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In this article we refine Oppenheim's inequality as well as generalized Cusa-Huygens type inequalities established recently by some researchers. One of the results where the bounds of sin x/x are tractable will be used to obtain sharp version of Yang Le's inequality.

Introduction

The famous Cusa-Huygens inequality [START_REF] Bhayo | New Trigonometric and Hyperbolic Inequalities[END_REF][START_REF] Chen | Sharp Cusa and Becker-Stark inequalities[END_REF][START_REF] Huygens | Oeuvres Completes[END_REF][START_REF] Malešević | Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities[END_REF][START_REF] Mortici | The natural approach of Wilker-Cusa-Huygens Inequalities[END_REF][START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities[END_REF][START_REF] Sándor | Sharp Cusa-Huygens and related inequalities[END_REF][START_REF] Sándor | On Huygen's trigonometric inequality[END_REF][START_REF] Sándor | On Cusa-Huygens type trigonometric and hyperbolic inequalities[END_REF] is known as

sin x x < 2 + cos x 3 ; x ∈ (0, π/2) (1.1) 
and its hyperbolic version, sometimes called hyperbolic Cusa-Huygens inequality [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker and Huygens inequalities[END_REF] is stated as follows:

sinh x x < 2 + cosh x 3 ; x = 0. (1.2)
Obtaining extended and generalized sharp versions of the above inequalities have been the interest among many researchers in recent years. In [START_REF] Chen | Sharp Cusa and Becker-Stark inequalities[END_REF][START_REF] Sándor | Sharp Cusa-Huygens and related inequalities[END_REF], the following two sided inequality has been obtained:

2 + cos x 3 a < sin x x < 2 + cos x 3 ; x ∈ (0, π/2) (1.3)
with the best positive constants a ≈ 1.11374 and 1. J. Sándor and R. Oláh-Gál [18, Theorems 1 and 2] proved the following inequalities: 2 + cos x π < sin x x < 2 + (π/2) cos x π ; x ∈ (0, π/2).

(1.4)

For x ∈ (-π/2, π/2), the double inequality

p -1 + cos x p < sin x x < 2 + cos x 3 , (1.5) 
where p ≈ 2.75194 is due to B. A. Bhayo, R. Klén and J. Sándor [START_REF] Bhayo | New Trigonometric and Hyperbolic Inequalities[END_REF]. Left inequality in (1.5) is sharper than the corresponding inequalities in (1.3) and (1.4). For x ∈ (0, π/2) the two sided inequality

p -1 + cos x p < sin x x < 2 + (4/π) cos x π , (1.6) 
where p ≈ 2.75194 refines (1.4). It gives an optimal answer to the Oppenheim's problem [13]. It is already discussed in [START_REF] Bhayo | On Carlson's and Shafer's inequalities[END_REF] and proved by F. Qi et al. [START_REF] Qi | A Simple proof of Oppenheim's double inequality relating to the cosine and sine functions[END_REF] with more general case.

On the other side, as a natural approach C. Mortici established trigonometricpolynomial bounds for sin x/x as follows:

2 + cos x 3 - x 4 180 < sin x x < 2 + cos x 3 - x 4 180 + x 6 3780 ; x ∈ (0, π/2). (1.7)
Recently, B. Malešević et al. [START_REF] Malešević | Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities[END_REF] extended and generalized (1.7) as follows: If x ∈ (0, π/2) and n is a natural number, then

2 + cos x 3 + 2n k=2 (-1) k+1 B(k) x 2k < sin x x < 2 + cos x 3 + 2n+1 k=2 (-1) k+1 B(k) x 2k , (1.8) 
where

B(k) = 2(k -1)/[3(2k + 1)!].
Putting n = 1 in (1.8), the authors of the paper [START_REF] Malešević | Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities[END_REF] obtain (1.7). Putting n = 2, 3 they obtain respectively the inequalities listed below for x ∈ (0, π/2). In this paper, we give simpler alternative proofs of (1.5) and (1.6) as well as establish new extended refined forms of the inequalities listed above. It will be interested to refine the inequalities in (1.8). We also aim to improve Yang Le's inequality [START_REF] Yang | Distribution of Values and New Research[END_REF] in the last section.

