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1 Introduction

The famous Cusa-Huygens inequality [4, 6, 7, 9, 11,12,16–18] is known as

sin(x)

x
<

2 + cos(x)

3
; x ∈ (0, π/2) (1.1)

and its hyperbolic version, sometimes called hyperbolic Cusa-Huygens in-
equality [12] is stated as follows:

sinh(x)

x
<

2 + cosh(x)

3
; x 6= 0. (1.2)

Obtaining the extended and generalized sharp versions of the above inequali-
ties have been the interest among many researchers in recent years. In [6,16],
the following inequality has been obtained:(

2 + cos(x)

3

)a
<
sin(x)

x
<

2 + cos(x)

3
; x ∈ (0, π/2) (1.3)
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with the best positive constants a ≈ 1.11374 and 1.
J. Sándor and R. Oláh-Gál [18, Theorems 1 and 2] proved the the following

inequalities:

2 + cos(x)

π
<
sin(x)

x
<

2 + (π/2) cos(x)

π
; x ∈ (0, π/2). (1.4)

For x ∈ (−π/2, π/2), the double inequality

p− 1 + cos(x)

p
<
sin(x)

x
<

2 + cos(x)

3
, (1.5)

where p ≈ 2.75194 is due to B. A. Bhayo, R. Klén and J. Sándor [4]. Left
inequality in (1.5) is sharper than the corresponding inequalities in (1.3) and
(1.4). In our main results, we will first present a very simple alternative
proof of (1.5). Then another natural generalization of (1.4) and (1.5) will be
established.

On the other side, as a natural approach Cristinel Mortici established
trigonometric-polynomial bound for sin(x)/x as follows:

2 + cos(x)

3
− x4

180
<
sin(x)

x
<

2 + cos(x)

3
− x4

180
+

x6

3780
; x ∈ (0, π/2).

(1.6)

Recently, B. Malešević et al. [9] extended and generalized (1.6) as follows:
If x ∈ (0, π/2) and n is a natural number, then

2 + cos(x)

3
+

2n∑
k=2

(−1)k+1B(k)x2k <
sin(x)

x

<
2 + cos(x)

3
+

2n+1∑
k=2

(−1)k+1B(k)x2k, (1.7)

where B(k) = 2(k − 1)/[3(2k + 1)!].
Putting n = 1 in (1.7), the authors of the paper [9] obtain (1.6). Putting

n = 2, 3 respectively, they obtain the inequalities listed below for x ∈ (0, π/2).

2 + cos(x)

3
− x4

180
+

x6

3780
− x8

181440
<
sin(x)

x

<
2 + cos(x)

3
− x4

180
+

x6

3780
− x8

181440
+

x10

14968800
(1.8)
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and

2 + cos(x)

3
− x4

180
+

x6

3780
− x8

181440
+

x10

14968800
− x12

1868106240
<
sin(x)

x

<
2 + cos(x)

3
− x4

180
+

x6

3780
− x8

181440
+

x10

14968800
− x12

1868106240

+
x14

326918592000
. (1.9)

Motivated by these results, our main aim is to refine the inequalities in (1.7).

2 Preliminaries and Lemmas

We start by recalling the following power series expansions:

sin(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1; x ∈ R (2.1)

and

cos(x) =
∞∑
k=0

(−1)k

(2k)!
x2k; x ∈ R. (2.2)

The following lemmas will be applied to prove the main results of this paper.

Lemma 1. (The l’Hôpital’s monotonicity rule [1]) : Let f, g : [p, q]→ R be
two continuous functions which are derivable on (p, q) and g′(x) 6= 0 for any
x ∈ (p, q). Let,

A(x) =
f(x)− f(p)

g(x)− g(p)

and

B(x) =
f(x)− f(q)

g(x)− g(q)
.

If f ′/g′ is increasing (or decreasing) on (p, q), then the functions A(x) and
B(x) are also increasing (or decreasing) on (p, q). The strictness of the mono-
tonicity in the conclusion depends on the strictness of the monotonicity of
f ′/g′.

Lemma 2. [2, Lemma 2] The function H(x) = (sin(x)−x cos(x))/(x2 sin(x))
is strictly positive increasing in (0, π/2).

