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Abstract. The purpose of this article is to introduce a gradient-flow algorithm for solving generic equality

or inequality constrained optimization problems, which is suited for shape optimization applications. We

rely on a variant of the Ordinary Differential Equation (ODE) approach proposed by Yamashita [48] for
equality constrained problems: the search direction is a combination of a null space step and a range

space step, which are aimed to reduce the value of the minimized objective function and the violation

of the constraints, respectively. Our first contribution is to propose an extension of this ODE approach
to optimization problems featuring both equality and inequality constraints. In the literature, a common

practice consists in reducing inequality constraints to equality constraints by the introduction of additional

slack variables. Here, we rather solve their local combinatorial character by computing the projection of the
gradient of the objective function onto the cone of feasible directions. This is achieved by solving a dual

quadratic programming subproblem whose size equals the number of active or violated constraints, and which

allows to identify the inequality constraints which should remain tangent to the optimization trajectory. Our
second contribution is a formulation of our gradient flow in the context of—infinite-dimensional—Hilbert

space settings. This allows to extend the method to quite general optimization sets equipped with a suitable
manifold structure, and notably to sets of shapes as it occurs in shape optimization with the framework of

Hadamard’s boundary variation method. The cornerstone of this latter setting is the classical operation of

extension and regularization of shape derivatives. Some numerical comparisons on simple academic examples
are performed to illustrate the behavior of our algorithm. Its numerical efficiency and ease of implementation

are finally demonstrated on more realistic shape optimization problems.

Keywords. nonlinear constrained optimization, gradient flows, shape and topology optimization, null space
method.
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1. Introduction

Over the past decades, many iterative algorithms have been designed for generic constrained optimization
problems of the form:

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(1.1)

where X is the optimization set, J : X → R is a differentiable objective function, g : X → Rp and
h : X → Rq are differentiable functions accounting for p equality and q inequality differentiable constraints,
respectively. ‘Classical’ gradient-based algorithms for the numerical resolution of (1.1) include, e.g., Penalty,
Lagrangian, Interior Point and Trust Region Methods, Sequential Quadratic or Linear Programming (SQP
or SLP) [14, 36, 49, 29], the Method of Moving Asymptotes (MMA) [44], the Method of Feasible Directions
[51]. When dealing with a given application, the choice of one particular optimization method is partly
determined by the difficulty of implementation. As is often the case in constrained optimization, it turns out
that all the aforementioned techniques require fine tuning of the algorithm parameters in order to achieve
convergence with a reasonable computational efficiency; these parameters are e.g. the penalty coefficients
in the Augmented Lagrangian and Interior Point methods, the size of the trust region in SLP algorithms,
the strategy for approximating the Hessian matrix in SQP, the bounds on the asymptotes in MMA and
the Topkis parameters in MFD. The correct determination of these parameters is strongly case-dependent
and often unintuitive: for instance, the penalty coefficients must be neither ‘too large’ nor ‘too small’ in
Lagrangian methods, the SLP trust region size—which acts as a step length—cannot be chosen too small
(otherwise the involved quadratic subproblems may not have a solution).

In a slightly different spirit, a significant amount of work has been devoted to dynamical system ap-
proaches for addressing problems of the form (1.1): a solution is reached as the stationary point x∗ of a
continuous trajectory x(t), solving a suitable Ordinary Differential Equation (ODE). When X = Rk is a
finite-dimensional vector space and in the particular, unconstrained case where constraints are omitted in
(1.1), the most basic of these is the celebrated gradient flow:

ẋ(t) = −∇J(x(t)). (1.2)

The value of the objective t 7→ J(x(t)) is guaranteed to decrease along the optimization path, and the
Euler step size ∆t, which is the unique parameter involved in the discretization of (1.2), can always be
made sufficiently small so that a reduction of the value of the objective function is observed. In this sense,
such dynamical system approaches can be expected to be more reliable than the aforementioned iterative
algorithms, although they might not achieve the fastest rate of convergence. Extensions of the standard
gradient flow (1.2) have been proposed to account for equality constraints g(x) = 0. For instance, Tanabe
[45] proposed to replace the gradient ∇J(x) in (1.2) by its tangential projection ξJ(x) onto the feasible set.
Yamashita [48] suggested to add a Gauss-Newton direction ξC(x) to this ODE in order to smoothly lead
the optimization path toward the feasible domain; the resulting dynamical system for equality constrained
optimization reads:

ẋ(t) = −αJξJ(x(t))− αCξC(x(t)), (1.3)
2



where ξJ and ξC are respectively defined by

ξJ(x) = (I−DgT (DgDgT )−1Dg)∇J(x), (1.4)

ξC(x) = DgT (DgDgT )−1g(x), (1.5)

with I the identity mapping and (Dg(x))ij = ∂jgi(x) the Jacobian matrix of the constraint function g(x)
(we shall omit the dependence with respect to x when the context is clear). The descent direction ẋ is a
combination of the so-called ‘null space’ direction ξJ(x) ∈ Ker(Dg(x)) and ‘range space’ direction ξC(x) ∈
span(DgT (x)), lying respectively in the null space of the constraints and in its orthogonal complement. For
this reason, we call the ODE (1.3) a ‘null space’ gradient flow. In (1.3), αJ , αC > 0 are two (facultative)
parameters that we choose to introduce in order to scale how fast the objective function should be decreased
which respect to the violation of the constraints. This decomposition of the descent direction ensures that
the constraints vanish at an exponential rate, namely g(x(t)) = e−αCtg(x0), while the objective function
decreases along the direction −ξJ(x(t)) (see [48] and Proposition 1 hereafter). The discretization of the
flow (1.3) can be related to SQP (see [38]) and to null space iterative methods [13, 14, 36] (which, to our
knowledge, apply only to equality-constrained optimization).

When it comes to handling inequality constraints, the most common approach consists in introducing q
slack variables {zi}1≤i≤q ∈ Rq so as to convert the q inequalities hi(x) ≤ 0 for 1 ≤ i ≤ q into as many equality

constraints hi(x) + z2
i = 0, before then solving the ODE (1.3) in the augmented space (x, z) ∈ Rk × Rq. It

is even possible to eliminate the variables zi from the latter ODE if the initialization is feasible, see [32, 41].
Schropp and Singer showed in [38] that stationary points of the resulting dynamical system fulfill partially
the Karush Kuhn Tucker (KKT), necessary first-order optimality condition: at such a stationary point x∗,
there exist multipliers (λ(x∗),µ(x∗)) ∈ Rp × Rq such that

∇J(x∗) + Dg(x∗)Tλ(x∗) + Dh(x∗)Tµ(x∗) = 0, and hi(x
∗)µi(x

∗) = 0 for i = 1, ..., q.

However, the complete set of KKT conditions may not be satisfied because of possible negative values of
some components of the Lagrange multiplier µi(x

∗) < 0. Nevertheless, this strategy proves efficient in
practice because among all possible stationary points, only those satisfying the complete KKT conditions
are asymptotically stable; see again [38] about this point.

The contributions of the present article are twofold. First, we propose an extension of the flow (1.3)
which is able to account for inequality constraints without the need to increase the size of the problem
with auxiliary slack variables. Our approach relies on a suitable dual program for the resolution of the
combinatorial character of the inequality constraints: we precisely identify to which subset of the active
inequality constraints the optimization path is allowed to ‘unstick’ (thus re-entering into the feasible domain)
and, conversely, to which inequality constraints it must remain tangent. The resulting dynamical system
is slightly more robust than those based on slack variables, since we shall see that all its stationary points
are true KKT points of (1.1), and conversely. More specifically, for a given subset of indices I ⊂ {1, . . . , q},
denote hI(x) := (hi(x))i∈I the corresponding inequality constraints and CI(x) the matrix

CI(x) :=

 g(x)

hI(x)

 . (1.6)

Then, for inequality constrained problems, we define new directions ξJ(x) and ξC(x) in (1.3) as follows:

ξJ(x) = (I−DCT
Î(x)

(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (1.7)

ξC(x) = DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (1.8)

which involve two different subsets Î(x) ⊂ Ĩ(x) ⊂ {1, ..., q}: Ĩ(x) is the set of all saturated or violated
constraints, defined by

Ĩ(x) = {i ∈ {1, . . . , q} |hi(x) ≥ 0}, (1.9)

and Î(x) is a subset of Ĩ(x) identifying the constraints onto which the gradient of the objective function is

projected tangentially. The set Î(x) shall be obtained by solving a dual quadratic optimization subproblem

(equation (3.13) below) of the size of Ĩ(x). As detailed later in Proposition 4, this dual problem ensures that
ξJ(x) is the projection of the gradient ∇J(x) onto the cone of feasible directions. As a result, −ξJ(x) is
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always the best possible descent direction respecting locally both equality and inequality constraints. Since

the sets Ĩ(x) or Î(x) are subject to change as soon as inequality constraints become active or inactive, or if
not enough regularity holds, the ODE (1.3) has a discontinuous right-hand side and is defined only formally
(note that a rigorous mathematical meaning could still be provided with the theory of non smooth ODEs,
see [21, 28]). However and as we shall detail further on, its discretization makes sense and exhibits the same
decreasing properties as its continuous counterpart for sufficiently small steps ∆t.

Our second main contribution is the exposure of our dynamical system strategy in a setting that can
handle quite general ranges of infinite-dimensional optimization sets, including for instance those involved
in non parametric shape and topology optimization, which is our final goal. Here, a clear distinction needs
to be made between the Fréchet derivative and the gradient of the objective and constraint functionals: if
X = V is a Hilbert space, recall that the gradient is obtained by identifying the differential (a linear form
on V ) to an element in V via the Riesz representation theorem; see Definition 1. In order to account for the
infinite dimensionality, we shall specify clearly how (1.7) and (1.8) must be computed with respect to such
identification and used when the optimization set X is a Hilbert space or a more general set equipped with
a suitable manifold structure. As we have mentioned, our ultimate motivations actually originate from the
field of shape optimization based on the method of Hadamard, for which the minimization set X in (1.1) is
the set of all possible open Lipschitz subdomains Ω enclosed in some ‘hold-all’ domain D ⊂ Rd:

X = {Ω ⊂ D |Ω Lipschitz}. (1.10)

This set is not a vector space, but it can be locally parameterized by the Sobolev space W 1,∞(D,Rd). In
order to minimize a shape functional Ω 7→ J(Ω), we determine the best local variation of the form (I +θ)(Ω)
where θ ∈ W 1,∞(D,Rd) can be interpreted as a (sufficiently small) displacement field [35, 42, 30]. As we
shall review later on in Section 6.1, this endows X with a manifold structure which allows for gradient
based optimization [6, 47]. In shape optimization, the identification of the gradient is achieved by solving an
extension and regularization problem, which has some very important consequences in numerical algorithms,
see e.g. [17, 19]. We shall detail below how this step is naturally and consistently included in our algorithm, a
matter which so far does not seem fully clear in the literature concerned with constrained shape optimization:
common approaches rather compute a descent direction first, before performing a regularization, see e.g.
[23, 25].

In the open academic literature on shape optimization based on Hadamard’s method, advanced math-
ematical programming methods are not frequently described. Rather, for simplicity of implementation,
Penalty and Augmented Lagrangian Methods are often used, all the more when only one constraint is con-
sidered [6, 18]. Morin et. al. introduced a variant of SQP in [34] but treated a volume constraint with a
Lagrange Multiplier method. For more complex applications, some authors have introduced adapted vari-
ants of Sequential Linear Programming [23] or of the Method of Feasible Direction [25]. However, the high
dimensionality and complexity of the research space leaves very little intuition on how to select appropriately
the parameter values featured in the implementation of these latter algorithms. As a result, a fair amount
of trials and errors is often required in order to obtain satisfying minimizing sequences of shapes—a process
which can be very time consuming, especially when every optimization step depends on the resolution of
some physical model involving partial differential equations. As a result of the flexibility of the ODE ap-
proaches, our method depends truly only on the discretization step ∆t, and on the physically interpretable
dimensionless parameters αJ , αC , which makes them relatively easy to tune for the user.

Several contributions in the field of shape and topology optimization can be related to ours. In fact, our
method is very close in spirit to the recent work of Barbarosie et. al. [12], who derived an iterative algorithm
for equality constrained optimization which turns out to be a discretization of (1.3) with a variable scaling
for the parameter αC . For inequality constraints, the authors proposed (without convergence results) an
active set strategy also based on the extraction of an appropriate subset of the active constraints. However

their method relies on a different algorithm from ours, that yields generally a different set than Î(x), see
Remark 4 below for more details. Finally, Yulin and Xiaoming [50] also suggested to project the gradient
of the objective function onto the convex cone of feasible directions; nevertheless, they remained elusive
regarding how the projection problem is solved or how violated constraints are tackled.
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The present article is organized as follows. In Section 2, we review the definition and the properties of
the gradient flow (1.3) for equality constrained optimization in the case where the minimisation set X is a
Hilbert space. We detail then in Section 3 the necessary adaptations to account for inequality constraints and
in particular the introduction of the dual subproblem allowing to determine the null space direction ξJ(x).
Under some technical assumptions, we prove in Proposition 5 the convergence of the “null space” gradient
flow (1.3) towards points satisfying the full KKT condition. We detail algorithmic implementation aspects
in Section 4. In Section 5, we provide pedagogical illustrations of our method on simple academic test cases,
and we compare it to the method of slack variables for inequality constraints. We finally focus on shape
optimization applications in Section 6. After clarifying the necessary adaptations required to extend the
discretization of (1.3) to the set X defined by (1.10), we explain how our algorithm can be integrated within
the level set method for shape optimization [47, 6, 5]. We then implement and demonstrate numerically
this method on the optimal design of a bridge structure subject to multiple loads, which involves up to ten
constraints. A conclusion and several perspectives are outlined in Section 7.

2. Gradient flows for equality-constrained optimization in Hilbert spaces

In this section, we consider the case where the optimization takes place on a Hilbert space X = V with inner
product a(·, ·) and relative norm || · ||V = a(·, ·)1/2; see Section 6 for the description of the more general
situation associated to our shape optimization applications. The first focus of our study is the minimization
problem (1.1) where only equality constraints are present, namely:

min
x∈V

J(x)

s.t. g(x) = 0,
(2.1)

where J : V → R and g : V → Rp are Fréchet differentiable functions. Our purpose is to recall how the
ODE approach (1.3) can be extended to the present Hilbertian setting. Let us emphasize that, although
this section is elementary and not completely new, it is not easily found as is in the literature. Since it is
key in understanding our technique for handling inequality constraints in Section 3, the present context is
thoroughly detailed for the reader’s convenience.

