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In condensed matter physics, simplified descriptions are obtained by coarse-graining the features
of a system at a certain characteristic length, defined as the typical length beyond which some prop-
erties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic
length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its
orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length
of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical condi-
tions and since their genomes lack translational invariance, whether larger, universal characteristic
lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number
of fully sequenced genomes available in public databases. By analyzing GC content correlations and
the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we
conclude that a fundamental characteristic length around 10-20 kb can be defined. This character-
istic length reflects elementary structures involved in the coordination of gene expression, which are
present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us
to implement methods that are insensitive to the presence of large idiosyncratic genomic features,
which may co-exist along these fundamental universal structures.

I. INTRODUCTION

Bacterial genomes display a hierarchy of structures which have been studied from at least four perspectives: (i) chro-
mosomal conformations, (ii) gene expression, (iii) DNA content and (iv) evolutionary conservation. This diversity of
perspectives has revealed a variety of associated lengths, most often observed in just one or a handful of bacteria:

(i) From the perspective of chromosomal conformations, four levels of organization stand out: regulatory DNA
loops around 1 kilobase (1 kb, the typical length of bacterial genes), supercoiling domains around 10 kb, chromosome
interaction domains around 100 kb and macro-domains around 1000 kb. Small DNA loops induced by cross-linking of
transcription factors contribute to gene regulation [1]. At the next scale, supercoiling domains are segments of chro-
mosomal DNA whose super-helicity is globally affected by the local action of topoisomerases, transcription/replication
machineries and nucleoid-associated proteins; atomic force microscopy and genetic studies in Escherichia coli [2] and
Salmonella strains [3] have estimated the length of these domains to 10-20 kb. At a larger scale, chromosome con-
formation capture experiments [4] have revealed interaction domains with enhanced internal interactions between
loci [5]; in Caulobacter crescentus [5] and Pseudomonas aeruginosa [6], these domains extend up to 200 kb. At a more
global scale, macrodomains spanning up to a quarter of the chromosome specifically localize both along the genome
and in the cellular space [7–9]; identified in Escherichia coli, they are hypothesized to contribute to chromosome
segregation [10].

(ii) From the perspective of transcription, the shortest length of coordination is that of operons [11], with a mean
length (discarding single genes) of 3 kb in E. coli and 3.5 kb in B. subtilis, and a maximal length of 18 kb [12] and
27 kb [13], respectively. Interestingly, the transcription of neighboring genes along the chromosome is significantly
correlated beyond operons, up to typically 20 kb [14–20]. In E. coli, in addition to being close to the maximal length
of operons, this length also corresponds to the maximal length over which functionally related genes are clustered
along the chromosome [21]. Remarkably, this supra-operonic correlation in transcription is independent of the action
of transcription factors and sigma factors [19]. Instead, it is controlled by DNA supercoiling and transcriptional
read-through [19, 20, 22, 23], the capacity of RNA polymerases to transcribe successive operons in one go.

(iii) From the perspective of DNA sequences, several characteristic lengths have emerged from correlation analyses
of the GC content of genomes. They include most notably the typical operon length scale below which the GC content
of the genome is highly correlated [24, 25]. In addition, enhancements of these correlations up to 20 kb have been
reported in some bacteria [25]. Beyond large differences in overall GC content across bacteria, correlation analyses
have also highlighted large intra-genomic variations at multiple scales, which themselves differ between bacteria;
the genome of B. subtilis is for instance more heterogeneous than the genome of E. coli [25]. These idiosyncratic
heterogeneities can cause GC autocorrelation functions to display long tails [26]. Besides GC content, clustering genes
based on their codon usage has also revealed supra-operonic characteristic lengths [27, 28]; the results, again, seem
to differ between bacteria, depending on their level of GC heterogeneity: codon usage domains have been shown to
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extend to 15 kb in the GC-homogeneous genome of E. coli [27, 28] and to 200 kb in the GC-heterogeneous genome of
B. subtilis [27].

(iv) From the perspective of evolution, some operons, such as ribosomal operons, are extremely conserved. Remark-
ably, conservation of gene context extends beyond operons [19, 21, 29–32] with, in several species, associated lengths
reaching 20 kb [19], comparable, again, to the maximal lengths of E. coli and B. subtilis operons. Besides synteny
(the evolutionary conservation of gene proximity along chromosomes), another signature of evolutionary constraints
is the co-occurrence of orthologous genes in different genomes. In closely related strains of E. coli, it has revealed
a primary length of 30 kb associated with functional units and a secondary length of 70 kb reflecting the maximal
length of horizontally transferred sequences of DNA [33].