Lemma 3. The function φ(x) = (sinh(x)−x cosh(x))/(x2 sinh(x)) is strictly
negative increasing for x > 0.
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Proof of Lemma 3. The function φ(x) is clearly negative as sinh(x)/x <
cosh(x) for x > 0 (see [10]). Let us now set

φ(x) =
sinh(x)− x cosh(x)

x2 sinh(x)
=
φ1(x)

φ2(x)
,

where φ1(x) = sinh(x) − x cosh(x) and φ2(x) = x2 sinh(x) are such that
φ1(0) = 0 and φ2(0) = 0. By differentiating, we obtain

φ′1(x)

φ′2(x)
=

−sinh(x)

x cosh(x) + 2sinh(x)
=
φ3(x)

φ4(x)
,

where φ3(x) = −sinh(x) and φ4(x) = x cosh(x) + 2 sinh(x) with φ3(0) = 0
and φ4(0) = 0. By differentiating, we get

φ′3(x)

φ′4(x)
=

−cosh(x)

x sinh(x) + 3cosh(x)
=

−1

x tanh(x) + 3
.

Now it is well known that x tanh(x) is increasing implying that x tanh(x)+3
is increasing. By Lemma 1, φ(x) is strictly increasing function for x > 0.

3 Main Results and Proofs

We first give a simpler alternative proof of (1.5) in the following theorem.

Theorem 1. [4, Theorem 1] If x ∈ (−π/2, π/2) then it holds that

2 + (π − 2)cos(x)

π
<
sin(x)

x
<

2 + cos(x)

3
. (3.1)

Proof of Theorem 1. It is enough to prove the result for x ∈ (0, π/2). Let us
set

f(x) =
sin(x)
x
− cos(x)

cos(x)− 1
=
f1(x)

f2(x)
,

where f1(x) = sin(x)/x − cos(x) and f2(x) = cos(x) − 1 satisfy f1(0+) = 0
and f2(0) = 0. Then

f ′1(x)

f ′2(x)
=

x cos(x)−sin(x)
x2

+ sin(x)

−sin(x)
=
sin(x)− x cos(x)

x2sin(x)
− 1.

By Lemmas 1 and 2, f(x) is strictly increasing in (0, π/2). We end the proof
by applying l’Hôpital’s rule with f(0+) = −2/3 and f(π/2) = −2/π.
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The double inequality in the next theorem refines the inequalities (1.4).
It gives an optimal answer to the Oppenheim’s problem [13]. It is already
discussed in [3] and proved by F. Qi et al. [15] with more general case.
However we give another simple proof.

Theorem 2. If x ∈ (0, π/2) then the inequalities

2 + (π − 2)cos(x)

π
<
sin(x)

x
<

2 + (4/π)cos(x)

π
(3.2)

are true.

Proof of Theorem 2. Let us set

f(x) =
sin(x)
x
− 2

π

cos(x)
=
f1(x)

f2(x)
,

where f1(x) = sin(x)/x − 2/π and f2(x) = cos(x) with f1(π/2) = 0 and
f2(π/2) = 0. Then the function

f ′1(x)

f ′2(x)
=
sin(x)− x cos(x)

x2 sin(x)

is strictly increasing in (0, π/2) by Lemma 2. So f(x) is also strictly increasing
in (0, π/2) by Lemma 1. Therefore, the proof of Theorem 2 follows with
f(0+) = (π − 2)/π and f(π/2−) = 4/π2 by l’Hôpital’s rule.

A refinement of upper bounds of (1.4) and (3.2) can be seen in the theorem
below.

