads are considered).

The value of C in (6.6) is set to a fraction of the maximum of the compliances Ci(Ω0) of the initial design
Ω0 (reported on Figure 8):

C = 0.7 max
i=0,...,8

∫
Ω0

Ae(ui) : e(ui)dx. (6.7)

Let us emphasize that for this example (and the next ones), no fine tuning of the algorithm parameters
AJ and AC (determining the update of the values of αJ,n and αC,n in (5.12)) of Section 5.3.2 is required.
The only intuition guiding our choice for this particular test case is that the value of AJ should be set lower
than AC . Indeed, a too large value of AJ might entail a too fast decrease of the volume, which would incur
dramatic topological changes violating the rigidity constraints. Therefore these parameters are set to AJ = 1
and AC = 2 for this test case. The minimum mesh size is hmin = 0.03.

The optimized shapes obtained in the three aforementioned situations are represented on Figure 9. The
meshes of the initial and final designs, as well as several intermediate shapes corresponding to the nine load
test-case are shown on Figs. 10 and 11. The convergence histories in the three situations are reported on
Figs. 12 to 14. They allow to verify the decrease of the objective function even after the saturation of the

constraints. Note that for this example and the one to follow, the sets Îε(Ωn) and Ĩε(Ωn) (see Algorithm 1)
happen to coincide at every iteration. As expected, the optimum value found for the volume of the solid
distribution increases with the number of constraints. The major structural change between the different
situations is the addition of extra vertical bars of material near the extremities of the structure.

6.2.2. Min/Max compliance optimization with a volume constraint

Now, the maximum value of the compliances Ci(Ω) is minimized with an equality volume constraint:

min
Ω∈X

max
i∈I

Ci(Ω)

s.t. Vol(Ω) = ρ0Vol(D)
(6.8)
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(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

Figure 9. Optimized shapes for three possible configurations of the volume minimization problem
subject to maximum compliance constraint (Section 6.2.1).

Figure 10. Meshes of the initial and final shapes for the nine load case of Figure 9c (Section 6.2.1).

for a target volume fraction ρ0 = 0.5 of elastic material and for the three load sets I introduced in the
previous subsection. This problem may be given the form (1.1) after introducing a slack variable m:

min
(Ω,m)∈X×R

m

s.t.

{
Vol(Ω) = ρ0Vol(D)

Ci(Ω) ≤ m for all i ∈ I.

(6.9)

The optimization is now performed with respect to both the slack variable m and the domain geometry
Ω, which demands minor adaptations of our optimization algorithm (similar e.g. to those in Section 3.5):

the optimization set X × R is equipped with the tensorized tangent space Ṽ = V × R and differentials are
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Figure 11. Intermediate minimizing shapes for the nine load case of the volume minimization
problem of Section 6.2.1 (iterations 0, 5, 10, 20, 80, and 300).
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.44Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C4 = 1.29.

Figure 12. Convergence histories for the single load case of Section 6.2.1.
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(a) Objective function J(Ω) = Vol(Ω). Final value:

Vol(Ω) = 0.46Vol(D).
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(b) Constraints (compliance values Ci). Final values:

C0 = 1.29, C4 = 1.30, C8 = 1.28.

Figure 13. Convergence history curves for the three load case of Section 6.2.1.
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.50Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C0 = 1.29, C1 = 1.28, C2 = 1.28, C3 = 1.29, C4 = 1.29,

C5 = 1.29, C6 = 1.29, C7 = 1.30, C8 = 1.29.

Figure 14. Convergence history curves for the nine load case of Section 6.2.1.

identified to gradients thanks to the inner product 〈·, ·〉Ṽ defined by

∀(v, w) ∈ H1(D,R)×H1(D,R), (l,m) ∈ R× R, 〈(v, l), (w,m)〉Ṽ := 〈v, w〉V + lm, (6.10)

where 〈·, ·〉V is the scalar product of (5.5). The slack variable m is initialized with the maximum value of
the compliance of the initial structure Ω0 over all the considered loads:

m0 := max
i∈I

Ci(Ω0), (6.11)

and its values mn are then updated along with the shape Ωn according to Algorithm 1.