The section is organized as follows. We first recall the definitions of the differential, the gradient, and
the transpose of the differential in the Hilbertian context. We then sketch briefly how the formulas (1.4)
and (1.5) can be formally obtained. We state the properties of the null space step ξJ(x) and its relation to
Lagrange multipliers by means of a dual problem in Lemma 1. Finally, we review the decrease properties of
the obtained dynamical system in Proposition 1.

2.1. Notations and first-order optimality conditions

We start by setting notations about differentiability and gradients in Hilbert spaces that we use throughout
this article. Our notations may differ from those used by other authors because we need a clear distinction
between gradient and Fréchet derivatives.

Definition 1.

(1) A vector-valued function g : V → Rp is differentiable at a point x ∈ V if there exists a continuous
linear mapping Dg(x) : V → Rp such that

g(x+ h) = g(x) + Dg(x)h+ o(h) with
o(h)

||h||V
h→0−−−→ 0. (2.2)

Dg(x) is called the Fréchet derivative of g at x.
(2) If g : V → Rp is differentiable, for any µ ∈ Rp, the Riesz representation theorem [15] ensures the

existence of a unique vector Dg(x)T µ ∈ V satisfying

∀µ ∈ Rp,∀ξ ∈ V, a(Dg(x)T µ, ξ) = µTDg(x)ξ, (2.3)

where the superscript T stands for the usual transpose of a vector in the Euclidean space Rp. The
linear operator Dg(x)T : Rp → V thus defined is called the transpose of Dg(x) .

5



(3) If J : V → R is a scalar function differentiable at x ∈ V , the Riesz representation theorem ensures
the existence of a unique vector ∇J(x) ∈ V satisfying

∀ξ ∈ V, a(∇J(x), ξ) = DJ(x)ξ. (2.4)

This vector ∇J(x) is called the gradient of J at x.

Throughout the paper, we shall sometimes omit the explicit mention to x in the notations for differentials
or gradients when the considered point x ∈ V is clear, so as to keep expressions as light as possible,

Remark 1.

(1) If V is the (finite-dimensional) Euclidean space Rk, equipped with the standard inner product, the
Fréchet derivative and the transpose of a vector function g : Rk → Rp are respectively given by
the Jacobian matrix (Dg)ij = ∂jgi and its transpose (DgT )ij = (DgT )ij = ∂igj . In the literature,
the differential matrix Dg is often denoted with the nabla notation ∇g. For the sake of clarity, we
reserve the ∇ symbol to denote the gradient of scalar functions J : V → R, and it holds that
∇J(x) = DJ(x)T 1. The curly transpose notation T appearing in the objects DJ(x)T or Dg(x)T

encodes at the same time the operator transposition (reversing the input and range spaces) and the
Riesz identifications.

(2) Still in the case where V = Rk is finite-dimensional and a is given by a symmetric definite positive
matrix A (that is a(ξ, ξ) = ξTAξ), the transpose of a p×k matrix M : Rk → Rp with respect to a is
MT = A−1MT . As we shall see in Section 6, in shape optimization applications, a often stands for
the bilinear form associated to an elliptic operator, hence the calligraphic transpose T encompasses
the extension and regularization step of the shape derivative, see Section 6.1 below. If V is replaced
by the tangent space to some Riemannian manifold, the bilinear form a can be interpreted as a
metric and ∇J(x), as given by (2.4), is the covariant gradient with respect to this metric.

(3) When V is a general Hilbert space, for a vector-valued function g : V → Rp with coordinates g(x) =
(gi(x))1≤i≤p, Dg : V → Rp is the ‘row’ matrix whose entries are the p linear forms Dgi(x) : V → R.
The transpose Dg(x)T is the ‘column’ matrix gathering the p vectors (∇gi(x))1≤i≤p obtained by
solving the p identification problems:

∀ξ ∈ V, a(∇gi(x), ξ) = Dgi(x)ξ; (2.5)

more precisely:

∀µ ∈ Rd, Dg(x)T µ =

p∑
i=1

µi∇gi(x).

In particular, the p× p matrix DgDgT ∈ Rp×p has entries

(DgDgT )ij = a(∇gi,∇gj) = Dgi(x)(∇gj(x)).

Throughout this section, the equality constraints are said to be qualified at a point x ∈ V if

rank(Dg(x)) = p, or equivalently Dg(x)Dg(x)T is an invertible p-by-p matrix. (2.6)

Note that (2.6) makes sense even at points x ∈ V where g(x) 6= 0, a fact that we shall use in the sequel.
Under the above notations, let us recall the classical first-order necessary optimality conditions (KKT) for
the equality-constrained problem (2.1) at some point x∗ ∈ V [14, 36] where the constraints are satisfied and
qualified: there exists λ(x∗) ∈ Rp such that, ∇J(x∗) + Dg(x∗)T λ(x∗) = 0,

g(x∗) = 0.
(2.7)

2.2. Definitions and properties of the null space and range space steps ξJ and ξC

The defining formulas (1.4) and (1.5) for the steps ξJ(x) and ξC(x), featured in the ODE (1.3), can be given
a meaning in the present Hilbert space setting owing to the definition (2.3) of the transpose:

6



Definition 2. Consider the optimization problem (2.1). For any point x ∈ V satisfying the constraint quali-
fication condition (2.6), we define the null space and range space directions ξJ(x) and ξC(x) by, respectively:

ξJ(x) := (I−DgT (DgDgT )−1Dg)∇J(x), (2.8)

ξC(x) := DgT (DgDgT )−1g(x). (2.9)

Let us recall a formal intuition motivating the expressions (2.8), (2.9) and the dynamical system (1.3).
Following the derivation of e.g. [11] and as is classical in Lagrange multiplier methods for optimization
judging from the KKT optimality conditions (2.7), it is natural to search for an iterative optimization
scheme (indexed by the subscript n) of the form

xn+1 = xn −∆t(αJ∇J(xn) + Dg(xn)T λn), (2.10)

where λn ∈ Rp is a tentative value for the Lagrange multiplier λ in (2.7), αJ is a user-defined coefficient and
∆t is the step increment between successive iterations. We determine the value of λn by imposing that the
constraint g(xn+1) decreases by a factor 1− αC∆t at the next iteration, up to some first-order error in ∆t.
Since

g(xn+1) = g(xn)−∆tDg(xn)(αJ∇J(xn) + Dg(xn)T λn) + o(∆t),

the requirement that g(xn+1) ' (1− αC∆t)g(xn) suggests the rule:

λn = (Dg(xn)Dg(xn)T )−1 (αCg(xn)− αJDg(xn)∇J(xn)) . (2.11)

We recognize then the scheme (2.25) (a time discretization of (1.3)) by replacing λn with the above value
(2.11) in (2.10).

2.2.1. Properties of the null space step ξJ

In the finite-dimensional case where V = Rk, it is well-known that the null space step ξJ(x) defined by (1.4)
is the orthogonal projection of the gradient ∇J(x) onto the null space of the constraints

Ker(Dg(x)) = {ξ ∈ V |Dg(x)ξ = 0},
which is also the tangent space at x to the manifold {y ∈ V | g(y) = g(x)}. Of course, this is still true when
V is a Hilbert space, as recalled in the next lemma.

Lemma 1. Let x ∈ V be a point satisfying the qualification condition (2.6). The following properties hold:

(1) The space V has the following orthogonal decomposition:

V = Ker(Dg(x))⊕ Ran(Dg(x)T ),

where we have introduced the range Ran(Dg(x)T ) := {Dg(x)T λ |λ ∈ Rp} of Dg(x)T .
Moreover, the operator Πg(x) : V → V defined by Πg(x) = I−DgT (DgDgT )−1Dg(x) is the orthogonal
projection onto Ker(Dg(x)).

(2) When Πg(x)(∇J(x)) 6= 0, −ξJ(x) = −Πg(x)(∇J(x)) is the best normalized feasible descent direction
for J in the sense that

− ξJ(x)

||ξJ(x)||V
= arg min

ξ∈V
DJ(x)ξ

s.t.

{
Dg(x)ξ = 0

a(ξ, ξ) ≤ 1.

(2.12)

(3) The null space direction ξJ(x) = Πg(x)(∇J(x)) is the closest least squares approximation to ∇J(x)
within the space Ker(Dg(x)). It alternatively reads

ξJ(x) = ∇J(x) + Dg(x)T λ∗(x), (2.13)

where the Lagrange multiplier λ∗(x) := −(DgDgT )−1Dg∇J(x) is the unique solution to the following
least squares problem that is the dual of (2.12):

λ∗(x) = arg min
λ∈Rp

||∇J(x) + Dg(x)T λ||V . (2.14)

Proof.
7



(1) Any ξ ∈ V may be decomposed as ξ = Πg(x)(ξ) + (I − Πg(x))(ξ), where it is straightforward to

verify that Πg(x)(ξ) ∈ Ker(Dg(x)), and (I−Πg(x))(ξ) ∈ Ran(Dg(x)T ). In addition, Ker(Dg(x)) and

Ran(Dg(x)T ) are orthogonal for the inner product a since from (2.3), one has,

∀ζ ∈ Ker(Dg(x)), ∀λ ∈ Rp, a(Dg(x)T λ, ζ) = λTDg(x)ζ = 0.

(2) It follows from the first point that for any ξ ∈ Ker(Dg(x)) such that ||ξ||V ≤ 1,

DJ(x)ξ = a(∇J(x), ξ) = a(Πg(x)(∇J(x)), ξ) ≥ −||Πg(x)(∇J(x))||V ,

whence we easily infer that ξ := −Πg(x)(∇J(x))/||Πg(x)(∇J(x))||V is the global minimizer of (2.12).
(3) The Pythagore identity yields, for any ξ ∈ Ker(Dg(x)),

||∇J(x)− ξ||2V = ||(I−Πg(x))∇J(x)||2V + ||Πg(x)∇J(x)− ξ||2V ≥ ||∇J(x)−Πg(x)∇J(x)||2V .

Hence the orthogonal projection Πg(x)(∇J(x)) is the best approximation of ∇J(x) on Ker(Dg(x)).

Recalling from the first point that Ran(Dg(x)T ) is the orthogonal complement of Ker(Dg(x)), we
obtain also, for any λ ∈ Rp,

||Πg(x)(∇J(x))||V = ||∇J(x)− (I−Πg(x))(∇J(x))||V ≤ ||∇J(x)−Dg(x)T λ||V ,

whence the expression (2.13) and the minimization property (2.14) follow. Note that the uniqueness
of the solution λ∗(x) to (2.14) results from the qualification condition (2.6).
Finally, the optimization problem (2.12) can be rewritten as

min
ξ∈V

a(ξ,ξ)≤1

max
λ∈Rp

DJ(x)ξ + λTDg(x)ξ.

Hence the (formal) dual problem of (2.12) reads:

max
λ∈Rp

min
ξ∈V

a(ξ,ξ)≤1

DJ(x)ξ + λTDg(x)ξ.

According to the definitions (2.3) and (2.4) of the gradient and of the Hilbertian transpose, the latter
problem rewrites:

max
λ∈Rp

min
ξ∈V

a(ξ,ξ)≤1

a(∇J(x) + Dg(x)T λ, ξ) = −max
λ∈Rp

||∇J + DgT λ||V ,

where for given λ ∈ Rp, the value

ξ∗ :=
∇J(x) + Dg(x)T λ

||∇J(x) + Dg(x)T λ||V
is that achieving the minimum in the minimization problem at the left-hand side of the above identity.
This shows that (2.14) is the dual problem of (2.12).

�

2.2.2. Properties of the range space step ξC

The next lemma is also classical in the literature. It characterizes the range space step ξC(x), defined by
(2.9), as the unique Gauss-Newton direction for the minimization of the constraint function g(x) which is
orthogonal to the (linearized) set of constraints:

Lemma 2. Let x ∈ V satisfy the condition (2.6); then:

(1) The range space step ξC(x) = DgT (DgDgT )−1g(x) is orthogonal to Ker(Dg(x)):

∀ξ ∈ Ker(Dg(x)), a(ξC(x), ξ) = 0.

(2) −ξC(x) is a descent direction for the violation of the constraints:

Dg(x)(−ξC(x)) = −g(x). (2.15)
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(3) The set of solutions to the Gauss-Newton program

min
ξ∈V
||g(x) + Dg(x)ξ||2 (2.16)

is the affine subspace {−ξC(x) + ζ | ζ ∈ Ker(Dg(x))} of V .

Proof.

(1) This easily follows from (2.3) and the calculation:

∀ξ ∈ Ker(Dg(x)), a(ξC(x), ξ) = ((DgDgT )−1g(x))T (Dg(x)ξ) = 0.

(2) This is an immediate consequence of the definition (2.9) of ξC(x). Note that (2.15) means that
−ξC(x) is a descent direction for the violation of the constraints in the sense that it ensures that
any coordinate gi(x), i = 1, ..., p, decreases along −ξC(x) if gi(x) ≥ 0 and increases if gi(x) ≤ 0.

(3) Since (2.16) is a convex optimization problem, a necessary and sufficient condition for ξ ∈ V to be
one solution is given by the usual first-order condition:

∀ζ ∈ V, (g(x) + Dg(x)ξ)T (Dg(x)ζ) = a(Dg(x)T (g(x) + Dg(x)ξ), ζ) = 0,

which rewrites:

Dg(x)T Dg(x)ξ = −Dg(x)T g(x).

Since the matrix (DgDgT ) is invertible, this is in turn equivalent to:

Dg(x)ξ = −g(x).

Finally, (2) states that −ξC(x) is one particular solution to the above equation; therefore, any two
solutions of this problem differ by some ζ such that Dg(x)ζ = 0.

�

2.3. Behavior of the trajectories of the flow

The main features of the definitions of ξJ(x) and ξC(x) are the facts that ξJ is orthogonal to the set of
constraints, i.e. Dg(x)ξJ(x) = 0, and that −ξC(x) decreases the violation of the constraints while being
orthogonal to ξJ(x). These ensure that the values of the constraint functional g(x(t)) decrease to zero along
the trajectories of the ODE (1.3), independently of the value of ξJ(x). Then, as soon as the violation of the
constraint becomes sufficiently small, the objective function J decreases without affecting the asymptotic
vanishing of g(x(t)). We review these properties in the next proposition, which was also observed in [48] in
the finite-dimensional context.