These different observations raise two questions: (1) To what extent lengths associated with distinct properties
reflect common underlying structures? (2) To what extent lengths found in a handful of bacteria reflect a universally
shared genomic organization?

To address (1), we previously showed that synteny segments, defined as contiguous sets of genes whose proximity
is conserved in a significant number of phylogenetically distant genomes, correspond to domains of conserved co-
expression [19]. Several works strongly suggest that these evolutionary conserved and co-expressed segments can
be identified to supercoiling domains [23, 34]. Connections between the distribution of domains with biased codon
usage and gene expression profiles have also been reported in E. coli [28]. Yet, to the best of our knowledge, no
systematic comparison between lengths associated with sequence correlations (GC content) and other properties has
been performed at the scale of the bacterial kingdom. As a result, the question (2) of whether lengths defined in a
particular genome reflect an idiosyncratic property of this genome (possibly even confined to a small part of it), or a
ubiquitous property shared by most bacterial genomes has remained open.

Here, we address this question by focusing on sequence and evolutionary properties of genomes. Unlike chromosome
conformations and gene expression for which experimental data is available only for a few organisms, these properties
can be studied across a large number of genomes by leveraging the nucleotide sequences available in public databases.
First, we use these datasets to revisit correlation analyses of GC content and show how a fundamental characteristic
length can be identified, which is widely shared among bacterial genomes. Second, we analyze distances below which
genome organization is evolutionarily conserved and show that a similar characteristic length emerges in nearly all
bacterial genomes. Finally, we provide evidence that these two results are the consequence of a common underlying
constraint related to the coordination of gene expression.

II. RESULTS

A. Characteristic lengths associated with GC content

The GC content of a given sequence of DNA is quantified as the fraction x of its bases that are pyrimidine bases (G
and C). As illustrated in Fig. 1A-B with the E. coli and B. subtilis genomes, this GC content varies between genomes
as well as within genomes. In this figure, intra-genomic variations are represented by partitioning each genome into
bins of length ` = 1 kb (the typical length of a gene) and reporting the GC content within each bin.

The characteristic length over which intra-genomic variations are significantly correlated can be read from an
autocorrelation function. Given the partition of a genome into N bins of length ` and given the GC content x[i]
within each bin i, this function is defined for d = 0, `, 2`, . . . , (N − 1)` as

Γ(d) =
1

Nσ2
x

N−1∑
i=0

(x[i]−mx)(x[i+ d/`]−mx), (1)

where mx =
∑
i x[i]/N is the mean value of x and σ2

x =
∑
i(x[i]−mx)2/N its variance. As most bacterial genomes are

circular, we consider periodic boundary conditions, i.e., i+d/` is understood modulo N in Eq. (1). The autocorrelation
functions Γ(d) for E. coli and B. subtilis are represented in a semi-log plot (distances d along the x-axis in log scale) as
black dotted lines in Fig. 1C-D. In the case of E. coli, the correlations decrease at short distance, up to around 20 kb,
before fluctuating around zero; in the case of B. subtilis, on the other hand, significant correlations are observed up
to around 200 kb.

The GC content of B. subtilis, however, is quite heterogeneous (Fig. 1B). As a consequence, autocorrelation functions
computed from different parts of the genome are markably more different than in E. coli (red, blue and green curves
in Fig. 1C-D, each corresponding to one third of the genome; see Methods for details of the computations). Part of
the heterogeneity of the B. subtilis genome can be attributed to the presence of prophages, i.e., DNA from bacterial
viruses that has been integrated by horizontal transfer [35]. In particular, a 134 kb long prophage known as the
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FIG. 1: Correlations from GC content - A. GC content along the chromosome of E. coli, obtained by computing the fraction
of bases that are G or C in successive bins of length ` = 1 kb (1000 bases). B. GC content along the chromosome of B. subtilis,
showing a lower mean and more correlated fluctuations than E. coli; the arrow indicates a fluctuation caused by the presence
of the SP-beta prophage. C. Autocorrelation function Γ(d) of GC content from the full genome of E. coli (dotted line) and
from three distinct subparts of it (colors corresponding to those in A). In each case, correlations are enhanced at short distance,
up to ∼ 10 kb. D. Autocorrelations of GC content for B. subtilis. Here the full genome displays correlations up to ∼ 200 kb
(dotted line) and large differences are observed between the three distinct subparts of the genome.