Theorem 3. For x ∈ (0, π/2), one has

sin(x)

x
<

2 + (π − 2)cos(x)

π
+
π − 3

3π
x2. (3.3)

Proof of Theorem 3. Let us set

f(x) =
πsin(x)− 2x− (π − 2)xcos(x)

πx3
=
f1(x)

f2(x)
,

where f1(x) = πsin(x)−2x−(π−2)xcos(x) and f2(x) = πx3 satisfy f1(0) = 0
and f2(0) = 0. Then

f ′1(x)

f ′2(x)
=
πcos(x)− 2− (π − 2)[cos(x)− xsin(x)]

3πx2
=
f3(x)

f4(x)
,
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where f3(x) = πcos(x)−2− (π−2)[cos(x)−xsin(x)] and f4(x) = 3πx2 with
f3(0) = 0 and f4(0) = 0. By differentiating we get

f ′3(x)

f ′4(x)
=
−πsin(x) + (π − 2)(2sin(x) + xcos(x))

6πx
=
f5(x)

f6(x)
,

where f5(x) = −πsin(x)+(π−2)[2sin(x)+xcos(x)] and f6(x) = 6πx satisfy
f5(x) = 0 and f6(x) = 0. Again, by differentiating, we obtain

f ′5(x)

f ′6(x)
=
−πcos(x) + (π − 2)[3cos(x)− xsin(x)]

6π
=
f7(x)

6π
,

where
f7(x) = −πcos(x) + (π − 2)[3cos(x)− xsin(x)].

For x ∈ (0, π/2), on differentiation, it gives us

f ′7(x) = (−3π + 8)sin(x)− (π − 2)xcos(x) < 0.

Therefore by Lemma 1, f(x) is decreasing and hence

f(0+) >
πsin(x)− 2x− (π − 2)xcos(x)

πx3
.

With f(0+) = (π − 3)/(3π), the result is proved.

Remark 1. There is no strict comparison between the corresponding bounds
of (3.2) and (3.3). However when x is close to zero, (3.3) is better since the
inequality becomes an equality for x = 0.

Combining (3.2) and (3.3) we have for x ∈ (0, π/2) that

2 + (π − 2)cos(x)

π
<
sin(x)

x
<

2 + (π − 2)cos(x)

π
+
π − 3

3π
x2. (3.4)

In the following theorem, we extend and refine the bounds of (3.4).

Theorem 4. If n ∈ N (the set of natural numbers) and x ∈ (0, π) then we
have

M(x) <
sin(x)

x
< N(x), (3.5)

where

M(x) =
2 + (π − 2)cos(x)

π
+

2

π

2n∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k

and

N(x) =
2 + (π − 2)cos(x)

π
+

2

π

2n+1∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k.
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Proof of Theorem 4. Let us set

f(x) =
sin(x)

x
−M(x).

Utilizing (2.1) and (2.2), we get

f(x) =
∞∑
k=0

(−1)k
x2k

(2k + 1)!
− 2

π
− π − 2

π

∞∑
k=0

(−1)k
x2k

(2k)!

− 2

π

2n∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k

=
2

π

∞∑
k=0

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k − 2

π
− 2

π

2n∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k

= − 2

π
R,

where

R =
∞∑

k=2n+1

(−1)k
kπ − 2k − 1

(2k + 1)!
x2k.

Hence R can be viewed as a rest of the alternating series S given by

S =
∞∑
k=2

(−1)kak,

with ak = [(kπ− 2k− 1)/(2k+ 1)!]x2k > 0. In order to determine the sign of
R, let us prove that S is convergent, i.e. |ak| > |ak+1| and limk→+∞ |ak| = 0.

For k > 2 and x ∈ (0, π) we have

(kπ − 2k − 1)(4k2 + 10k + 6− x2) > (2π − 5)(42− π2) > (π − 2)x2.

Equivalently,

(kπ − 2k − 1)(2k + 3)(2k + 2) > [(kπ − 2k − 1) + (π − 2)]x2

which gives

kπ − 2k − 1

(2k + 1)!
x2k >

(k + 1)π − 2(k + 1)− 1

(2k + 3)!
x2(k+1).

Hence |ak| > |ak+1|. Moreover, for x ∈ (0, π) we have

lim
k→∞
|ak| = lim

k→∞

kπ − 2k − 1

(2k + 1)!
x2k =

π − 2

2
lim
k→∞

x2k

(2k)!
= 0.
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This implies that S is convergent and, by a special result on alternating series,
R has the same sign to the first term of its sum, i.e. (−1)2n+1a2n+1 < 0, so
R < 0, implying that f(x) > 0, and

M(x) <
sin(x)

x
. (3.6)

Similarly setting

g(x) = N(x)− sin(x)

x

=
2 + (π − 2)cos(x)

π
+

2

π

2n+1∑
k=1

(−1)k+1kπ − 2k − 1

(2k + 1)!
x2k − sin(x)

x
.