Proposition 1. Assume that the trajectories x(t) of the flow{
ẋ = −αJ(I−DgT (DgDgT )−1Dg(x))∇J(x)− αCDgT (DgDgT )−1g(x)

x(0) = x0

(2.17)

exist on some time interval [0, T ] for T > 0, and that the qualification condition (2.6) holds at any point
x(t), t ∈ [0, T ]. Then the following properties hold true:

(1) The violation of the constraints decreases exponentially:

∀t ∈ [0, T ], g(x(t)) = e−αCtg(x0). (2.18)

(2) Assume in addition that rank(Dg) = p on K = {x ∈ V | ||g(x)||∞ ≤ ||g(x0)||∞} and that

sup
x∈K
||∇J(x)||V |σ−1

p (x)| < +∞, (2.19)

where σp(x) is the smallest singular value of Dg(x). Then J decreases as long as the projection of
its gradient on the set of constraints is large with respect to the decrease rate of the constraints given
by (2.18), namely there exists a constant C > 0 such that

∀t ∈ [0, T ], ||Πg(x)(∇J(x(t)))||2V > Ce−αCt ⇒ d

dt
J(x(t)) < 0. (2.20)
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(3) Any stationary point x∗ of (2.17) satisfies the first-order KKT conditions (2.7) of the optimization
program (2.1), that is:{

g(x∗) = 0

∃λ∗ ∈ Rp, ∇J(x∗) + DgT (x∗)λ∗ = Πg(x∗)(∇J(x∗)) = 0.
(2.21)

Proof.

(1) Using the definition (2.17), the decreasing property (2.15) together with the fact that ξJ(x) is
orthogonal to Ker(Dg(x)), we obtain:

d

dt
(g(x(t))) = −αCg(x(t)),

whence (2.18) follows easily.
(2) Let us introduce the eigenvalue decomposition

Dg(x)Dg(x)T =

p∑
i=1

σi(x)2ui(x)ui(x)T , where σ1(x) ≥ . . . ≥ σp(x) > 0, ui(x)Tuj(x) = δij ,

of the symmetric, positive definite p × p matrix Dg(x)Dg(x)T . Let then vi(x)† : V → R be the
linear form defined for any ξ ∈ V by vi(x)†ξ = σi(x)−1ui(x)TDg(x)ξ and vi(x) be the vector in
V such that ∀ξ ∈ V, a(vi(x), ξ) = vi(x)†ξ; more explicitly, vi(x) = σi(x)−1Dg(x)T ui(x). These
definitions allow to write a singular value decomposition for Dg(x); it is indeed easily verified from
the definitions of ui(x) and vi(x) that:

Dg(x) =

p∑
i=1

σi(x)ui(x)vi(x)†, and Dg(x)T =

p∑
i=1

σi(x)vi(x)ui(x)T

with a(vi(x),vj(x)) = vi(x)†vj(x) = δij . We now calculate:

DgT (DgDgT )−1g(x) =

p∑
i=1

σ−1
i (x)(ui(x)Tg(x))vi(x),

whence we obtain the following inequality:

∀x ∈ V, |DJ(x)DgT (DgDgT )−1g| ≤ σ−1
p (x)||∇J(x)||V ||g(x)||. (2.22)

Since
d

dt
J(x(t)) = −αJDJ(x(t))ξJ(x(t))− αCDJ(x(t))ξC(x(t)),

it follows that d
dtJ(x(t)) < 0 as soon as αJ |DJ(x(t))ξJ(x(t))| > αC |DJ(x(t))ξC(x(t))|. Thus, from

(2.18) and (2.22), the constant C in (2.20) can be selected as

C = p
αC
αJ
||g(x0)|| sup

x∈K

[
σ−1
p (x)||∇J(x)||

]
. (2.23)

(3) Since the vectors ξJ(x) and ξC(x) are orthogonal for any point x ∈ V , a stationary point x∗ of (2.17)
must satisfy

Πg(x∗)(∇J(x∗)) = 0, and DgT (DgDgT )−1g(x∗) = 0, (2.24)

and so the first KKT condition in (2.7) is satisfied with the value λ = −(DgDgT )−1Dg(x∗)∇J(x∗)
of the Lagrange multiplier. Then left multiplication by Dg in the second identity in (2.24) implies
g(x∗) = 0, which completes the proof.

�

Remark 2. The solutions to the dynamical system (2.17) are defined for small times if ξJ and ξC are locally
Lipschitz vector fields, which is the case if e.g. J and g are of class C2 [22]. In the case where V is finite-
dimensional, the assumption (2.19) is satisfied if the set K = {x ∈ V |g(x) ≤ g(x0)} is bounded and the
functions J and g are C1 functions. It is worth noting that even if not enough regularity assumptions hold to
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ensure the existence of solutions to (2.17), similar properties to those of Proposition 1 hold for the discretized
scheme

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)), (2.25)

which is sufficient for optimization. One can indeed verify that:

(1) At first order, the constraints decrease with a geometric rate: g(xn+1) = (1− αC∆t)g(xn) + o(∆t).
(2) x∗ is an accumulation point of the sequence (xn)n∈N if and only if g(x∗) = 0 and x∗ is a KKT point

of the problem (2.1), satisfying (2.7).

Remark 3. In our design of the update rule (1.3) to (1.5), it is possible to control more accurately the pace at
which each of the constraints decreases: consider a diagonal matrix of positive coefficientsK = diag(κi)1≤i≤p
and replace the definition (1.5) or (2.9) of ξC(x) by

ξC(x) := DgT (DgDgT )−1Kg(x).

Then it can be shown along the lines of the previous discussion that each constraint function gi decreases at
its own rate κiαC along the solution x(t) of (2.17):

∀t ∈ [0, T ], gi(x(t)) = e−κiαCtgi(x0).

3. Proposed extension to equality and inequality constraints

We now proceed to extend the dynamical system (1.3) to handle inequality constraints as well. We consider
from now on the full optimization problem

min
x∈X

J(x)

s.t.

{
g(x) = 0

h(x) ≤ 0,

(3.1)

taking place over the Hilbert space X = V with inner product a(·, ·), and where J : V → R, g : V → Rp and
h : V → Rq are differentiable functions.

This section is organized as follows: after setting notations in Section 3.1, we briefly review in Section 3.2
the classical method of slack variables for handling the inequality constraints in the problem (3.1). Section 3.3
then introduces another method for dealing with these constraints, which is original to the best of our
knowledge. The essence of our method is the resolution of a dual quadratic subproblem for identifying the
subset of constraints whose violation ‘naturally’ decreases in the course of the minimization of J , and those
which should be enforced by projection of the gradient of J . The behavior of the induced flow in the context
of the problem (3.1) is finally analyzed in Section 3.3.3 in the spirit of Proposition 1.

3.1. Notations and preliminaries

The set of indices corresponding to saturated or violated inequality constraints at x ∈ V is denoted by Ĩ(x)

Ĩ(x) = {i ∈ {1, . . . , q} |hi(x) ≥ 0}, (3.2)

and q̃(x) := Card(Ĩ(x)) is the number of such constraints. Recall the notation hI(x) = (hi(x))i∈I for the

inequality constraints indexed by a subset I ⊂ Ĩ(x) and CI(x), defined by (1.6), for the vector collecting
the equality constraints g(x) and those selected inequality constraints hI(x). The constraints are said to be
qualified at x ∈ V , in the sense that the linearized saturated or violated constraints are independent:

rank(DCĨ(x)(x)) = p+ q̃(x). (3.3)

If the point x satisfies the constraints, (3.3) is one usual qualification condition (of course, there are other
possible qualification conditions, see [14, 36]). Define ΠCI : V → V , the orthogonal projection operator onto
Ker(DCI(x)), by

ΠCI = I −DCI(x)T (DCI(x)DCI(x)T )−1DCI(x), (3.4)
11



and (λI(x),µI(x)) ∈ Rp × RCard(I)
+ the corresponding Lagrange multipliers:λI(x)

µI(x)

 := −(DCIDC
T
I )−1DCI(x)∇J(x). (3.5)

Last but not least, let us recall that in the present context of equality and inequality constrained problem
(3.1), the necessary first-order optimality conditions (the KKT conditions) for a given point x∗ ∈ V , satisfying
the qualification condition (3.3), read as follows: there exist λ(x∗) ∈ Rp and µ(x∗) ∈ Rq+ such that

∇J(x∗) + Dg(x∗)T λ(x∗) + Dh(x∗)T µ(x∗) = 0,

g(x∗) = 0, h(x∗) ≤ 0,

∀i = 1, ..., q, µihi(x
∗) = 0;

(3.6)

see again [14, 36].

3.2. The method of slack variables for inequality constraints

It is classical to introduce slack variables so as to turn inequality constraints into equality constraints of an
augmented problem including these additional variables, see [38] for the present gradient flow in the finite
dimensional context. In other words, problem (3.1) is replaced with the following equivalent one, involving
q extra variables (z1, . . . , zq) ∈ Rq:

min
x∈V
z∈Rq

J(x)

s.t. C(x, z) = 0,
(3.7)

where the augmented vector of constraints C(x, z) reads:

C(x, z) :=


g(x)

h1(x) + 1
2z

2
1

...

hq(x) + 1
2z

2
q

 ∈ Rp+q.

Problem (3.7) is an equality constrained optimization problem of the form (2.1), set over the Hilbert space

Ṽ := V × Rq, with inner product ã((x, z), (x′, z′)) := a(x, x′) + zT z′.

It can be solved thanks to the proposed algorithm in Section 2; the associated gradient flow for (3.7) reads:

ẋ(t)

ż(t)

 = −αJ(I−DCT (DCDCT )−1DC)

∇J(x(t))

0

− αCDCT (DCDCT )−1C(x(t), z(t)),

x(0)

z(0)

 =

x0

z0

 ,
(3.8)

where x0 ∈ V is the considered initial point in the resolution of (3.1), and the variable z is initialized with a
value z0 ∈ Rq in such a way that the inequality constraints of (3.1) which are inactive for x0 (i.e. hi(x0) < 0)
are associated with satisfied equality constraints Cp+i(x0, z0) = 0 in (3.7):

∀i ∈ {1, . . . , q}, z0,i =
√

2|hi(x0)|.

In the finite-dimensional setting V = Rk and when J , g and h are C2 functions, Schropp and Singer
proved in [38] that:

(i) Stationary points of the extended flow (3.8) are exactly critical points of (3.1), that is points x∗ satisfying
(3.6) but with µ(x∗) ∈ Rq possibly negative.
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(ii) Among all possible critical points, only KKT points (fulfilling all three conditions (3.6) with µ(x∗) ∈
Rq+) are asymptotically stable equilibria.

As a consequence, the solution vector x(t) to (3.8) converges in practice to a KKT point for problem (3.1);
see also Section 3.4 about this point.

In the following, we shall introduce a different approach that does not use slack variables, but rather relies
on a suitable selection of the active or violated constraints. The main differences with the method of slack
variables lies in that inactive constraints are ignored, and that all stationary points of our proposed gradient
flow are KKT points (satisfying all conditions (3.6)).

3.3. The proposed algorithm

Inspired by the methodology developed in Section 2, we still propose to solve the equality and inequality
constrained problem (3.1) thanks to a dynamical system of the form:{

ẋ(t) = −αJξJ(x(t))− αCξC(x(t))

x(0) = x0,
(3.9)

whose discretized version reads:

xn+1 = xn −∆t(αJξJ(xn) + αCξC(xn)). (3.10)

In the next subsections, we define ξJ(x) and ξC(x) from formulas analogous to (1.7) and (1.8), which involve

a procedure discriminating a relevant subset Î(x) ⊂ Ĩ(x) of the saturated or violated constraints. Finally,
we establish the properties of the flow (3.9) in Proposition 5.

3.3.1. Definition of the range step direction

Definition 3. For the optimization problem (3.1), the range step ξC(x) is defined by

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x), (3.11)

where Ĩ(x) is the subset of saturated or violated constraints, defined by (3.2).

The purpose of the range space step ξC(x) is to to decrease the violation of the constraints as we shall
see in Proposition 5 below. The counterpart of Lemma 2 holds exactly in this context, in particular:

(1) ξC(x) is orthogonal to Ker(DCĨ(x)).

(2) −ξC(x) is a Gauss-Newton direction for the violation of the constraints:

DCĨ(x)(−ξC(x)) = −CĨ(x)(x).

The definition of the null space direction ξJ(x) is slightly more involved as it is not obtained by replacing

Dg(x) by DCĨ(x) in (2.8). It requires the introduction of a different subset Î(x) ⊂ Ĩ(x), which is now

detailed.

3.3.2. Definition and characterizations of the null space direction ξJ(x)

Inspired by the characterization of the null space direction of Lemma 1 for equality constrained problems,
the null space direction ξJ(x) is now sought, up to a change of sign, as a best normalized descent direction
diminishing violated or saturated inequality constraints, i.e. −ξJ(x) shall be set positively proportional to
the solution of the following minimization problem:

min
ξ∈V

DJ(x)ξ

s.t.


Dg(x)ξ = 0

DhĨ(x)(x)ξ ≤ 0

||ξ||V ≤ 1.

(3.12)

The purpose of this subsection is to characterize explicitly the minimizer ξ∗(x) of (3.12) by relying on its
dual problem. As a consequence an explicit formula for the null space direction ξJ(x), in the form of (1.7),
will be given in Definition 4 below.
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We now introduce the dual optimization problem to (3.12), which is analogous to the dual problem (2.14)
of the previous section.

Proposition 2. Let x ∈ V satisfy the qualification condition (3.3). There exists a unique couple of multipliers

λ∗(x) ∈ Rp and µ∗(x) ∈ Rq̃(x)
+ solution to the following quadratic optimization problem which is the dual of

(3.12):

(λ∗(x),µ∗(x)) := arg min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.13)

Proof. Problem (3.12) is equivalent to the following min-max formulation:

min
ξ∈V

a(ξ,ξ)≤1

max
λ∈Rp
µ∈Rq̃(x)+

DJ(x)ξ + λTDg(x)ξ + µTDhĨ(x)(x)ξ.

Inverting formally the min and the max and performing the maximization with respect to ξ as in the proof
of Lemma 1 yields that (3.13) is the dual problem of (3.12) up to a change of sign (the duality gap between
(3.13) and (3.12) will be shown to vanish in Proposition 3). The program (3.13) brings into play the closed

convex set Rp × Rq̃(x)
+ and the least squares functional

(λ,µ) 7→

∣∣∣∣∣∣
∣∣∣∣∣∣∇J(x) + DCĨ(x)(x)T

λ
µ

∣∣∣∣∣∣
∣∣∣∣∣∣
V

.

The latter is strictly convex over Rp × Rq̃(x)
+ by virtue of (3.3). Hence, (3.13) has a unique solution. �

The optimization problem (3.13) belongs to the class of non negative least squares problems; it can be
solved efficiently with a number of dedicated solvers, such as cvxopt [8] or IPOPT [46]. One nice feature of
(3.13) lies in that its dimension is the number p + q̃(x) of saturated or violated constraints, which can be
small for many practical cases, as e.g. in our shape optimization applications of Section 6. It is also possible
to exploit the sparsity of the constraints if p+ q̃(x) is large, see Remark 5 below.