SP-beta prophage manifests itself in Fig. 1B as an extended region with low GC content (indicated by an arrow); it
is mostly responsable in Fig. 1D for the larger correlations of the blue autocorrelation function.

This example highlights an important caveat of autocorrelation functions applied to heterogeneous signals that
lack translational invariance: the correlations that they report may be dominated by a single or a few localized
heterogeneities that conceal more typical correlations associated with most of the signal. But the same example also
suggests a workaround: compute the autocorrelation function for distinct subsequences of a genome and, instead of
averaging over the resulting autocorrelation functions, consider their median value Γmed(d), which is insensitive to the
presence of a few localized heterogeneities. As shown in Fig. 2A, where the subsequences result from a partition of
the genomes into 500 kb long subsequences, this procedure leaves unchanged the autocorrelation function in the case
of E. coli but effectively abolishes the influence of the SP-beta prophage in the case of B. subtilis. The correlations
reported by Γmed(d) are now more similar for E. coli and B. subtilis. To define for each genome a characteristic length
dGC above which GC content is no longer significantly correlated, we note that Γmed(d) vanishes at large distances and
characterize its fluctuations by its standard deviation σΓ for distances d > 100 kb (as shown below, these fluctuations
are expected from the limited size of genomes). We then define dGC as the shortest distance at which Γmed(d) < σΓ,
which yields respectively dGC = 11 kb and dGC = 15 kb for the E. coli and B. subtilis genomes (dotted red and green
lines in Fig. 2A).

Beyond E. coli and B. subtilis, we analyzed with the same approach a set of 797 chromosomes across the bacterial
kingdom. These genomes were selected among a larger set of 1675 genomes from the STRING database [36] on the
basis of their suitability for the evolutionary analysis presented below (see Methods). We checked, however, that our
results based on GC content hold for the other 861 genomes larger than 500 kb (Fig. S1, second line); we also checked
that the results are insensitive to the bin length ` used for computing GC contents (Fig. S1, first line). Averaged over
genomes, the mean autocorrelation function 〈Γmed(d)〉 has a shape similar to the autocorrelation functions Γmed(d)
of E. coli and B. subtilis (Fig. 2A). All bacterial genomes indeed display a similar characteristic length dGC (defined
as above; see Fig. 2B). More precisely, 91% of the characteristic lengths lie between 5 kb and 25 kb. Note that as
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FIG. 2: Characteristic lengths from GC content – A. Median autocorrelation of GC content for E. coli (red), B. subtilis (green)
and all genomes (dotted line and gray area representing respectively the mean and standard deviation over 797 genomes).
Genomes are partitioned into 500 kb long subsequences, and the median is over the autocorrelation functions computed from
each subsequence; this procedure prevents large but isolated heterogeneities in GC content to dominate over smaller but more
widespread features. For each genome, a characteristic length dGC is defined by considering the smallest distance d at which Γ(d)
reaches σΓ, the standard deviation of Γ(d) at large lengths d > 100 kb (red and green dotted lines for the definition of dGC in
E. coli and B. subtilis). B. Distribution of characteristic lengths dGC over 797 bacterial chromosomes (empty black histogram).
For comparison, distribution of characteristic lengths from a discrete Ornstein-Uhlenbeck process, showing that variations are
expected from stochastic fluctuations even in a model with a single correlation length. C. Distribution of characteristic lengths
dGC for two subsets of the genomes, those with a low mean GC content (< 0.45, in purple) and those with a high mean GC
content (> 0.45, in blue), showing a tendency for genomes with higher mean GC content to display larger characteristic lengths.
As in B, the shaded histograms correspond to expectations from discrete Ornstein-Uhlenbeck processes.

Fig. 1C-D, Fig. 2A corresponds to a semi-log plot where the log scale along the x-axis represents a wide range of
genomic distances. Using a semi-log plot with a log scale along the y-axis (Fig. 3A) further reveals two underlying
correlation lengths. Following the standard definition, we call here correlation length a length ζ that characterizes an
exponential decay of the form exp(−d/ζ) (associated characteristic lengths, above which correlations typically vanish,
are usually a few times larger; an example is the Kuhn length, which is twice the correlation length associated with
binding properties of DNA, also known as the persistent length [37]). These two correlation lengths are manifest in
the genomes of E. coli and B. subtilis (red and green curves, respectively, in Fig. 3A), and even more clearly in the
mean autocorrelation (black curve in Fig. 3A). Remarkably, the decay of the correlations at short distance (below 2-3
kb) is consistent with the distribution of operon lengths.