The resulting optimized structures are shown on Figure 15 for each of the three considered configurations
and the associated convergence histories are displayed on Figs. 16 to 18 for the single, triple and nine load
cases respectively. Note that sudden, abrupt peaks on the constraint curves correspond to topological changes
(e.g. at iteration 38 for the nine load case) for which the displacements corresponding to the extremal loads
g0 and g8 are especially sensitive. We observe the decrease of all the functionals Ci(Ω) even after all the
inequality constraints have been saturated, which occurs as soon as the compliances reach a common value.
As expected, the optimized design found for the nine load minimum compliance case (Figure 9c) is similar (up
to a few bars) to the corresponding one found for the volume minimization (Figure 15c): indeed, both cases
reach at convergence a volume fraction Vol(Ω) = 0.5Vol(D) and a maximum compliance max Ci(Ω) ' 1.30.
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(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

Figure 15. Optimized shapes for three possible configurations of the min/max optimization prob-
lem (6.9) of Section 6.2.2.
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(a) Objective function m. Final value m = 1.13.

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8 C4

(b) Compliance Ci(Ω). Final value: C4 = 1.14.

0 50 100 150 200 250 300

0.30

0.35

0.40

0.45

0.50

(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraint Hi = Ci −m

Figure 16. Convergence history curves for one load case of Section 6.2.2.
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(a) Objective function m. Final value m = 1.18.
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(b) Compliance Ci(Ω). Final values: C0 = 1.17, C4 =

1.19, C8 = 1.17.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:

Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraints values: Hi = Ci −m.

Figure 17. Convergence history curves for three load case of Section 6.2.2.
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(a) Objective function m (eqn. (6.9))

0 50 100 150 200 250 300

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

C0
C1
C2

C3
C4

C5
C6

C7
C8

(b) Compliance values Ci(Ω). Final values: C0 = 1.29,

C1 = 1.29, C2 = 1.30, C3 = 1.31, C4 = 1.31, C5 = 1.31,
C6 = 1.30, C7 = 1.29, C8 = 1.29.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraints Hi = Ci −m

Figure 18. Convergence history curves for nine load case of Section 6.2.2.
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Appendix A. Proofs and further remarks about trajectory flows

In this section, we provide the proofs of the two theoretical results in the main text devoted to the convergence
properties of the flow defined by (1.2). We start with the proof of Proposition 1.

Proof.

(1) Using the definition (2.15) of the flow, the decay property (2.13) together with the fact that ξJ(x)
is orthogonal to Ker(Dg(x)), we obtain:

d

dt
(g(x(t))) = −αCg(x(t)),

whence (2.16) follows easily.
(2) Let us introduce the eigenvalue decomposition

Dg(x)Dg(x)T =

p∑
i=1

σi(x)2ui(x)ui(x)T , where σ1(x) ≥ . . . ≥ σp(x) > 0, ui(x)Tuj(x) = δij ,

of the symmetric, positive definite p × p matrix Dg(x)Dg(x)T . Let then vi(x)† : V → R be the
linear form defined for any ξ ∈ V by vi(x)†ξ = σi(x)−1ui(x)TDg(x)ξ and vi(x) be the vector in
V such that ∀ξ ∈ V, 〈vi(x), ξ〉V = vi(x)†ξ; more explicitly, vi(x) = σi(x)−1Dg(x)T ui(x). These
definitions allow to write a singular value decomposition for Dg(x); it is indeed easily verified from
the definitions of ui(x) and vi(x) that:

Dg(x) =

p∑
i=1

σi(x)ui(x)vi(x)†, and Dg(x)T =

p∑
i=1

σi(x)vi(x)ui(x)T

with 〈vi(x),vj(x)〉V = vi(x)†vj(x) = δij . We now calculate:

DgT (DgDgT )−1g(x) =

p∑
i=1

σ−1
i (x)(ui(x)Tg(x))vi(x),

whence the following inequality results:

∀x ∈ V, |DJ(x)DgT (DgDgT )−1g| ≤ σ−1
p (x)||∇J(x)||V ||g(x)||. (A.1)

Since
d

dt
J(x(t)) = −αJDJ(x(t))ξJ(x(t))− αCDJ(x(t))ξC(x(t)),

it follows that d
dtJ(x(t)) < 0 as soon as αJ |DJ(x(t))ξJ(x(t))| > αC |DJ(x(t))ξC(x(t))|. Thus, (2.18)

holds true, and using (2.16) and (A.1), the constant C in there may be selected as

C = p
αC
αJ
||g(x0)|| sup

x∈K

[
σ−1
p (x)||∇J(x)||

]
. (A.2)

(3) Since the vectors ξJ(x) and ξC(x) are orthogonal for any point x ∈ V , a stationary point x∗ of (2.15)
must satisfy

Πg(x∗)(∇J(x∗)) = 0, and DgT (DgDgT )−1g(x∗) = 0, (A.3)

and so the first KKT condition in (2.6) is satisfied with the value λ = −(DgDgT )−1Dg(x∗)∇J(x∗)
of the Lagrange multiplier. Then left multiplication by Dg in the second identity in (A.3) implies
g(x∗) = 0, which completes the proof.

�

Remark 9. The solutions to the dynamical system (2.15) are defined for small times if ξJ and ξC are locally
Lipschitz vector fields, which is the case if e.g. J and g are of class C2 [26]. In the case where V is finite-
dimensional, the assumption (2.17) is satisfied if the set K = {x ∈ V |g(x) ≤ g(x0)} is bounded and the
functions J and g are C1 functions. It is worth noting that even if not enough regularity assumptions hold
to ensure the existence of solutions to the continuous (2.15), similar properties to those of Proposition 1 can
be proved for the discretize version

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)), (A.4)
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which is sufficient for optimization purposes. One can indeed verify that, in the latter context:

(1) At first order, the constraints vanish at a geometric rate: g(xn+1) = (1− αC∆t)g(xn) + o(∆t).
(2) If x∗ is an accumulation point of the sequence (xn)n∈N, then g(x∗) = 0 and x∗ is a KKT point of

the problem (2.1), satisfying (2.6).

Remark 10. In our design of the update rule (2.15) with (2.7) and (2.8), it is possible to control more
accurately the pace at which each of the constraints decreases: let us indeed introduce a diagonal matrix of
positive coefficients K = diag(κi)1≤i≤p and replace the definition (2.8) of ξC(x) by

ξC(x) := DgT (DgDgT )−1Kg(x).

Then it can be shown along the lines of the previous discussion that each constraint function gi decreases at
its own rate κiαC along the solution x(t) of (2.15):

∀t ∈ [0, T ], gi(x(t)) = e−κiαCtgi(x0).

Now we prove Proposition 5.

Proof.

(1) The definition (3.7) of ξC(x(t)) implies that DCĨ(x(t))ξC(x(t)) = CĨ(x(t))(x(t)), and since −ξJ(x(t))

is positively proportional to ξ∗(x(t)) (Proposition 3), it holds

DCÎ(x(t))ξJ(x(t)) = 0, −DhĨ(x(t))\Î(x(t))(x(t))ξJ(x(t)) ≤ 0.

Therefore we obtain

d

dt
CÎ(x(t))(x(t)) = −αCCÎ(x(t))(x(t)) and

d

dt
hĨ(x(t))\Î(x(t))(x(t)) ≤ −αChĨ(x0)\Î(x0)(x(t)) (A.5)

whence (3.27) follows by application of Gronwall’s lemma.
(2) The proof is identical to that of Proposition 1.
(3) A stationary point x∗ of (3.26) satisfies by definition

− αJξJ(x∗)− αCξC(x∗) = 0. (A.6)

Left multiplication of this identity by DCĨ(x∗)(x
∗) yields:

− αJDCĨ(x∗)(x
∗)ξJ(x∗)− αCCĨ(x∗)(x

∗) = 0. (A.7)

Remembering now that from definition (3.8),

−DCĨ(x∗)ξJ(x∗) ≤ 0 and CĨ(x∗)(x
∗) ≥ 0,

equality in (A.7) can hold only if both terms vanish. In particular, we infer that CĨ(x∗)(x
∗) = 0,

a fact which implies ξC(x∗) = 0 and which encompasses the last two lines of the KKT conditions
(3.6). Returning to (A.6), we obtain that ξJ(x∗) = 0, which is the first line in (3.6). This completes
the proof.