Preliminaries and Lemmas

We start by recalling the following power series expansions:

sin x = ∞ k=0 (-1) k (2k + 1)! x 2k+1 ; x ∈ R (2.1) 
and

cos x = ∞ k=0 (-1) k (2k)! x 2k ; x ∈ R. (2.
2)

The following lemmas will be applied to prove the main results of this paper.

Lemma 1. (The l'Hôpital's monotonicity rule [START_REF] Anderson | Conformal Invarients, Inequalities and Quasiconformal maps[END_REF]) : Let f, g : [p, q] → R be two continuous functions which are derivable on (p, q) and g (x) = 0 for any x ∈ (p, q). Let,

A(x) = f (x) -f (p) g(x) -g(p)
and

B(x) = f (x) -f (q) g(x) -g(q) .
If f /g is increasing (or decreasing) on (p, q), then the functions A(x) and B(x) are also increasing (or decreasing) on (p, q). The strictness of the monotonicity in the conclusion depends on the strictness of the monotonicity of f /g . Lemma 2. [2, Lemma 2] The function H(x) = sin x-x cos x

x 2 sin x is strictly positive increasing in (0, π/2). Lemma 3. The function φ(x) = sinh x-x cosh x x 2 sinh x is strictly negative increasing for x > 0.

Proof. The function φ(x) is clearly negative as sinh x/x < cosh x for x > 0 (see [START_REF] Mitrinovic | Analytic Inequalities[END_REF]). Let us now set

φ(x) = sinh x -x cosh x x 2 sinh x = φ 1 (x) φ 2 (x) ,
where φ 1 (x) = sinh x-x cosh x and φ 2 (x) = x 2 sinh x are such that φ 1 (0) = 0 and φ 2 (0) = 0. By differentiating, we obtain

φ 1 (x) φ 2 (x) = -sinh x x cosh x + 2 sinh x = φ 3 (x) φ 4 (x) ,
where φ 3 (x) = -sinh x and φ 4 (x) = x cosh x + 2 sinh x with φ 3 (0) = 0 and φ 4 (0) = 0. By differentiating, we get

φ 3 (x) φ 4 (x) = -cosh x x sinh x + 3 cosh x = -1 x tanh x + 3 .
Now it is well known that x tanh x is increasing, implying that x tanh x + 3 is increasing. By Lemma 1, φ(x) is strictly increasing function for x > 0.

Main Results and Proofs

We first give a simpler alternative proof of (1.5) in the following theorem.

Theorem 1. [4, Theorem 1] If x ∈ (-π/2, π/2) then it holds that 2 + (π -2) cos x π < sin x x < 2 + cos x 3 . (3.1)
Proof. It is enough to prove the result for x ∈ (0, π/2). Let us set

f (x) = sin x x -cos x cos x -1 = f 1 (x) f 2 (x) ,
where

f 1 (x) = sin x/x -cos x and f 2 (x) = cos x -1 satisfy f 1 (0+) = 0 and f 2 (0) = 0. Then f 1 (x) f 2 (x) = x cos x-sin x x 2 + sin x -sin x = sin x -x cos x x 2 sin x -1.
By Lemmas 1 and 2, f (x) is strictly increasing in (0, π/2). We end the proof by applying l'Hôpital's rule with f (0+) = -2/3 and f (π/2) = -2/π.

In the next result, we extend the inequality (1.2).

Theorem 2. If x ∈ (0, λ) where λ > 0 then

-δ + (1 + δ) cosh x < sinh x x < 2 + cosh x 3 , (3.2) 
where δ = (sinh λ/λ -cosh λ)/(cosh λ -1).

Proof. Let us consider

f (x) = sinh x x -cosh x cosh x -1 = f 1 (x) f 2 (x) ,
where

f 1 (x) = sinh x/x -cosh x and f 2 (x) = cosh x -1 with f 1 (0+) = 0 and f 2 (0) = 0. Then f 1 (x) f 2 (x) = x cosh x -sinh x x 2 sinh x -1.
By Lemmas 1 and 3, f (x) is strictly decreasing in (0, λ). The desired result follows from l'Hôpital's rule, f (λ) = δ and f (0+) = -2/3.