Using again (2.1) and (2.2) and proceeding as in case of f(x), we obtain

g(x) =
2

π
R∗,

where

R∗ =
∞∑

k=2n+2

(−1)k
kπ − 2k − 1

(2k + 1)!
x2k.

Let us observe that R∗ is a rest of the alternating series S. By applying
similar arguments to R, we get R∗ > 0, implying that g(x) > 0 and hence

sin(x)

x
< N(x). (3.7)

The proof follows from (3.6) and (3.7).

Some particular cases of Theorem 4 are presented below. If x ∈ (0, π)
then by putting n = 1 in (3.5) we get

2 + (π − 2)cos(x)

π
+

2

π

[
π − 3

3!
x2 − 2π − 5

5!
x4
]
<
sin(x)

x

<
2 + (π − 2)cos(x)

π
+

2

π

[
π − 3

3!
x2 − 2π − 5

5!
x4 +

3π − 7

7!
x6
]
. (3.8)

By putting n = 2 in (3.5) we get

<
2 + (π − 2)cos(x)

π
+

2

π

[
π − 3

3!
x2 − 2π − 5

5!
x4 +

3π − 7

7!
x6 − 4π − 9

9!
x8
]

<
sin(x)

x

<
2 + (π − 2)cos(x)

π

+
2

π

[
(π − 3)

3!
x2 − 2π − 5

5!
x4 +

3π − 7

7!
x6 − 4π − 9

9!
x8 +

5π − 11

11!
x10
]
. (3.9)

8



In the next result, we generalize the inequality (1.2).

Theorem 5. If x ∈ (0, λ) where λ > 0 then

−δ + (1 + δ)cosh(x) <
sinh(x)

x
<

2 + cosh(x)

3
, (3.10)

where δ = (sinh(λ)/λ− cosh(λ))/(cosh(λ)− 1).

Proof of Theorem 5. Let us consider

f(x) =
sinh(x)

x
− cosh(x)

cosh(x)− 1
=
f1(x)

f2(x)
,

where f1(x) = sinh(x)/x− cosh(x) and f2(x) = cosh(x)−1 with f1(0+) = 0
and f2(0) = 0. Then

f ′1(x)

f ′2(x)
=
x cosh(x)− sinh(x)

x2 sinh(x)
− 1.

By Lemmas 1 and 3, f(x) is strictly decreasing in (0, λ). The desired result
follows from l’Hôpital’s rule, f(λ) = δ and f(0+) = −2/3.

Motivated by (1.6), trigonometric-polynomial bounds for sin(x)/x with
new approach are established in the theorem below.

Theorem 6. If x ∈ (0, π/2) then the following inequalities hold:

2 + cos(x)

3
− x4

a
<
sin(x)

x
<

2 + cos(x)

3
− x4

b
(3.11)

with the constants a = 180 and b ≈ 202.618886.

Proof of Theorem 6. Let us set

f(x) =
−3x5

3sin(x)− 2x− xcos(x)
=
f1(x)

f2(x)
,

where f1(x) = −3x5 and f2(x) = 3sin(x)− 2x− xcos(x) with f1(0) = 0 and
f2(0) = 0. Then we have

f ′1(x)

f ′2(x)
=

−15x4

2cos(x)− 2 + xsin(x)
=
f3(x)

f4(x)
,

where f3(x) = −15x4 and f4(x) = 2cos(x)− 2 + xsin(x) with f3(0) = 0 and
f4(0) = 0. Differentiation gives

f ′3(x)

f ′4(x)
=

−60x3

−sin(x) + xcos(x)
=
f5(x)

f6(x)
,
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where f5(x) = −60x3 and f6(x) = −sin(x) + xcos(x) with f5(0) = 0 and
f6(0) = 0. Again differentiating

f ′5(x)

f ′6(x)
= 180

x

sin(x)

which is clearly increasing in (0, π/2). Hence, by l’Hôpital’s rule with a =
f(0+) = 180 and b = f(π/2) ≈ 202.618886, we complete the proof.