To assess the extent to which the variability of characteristic lengths (Fig. 2B) arises from statistical fluctuations,
we now compare the results to those obtained from a discrete Ornstein-Uhlenbeck (OU) process (also known as the
autoregressive model), the archetypal continuous stochastic process with a single correlation length [38]. Our goal
here is not to provide a quantitative model of the correlations: as they involve multiple correlation lengths (Fig. 3A),
they are indeed certainly not described by a simple OU process. Instead, we aim at estimating the variability expected
from the finite size of chromosomes, whose total length is typically only 100 times larger than their characteristic
length.

Discrete OU signals {x[i]}i=0,...,N−1 are recursively defined by x[i+1] = ax[i]+ηi where a is a parameter controlling
the correlation length (−1/ ln(a)) of the signal and ηi is a stochastic term drawn independently for each i from a
normal distribution with zero mean and fixed variance σ2

η, a second parameter that characterizes the variance of

the fluctuations of the signal. In particular, for an infinitely long signal (N → ∞), the signal variance is σ2
OU,∞ =

σ2
η/(1−a2), while the autocorrelation function is ΓOU,∞(d) = ad. As we are interested in fluctuations of characteristic

lengths stemming from finite N , we first define a = 0.78 by fitting 〈Γmed(d)〉 with ΓOU,∞(d) = ad. For each of the 797
genomes, we then generate an OU signal with the number N of bins of length ` = 1 kb of the genome, using a common
a = 0.78 and a specific sη, obtained by matching σ2

η/(1− a2) with the variance in GC content of the genome. Finally,
we compute for each signal its characteristic length as before (except that we consider Γ(d) rather than Γmed(d) as the
OU process is free of heterogeneities). The distribution of characteristic lengths over the different genomes obtained
by this procedure is shown as a grey-shaded histogram in Fig. 2B. The result shows that 65% (measured as the overlap
between histograms) of the variability of characteristic lengths can be imputed to finite-size fluctuations.

Beyond statistical fluctuations, we find that a systematic source of variability is the overall GC content of a genome:
genomes with a GC content above 0.45 (empty blue histogram in Fig. 2C) tend to have larger characteristic lengths
than genomes with a GC content below (empty purple histogram). After accounting for these differences, however,
still only 70% of the variance of the histograms can be explained by statistical fluctuations from a OU process (filled
histograms in Fig. 2C). This is consistent with the fact that autocorrelations do not decrease exponentially (Fig. 3A).
In fact, as we show below, GC correlations occur within specific evolutionary conserved segments.



5

0 5 10 15 20 25 30

10−2

10−1

100
E. coli
B. subtilis
mean(all genomes)

0 5 10 15 20 25 30

10−2

10−1

100
GC
GC1
GC2
GC3

A B

FIG. 3: Correlation lengths from GC content and codon analysis – A. Median autocorrelation of GC content for E. coli (red
curve), B. subtilis (green curve) and all genomes (black dotted curve). Compared to Fig. 2A, the scales along the x- and y-axes
are respectively linear and logarithmic; the data is otherwise the same. In this representation, two exponential regimes are
apparent as indicated by the thin black lines, each defining a distinct correlation length, the largest one being approximately 4.5
times larger. The first regime at short distance (below 2-3 kb) is consistent with the exponential distribution of operon lengths
in E. coli (including single genes), which is characterized by the same correlation length `opc ' 1.5 kb. B. Mean autocorrelation
over the 797 genomes of the GC composition computed from the three different bases of gene codons (first base in green, second
base in blue and third base in red). For comparison, the autocorrelation over all bases is shown again as a black dotted curve
(same curve as in A), showing that it is well recapitulated by the autocorrelation from the third base.

Finally, a finer analysis reveals differences between the autocorrelation functions defined from the first, second and
third base of gene codons. Most importantly, we find that the autocorrelation function over the third base recapitulates
most of the autocorrelation computed over all bases (Fig. 3B). For distances larger than 5 kb, the autocorrelation
function over the first base is typically 4 fold smaller (green curve), and the autocorrelation function over the second
base 10 fold smaller (blue curve). These trends are also apparent in individual genomes: dGC correlates poorly with
the characteristic lengths computed from the first and second bases of codons (Fig. S2A-B) but better with the
characteristic length computed from the third base (Fig. S2C).