We present another simple proof of (1.6) in the following theorem. Proof. Let us set

f (x) = sin x x -2 π cos x = f 1 (x) f 2 (x) ,
where f 1 (x) = sin x/x -2/π and f 2 (x) = cos x with f 1 (π/2) = 0 and f 2 (π/2) = 0. Then the function

f 1 (x) f 2 (x) = sin x -x cos x x 2 sin x
is strictly increasing in (0, π/2) by Lemma 2. So f (x) is also strictly increasing in (0, π/2) by Lemma 1. Therefore, the proof of Theorem 3 follows with f (0+) = (π -2)/π and f (π/2-) = 4/π 2 by l'Hôpital's rule.

Motivated by (1.7), trigonometric-polynomial bounds for sin x/x with new approach are established in the theorem below. Theorem 4. If x ∈ (0, π/2) then the following inequalities hold:

2 + cos x 3 - x 4 a < sin x x < 2 + cos x 3 - x 4 b (3.4)
with the constants a = 180 and b ≈ 202.618886.

Proof. Let us set

f (x) = -3x 5 3 sin x -2x -x cos x = f 1 (x) f 2 (x) ,
where f 1 (x) = -3x 5 and f 2 (x) = 3 sin x -2x -x cos x with f 1 (0) = 0 and f 2 (0) = 0. Then we have

f 1 (x) f 2 (x) = -15x 4 2 cos x -2 + x sin x = f 3 (x) f 4 (x) ,
where f 3 (x) = -15x 4 and f 4 (x) = 2 cos x -2 + x sin x with f 3 (0) = 0 and f 4 (0) = 0. Differentiation gives

f 3 (x) f 4 (x) = -60x 3 -sin x + x cos x = f 5 (x) f 6 (x) ,
where f 5 (x) = -60x 3 and f 6 (x) = -sin x + x cos x with f 5 (0) = 0 and f 6 (0) = 0. Again differentiating

f 5 (x) f 6 (x) = 180 x sin x
which is clearly increasing in (0, π/2). Hence, by l'Hôpital's rule with a = f (0+) = 180 and b = f (π/2) ≈ 202.618886, we complete the proof.

The hyperbolic version of (3.4) is given in Theorem 5 below. Theorem 5. If x ∈ (0, λ) where λ > 0 then the following inequalities hold:

2 + cosh x 3 - x 4 m < sinh x x < 2 + cosh x 3 - x 4 n (3.5)
with the constants m = -3λ 5 /(3 sinh λ -2λ -λ cosh λ) and n = 180.

The proof of Theorem 5 is omitted since it is similar to the one of Theorem 4.

A refinement of upper bounds of (1.4) and (1.6) can be seen in the theorem below. Theorem 6. For x ∈ (0, π/2) , one has

sin x x < 2 + (π -2) cos x π + π -3 3π x 2 . (3.6) Proof. Let us set f (x) = π sin x -2x -(π -2)x cos x πx 3 = f 1 (x) f 2 (x)
where

f 1 (x) = π sin x -2x -(π -2)
x cos x and f 2 (x) = πx 3 satisfy f 1 (0) = 0 and f 2 (0) = 0. Then

f 1 (x) f 2 (x) = π cos x -2 -(π -2)[cos x -x sin x] 3πx 2 = f 3 (x) f 4 (x)
where

f 3 (x) = π cos x -2 -(π -2)(cos x -x sin x) and f 4 (x) = 3πx 2 with f 3 (0) = 0 and f 4 (0) = 0. Differentiating f 3 (x) f 4 (x) = -π sin x + (π -2)(2 sin x + x cos x) 6πx = f 5 (x) f 6 (x)
where f 5 (x) = -π sin x + (π -2)(2 sin x + x cos x) and f 6 (x) = 6πx satisfy f 5 (x) = 0 and f 6 (x) = 0. Again, by differentiating, we obtain

f 5 (x) f 6 (x) = -π cos x + (π -2)(cos x -x sin x) 6π = f 7 (x) 6π where f 7 (x) = -π cos x + (π -2)(3 cos x -x sin x).
For x ∈ (0, π/2), on differentiation, it gives us

f 7 (x) = (-3π + 8) sin x -(π -2)x cos x < 0.
Therefore by Lemma 1, f (x) is decreasing and hence

f (0+) > π sin x -2x -(π -2)x cos x πx 3 .
With f (0+) = (π -3)/(3π), the result is proved.