In the next proposition, we relate the optimal values and the solutions ξ∗(x) and (λ∗(x),µ∗(x)) of the
primal and dual problems (3.12) and (3.13). In essence, we show that the optimal feasible descent direction
ξ∗(x) of (3.15) is the projection of the gradient ∇J(x) onto the cone of feasible directions. The proof follows
classical arguments of linear programming duality theory and it is detailed for the convenience of the reader.

Proposition 3. Let x ∈ V satisfy the qualification condition (3.3) and denote

m∗(x) := ||∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V

the value of the dual problem (3.13). Then the value of the primal problem (3.12) is p∗(x) = −m∗(x) and
the following alternative holds:

(1) m∗(x) = 0: the first line of the KKT conditions (3.6) for the minimization problem (3.1) holds with

(necessarily unique) Lagrange multipliers (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ :

∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x) = 0. (3.14)

One particular minimizer of (3.12) is ξ∗(x) = 0.
(2) m∗(x) > 0: (3.14) does not hold and there exists a unique minimizer ξ∗(x) to (3.12), given by

ξ∗(x) = −
∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)

||∇J(x) + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V
. (3.15)
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Proof. Let ξ ∈ V be a feasible direction for the problem (3.12), i.e. Dg(x)ξ = 0, DhĨ(x)(x)ξ ≤ 0 and

||ξ||V ≤ 1. Then for any (λ,µ) ∈ Rp × Rq̃(x)
+ , it holds

DJ(x)ξ ≥ DJ(x)ξ + λTDg(x)ξ + µTDhĨ(x)(x)ξ

= a(∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ, ξ)

≥ −||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V

(3.16)

Since (3.16) holds for any feasible direction ξ for (3.12), and for any (λ,µ) ∈ Rp × Rq̃(x)
+ , it follows:

min
ξ∈V

ξ feasible for (3.12)

DJ(x)ξ ≥ − min
λ∈Rp

µ∈Rq̃(x),µ≥0

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||V . (3.17)

Therefore, we have proven that p∗(x) ≥ −m∗(x). We now examine the alternative m∗(x) = 0 or m∗(x) > 0:

(1) If m∗(x) = 0, then (3.17) implies p∗(x) ≥ 0. Therefore, the value of (3.12) is p∗(x) = −m∗(x) = 0, at-
tained in particular at ξ∗ = 0, and more generally at any feasible ξ∗ ∈ V satisfying µ∗(x)TDhĨ(x)(x)ξ∗ =

0, as follows readily from the KKT conditions for (3.12). Furthermore, the KKT equation (3.14) is
satisfied by definition of m∗(x) = 0.

(2) Assume now m∗(x) > 0. The KKT condition for (3.12) states that for any local optimum ξ′, there

exists (λ′,µ′) ∈ Rp × Rq̃(x)
+ and α ≥ 0 such that,

∀ξ ∈ V, (DJ(x) + λ′TDg(x) + µ′TDhĨ(x)(x))ξ = −αa(ξ′, ξ). (3.18)

Using Riesz identifications of the gradient and the differentials, we obtain

αξ′ = −(∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′),

and since m∗(x) > 0, it is necessary that α > 0. The complementarity condition α(a(ξ′, ξ′)− 1) = 0
yields then ||ξ′||V = 1, which readily implies:

ξ′ = −
∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′

||∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′||V
.

Then the complementarity condition for (3.12) implies µ′TDhĨ(x)(x)ξ′ = 0. Therefore it holds that

DJ(x)ξ′ = DJ(x)ξ′ + λ′TDg(x)ξ′ + µ′TDhĨ(x)(x)ξ′

= a(∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′, ξ′)

= −||∇J(x) + Dg(x)T λ′ + DhĨ(x)(x)T µ′||V .

(3.19)

The previous equation together with the inequality (3.16) with ξ = ξ′ then implies that (λ′,µ′)
achieves the minimum of (3.13). By uniqueness, this implies λ′ = λ∗(x) and µ′ = µ∗(x), hence
ξ′ = ξ∗(x). Furthermore, p∗(x) = DJ(x)ξ∗(x) = DJ(x)ξ′ = −m∗(x).

�

Finally, the next proposition characterizes explicitly the expression of the optimal descent direction ξ∗(x)
from the signs of the multiplier µ∗(x), and highlights in which sense the problem (3.12) is combinatorial.
Recall definitions (3.4) and (3.5) for the projection operator ΠCI and the multipliers (λI(x),µI(x)).

Proposition 4. In the context of point (2) in Proposition 3, let ξ∗(x) and (λ∗(x),µ∗(x)) be the minimizers

of the primal and dual problems (3.12) and (3.13). Define the subset Î(x) ⊂ Ĩ(x) by

Î(x) := {i ∈ Ĩ(x) |µ∗i (x) > 0}. (3.20)
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(1) (λ∗(x),µ∗(x)) and ξ∗(x) are explicitly given in terms of Î(x) by:λ∗(x)

µ̂∗(x)

 =

λÎ(x)(x)

µÎ(x)(x)

 = −(DCÎ(x)DC
T
Î(x)

)−1DCÎ(x)∇J(x), (3.21)

ξ∗(x) = −
ΠCÎ(x)(∇J(x))

||ΠCÎ(x)(∇J(x))||V
, (3.22)

where µ̂∗(x) := (µ∗i (x))i∈Î(x) is the vector collecting all positive components of µ∗(x).

(2) Î(x) is equivalently the unique solution to either of the following discrete optimization problems:

Î(x) = arg max
I⊂Ĩ(x)

||ΠCI (∇J(x))||V

s.t. DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0,
(3.23)

Î(x) = arg min
I⊂Ĩ(x)

||ΠCI (∇J(x))||V

s.t. µI(x) ≥ 0.
(3.24)

In particular, Î(x) is the unique subset I ⊂ Ĩ(x) satisfying simultaneously both feasibility conditions

DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0 and µI(x) ≥ 0.

Proof.

(1) The complementary condition for the primal and dual problems (3.12) and (3.13) reads

∀i ∈ Ĩ(x), µ∗i (x)Dhi(x)ξ∗(x) = 0. (3.25)

Therefore, Dhi(x)ξ∗(x) = 0 for all indices i ∈ Î(x), which implies that as DCÎ(x)(x)ξ∗(x) = 0.

Then, after left multiplication of (3.15) by (DCÎ(x)DC
T
Î(x)

)−1DCÎ(x), we obtain (3.21), whence

(3.22) follows.

(2) Let I ⊂ Ĩ(x) a subset satisfying DhĨ(x)(x)ΠCI (∇J(x)) ≥ 0. This implies that

ξ = −ΠCI (∇J(x))/||ΠCI (∇J(x))||V
is feasible for the primal problem (3.12), and we obtain by definition of ξ∗(x) that

− ||ΠCÎ(x)(∇J(x))||V = DJ(x)ξ∗(x) ≤ DJ(x)ξ = −||ΠCI (∇J(x))||V , (3.26)

whence the maximization property (3.23).

For I ⊂ Ĩ(x) satisfying µI(x) ≥ 0, we obtain feasible multipliers (λ,µ) for the dual problem
(3.13) by taking µ to be equal to µI on the indices of I and extended by 0 in the complementary

subset Ĩ(x) \ I. Then the optimality of (λ∗(x),µ∗(x)) for this dual problem reads:

||ΠCÎ(x)(∇J(x))||V = ||∇J + Dg(x)T λ∗(x) + DhĨ(x)(x)T µ∗(x)||V
≤ ||∇J(x) + Dg(x)T λ+ DhT

Ĩ(x)
µ||V = ||ΠCI (∇J(x))||V ,

(3.27)

whence the minimization property (3.24).

�

In view of (3.20), the optimal multiplier µ∗(x) can be interpreted as an indicator variable specifying which

constraints of Ĩ(x) are ‘not aligned’ with the gradient ∇J(x) and should be kept in the subset Î(x). The
best descent direction (in the sense of (3.12)) is obtained by projecting the gradient ∇J(x) onto the tangent

space of the constraint subset Î(x) rather than onto the full set of violated or saturated constraints Ĩ(x).
Indeed, the descent direction ξ = −ΠCĨ(x)

∇J(x) that would be obtained by projecting ∇J(x) on the whole

set Ĩ(x) would only keep them all constant at first order, i.e. Dhi(x)ξ = 0, (see Remark 6 for more details).

It is therefore more efficient to project ∇J(x) only on those constraints associated to the indices i ∈ Î(x),
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thus allowing the remaining ones (associated to i ∈ Ĩ(x) \ Î(x), indicating vanishing multipliers µ∗i (x) = 0)
to decrease since the calculated descent direction ensures that Dhi(x)ξ∗(x) ≤ 0 holds for all i = 1, ..., q.

Note that actually, the use of a dual problem such as (3.13) in order to obtain information about which
constraints should remain active is classical in active sets methods, see e.g. [16, 31, 36].

In principle, the subset Î(x) could be found by solving the discrete problems (3.23) or (3.24). However,
we expect that in practice, it is more efficient to rely on iterative solvers relying on gradient descents for
solving the dual problem (3.13), e.g. a cone programming solver or a non negative least squares algorithm
such as [16]. This is what we do in the sequel.

Remark 4. With our notations, the optimization scheme proposed by Barbarosie et. al. [11, 12] reads{
xn+1 = xn −∆t∇J(xn)−DCTI(xn)νn

νn = −∆t(DCI(xn)DC
T
I(xn))

−1DCI(xn)∇J(xn) + DCTI(xn)(DCI(xn)DC
T
I(xn))

−1CI(xn),
(3.28)

where the set I(xn) is obtained by removing indices from Ĩ(xn) one by one, starting from the index i0
associated with the most negative multiplier νn,i0 < 0, until all of them becomes non negative. Therefore,

the set I(xn) used in this strategy and that Î(xn) featured in our strategy, given by (3.20), do not coincide
in general; one could think of configurations where the procedure of [12] would fail to find the optimal set

Î(xn) (for example if i0 ∈ Î(xn)) and would project the gradient on a less optimal subset of constraints. We
note that no convergence result is given by the authors about this procedure.

Having introduced the subset Î(x) (defined in (3.20)), we are now able to define the null space direction
ξJ(x) in the present context: −ξJ(x) is set to be a positive multiple of the optimal descent direction ξ∗(x)
supplied by (3.22).

Definition 4. For any point x ∈ V satisfying the constraint qualification (3.3), the null space direction
ξJ(x) at x for the optimization problem (3.1) is defined by:

ξJ(x) := ΠCÎ(x)(∇J(x)) = (I −DCÎ(x)(x)T (DCÎ(x)DC
T
Î(x)

)−1DCÎ(x))∇J(x), (3.29)

where Î(x) is the set defined by (3.20).

The main point in Definition 4 is that, while all violated and saturated constraints are taken into account

in the Gauss-Newton direction ξC(x) defined by (3.11), only those constraints in Î(x), not aligned with the
gradient ∇J(x), occur in the definition of ξJ(x).

Remark 5. Let us discuss two extreme cases related to the involved computational effort in the numerical
implementation of (3.29). Upon discretization, we may assume that V = Rk is a finite-dimensional space.

(1) If the total number p+ q̃ of saturated or violated constraints is small compared to the dimension k
of V , it is best, for numerical efficiency, to assemble the small square matrix (DCĨ(x)DC

T
Ĩ(x)

) and to

invert it by a direct method.
(2) If V = Rk is equipped with an inner product encoded by a matrix A, and if p + q̃ is of the order

of k or larger, the computation of the inverse of (DCÎ(x)DC
T
Î(x)

) can be expensive. However, it is

still tractable if both DC and A are sparse matrices. For instance, this occurs in the case of bound
constraints on the optimization variable x = (x1, ..., xk), e.g. constraints of the form αi ≤ xi ≤ βi,
i = 1, ..., k. Recalling from Remark 1 that in this setting, DCT

Î(x)
= A−1DCT

Î(x)
, it can be verified

that the vector

X := A−1DCT
Î(x)

(DCÎ(x)A
−1DCT

Î(x)
)−1DCÎ(x)∇J(x)

can be computed as the solution of the sparse linear system A −DCT
Î(x)

DCÎ(x) 0

X
Λ

 =

 0

DCÎ(x)∇J(x)

 ,
17



where Λ ∈ Rp+Card(Î(x)) is an extra slack variable, which yields the null space directions ξJ(x) =
∇J(x) −X. A similar strategy can be used to compute the range space direction ξC(x) of (3.11),
or to solve the dual quadratic subproblem (3.13) by exploiting the sparsity of A and DCÎ(x).

Remark 6. As we have already mentioned, the Lagrange multiplier µ∗(x) given by (3.21) may be understood
as an indicator of which inequality constraints are aligned with the gradient of J . To further highlight this,
it is instructive to consider the particular situation where the gradients of the constraint functions are
orthogonal, i.e.:

a(∇gi(x),∇gj(x)) = 0, for i, j = 1, ..., p, i 6= j,

a(∇hi(x),∇hj(x)) = 0, for i, j = 1, ..., q, i 6= j,

a(∇gi(x),∇hj(x)) = 0, for i = 1, ..., p, j = 1, ..., q.

Indeed, in this case, it easily follows from the Pythagore theorem that for any (λ,µ) ∈ Rp × Rq̃(x)
+ ,

||∇J(x) + Dg(x)T λ+ DhĨ(x)(x)T µ||2V =

∣∣∣∣∣∣
∣∣∣∣∣∣∇J(x) +

p∑
i=1

λi∇gi(x) +
∑
j∈Ĩ(x)

µj∇hj(x)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

V

= ||∇J(x)||2V +

p∑
i=1

(
λ2
i ||∇gi(x)||2V + 2λia(∇J(x),∇gi(x))

)
+
∑
j∈Ĩ(x)

(
µ2
j ||∇hj(x)||2V + 2µja(∇J(x),∇hj(x))

)
.

Therefore the minimization problem (3.13) is separable with respect to the variables (λ,µ) ∈ Rp × Rq̃(x)
+ :

(λ∗i (x))1≤i≤p and (µ∗i (x))i∈Ĩ(x) are the respective solutions to the minimization problems:

∀i ∈ 1 . . . p, λ∗i (x) = arg min
t∈R

(
t2||∇gi(x)||2V + 2ta(∇J(x),∇gi(x))

)
,

∀i ∈ Ĩ(x), µ∗i (x) = arg min
t∈R
t≥0

(
t2||∇hi(x)||2V + 2ta(∇J(x),∇hi(x))

)
,

which yields eventually:

λ∗i (x) = −a(∇J(x),∇gi(x))

||∇gi(x)||2V
, µ∗i (x) =

 0 if a(∇J(x),∇hi(x)) ≥ 0,

−a(∇J(x),∇hi(x))
||∇hi(x)||2V

otherwise.

Hence, µ∗i (x) is positive if and only if following the descent direction −∇J(x) leads to an increase (i.e.
violation) of the ith inequality constraint.