The hyperbolic version of (3.4) is given in Theorem 5 below.

Theorem 7. If x ∈ (0, λ) where λ > 0 then the following inequalities hold:

2 + cosh(x)

3
− x4

m
<
sinh(x)

x
<

2 + cosh(x)

3
− x4

n
(3.12)

with the constants m = −3λ5/(3sinh(λ)− 2λ− λ cosh(λ)) and n = 180.

The proof of Theorem 5 is omitted since it is similar to the one of Theorem
4.

Next we claim that, the generalized extended bounds for sin(x)/x in the
following theorem are sharper than the corresponding bounds in (1.7).

Theorem 8. If m = 2n− 1 where n ∈ N and x ∈ (0, π), then we have

F (x) <
sin(x)

x
< G(x), (3.13)

where

F (x) =
2m+ cos(x)

2m+ 1
+

2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k

and

G(x) =
(2m+ 2) + cos(x)

2m+ 3
+

2

2m+ 3

m+2∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k.

Proof of Theorem 8. Let us set

f(x) =
sin(x)

x
− F (x)

=
sin(x)

x
− 2m

2m+ 1
− 1

2m+ 1
cos(x)− 2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k.
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Utilizing (2.1) and (2.2), after some calculus, we get

f(x) =
∞∑
k=0

(−1)k

(2k + 1)!
x2k − 2m

2m+ 1
− 1

2m+ 1

∞∑
k=0

(−1)k

(2k)!
x2k

− 2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k

= − 2m

2m+ 1
+

2

2m+ 1

∞∑
k=0

k −m
(2k + 1)!

(−1)k+1x2k

− 2

2m+ 1

m+1∑
k=1

k −m
(2k + 1)!

(−1)k+1x2k

=
2

2m+ 1

∞∑
k=m+2

k −m
(2k + 1)!

(−1)k+1x2k =
2

2m+ 1
x2mT,

where

T =
∞∑
k=2

k

(2k + 2m+ 1)!
(−1)kx2k

(for the last line, we used a change of index (k is changed by k−m) and the
fact that (−1)m+1 = 1). Then T can be viewed as a rest of the alternating
series U given by

U =
∞∑
k=1

(−1)kbk,

with bk = (k/(2k + 2m+ 1)!)x2k. In order to determine the sign of T , let us
prove that U is convergent.

For k > 1 and x ∈ (0, π), we have

k[4(k +m)2 + 10(k +m) + 6]− kx2 > k(42− π2) > x2.

Equivalently,

k(2k + 2m+ 3)(2k + 2m+ 2) > (k + 1)x2

which gives
k

(2k + 2m+ 1)!
x2k >

k + 1

(2k + 2m+ 3)!
x2k+2.

Hence |bk| > |bk+1|. Moreover, for x ∈ (0, π), we have

lim
k→∞
|bk| = lim

k→∞

k

(2k + 2m+ 1)!
x2k =

1

2
lim
k→∞

x2k

(2k + 2m)!
= 0.

11



This implies that U is convergent and, by a special result on alternating
series, T has the same sign to the first term of its sum, i.e. (−1)2b2 > 0, so
T > 0. Thus, f(x) > 0 and

F (x) <
sin(x)

x
. (3.14)

Similarly, let us set

g(x) = G(x)− sin(x)

x

=
(2m+ 2) + cos(x)

2m+ 3
+

2

2m+ 3

m+2∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k − sin(x)

x
.

Using (2.1), (2.2) and proceeding as in case of f(x) gives

g(x) =
2

2m+ 3

[
m+2∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k −

∞∑
k=1

k −m− 1

(2k + 1)!
(−1)k+1x2k

]
=

2

2m+ 3
x2m+2T∗,

where

T∗ =
∞∑
k=2

k

(2k + 2m+ 3)!
(−1)kx2k.

By applying the same arguments related to the alternating series used to
show that T > 0, we prove that T∗ > 0, implying that g(x) > 0 and

sin(x)

x
< G(x). (3.15)

The proof follows from (3.14) and (3.15).