Remark 1. There is no strict comparison between the corresponding bounds of (1.6) and (3.6). However when x is close to zero, (3.6) is better since the inequality becomes an equality for x = 0.

Combining (1.6) and (3.6) we have for x ∈ (0, π/2) that

2 + (π -2) cos x π < sin x x < 2 + (π -2) cos x π + π -3 3π x 2 . (3.7)
In the following theorem, we extend and refine the bounds of (3.7).

Theorem 7. If n ∈ N (the set of natural numbers) and x ∈ (0, π) then we have

M (x) < sin x x < N (x) (3.8)
where

M (x) = 2 + (π -2) cos x π + 2 π 2n k=1 (-1) k+1 (kπ -2k -1) (2k + 1)! x 2k
and

N (x) = 2 + (π -2) cos x π + 2 π 2n+1 k=1 (-1) k+1 (kπ -2k -1) (2k + 1)! x 2k .
Proof. Let us set

f (x) = sin x x -M (x).
Utilizing (2.1) and (2.2), we get

f (x) = ∞ k=0 (-1) k x 2k (2k + 1)! - 2 π - π -2 π ∞ k=0 (-1) k x 2k (2k)! - 2 π 2n k=1 (-1) k+1 kπ -2k -1 (2k + 1)! x 2k = 2 π ∞ k=0 (-1) k+1 kπ -2k -1 (2k + 1)! x 2k - 2 π - 2 π 2n k=1 (-1) k+1 kπ -2k -1 (2k + 1)! x 2k = - 2 π R, where R = ∞ k=2n+1 (-1) k kπ -2k -1 (2k + 1)! x 2k .
Hence R can be viewed as a rest of the alternating series S given by

S = ∞ k=2 (-1) k a k ,
with a k = [(kπ -2k -1)/(2k + 1)!]x 2k > 0. Now for k 2 and x ∈ (0, π) we have

(kπ -2k -1)(4k 2 + 10k + 6 -x 2 ) (2π -5)(42 -π 2 ) > (π -2)x 2 .
Equivalently,

(kπ -2k -1)(2k + 3)(2k + 2) > [(kπ -2k -1) + (π -2)] x 2 which gives kπ -2k -1 (2k + 1)! x 2k > (k + 1)π -2(k + 1) -1 (2k + 3)! x 2(k+1) .
Hence

|a k | > |a k+1 |. Moreover, for x ∈ (0, π) we have lim k→∞ |a k | = lim k→∞ kπ -2k -1 (2k + 1)! x 2k = π -2 2 lim k→∞ x 2k (2k)! = 0.
This implies that S is convergent and, by a special result on alternating series, R has the same sign to the first term of its sum, i.e. (-1) 2n+1 a 2n+1 < 0, so R < 0, implying that f (x) > 0, and

M (x) < sin x x . (3.9) 
Similarly setting

g(x) = N (x) - sin x x = 2 + (π -2) cos x π + 2 π 2n+1 k=1 (-1) k+1 kπ -2k -1 (2k + 1)! x 2k - sin x x .
Using again (2.1) and (2.2) and proceeding as in case of f (x), we obtain

g(x) = 2 π R * ,
where

R * = ∞ k=2n+2 (-1) k kπ -2k -1 (2k + 1)! x 2k .
Let us observe that R * is a rest of the alternating series S. By applying similar arguments to R, we get R * > 0, implying that g(x) > 0 and hence sin x x < N (x).

(3.10)

The proof follows from (3.9) and (3.10).