In the general case where all the constraint gradients are not mutually orthogonal, the interpretation of
µ∗(x) is similar, up to the additional complication that (3.13) accounts for the combinatorics behind the
possible alignments between different constraint gradients. In the following, with a slight abuse of language,

we shall nevertheless refer to the indices i ∈ Ĩ(x) \ Î(x) as those associated to constraints which are ‘aligned’
with ∇J(x) (in the sense that −Dhi(x)ξJ(x) ≤ 0, i.e. the violation hi(x) decreases along −ξJ(x) or, at
worst, stay constant).

3.3.3. Behavior of the trajectories of the flow

The following proposition is the counterpart of Proposition 1 in the case of the equality and inequality
constrained optimization problem (3.1).

Proposition 5. Assume the trajectories x(t) of the flow{
ẋ(t) = −αJξJ(x(t))− αCξC(x(t))

x(0) = x0,
(3.30)

with ξJ and ξC given by (3.11) and (3.29) exist on some interval [0, T ] for T > 0 and are such that:

(a) The set Ĩ(x(t)) defined in (3.2) is constant over [0, T ]:

∀t ∈ [0, T ], Ĩ(x(t)) = Ĩ(x0)
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(b) The constraints remain qualified along the flow x(t), in the sense of (3.3).

Then the following properties hold true:

(1) The violation of the constraints decreases exponentially:

∀t ∈ [0, T ], g(x(t)) = e−αCtg(x0) and h(x(t)) ≤ e−αCth(x0). (3.31)

(2) Assume that rank(DCĨ(x0)(x)) is maximal for all x in K = {x ∈ V | ||CĨ(x0)(x)||∞ ≤ ||CĨ(x0)(x0)||∞}
and

sup
x∈K
||∇J(x)||V |σ−1

p (x)| < +∞. (3.32)

where σp(x) is the smallest singular value of DCĨ(x)(x). Then J decreases as soon as the projected

gradient is large with respect to the violation of the constraints (which goes to 0 according to (3.31)),
namely there exists a constant C > 0 such that

∀t ∈ [0, T ], ||ΠCÎ(x(t))
(∇J(x(t)))||2V > Ce−αCt ⇒ d

dt
J(x(t)) < 0. (3.33)

(3) Any stationary point x∗ of the flow (3.30) satisfies the KKT optimality conditions (3.6) which equiv-
alently rewrite: {

∇J(x∗) + Dg(x∗)T λ∗(x∗) + DhĨ(x∗)(x
∗)T µ∗(x∗) = 0,

g(x∗) = 0 and hĨ(x∗)(x
∗) = 0⇔ CĨ(x∗)(x

∗) = 0,
(3.34)

where (λ∗(x∗),µ∗(x∗)) ∈ Rp × Rq̃(x
∗)

+ are defined in (3.13) or (3.21).

Proof.

(1) Definition (3.11) of ξC(x(t)) implies DCĨ(x(t))ξC(x(t)) = CĨ(x(t))(x(t)), and since −ξJ(x(t)) is posi-

tively proportional to ξ∗(x(t)) (Proposition 3), it holds

DCÎ(x(t))ξJ(x(t)) = 0, −DhĨ(x(t))\Î(x(t))(x(t))ξJ(x(t)) ≤ 0.

Therefore we obtain
d

dt
CÎ(x(t))(x(t)) = −αCCÎ(x(t))(x(t)) and

d

dt
hĨ(x(t))\Î(x(t))(x(t)) ≤ −αChĨ(x0)\Î(x0)(x(t)) (3.35)

from which (3.31) follows by application of Gronwall’s lemma.
(2) The proof is identical to that of Proposition 1.
(3) A stationary point x∗ of (3.30) satisfies by definition −αJξJ(x∗)−αCξC(x∗) = 0. Left multiplication

of this identity by DCĨ(x∗)(x
∗) yields:

− αJDCĨ(x∗)(x
∗)ξJ(x∗)− αCCĨ(x∗)(x

∗) = 0. (3.36)

Remembering now that from definition (3.12),

−DCĨ(x∗)ξJ(x∗) ≤ 0 and CĨ(x∗)(x
∗) ≥ 0,

equality in (3.36) can hold only if both terms vanish. In particular, we infer that CĨ(x∗)(x
∗) = 0,

a fact which implies ξC(x∗) = 0 and which encompasses the last two lines of the KKT conditions
(3.6). Returning to the fact that −αJξJ(x∗) − αCξC(x∗) = 0 , we obtain that ξJ(x∗) = 0, which
corresponds to the first line in (3.6). This completes the proof.

�

Remark 7. The assumption (a) in Proposition 5, whereby the index set Ĩ(x(t)) remains constant is essentially
made to ensure that the right-hand side of the flow (3.30) is continuous. Indeed, in such a case, the range
space direction ξC(x(t)) is continuous by its definition (3.11), while the null space step ξJ(x(t)) is continuous
because

ξJ(x(t)) = ∇J(x(t)) + DCĨ(x(t))

λ∗(x(t))

µ∗(x(t))


and it can be shown that the multipliers (λ∗(x(t)),µ∗(x(t))) defined by (3.13) are continuous functions. At

a time T corresponding to a sudden change of the index set Ĩ(x(t)), we assume that the solution x(t) can
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be extended by restarting the ODE (3.30) with the new index set Ĩ(x(T )). From (1) in Proposition 5, the
bound h(x(t)) ≤ e−αCth(x(0)) still holds after the time T for all constraints i ∈ {1, . . . , q}: constraints are
asymptotically satisfied. Properties (2) and (3) remain true, up to an adjustment of the constant C in (3.33)

(which can be taken global since there are finitely many possible sets Ĩ(x(t))). There may exist situations

where the set of asymptotically saturated constraints Ĩ(x(t)) could oscillate indefinitely. However (2) states
that x(t) always keeps improving (in the sense of (3.33)), and (3) states that if x(t) eventually converges, it
is necessarily towards a KKT point.

Remark 8. In practice, the analysis of Proposition 5 is sufficient because, similarly to the conclusions of
Remark 2, analogous properties hold for the discrete scheme

xn+1 = xn −∆t
(
αJξJ(xn) + αCξC(xn)

)
. (3.37)

Indeed, one can easily check that:

(1) Up to first order, the violation of the constraints decreases at a geometric rate:

C(xn+1) = (1− αC∆t)C(xn) + o(∆t). (3.38)

This suggests that in order to obtain a stable scheme, one must a priori select αC and ∆t such that
0 < αC∆t < 2.

(2) x∗ is an accumulation point of the sequence (xn)n∈N if and only if it is feasible, i.e. CĨ(x∗)(x
∗) = 0

and x∗ is a KKT point.

Finally, note that a flexibility of this ODE approach is that at the continuous level, the results of Proposition 5
do not depend on the values of the parameters αJ > 0 and αC > 0. Therefore the convergence of the
discrete scheme towards the continuous trajectory should hold as soon as the discretization step size ∆t > 0
is sufficiently small.

3.4. Comparison between the proposed method and the use of slack variables

The main differences between the slack variable approach of Section 3.2 and the proposed flow (3.30) in
Section 3.3 for dealing with equality and inequality constrained problems can be summarized as follows.

(1) Any point xcrit satisfying the constraints (CĨ(xcrit)(x
crit) = 0) and ΠCĨ(xcrit)(∇J(xcrit)) = 0 is a

stationary point of the extended dynamical system (3.8), although it might violate the full KKT
condition (because (3.5) may yield possible negative values of the multiplier µĨ(xcrit)(x

crit)). In

contrast, x∗ is a stationary points of the flow (3.30) if and only if it is a true feasible KKT point,
see Proposition 5.

(2) The computation of ξJ(x) and ξC(x) in our flow (3.30) requires to invert a matrix of size at most
(p + q̃(x))-by-(p + q̃(x)) with q̃(x) the number of active or violated constraints at x. The process
of equalizing inequality constraints as in [38, 41] rather requires to invert the full (p+ q)-by-(p+ q)
matrix DC(x, z)DC(x, z)T . Our method is therefore more efficient if q̃(x) � q, that is if a lot of
inequality constraints are inactive.

(3) At feasible points, our ODE (3.30) follows the best locally admissible descent direction (with respect
to the norm of V ). This is not the case for the extended ODE (3.8). Therefore, from a common
feasible point x, the ODE (3.30) always decreases the objective function with a steeper slope dJ/ds
with respect to the parameterization induced by the path length s, defined as a function of the time
t by

s(t) =

∫ t

0

||ẋ(α)||V dα. (3.39)

This property is illustrated in the academic examples of Section 5, and in particular on Figure 8a
below.

All in all, our observations based on the simple numerical examples of the next section tend to illustrate
that both flows (3.8) and (3.30) may have equivalent performances for solving the non linear optimization
problem (1.1), this performance being measured in term of the total length

S =

∫ +∞

0

||ẋ||V dt
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covered by the optimization path to reach the optimum. However, the two ODEs (3.8) and (3.30) yield
optimization paths of essentially different natures. Our null space flow (3.30) ignores inactive constraints
and those aligned with the gradient of the objective function. As a result, it produces non smooth paths that
are more likely to reach quickly the saturation of the constraint. The extended flow (3.8) yields smoother
trajectories that more likely stay away from the constraints, at the cost of inverting at every step the full
matrix DC(x, z)DC(x, z)T of the size of the total number of constraints (active and inactive).

4. Practical implementation details

In this section, the ODE (1.3) is discretized by an explicit scheme and we propose a generic algorithm for
adapting the time step ∆t. We also discuss small adaptations for accounting for discontinuous changes of
the right-hand side −(αJξJ + αCξC).

4.1. Time step adaptation based on a merit function.

The ODE (1.3) is discretized by an explicit scheme of the form:

xn+1 = xn −∆tn
(
αJξJ(xn) + αCξC(xn)

)
, (4.1)

with a variable time step ∆tn > 0. The practical implementation of such a strategy is often guided by a
merit function, i.e. an indicator allowing to detect that a step has been too large, a situation where a choice
has to be made regarding whether the step should be reduced or accepted. For our null space algorithm, a
merit function which resembles very much that of the Augmented Lagrangian Method is readily available,
however with a specific choice of multipliers:

Lemma 3. For a given xn ∈ V , let meritxn : V → R be the function defined by

meritxn(x) := αJ

(
J(x) + Λ(xn)TCĨ(xn)(x)

)
+
αC
2
CĨ(xn)(x)TS(xn)CĨ(xn)(x) (4.2)

where Λ(xn) =
[
λ∗(xn)T µ∗(xn)T

]T
is the vector of multipliers defined as the solution to the dual problem

(3.13) (see (3.21)) and S(xn) = (DCĨ(xn)(xn)DCĨ(xn)(xn)T )−1 is symmetric positive definite. Then (4.1)

is a gradient step for decreasing the function meritxn , namely:

∇meritxn(xn) = αJξJ(xn) + αCξC(xn).

Proof. It is a straightforward computation of the gradient of (4.2). �

A possible implementation of an optimization strategy of the form (4.1) based on this merit function is
summarized in Algorithm 1, which requires the introduction of a few extra parameters:

• time step: choose a fixed time step ∆t > 0.
• maxtrials: the optimization time step is decreased up to maxtrials times until the value of the

merit function has decreased. If the merit function has not decreased after all maxtrials steps, the
smallest step is accepted.

• tolLag: a small threshold for the values of the Lagrange multipliers µ∗i under which these are
considered to be 0 (we took tolLag=1e-8). This value should be set in accordance with the machine
precision and that of the quadratic programming solver for the dual problem (3.13).

Let us emphasize that these parameters have a quite intuitive and physical meaning, so that the task of
assigning their values does not involve fine tunings in practice.

Importantly, the rescaling induced by the inverse of the correlation matrix (DCĨ(xn)DC
T
Ĩ(xn)

)−1 normalizes

all the constraints; in particular, the whole Algorithm 1 is invariant under multiplication of the constraints
by arbitrary positive constants (up to the machine precision for the step 3); a preliminary rescaling of the
constraints is therefore not required from the user.
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Algorithm 1 Discretization of the null space gradient flow (3.30), based on a merit function.

1: for n = 1 . . . maxiter do
2: Determine Ĩ(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ 0} the set of active or violated constraints.

3: Solve the dual problem (3.13) to obtain the Lagrange multiplier µ∗(xn). Infer the subset Î(xn) ⊂
Ĩ(xn) of Proposition 4, indicating which constraints must be active in (3.12):

Î(xn) = {i ∈ Ĩ(xn) |µ∗i (xn) > tolLag}. (4.3)

4: Extract the vectors CÎ(xn)(xn) and CĨ(xn)(xn) (defined by (1.6)) and compute

ξJ(xn) = (I−DCT
Î(xn)

(DCÎ(xn)DC
T
Î(xn)

)−1DCÎ(xn))∇J(xn),

ξC(xn) = DCT
Ĩ(xn)

(DCĨ(xn)DC
T
Ĩ(xn)

)−1CĨ(xn).
(4.4)

5: for k = 1 . . . maxtrials do
6: Perform the step

xn+1 = xn −
∆t

2k−1
(αJξJ(xn) + αCξC(xn)).

7: if meritxn(xn+1) < meritxn(xn) then
8: break
9: end if

10: end for
11: end for

4.2. Accounting for discontinuities near the inequality constraint barriers

A potential issue when implementing the above Algorithm 1 comes from the fact that the vector fields ξJ and
ξC given by (3.11) and (3.29) are characterized by the same discontinuities as the discrete index mapping

x 7→ Ĩ(x). As a result, abrupt oscillations of the discrete optimization path (xn) may occur near the boundary

of the feasible set: if hi(xn) = 0 and i ∈ Î(xn) for some index i ∈ {1, . . . , q}, then in the definition (3.29) of
ξJ(xn), the gradient ∇J(xn) is projected tangentially to the constraint hi, but it is not projected after any
slight deviation (e.g. due to the discretization) making this constraint inactive (hi(xn+1) < 0). This kind of
issue is very classical in the discretization of ODEs with discontinuous vector fields and can be tackled by
various methods, see e.g. [21] for a review.

In this section, we suggest a simple alternative: constraints are felt from a short distance by replacing the

set Ĩ(xn) in (1.9) (step 3 of Algorithm 1) with the set Ĩε(xn) of inequality constraints violated “up to εi”:

Ĩε(xn) = {i ∈ {1, . . . , q} |hi(xn) ≥ −εi}. (4.5)

The tolerances εi > 0 can be estimated in an automatic fashion, independent of an arbitrary rescaling of the
constraints, thanks to an posteriori bound we now detail. Let h be a user-defined parameter accounting for
the distance from the optimization path at which the constraints should be felt. This characteristic length h

should be defined in accordance with the typical distance ||∆x||V = ||xn+1 − xn||V between two successive
iterations; in the academic examples in Section 5 below considering optimization in Rk, we may set e.g.
h = 0.01 for a typical increment size ||∆x||V ' 0.1. For our shape optimization applications in Section 6, h
is typically of the order of the discretization mesh size, see Section 6.2.2 below.