�

Remark 11. The assumption (a) in Proposition 5, whereby the index set Ĩ(x(t)) remains constant is es-
sentially made to ensure that the right-hand side of the flow (3.26) is continuous. Indeed, in such a case,
the range space direction ξC(x(t)) is continuous by its definition (3.7), while the null space step ξJ(x(t)) is
continuous because

ξJ(x(t)) = ∇J(x(t)) + DCĨ(x(t))

λ∗(x(t))

µ∗(x(t))


and it can be shown that the multipliers (λ∗(x(t)),µ∗(x(t))) defined by (3.9) are continuous functions.

When the sets Ĩ(x) or Î(x) are subject to change (corresponding to inequality constraints becoming active
or inactive), the ODE (3.26) has a discontinuous right-hand side and is only defined formally; we conjecture a
rigorous mathematical meaning could still be provided in a weaker sense with the theory of non smooth ODEs,

see e.g. [25, 33] or [11]. At a time T corresponding to a sudden change of the index set Ĩ(x(t)), we assume that

the solution x(t) can be extended by restarting the ODE (3.26) with the new index set Ĩ(x(T )). Under this
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circumstance and by construction of ξJ(x(t)) and ξC(x(t)), the bound hĨ(x0)(x(t)) ≤ e−αCthĨ(x0)(x(0)) still

holds while the other constraints remain saturated or satisfied for t ≥ T : hĨ(x(t))\Ĩ(x0) = 0. Hence, assuming

this procedure can be extended for all times, all constraints are asymptotically satisfied. Properties (2) and
(3) then remain true, up to an adjustment of the constant C in (3.29) (which can be taken global since there

are finitely many possible sets Ĩ(x(t))). There might exist situations where the set of saturated constraints

Ĩ(x(t)) could oscillate indefinitely. However (2) states that x(t) always keeps improving (in the sense of
(3.29)), and (3) states that if x(t) eventually converges, it is necessarily towards a KKT point.

Remark 12. Assuming the index set Î(x(t)) eventually becomes stationary (which is expected to be the case
under suitable regularity assumptions on the admissible set), the ODE (3.26) reduces to the one considered
in [51, 65] involving only equality constraints. In such circumstances, it is possible to prove that all limit
points of x(t) are stationary points (satisfying in our case the KKT condition (3.30)), see Theorem 2.3 of [51].

Remark 13. In practice, the analysis of Proposition 5 is sufficient because, similarly to the conclusions of
Remark 9, analogous properties hold for the discrete scheme

xn+1 = xn −∆t
(
αJξJ(xn) + αCξC(xn)

)
. (A.8)

Indeed, one can easily check that:

(1) Up to first order, the violation of the constraints vanish at a geometric rate:

C(xn+1) = (1− αC∆t)C(xn) + o(∆t). (A.9)

This suggests that in order to obtain a stable scheme, one must a priori select αC and ∆t such that
0 < αC∆t < 2.

(2) If x∗ is an accumulation point of the sequence (xn)n∈N, then x∗ is feasible, i.e. CĨ(x∗)(x
∗) = 0 and

it is a KKT point for (1.1).

A flexibility of this ODE approach is that at the continuous level, the results of Proposition 5 do not depend
on the values of the parameters αJ > 0 and αC > 0. Therefore the convergence of the discrete scheme towards
the continuous trajectory should hold as soon as the discretization step size ∆t > 0 is sufficiently small. These
arguments however remain formal: a rigorous statement is out of the scope of this work and would require
a careful analysis and suitable regularity assumptions; see e.g. [43] for an instance of work discussing the
relations between the properties of continuous ODEs and those of their associated discretization schemes.
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