Some particular cases of Theorem 7 are presented below. If x ∈ (0, π) then by putting n = 1 in (3.8) we get

2 + (π -2) cos x π + 2 π π -3 3! x 2 - 2π -5 5! x 4 < sin x x < 2 + (π -2) cos x π + 2 π π -3 3! x 2 - 2π -5 5! x 4 + 3π -7 7! x 6 . (3.11) 
By putting n = 2 in (3.8) we get

< 2 + (π -2) cos x π + 2 π π -3 3! x 2 - 2π -5 5! x 4 + 3π -7 7! x 6 - 4π -9 9! x 8 < sin x x < 2 + (π -2) cos x π + 2 π (π -3) 3! x 2 - 2π -5 5! x 4 + 3π -7 7! x 6 - 4π -9 9! x 8 + 5π -11 11! x 10 .
(3.12)

Next we claim that, the generalized extended bounds for sin x/x in the following theorem are sharper than the corresponding bounds in (1.8).

Theorem 8. If m = 2n -1 where n ∈ N and x ∈ (0, π), then we have

F (x) < sin x x < G(x), (3.13) 
where

F (x) = 2m + cos x 2m + 1 + 2 2m + 1 m+1 k=1 k -m (2k + 1)! (-1) k+1 x 2k and 
G(x) = (2m + 2) + cos x 2m + 3 + 2 2m + 3 m+2 k=1 k -m -1 (2k + 1)! (-1) k+1 x 2k . Proof. Let us set f (x) = sin x x -F (x) = sin x x - 2m 2m + 1 - 1 2m + 1 cos x - 2 2m + 1 m+1 k=1 k -m (2k + 1)! (-1) k+1 x 2k .
Utilizing (2.1) and (2.2), after some calculus, we get

f (x) = ∞ k=0 (-1) k (2k + 1)! x 2k - 2m 2m + 1 - 1 2m + 1 ∞ k=0 (-1) k (2k)! x 2k - 2 2m + 1 m+1 k=1 k -m (2k + 1)! (-1) k+1 x 2k = - 2m 2m + 1 + 2 2m + 1 ∞ k=0 k -m (2k + 1)! (-1) k+1 x 2k - 2 2m + 1 m+1 k=1 k -m (2k + 1)! (-1) k+1 x 2k = 2 2m + 1 ∞ k=m+2 k -m (2k + 1)! (-1) k+1 x 2k = 2 2m + 1 x 2m T,
where

T = ∞ k=2 k (2k + 2m + 1)! (-1) k x 2k .
Then T can be viewed as a rest of the alternating series U given by

U = ∞ k=1 (-1) k b k , with b k = (k/(2k + 2m + 1)!)x 2k
. Now for k 1 and x ∈ (0, π), we have

k[4(k + m) 2 + 10(k + m) + 6] -kx 2 k(42 -π 2 ) > x 2 .
Equivalently,

k(2k + 2m + 3)(2k + 2m + 2) > (k + 1) x 2 which gives k (2k + 2m + 1)! x 2k > k + 1 (2k + 2m + 3)! x 2k+2 .
Hence |b k | > |b k+1 |. Moreover, for x ∈ (0, π), we have lim

k→∞ |b k | = lim k→∞ k (2k + 2m + 1)! x 2k = 1 2 lim k→∞ x 2k (2k + 2m)! = 0.
This implies that U is convergent and (-1) 2 b 2 > 0, so T > 0. Thus, f (x) > 0 and

F (x) < sin x x . (3.14) 
Similarly, let us set

g(x) = G(x) - sin x x = (2m + 2) + cos x 2m + 3 + 2 2m + 3 m+2 k=1 k -m -1 (2k + 1)! (-1) k+1 x 2k - sin x x .
Using (2.1), (2.2) and proceeding as in case of f (x) gives

g(x) = 2 2m + 3 m+2 k=1 k -m -1 (2k + 1)! (-1) k+1 x 2k - ∞ k=1 k -m -1 (2k + 1)! (-1) k+1 x 2k = 2 2m + 3 x 2m+2 T * ,
where

T * = ∞ k=2 k (2k + 2m + 3)! (-1) k x 2k .
By applying the same arguments related to the alternating series used to show that T > 0, we prove that T * > 0, implying that g(x) > 0 and sin x x < G(x).