Assume now that the current point xn satisfies the constraint hi up to the uncertainty h on its location: by
this we mean that there exists some unknown point x∗n such that ||x∗n−xn|| ≤ h, hi(xn) > 0 and hi(x

∗
n) = 0.

Then the error h for the location of xn propagates to the constraint values hi(xn) according to the following
inequality:

hi(xn) = |hi(xn)− hi(x∗n)| ' |Dhi(xn)(x∗n − xn)| ≤ ||∇hi(xn)||V h. (4.6)

It is therefore natural to set
εi := ||∇hi(xn)||V h (4.7)

for the value of εi in (4.5). Note that more generally, the a posteriori bound (4.6) allows to assert whether
a constraint Ci(xn) can be considered as satisfied or not with respect to the numerical discretization.
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The dual problem (3.13) is then solved with Ĩε(xn) instead of Ĩ(xn) in order to obtain a new subset of

indices Îε(xn) which indicates which constraints are likely to be not aligned with the gradient ∇J(xn) when
crossing the barrier h = 0. The null space and range space steps ξJ(xn) and ξC(xn) in step 4 of Algorithm 1
are finally replaced with ξJ,ε(xn) and ξC,ε(xn) computed as follows:

ξJ,ε(xn) := (I−DCT
Îε(xn)

(DCÎε(xn)DC
T
Îε(xn)

)−1DCÎε(xn))∇J(xn), (4.8)

ξC,ε := DCTI∗ε (xn)(DCI∗ε (xn)DC
T
I∗ε (xn))

−1CI∗ε (xn)(xn), (4.9)

where I∗ε (xn) = Ĩ(xn)∪ Îε(xn) is the set of constraints that are either violated, saturated or not aligned with

the gradient ∇J(xn) at h = −(ε1, ..., εq)
T . The use of Îε(xn) in the definition of ξJ,ε(xn) ensures that the

gradient ∇J(xn) is being projected tangentially to the constraint on a small layer near the boundary of the
feasible set. As a result, no abrupt discontinuity occurs anymore for ξJ,ε and ξC,ε when crossing the boundary

of the feasible domain while remaining in this layer. Including constraints i ∈ Îε(xn) in the Gauss-Newton
direction ξC,ε(xn) even if they are satisfied (i.e. if −εi ≤ hi(xn) ≤ 0) further allows to stabilize the values of
these constraints closer to zero.

5. Illustrations and comparisons on academic test cases

In this section, we consider simple and illustrative academic examples in order to compare qualitatively the
following three strategies for dealing with inequality constraints in optimization problems:

• The method of Section 3.2 for equalizing inequality constraints by means of slack variables, see
(3.30); this strategy is hereafter labelled as ‘SLACK’.

• The proposed null space flow (3.30) in Section 3.3, based on the dual problem (3.13) for solving the
combinatorial character of the constraints, which is labelled as ‘NLSPACE’.

• An alternative, naive version of (3.30) which does not take advantage of the use of a dual problem,
and simply projects ∇J(x(t)) on all the violated constraints:

ẋ = −αJ ξ̃J(x(t))− αCξC(x(t))

ξ̃J(x) := (I−DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1DCĨ(x))∇J(x)

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DC
T
Ĩ(x)

)−1CĨ(x)(x).

(5.1)

In other words, all the violated or saturated constraints are taken into account in the computation
of both the null space and range space directions ξJ(x) and ξC(x). This strategy is labelled as
‘NLSPACE (no dual)’.

To achieve our comparison purpose, Algorithm 1 is implemented for the discretization of (3.8), (3.30)
and (5.1), with straightforward adaptations for equalizing slack variables or disabling the resolution of
the dual problem. In all the following cases considered, we have set the values of αJ and αC such that
αJ/αC = 5/3. The step size ∆t was chosen sufficiently small to compute continuous paths with satisfying
accuracy. Our discussion is exclusively focused on the continuous trajectories of the considered ODEs. In
particular, we do neither discuss the issue of the selection of the time step, nor the efficiency of these methods
in terms of the needed number of iterations required to achieve convergence.

In order to compare the three methods without bias, we consider the arc length s(t) (defined in (3.39))
as the common reference time for the three ODEs (3.8), (3.30) and (5.1); recall indeed that this quantity
is invariant under any monotone parameterization change of the time t. In the convergence figures below,
optimized quantities are then plotted with respect to the pseudo time s(t) in abscissa, for example we plot
the graph t 7→ (s(t), J(s(t))) in order to account for the evolution of the objective function J .

We shall also plot the evolution of the Lagrange multipliers s 7→ µ(x(s)) associated with ξJ(x(s)) or

ξ̃J(x(s)) for the ODEs (3.30) and (5.1). For that purpose, these Lagrange multipliers are defined on the

violated indices i ∈ Ĩ(x(s)) by (3.21) for the null space flow (3.30), and by

µ(x(s)) := −(DCĨ(x(s))DC
T
Ĩ(x(s))

)−1DCĨ(x(s))∇J(x(s)) (5.2)
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for the flow (5.1) that does not use the dual problem (3.13). For the indices i ∈ {1, . . . , q}\ Ĩ(x(s)), the value
of the Lagrange multiplier is set to µi(x(s)) := 0 by convention. We do not plot Lagrange multipliers for the
ODE (3.8) using slack variables because these are defined with respect to the extended variables (x(s), z(s)).

The examples of this section take place in the optimization set X = R2, which is equipped with the usual
euclidean inner product; the Hilbert transposition T = T coincides with the usual transposition operator (see
Definition 1). For simplicity, these examples only involve inequality constraints; we consider the following
three scenarios:

• In Section 5.1, the initial point is unfeasible and the gradient of the objective function ∇J(x) is
always aligned with the directions of the constraints;

• In Section 5.2 also, the initial point is unfeasible, but the gradient ∇J(x) may not be aligned with
the direction of constraints;

• In Section 5.3, one of the constraints becomes inactive in the course of the optimization path.

Further comparisons with other iterative optimization algorithms will be presented in the PhD thesis [26].

5.1. Test case 1 : unfeasible initialization with initial gradient aligned with the constraints.

Our first example features the following problem, reproduced from [25]:

min
(x1,x2)∈R2

J(x1, x2) := x2 + 0.3x1

s.t.

h1(x1, x2) := −x2 +
1

x1
≤ 0,

h2(x1, x2) := x1 + x2 − 3 ≤ 0.

(5.3)

This test case is designed so that for the chosen initial point x0 = (1.5, 2.25), the gradient of the objective
function ∇J(x) is ‘aligned’ with the linear constraint h2, in the sense that

−∇h2(x0) · ∇J(x0) < 0.

Hence at least for small times (in fact during the whole optimization path), the constraint h2 can be ignored
since the minimization of J is naturally concurrent with a decrease of the value of h2.

The optimization paths taken by the solutions of the three ODEs (3.8), (3.30) and (5.1) are plotted on
Figure 1. The associated convergence histories for the values of the objective and constraint functions are
displayed on Figure 2.

Let us comment the trajectory followed by the null space flow (3.30) in details. The gradient of the
objective function remains aligned with the constraint h2, which is associated with a zero Lagrange multiplier
µ2(x(s)) (see Figure 3). During the first part of the optimization, the first constraint h1 is not violated,
hence the multiplier µ1(x(s)) is also set to zero. As a result, both constraints are ignored when computing
the null space direction, which is set equal to the gradient: ξJ(x(s)) = ∇J(x(s)). The optimization path
x(s) follows then almost the direction of the gradient ∇J(x(s)) (without projection), up to a small deviation
induced by the non zero Gauss-Newton direction ξC(x(s)) in the unfeasible domain. When the hyperbolic
constraint represented by h1 becomes violated, the gradient is not aligned anymore with this constraint and
the dual problem (3.13) yields a non-zero Lagrange multiplier µ1(x(s)) (near s = 1.4). From this point, the
gradient ∇J(x(s)) is then projected tangentially to the constraint h1 till the optimum is attained.

In contrast, the path of the ODE (5.1) (no dual problem) fails to find the optimum as it is unable to
unstick from the first saturated constraint. Notably, the gradient ∇J(x) is kept being projected tangentially
to the violated constraint h2 while it should not, which could have been detected from the negativity of the
computed Lagrange multiplier µ2 (see Figure 3).

Finally, the extended ODE (3.8) making use of slack variables feels the constraint h1 from distance,
inducing a deviation of the trajectory in the direction of the optimum before reaching the saturation of
the constraint. This allows the trajectory x(s) to find globally a slightly shorter path than our null space
flow (3.30).
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Figure 1. Optimization problem of Section 5.1: optimization paths for an unfeasible ini-
tialization x0 with ∇J(x0) aligned in the direction of the constraints.

0 100 200 300 400

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6
J

(a) Objective function J

0 100 200 300 400

1.5

1.0

0.5

0.0

0.5

C1
C2

(b) Constraints h

Figure 2. History curves for the optimization problem of Section 5.1.

5.2. Test case 2 : unfeasible initialization with initial gradient not aligned with the constraints.

We now devise a test case where the gradient of the initialization is not aligned with the constraints. The
feasible domain is the same as in the previous test case but the objective function is different:

min
(x1,x2)∈R2

J(x1, x2) := (x1 − 2)2 + (x2 − 2)2

s.t.

 h1(x1, x2) := −x2 +
1

x1
≤ 0

h1(x1, x2) := x1 + x2 − 3 ≤ 0.

(5.4)

We keep the same initialization x0 = (1.5, 2.25). Corresponding optimization paths and convergence curves
are displayed on Figs. 4 and 5.
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Figure 3. Evolution of the Lagrange multipliers µ1(x(s)), µ2(x(s)) for the optimization
test case of Section 5.1.
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Figure 4. Optimization problem of Section 5.2: unfeasible initialization x0 with ∇J(x0)
not aligned in the direction of the constraints.

For this example, the linear constraint h2 is not aligned with the gradient along the optimization path of
the null space gradient flow (3.30). This is associated with a non-zero Lagrange multiplier µ2(x(s)) > 0 (see
Figure 6): the gradient ∇J(x(s)) is kept being projected tangentially to the constraint h2 when computing
ξJ(x(s)). For this case, the combination with the Gauss-Newton direction ξC(x(s)) allows to decrease
simultaneously the objective function and the violation of the constraints, which enables the optimization
path to reach directly the optimum when hitting the feasible set. Note that the convergence curve Figure 5a
depicts a monotonically increasing objective function J throughout the optimization path (although we are
minimizing J); this is of course due to the fact that constraints are never satisfied.

Since the constraint h2 remains active from initialization to the optimum, the optimization path is un-
changed when disabling the dual problem (ODE (5.1)). Finally, the path selected by the extended flow (3.8)
to reach the optimum is very similar to the one of our method, although slightly longer.
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Figure 5. History curves for the optimization problem of Section 5.2.
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Figure 6. Evolution of the Lagrange multipliers µ1(x(s)), µ2(x(s)) for the optimization
test case of Section 5.2.

5.3. Test case 3: a saturated inequality constraint becoming inactive along the optimization
path

This last optimization test case is designed to illustrate the usefulness of the dual problem for detecting
when a saturated inequality constraint becomes unsaturated. We consider a disconnected unfeasible domain
made from the reunion of a half-space and the interior region of a parabola:

min
(x1,x2)∈R2

J(x1, x2) = x2
1 + (x2 + 3)2

s.t.

{
h1(x1, x2) = −x2

1 + x2 ≤ 0

h2(x1, x2) = −x1 − x2 − 2 ≤ 0

(5.5)

The feasible domain and optimization paths starting from the initialization x0 = (3, 3) are displayed on
Figure 7. Associated convergence curves are reported on Figure 8.

For the null space flow (3.30), four different stages occur as is visible on the evolution of the Lagrange
multipliers µ1(x(s)), µ2(x(s)) reported on Figure 9:
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Figure 7. Optimization problem of Section 5.3 : feasible initialization x0 but the opti-
mization has to find a path across the parabolic domain.
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Figure 8. History curves of the null space algorithm for the optimization problem of Section 5.3.

(1) From s = 0 to s = 1.73, the trajectory x(s) remains in the feasible domain. Lagrange multipliers
µ1(x(s)) = µ2(x(s)) = 0 are set to 0 and the null space direction ξJ(x(s)) = ∇J(x(s)) coincides
with the gradient of the objective function, until x(s) hits the parabolic domain, which corresponds
to the saturation of the first constraint h1.

(2) From s = 1.73 to s = 4.4, the resolution of the dual problem yields a non zero multiplier µ1(x(s)) > 0.
The optimization trajectory x(s) remains tangent to the first constraint, until reaching a limit point
such that ∇J(x(s)) · ∇h1(x(s)) = 0. At this moment, it is not necessary to project the gradient
tangentially to this constraint any more, and the values of both Lagrange multipliers µ1(x(s)) =
µ2(x(s)) are equal to 0.

(3) From s = 4.4 to s = 6.5, both constraints h1 and h2 are ignored and the trajectory x(s) follows the
gradient −∇J(x(s)), till the saturation of h2.

(4) From s = 6.5 to s = 7.1, the second Lagrange multiplier µ2(x(s)) > 0 has a positive value; x(s)
evolves then tangentially to this constraint till the optimum is attained.
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Figure 9. Evolution of Lagrange multipliers µ1(x(s)), µ2(x(s)) for the optimization prob-
lem of Section 5.3.

As illustrated on Figure 7, the use of the dual problem is key in the detection of the moment when the
optimization trajectory x(s) needs to be released from active inequality constraints. Because of the discrete
nature of the time stepping, the path followed by the ODE (5.1) necessary enters slightly the violated
parabolic domain. Since it does not use the information provided by the dual problem (3.13), the gradient
∇J(x(s)) is kept being projected tangentially to the constraint h1 till x(s) converges to some stationary
point (which is not a KKT point). As can be seen on Figure 9, the optimization trajectory followed by this
ODE coincides with the one of the flow (3.30), till the instant s = 4.4 at which the Lagrange multiplier
µ1(x(s)) becomes negative (which violates the feasibility condition of the dual problem (3.13)). Note that
using larger steps could have allowed the trajectory x(s) to exit “by chance” the unfeasible domain, in
that case convergence to the optimum would have been obtained, however this would not reflect the actual
behavior of the continuous solutions of (5.1).