Some particular cases of Theorem 6 are presented below. If x ∈ (0, π)
then by putting n = 1 (so m = 1) in (3.13) we get

2 + cos(x)

3
− x4

180
<
sin(x)

x
<

4 + cos(x)

5
− x2

15
+

x6

12600
. (3.16)

By putting n = 2 (so m = 3) in (3.13) we get

6 + cos(x)

7
− 2x2

21
+

x4

420
− x8

1270080
<
sin(x)

x

<
8 + cos(x)

9
− x2

9
+

x4

270
− x6

22680
+

x10

179625600
. (3.17)
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By putting n = 3 (so m = 5) in (3.13) we get

10 + cos(x)

11
− 4x2

33
+

x4

220
− x6

13860
+

x8

1995840
− x12

34248614400
<
sin(x)

x

<
12 + cos(x)

13
− 5x2

39
+

x4

195
− x6

8190
+

x8

1179360
− x10

259459200

+
x14

8499883392000
. (3.18)

For comparison between the particular cases, it can be verified by any math-
ematical software that the bounds of sin(x)/x in (3.16), (3.17) and (3.18) are
sharper than the corresponding bounds in (1.6), (1.8) and (1.9) respectively.
Moreover, all the bounds are trigonometric-polynomial. Therefore, consider-
ing the number of terms and the degrees of polynomials in respective bounds,
we conclude that our bounds are better.

4 An Application

The Yang Le’s inequality [19] can be stated as follows.

If A1 > 0, A2 > 0, A1 + A2 6 π and 0 6 λ 6 1, then

cos2(λA1) + cos2(λA2)− 2cos(λA1) cos(λA2) cos(λπ) > sin2(λπ) (4.1)

Inequality (4.1) and it’s generalizations play an important role in the theory
of distribution of values. Therefore many refinements of (4.1) are established
so far. For more details we refer reader to [5, 8, 14, 20] and the references
therein.

Recently C.-P. Chen and N. Elezović [5] obtained an improved form of
Yang Le’s inequality which is given below:

Let Ai > 0 with
∑n

i=1Ai 6 π and n ∈ N, n > 1, 0 6 µ 6 1. Then

N(µ) 6
∑

16i<j6n

Hij 6M(µ), (4.2)

where

Hij = cos2(µAi) + cos2(µAj)− 2cos(µAi) cos(µAj) cos(µπ),

13



N(µ) =
n(n− 1)

2
π2

[
1− (µ/2)2

1 + (µ/2)2

]2
µ2 cos2

(µπ
2

)
and

M(µ) =
n(n− 1)

2
π2

[
1− (µ/2)3

1 + 2(µ/2)3

]2
µ2.

Here we refine the Yang Le’s inequality by using the tractable bounds of
sin(x)/x.

Theorem 9. Let, Ai > 0 with
∑n

i=1Ai 6 π and n ∈ N, n > 1; 0 6 µ 6 1.
Then

P (µ) 6
∑

16i<j6n

Hij 6 Q(µ), (4.3)

where

Hij = cos2(µAi) + cos2(µAj)− 2cos(µAi) cos(µAj) cos(µπ),

P (µ) = 2n(n− 1)

[
1 +

π − 2

2
cos
(µπ

2

)]2
µ2 cos2

(µπ
2

)
and

Q(µ) = 2n(n− 1)

{[
1 +

π − 2

2
cos
(µπ

2

)]
+
µ2π2(π − 3)

24

}2

µ2.

Proof of Theorem 9. We substitute x = µπ/2 in (3.3) to get

µ

[
1 +

π − 2

2
cos
(µπ

2

)]
< sin

(µπ
2

)
and

sin
(µπ

2

)
< µ

[
1 +

π − 2

2
cos
(µπ

2

)]
+
µ3π2(π − 3)

24
.

Using the inequality [20], for 1 6 i < j 6 n, we have

4sin2
(µπ

2

)
cos2

(µπ
2

)
6 Hij 6 4sin2

(µπ
2

)
.

We deduce that

4

[
1 +

π − 2

2
cos
(µπ

2

)]2
µ2 cos2

(µπ
2

)
6 Hij

6 4

{[
1 +

π − 2

2
cos
(µπ

2

)]
+
µ2π2(π − 3)

24

}2

µ2. (4.4)

Summing up all the inequalities in (4.4), we get (4.3).
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