(3.15)

The proof follows from (3.14) and (3.15). Some particular cases of Theorem 8 are presented below. If x ∈ (0, π) then by putting n = 1 (so m = 1) in (3.13) For comparison between particular cases, it can be verified by any mathematical software that the bounds of sin x/x in (3.16), (3.17) and (3.18) are sharper than the corresponding bounds in (1.7), (1.9) and (1.10) respectively. Moreover, all the bounds are trigonometric-polynomial. Therefore, considering the number of terms and the degrees of polynomials in respective bounds, we conclude that our bounds are better.

An Application

The Yang Le's inequality [START_REF] Yang | Distribution of Values and New Research[END_REF] can be stated as follows.

If A 1 > 0, A 2 > 0, A 1 + A 2 π and 0 λ 1, then cos 2 λA 1 + cos 2 λA 2 -2 cos λA 1 cos λA 2 cos λπ sin 2 λπ (4.1) Inequality (4.1) and it's generalizations play an important role in the theory of distribution of values. Therefore many refinements of (4.1) are established so far. For more details we refer reader to [START_REF] Chen | Sharp Redheffer-type and Becker-Starktype inequalities with an application[END_REF][START_REF] Jiang | Sharpening of Jordan's inequality and its applications[END_REF][START_REF] Özban | A new refined form of Jordan's inequality and its applications[END_REF][START_REF] Zhao | Generalization and strengthen of Yang Le inequality[END_REF] and the references therein.

Recently C.-P. Chen and N. Elezović [START_REF] Chen | Sharp Redheffer-type and Becker-Starktype inequalities with an application[END_REF] obtained an improved form of Yang Le's inequality which is given below:

Let A i > 0 with n i=1 A i π and n ∈ N, n > 1, 0 µ 1. Then N (µ)

1 i<j n H ij M (µ), (4.2) 
where H ij = cos 2 µA i + cos Here we refine the Yang Le's inequality by using the tractable bounds of sin(x)/x. Theorem 9. Let, A i > 0 with n i=1 A i π and n ∈ N, n > 1; 0 µ 1. Then P (µ)

1 i<j n H ij Q(µ), (4.3) 
where H ij = cos 2 µA i + cos 

Theorem 3 .

 3 [START_REF] Bhayo | On Carlson's and Shafer's inequalities[END_REF][START_REF] Qi | A Simple proof of Oppenheim's double inequality relating to the cosine and sine functions[END_REF] If x ∈ (0, π/2) then the inequalities 2 + (π -2) cos x π

  2 µA j -2 cos µA i cos µA j cos µπ,

		N (µ) =	n(n -1) 2	π 2 1 -(µ/2) 2 1 + (µ/2) 2	2	µ 2 cos 2 µπ 2
	and	M (µ) =	n(n -1) 2	π 2 1 -(µ/2) 3 1 + 2(µ/2) 3	2	µ 2 .

  2 µA j -2 cos µA i cos µA j cos µπ,

		P (µ) = 2n(n -1) 1 +	(π -2) 2	cos	µπ 2	2	µ 2 cos 2 µπ 2
	and									
		Q(µ) = 2n(n -1)	1 +	(π -2) 2	cos	µπ 2	+	µ 2 π 2 (π -3) 24	2	µ 2 .
	Proof. We substitute x = µπ/2 in (3.7) to get
				µ 1 +		(π -2) 2	cos	µπ 2	< sin	µπ 2
	and	sin	µπ 2	< µ 1 +	(π -2) 2	cos	µπ 2	+	µ 3 π 2 (π -3) 24	.
	Using the inequality [20], for 1 i < j n, we have
			4 sin 2 µπ 2	cos 2 µπ 2		H ij 4 sin 2 µπ 2	.

We deduce that

Summing up all the inequalities in (4.4), we get (4.3).