Finally, the extended ODE (3.8) using slack variables finds a smooth path to the optimum. Since inactive
constraints are felt from distance, the trajectory x(s) is able to remain more strictly in the feasible domain
for all times. The total length of the optimization path is almost the same than the one of the null space flow
(3.30) (note the steeper descending slopes dJ/ds for the latter at intersection points of the two trajectories,
see the point (3) in the discussion of Section 3.2).

6. Optimization on smooth manifolds: application to shape optimization

As we have already mentioned, our ultimate goal is to apply our optimization strategy to shape and topology
optimization problems. Recalling (1.10), the optimization set X in this section is therefore a set of shapes
in Rd (d = 2 or 3 in standard applications):

X = {Ω ⊂ D | Ω Lipschitz}, (6.1)

where D ⊂ Rd is an enclosing ‘hold-all’ domain. Since X is not a Hilbert space, the present context does
not fall into the optimization framework described in Sections 2 and 3. However, X may be endowed with
a manifold structure, which makes it possible to extend our dynamical system (3.9) to this context, up to
small adaptations that we now describe.

Building upon the framework of Hadamard’s method of boundary variations, this manifold structure
on the set X is first defined in Section 6.1. Then, Section 6.2 explains several implementations details of
Algorithm 1 that are specific to shape optimization. In particular, we highlight how the classical extension
and regularization procedures of shape derivatives are naturally included in our method when using the
definition (2.3) of the Hilbertian transposition T . Finally, Section 6.3 is devoted to numerical illustrations of
our constrained optimization algorithm on the model example of the shape optimization of a bridge structure
subjected to multiple load cases.
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Figure 10. Optimization on a manifold M : a retraction map ρxn is used to project a
tangential motion ∆tξn ∈ TxnM from xn ∈M back onto the optimization domain M .

6.1. Hadamard’s framework for gradient based shape optimization

Our extension of the previous material to the shape optimization context is inspired by ‘classical’ optimization
strategies on a smooth embedded manifold M ⊂ Rk. In this context, a descent direction at a point xn ∈M
for some objective functional is typically sought as an element ξn ∈ TxnM of the tangent space TxnM to
M at xn; see e.g. [24, 1]. Then one relies on a retraction ρxn , that is a mapping

ρxn : TxnM →M

satisfying the following two consistency conditions:
ρxn(0) = xn

∀ξ ∈ TxnM ,
d

dt

∣∣∣∣
t=0

ρxn(tξ) = ξ.

The mapping ρxn then allows to convert ξn into a practical update of the actual point xn on M :

xn+1 := ρxn(∆tξn), (6.2)

where ∆t > 0 is the descent step; see [2] and Figure 10. Since the new point xn+1 belongs to M , this
procedure can be repeated iteratively.

The same idea can be used to apply the methods of Sections 2 and 3 to the optimization problem (1.1),
set over the set of shapes X . To this end, we rely on Hadamard’s method (see for instance [3, 30, 35, 43]),
which considers variations of a shape Ω ∈ X of the form

ρΩ(θ) := (I + θ)(Ω), for θ ∈W 1,∞(D,Rd) with ||θ||W 1,∞(D,Rd) < 1. (6.3)

Formally, the set W 1,∞(D,Rd) may be interpreted as the tangent space of X at Ω and the mapping ρΩ,
which is defined by (6.3) on a neighborhood of 0 in W 1,∞(D,Rd), plays the role of a retraction. Other
definitions are possible for such a transformation dictating how a shape should evolve according to a vector
field θ, see [4, 20] for discussions regarding that matter Note also that more rigorous manifold structures on
shape spaces can be formulated, see e.g. [9, 39].

Usually, in the context of a general embedded manifold M ⊂ Rk, a differential structure on M is defined
first (inducing a notion of derivative on M ), and the definition of a suitable retraction is inferred accordingly.
In the framework of Hadamard’s method however, it is the retraction ρΩ itself, that is the parametrization
(6.3) by deformation fields θ, that is used to define the notion of derivative.

Definition 5. A function X 3 Ω 7→ F (Ω) ∈ R is shape differentiable at Ω ∈ X if the underlying mapping
F ◦ ρΩ : θ 7→ F (ρΩ(θ)), from W 1,∞(D,Rd) into R, is Fréchet differentiable at θ = 0. The corresponding
derivative

DF (Ω) := D(F ◦ ρΩ) : W 1,∞(D,Rd)→ R
30



is called the shape derivative of F at Ω and the following expansion holds in the vicinity of θ = 0:

F (ρΩ(θ)) = F (Ω) + DF (Ω)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(D,Rd)

θ→0−−−→ 0. (6.4)

Remark 9. In practice, the set X of considered shapes is often a subset Uad ⊂ X of admissible shapes
(e.g. smooth shapes containing some non optimizable regions). The considered deformations are accordingly
restrained to a subset Θad ⊂ W 1,∞(D,Rd), so that variations of shapes Ω ∈ Uad remain in Uad. To keep
notations simple, we ignore these details in the presentation; see nevertheless the examples in Section 6.3.

For the shape optimization problem (1.1), we consider objective and constraint functions J : X → R,
g : X → Rp and h : X → Rq which are shape differentiable in the sense of Definition 5. Since W 1,∞(D,Rd)
is not a Hilbert space, the shape derivative DJ(Ω) of J : X → R (and those of g and h) cannot be readily
identified with a gradient vector ξ ∈ W 1,∞(D,Rd). To circumvent this drawback, we introduce a Hilbert
space of vector fields V ⊂ W 1,∞(D,Rd), with inner product a(·, ·), where the inclusion is continuous. This
ensures that DJ(Ω), Dg(Ω) and Dh(Ω) are also continuous linear operators on V , hence the definitions of the
gradient ∇J(Ω) ∈ V and of the transposed operators DgT (Ω) : Rp → V , DhT (Ω) : Rq → V with respect
to the inner product a make sense; see Definition 1. For instance, the gradient ∇J(Ω) ∈ V is obtained by
solving the identification problem:

∀θ ∈ V, a(∇J(Ω),θ) = DJ(Ω)(θ). (6.5)

Intuitively, the bilinear form a can be interpreted as a metric on the ‘manifold of shapes’ X , see e.g. [39, 40].
As for the choice of the Hilbert space V ⊂W 1,∞(D,Rd) used in the identification (6.5), one can for instance
take the Sobolev space V = Hm(D,Rd) with m > 1 + d/2, equipped with its standard inner product (the
inclusion Hm(D,Rd) ⊂ W 1,∞(D,Rd) being a consequence of the Sobolev embedding theorem, see [15]). In
this case, the identification problem (6.5) boils down to a linear elliptic problem of order 2m.

Let us recall that, under mild regularity assumptions on the objective function J(Ω) and the state, the
shape derivative of J(Ω) can be written in the form of a boundary integral involving only the normal
component of the deformation θ (this is the so-called Hadamard structure theorem [30, 35, 42]). Namely,
there exists vJ(Ω) ∈ L1(∂Ω) such that

∀θ ∈W 1,∞(D,Rd), DJ(Ω)θ =

∫
∂Ω

vJ(Ω) θ · nds. (6.6)

A very common strategy in the literature (see for instance [7, 10, 17, 27, 19, 33]) consists in taking simply
H1(D,Rd) as for the Hilbert space V , equipped with the inner product

∀θ,θ′ ∈ V, a(θ,θ′) =

∫
D

(γ2∇θ : ∇θ′ + θ · θ′)dx, (6.7)

where γ > 0 is a user-defined parameter which can physically be interpreted as a length-scale for the
regularity of deformations θ (typically, γ = 3 hmin where hmin is the minimum edge length of the mesh
discretization). Note that this choice of V is an abuse of the above framework: it is only formal since V is
not a subspace of W 1,∞(D,Rd). However, under the very mild assumption vJ(Ω) ∈ L2(∂Ω), (which is for
instance satisfied in the situations considered in Section 6.3), the identification problem (6.5) is still well-
posed because (6.6) defines a continuous linear form on H1(D,Rd). In such a situation, the identification
(6.5) to (6.7) is interpreted as an extension and regularization of the normal velocity vJ(Ω) to the whole
domain D. This step and its consistency with respect to optimization is very classical in shape optimization,
see [7, 10, 17, 19, 33]. In particular, variants can be considered for tuning more finely the smoothness of such
extensions, or to prescribe non optimizable boundaries by prescribing a zero Dirichlet boundary condition
in (6.6). Last, the choice V = H1(D,Rd) is quite convenient because this space is easily discretized with
P1 finite elements. Since this leads to very good results in practice, we shall rely on this strategy in the
following.

In light of the previous discussion, the proposed dynamical system (3.9) for tackling shape optimization
problems of the form (1.1) is extended and discretized as follows.

(1) The null space and range space directions ξJ(Ω) and ξC(Ω) are computed as elements of V =
H1(D,Rd) thanks to the formulas (3.11) and (3.29). This requires the computation of the gradient
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∇J(Ω) and of the transposes DgT (Ω), DhT (Ω) via the resolution of identification problems such as
(6.5). In particular, steps 1 to 4 of Algorithm 1 including the resolution of the dual problem (3.13)
are achieved from the knowledge of the Fréchet derivatives and of their transposes.

(2) The update (3.10) of the design from one iteration of the process to the next is performed by using
the retraction map ρΩ as in (6.2):

Ωn+1 := ρΩn(−∆t(αJξJ(Ωn) + αCξC(Ωn))); (6.8)

the step 6 of Algorithm 1 is adapted accordingly.

The numerical implementation of the retraction map ρΩ, that is, the procedure used to effectively deform
a shape Ω according to a prescribed deformation field θ, is presented in the next subsection.

6.2. Implementation of the constrained gradient flow for level set based shape optimization

Our level set framework for numerical shape and topology optimization is recalled in Section 6.2.1. Further
technical details about the practical implementation of Algorithm 1 are then presented in Section 6.2.2.

6.2.1. Numerical shape optimization using the level set method and a mesh evolution strategy

Our numerical representation of shapes and their deformations relies on the level set method, pioneered in
[37], then introduced in the shape optimization context in [6, 47]. A given shape Ω inside the fixed hold-all
domain D is represented by means of a scalar, level set function φ : D → R such that:

φ(x) < 0 if x ∈ Ω,

φ(x) = 0 if x ∈ ∂Ω,

φ(x) > 0 if x ∈ D \ Ω.

The motion of a domain Ω(t) in D evolving over a period of time (0, T ), starting from a known shape
Ω(0) = Ω, according to a vector velocity field θ(x) translates in terms of an associated level set function
φ(t, x) by the following advection equation:

∂φ

∂t
(t, x) + θ(x) · ∇φ(t, x) = 0, t ∈ (0, t), x ∈ d,

φ(0, x) = φ0(x), x ∈ d,
(6.9)

where φ0 is one level set function for ω. This approach, which is very convenient for describing the evolution
of domains at the discrete level, corresponds actually to the use of a retraction ρ̃Ω which is slightly different
from that ρΩ defined in (6.3):

ρ̃Ω(θ) := {x ∈ D |φ(1, x) < 0},
where φ(t, x) is the solution to (6.9). Observe that the mappings ρ̃Ω(θ) and ρΩ(θ) differ only from the second
order in θ; therefore, the whole optimization process remains consistent in spite of this practical substitution.

In our applications, this method is carried out by relying on the mesh evolution technique of our previous
works [5, 27]. At every iteration n, the current shape Ωn is explicitly discretized as a submesh of a triangulated
mesh Tn of D (see e.g. Figure 14 below). A descent direction θn(x) is computed by estimating

θn := −(αJ,nξJ(Ωn) + αC,nξC(Ωn)), (6.10)

where αJ and αC of the update (6.8) have been replaced by dynamic coefficients αJ,n and αC,n (this slight
modification of Algorithm 1 is detailed in Section 6.2.2 below). A level set function φn is computed for the
current shape Ωn, which is then updated by solving equation (6.9) on the current mesh Tn with θ = θn:

Ωn+1 = ρ̃Ωn(∆tθn).

In a last stage, Tn is remeshed adaptively into a new mesh Tn+1 featuring a discretization of Ωn+1 as a
submesh.

Remark 10. In our method, the deformation θ(x) is a vector field, in contrast with more classical level set
methods [6, 47] that rather rely on a non linear Hamilton-Jacobi equation different to (6.9) involving only
the normal component of θ. In such settings and more generally, it is convenient to regularize only only the
normal component θ · n (a scalar field) of the shape derivative since it reduces the size of the identification
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problem (6.6). These operations can be achieved consistently with respect to the whole optimization method
up to an update of the parameterization space V and of the inner product a, see [26] for more details.

6.2.2. Determination of the tolerance bounds (4.7) and settings of the parameters αJ,n and αC,n

We rely on Algorithm 1 for our implementation of the null space flow (3.9) for numerical shape optimization,
with the variant introduced in Section 4.2. A few comments are in order regarding the appropriate scaling
of the null and range space steps in relation with the size of the mesh discretization; we define accordingly
variable coefficients αJ,n and αC,n for the descent direction θn in (6.10).

For stability reasons, all vertices of the current shape Ωn should move by only a few mesh elements when
reaching the subsequent shape Ωn+1. Hence, the minimum edge length hmin of the computational mesh is
a natural candidate for the limiting step size value h of the discussion in Section 4.2. Since all values of the
displacement θn should be controlled by h, we measure step sizes with the infinity norm ||θn||L∞(D) rather
than with the Hilbertian norm ||θn||V = ||θn||H1(D,Rd) as in Section 4.2. In order to take these changes into
account, the tolerance bounds (4.7) need to be updated with respect to this norm as follows:

εi := h

∫
∂Ω

|vCi(Ωn)|ds,

where vCi(Ωn) ∈ L1(∂Ω) is the scalar field featured in the shape derivative of the constraint Ci(Ωn) as in
(6.6).

Second, the step size ||θn||L∞(D,Rd) is effectively controlled by updating dynamically the parameters αJ,n
and αC,n scaling the null space and range space steps ξJ(Ωn) and ξC(Ωn) in (6.10). Since only the products
αJ,n∆t and αC,n∆t matter, the step size is kept constant and equal to ∆t = 1. Then, given AJ and AC two
user-defined parameters, which are expressed in terms of the mesh element size hmin for a clearer intuitive
meaning, αJ,n and αC,n are updated at every iteration according to the following rules:

αJ,n :=



AJhmin

||ξJ(Ωn)||L∞(D,Rd)

if n < n0

AJhmin

max(||ξJ(Ωn)||L∞(D,Rd), ||ξJ(Ωn0)||L∞(D,Rd))
if n ≥ n0

(6.11)

αC,n := min

(
0.9,

AChmin

max
(
1e-9, ||ξC(Ωn)||L∞(D,Rd)

)) . (6.12)

These normalizations ensure that the null space and range space steps always remain smaller than AJ and
AC times the mesh size:

∀n ≥ 0, ||αJ,nξJ(Ωn)||L∞(D,Rd) ≤ AJhmin and ||αC,nξC(Ωn)||L∞(D,Rd) ≤ min(0.9, AChmin).

Note that the range step αC,nξC(Ωn) is also set to remain smaller than the constant 0.9, in view of the
stability condition 0 < αC∆t < 2 (see Remark 8, the role of the constant 1e-9 is only to avoid division by
0 when no constraint is active). In (6.11) and (6.12), the threshold n0 is an iteration number indicating for
how many steps the normalization by the norm ||ξJ(Ωn)||L∞(D,Rd) should be done. By doing so, the null
space direction ξJ(Ωn) is allowed to converge to 0 as n→∞.

6.3. Illustrations on a multiple load structural shape optimization test case

In this final section, we illustrate the efficiency of our optimization strategy on a practical structural de-
sign problem. The physical model and the shape optimization setting are presented in Section 6.3.1, then
numerical results are discussed for two possible test cases, featuring multiple objective criteria or multiple
constraint functions, in Sections 6.3.2 and 6.3.3.
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Figure 11. Geometric setting for the multiple load case test case

6.3.1. Shape optimization setting

We consider the shape optimization of a bridge-like structure Ω contained in a two-dimensional rectangular
hold-all domain D ⊂ R2 with size 10× 2. The boundary of ∂Ω is divided into disjoint regions as:

∂Ω = Γ ∪ ΓD ∪
8⋃
i=0

Γi,

where

• ΓD is a non-optimizable part of the boundary on which the structure Ω is clamped, made of two
segments with unit length at the lower extremities of D.

• For i = 0, ..., 8, Γi is a non-optimizable subset of the upper side of D with respective abscissa[
i 10

9 , (i+ 1) 10
9

]
; Γi is subjected to a unit, vertical downward traction load gi = (0,−1).

• The remaining region Γ is traction-free and it is the only region of ∂Ω which is subject to optimization.

Non-optimizable material layers of width 0.1 are additionally imposed on the upper part of the domain D
and above each component of ΓD; see Figure 11. We consider nine different load cases, that are obtained
by applying successively and exclusively each of the loads gi on the region Γi. In each situation, the
corresponding elastic displacement ui is the unique solution in H1(Ω,Rd) to the linearized elasticity system:

−div(Ae(ui)) = 0 in Ω

Ae(ui)n = 0 on Γ

Ae(ui)n = gi on Γi

Ae(ui)n = 0 on Γj for j 6= i

ui = 0 on ΓD,

(6.13)

where e(u) = (∇u +∇uT )/2 is the strain tensor associated to the displacement u and Ae(u) = 2µe(u) +
λTr(e(u))I is the corresponding stress tensor, involving the Hooke’s law A. The Young modulus and the
Poisson ratio are set to E = 15 and ν = 0.35, which corresponds to λ = 12.96 and µ = 5.56. As we have
hinted at in Section 6.2.1, the shape is exactly meshed at each iteration (see Figure 14 below), so that each
state equation (6.13) is solved by means of a standard finite element method on the meshed subdomain Ωn
(without resorting to ersatz material approaches as in e.g. [6]).

Starting from the initial structure Ω0 depicted in Figure 12, we minimize the volume Vol(Ω) of the
structure Ω and maximize the collection of compliances Ci(Ω) (for each load case gi), as a measure of its
global rigidity. These quantities are defined by:

Vol(Ω) :=

∫
Ω

dx, Ci(Ω) :=

∫
Ω

Ae(ui) : e(ui)dx, (6.14)

and their shape derivatives read (see e.g. [6, 30]):

DVol(Ω)(θ) =

∫
Γ

θ · nds, DCi(Ω)(θ) = −
∫

Γ

Ae(ui) : e(ui)θ · nds. (6.15)
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Figure 12. Initialisation Ω0 (solid in black) for the shape optimization examples of Sec-
tion 6. The thin white layer at the bottom is a non optimizable part of the domain.

6.3.2. Volume minimization with maximum compliance constraint

At first, the volume Vol(Ω) is minimized while requiring that each individual compliance Ci(Ω) do not exceed
a given prescribed value C:

min
Ω∈X

Vol(Ω)

s.t. Ci(Ω) ≤ C for all i ∈ I
(6.16)

where I ⊂ {0, 1, . . . , 8} is a set of indices selecting the considered load cases. We solve (6.16) in the following
three configurations:

(1) Case 1: single load case: I = {4} (only the central load g4 is applied)
(2) Case 2: three load case: I = {0, 4, 8} (only the central load g4 and the two extreme loads g0 and g8

are applied).
(3) Case 3: all load cases: I = {0, 1, . . . , 8} (all nine loads are considered).

The value of the threshold C in (6.16) is set to a fraction of the maximum of the compliances Ci(Ω0) of the
initial design Ω0 (reported on Figure 12):

C = 0.7 max
i=0,...,8

∫
Ω0

Ae(ui) : e(ui)dx. (6.17)

Let us emphasize that for this example (and the next ones), no fine tuning of the algorithm parameters
AJ and AC (determining the update of the values of αJ,n and αC,n in (6.10)) of Section 6.2.2 is required.
The only intuition guiding our choice for this particular test case is that the value of AJ should be set lower
than AC . Indeed, a too high value of AJ might entail a too quick decrease of the volume, which would
incur dramatic topological changes violating the rigidity constraints. Therefore these parameters were set
to AJ = 1 and AC = 2 for this test case. The minimum mesh size is hmin = 0.03.

The optimized shapes obtained in the three aforementioned situations are shown on Figure 13. The
meshes of the initial and final designs, as well as several intermediate shapes corresponding to the nine load
test-case are shown on Figs. 14 and 15. The convergence histories in the three situations are reported on
Figs. 16 to 18. They allow to verify the decrease of the objective function even after the saturation of the

constraints. Note that for this example and the one to follow, we observed that (̂Ωn) coincides with (̃Ωn) at
every iteration, however this situation is very specific to this test case and does not reproduce in generality,

see [26] for different shape optimization applications featuring Ĩ(Ωn) 6= Î(Ωn). As expected, the optimum
value found for the volume of the solid distribution increases with the number of constraints. The major
structural change between the different situations is the addition of extra vertical bars of material near the
extremities of the structure.

6.3.3. Min/Max compliance optimization with a volume constraint

Now, the maximum value of the compliances Ci(Ω) is minimized with an equality volume constraint:

min
Ω∈X

max
i∈I

Ci(Ω)

s.t. Vol(Ω) = ρ0Vol(D)
(6.18)
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(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

Figure 13. Optimized shapes for three possible configurations of the volume minimization
problem subject to maximum compliance constraint (Section 6.3.2).

Figure 14. Meshes of the initialization and final shapes for the nine load case of Figure 13c
(Section 6.3.2).

for a target volume fraction ρ0 = 0.5 of elastic material and for the three load sets I introduced in the
previous subsection. This problem may be given the form (1.1) after introducing a slack variable m:

min
(Ω,m)∈X×R

m

s.t.

{
Vol(Ω) = ρ0Vol(D)

Ci(Ω) ≤ m for all i ∈ I.

(6.19)

The optimization must now be performed with respect to both the slack variable m and the domain geometry
Ω, which demands minor adaptations of our optimization algorithm (similar e.g. to those in Section 3.2): the
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Figure 15. Intermediate minimizing shapes for the nine load case of the volume minimiza-
tion problem of Section 6.3.2 (iterations 0, 5, 10, 20, 80, and 300).
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.44Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C4 = 1.29.

Figure 16. Convergence history curves for the single load case of Section 6.3.2.
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.46Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C0 = 1.29, C4 = 1.30, C8 = 1.28.

Figure 17. Convergence history curves for the three load case of Section 6.3.2.
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(a) Objective function J(Ω) = Vol(Ω). Final value:
Vol(Ω) = 0.50Vol(D).
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(b) Constraints (compliance values Ci). Final values:
C0 = 1.29, C1 = 1.28, C2 = 1.28, C3 = 1.29, C4 =
1.29, C5 = 1.29, C6 = 1.29, C7 = 1.30, C8 = 1.29.

Figure 18. Convergence history curves for the nine load case of Section 6.3.2.

optimization domain X×R is equipped with the tensorized tangent space V = H1(D,R)×R and differentials
are identified to gradients thanks to the bilinear form ã : H1(D,R)× R→ H1(D,R)× R defined by

∀(v, w) ∈ H1(D,R)×H1(D,R), (l,m) ∈ R× R, ã((v, l), (w,m)) = a(v, w) + lm, (6.20)

where a is the H1(D,Rd) scalar product of (6.7). The slack variable m is initialized with the maximum value
of the compliance of the initial structure Ω0 over all the considered loads:

m0 := max
i∈I

Ci(Ω0), (6.21)

and its values mn are then updated along with the shape Ωn according to Algorithm 1.

The resulting optimized structures are shown on Figure 19 for each of the three considered configurations
and the associated convergence histories are displayed on Figs. 20 to 22 for the single, triple and nine load
cases respectively. Note that sudden, abrupt peaks on the constraint curves correspond to topological changes
(e.g. at iteration 38 for the nine load case) for which the displacements corresponding to the extremal loads
g0 and g8 are especially sensitive. We observe the decrease of all compliances even after all the inequality
constraints are saturated, which occurs as soon as where all compliances achieve a common value. As
expected, the optimum design found for the nine load minimum compliance case (Figure 13c) is similar (up
to a few bars) to the corresponding one found for the volume minimization (Figure 19c): indeed, both cases
reach at convergence a volume fraction Vol(Ω) = 0.5Vol(D) and a maximum compliance max Ci(Ω) ' 1.30.

7. Conclusion and perspectives

In this paper, we have introduced a novel gradient flow for constrained minimization which does not rely
on the use of slack variables but on a dual problem allowing to detect on which subset of the constraints
the gradient of the objective function should be projected. We insisted on the clear distinction required
between differentials and gradients in order to perform such minimization in Hilbert spaces. We provided
pedagogical illustrations regarding the behavior of optimization trajectories. Finally, we demonstrated how
this flow provides a reliable and comprehensive method for systematic mathematical programming in shape
optimization. Further shape optimization applications built upon this algorithm will be provided in the PhD
dissertation [26].
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(a) One load (only g4 is considered).

(b) Three loads (only g0, g4, g8 are considered).

(c) All nine loads.

Figure 19. Optimized shapes for three possible configurations of the min/max optimiza-
tion problem (6.19) of Section 6.3.3.
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(a) Objective function m. Final value m = 1.13.

0 50 100 150 200 250 300
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8 C4

(b) Compliance Ci(Ω). Final value: C4 = 1.14.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraint Hi = Ci −m

Figure 20. Convergence history curves for one load case of Section 6.3.3.
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(a) Objective function m. Final value m = 1.18.
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(b) Compliance Ci(Ω). Final values: C0 = 1.17,
C4 = 1.19, C8 = 1.17.

0 50 100 150 200 250 300

0.30

0.35

0.40

0.45

0.50

(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraints values: Hi = Ci −m.

Figure 21. Convergence history curves for three load case of Section 6.3.3.
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(a) Objective function m (eqn. (6.19))
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(b) Compliance values Ci(Ω). Final values: C0 =
1.29, C1 = 1.29, C2 = 1.30, C3 = 1.31, C4 = 1.31,
C5 = 1.31, C6 = 1.30, C7 = 1.29, C8 = 1.29.
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(c) Volume fraction Vol(Ω)/Vol(D). Final value:
Vol(Ω)/Vol(D)=0.50.
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(d) Inequality constraints Hi = Ci −m

Figure 22. Convergence history curves for nine load case of Section 6.3.3.
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[9] S. Arguillère, E. Trélat, A. Trouvé, and L. Younes, Shape deformation analysis from the optimal control viewpoint,

J. Math. Pures Appl. (9), 104 (2015), pp. 139–178.
[10] H. Azegami and Z. C. Wu, Domain optimization analysis in linear elastic problems: approach using traction method,

JSME international journal. Ser. A, Mechanics and material engineering, 39 (1996), pp. 272–278.

[11] C. Barbarosie and S. Lopes, A gradient-type algorithm for optimization with constraints, submitted for publication, see
also Pre-Print CMAF Pre-2011-001 at http://cmaf. ptmat. fc. ul. pt/preprints. html, (2011).

[12] C. Barbarosie, S. Lopes, and A.-M. Toader, A gradient-type algorithm for constrained optimization with applications

to multi-objective optimization of auxetic materials, arXiv preprint arXiv:1711.04863, (2017).
[13] L. T. Biegler, Nonlinear programming, vol. 10 of MOS-SIAM Series on Optimization, Society for Industrial and Applied

Mathematics (SIAM), 2010.
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[46] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale

nonlinear programming, Mathematical programming, 106 (2006), pp. 25–57.

[47] M. Y. Wang, X. Wang, and D. Guo, A level set method for structural topology optimization, Computer methods in
applied mechanics and engineering, 192 (2003), pp. 227–246.

[48] H. Yamashita, A differential equation approach to nonlinear programming, Mathematical Programming, 18 (1980),

pp. 155–168.
[49] Y.-x. Yuan, A review of trust region algorithms for optimization, in Iciam, vol. 99, Citeseer, 2000, pp. 271–282.

[50] M. Yulin and W. Xiaoming, A level set method for structural topology optimization with multi-constraints and multi-

materials, Acta Mechanica Sinica, 20 (2004), pp. 507–518.
[51] G. Zoutendijk, Methods of feasible directions: A study in linear and non-linear programming, Elsevier Publishing Co.,

Amsterdam-London-New York-Princeton, N.J., 1960.

42


	1. Introduction
	2. Gradient flows for equality-constrained optimization in Hilbert spaces
	2.1. Notations and first-order optimality conditions
	2.2. Definitions and properties of the null space and range space steps J and C
	2.3. Behavior of the trajectories of the flow

	3. Proposed extension to equality and inequality constraints
	3.1. Notations and preliminaries
	3.2. The method of slack variables for inequality constraints
	3.3. The proposed algorithm
	3.4. Comparison between the proposed method and the use of slack variables

	4. Practical implementation details
	4.1. Time step adaptation based on a merit function.
	4.2. Accounting for discontinuities near the inequality constraint barriers

	5. Illustrations and comparisons on academic test cases
	5.1. Test case 1 : unfeasible initialization with initial gradient aligned with the constraints.
	5.2. Test case 2 : unfeasible initialization with initial gradient not aligned with the constraints.
	5.3. Test case 3: a saturated inequality constraint becoming inactive along the optimization path

	6. Optimization on smooth manifolds: application to shape optimization
	6.1. Hadamard's framework for gradient based shape optimization
	6.2. Implementation of the constrained gradient flow for level set based shape optimization
	6.3. Illustrations on a multiple load structural shape optimization test case

	7. Conclusion and perspectives
	References