In summary, our analysis indicates the existence of a nearly universal characteristic length of 10 to 20 kb associated
with the GC content of bacterial genomes, with systematic variations related to the overall GC content and most of
the variability, although not all, imputable to the finite size of chromosomes. It further suggests that the physical
phenomenon underlying this characteristic length involves the usage frequency of gene codons. The signal is indeed
mostly driven by the correlation of the third site of gene codons, which is known to relate to the usage frequency of
synonymous codons [39].

B. Characteristic lengths associated with evolutionary conservation

To identify characteristic lengths, if any, under which genome organization is evolutionary conserved, we analyze
finally the conservation of gene clustering along genomes by following and extending our previous approach [19] (see
Methods for details). The core idea is to compute the fraction of genomes in which a given pair of genes is found within
a distance d∗ along the chromosome. Here we take d∗ = 100 kb, a distance much larger than any of the characteristic
lengths that the following analysis reveals. To compare genes in different genomes, we rely on their classification
into orthology classes, i.e., families of phylogenetically and functionally related genes. Given two genes i, j (more
precisely, two orthology classes), we first identify the genomes in which genes from these two classes are present and
then compute the fraction fij of those genomes where the genes are within d∗. In doing so, we ignore pairs that
are represented in less than 100 genomes and account for the possible multiplicity of genes from the same orthology
class within the same genome. Following previous works, we also correct for the uneven sampling of available genome
sequences by discounting genomes from over-represented clades (see details in Methods).

As a result of our analysis, pairs of genes are sorted by the fraction fij of genomes in which they are found below
d∗ = 100 kb. For each level of conservation fmin, “syntenic pairs” are defined as those satisfying fij > fmin. We
then analyze within each particular genome the distances d at which the genes associated with these pairs are found.
By definition, these distances are below d∗ = 100 kb in a fraction ≥ fmin of the genomes but, apart from that, the
distribution ρ(d) within a given genome of these distances is not constrained by the method. Remarkably, however,
the distributions ρ(d) are far from uniform: instead, they are concentrated at short distances, much below 100 kb;
this is illustrated in Fig. 4A, which is obtained with the E. coli and B. subtilis genomes using fmin = 0.5.
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FIG. 4: Characteristic lengths from evolutionary conservation of gene contexts – A. Distribution ρ(d) of distances between
genes found within d∗ = 100 kb of each other in at least a fraction fmin = 0.5 of the genomes of our dataset (in red for E. coli,
in green for B. subtilis). We extract from these curves characteristic lengths dsynt below which correlations are significantly
enhanced (dotted lines). B. Distribution of characteristic lengths dsynt over the 797 chromosomes of the dataset, here computed
for three values of fmin. The distribution is unimodal at the highest level of conservation (fmin = 0.75, in red) but bimodal
for lower levels of conservation (fmin = 0.5 and fmin = 0.25, in blue and green), with a first mode around 10 kb and a second
around 30 kb. C. Ignoring ribosomal genes significantly alters the distribution of characteristic lengths dsynt and leaves a single
mode around 15 kb. D. As in Fig. 2C, genomes with high overall GC content (in blue) tend to have larger characteristic lengths
than genomes with lower overall GC content (in purple).

To compare distributions for different values of fmin and across different bacteria, we define for each fmin and each
genome a characteristic length dsynt below which the distribution ρ(d) is significantly enriched. We follow here the
same approach as when defining dGC: we consider the mean mρ and the standard deviation σρ of the probability
density of distances ρ(d) for d > 100 kb and identify the characteristic length dsynt as the shortest distance where
ρ(d) reaches mρ + σρ. For E. coli and B. subtilis, this procedure gives respectively dsynt = 14 kb and dsynt = 30 kb
when considering fmin = 0.5 (dotted lines in Fig. 4A). These values, however, vary with the choice of fmin (Fig. S3).

Considering all 797 bacterial genomes, we observe that the distribution of characteristic lengths is generically
bimodal, with a first mode around 10-15 kb and a second around 30 kb (Fig. 4B). As when analyzing correlations in
GC content, we must be careful, however, that localized heterogeneities may heavily influence the observations. We
find indeed that the 30 kb length results from a particular subset of genes, the subset of ribosomal genes: repeating
the analysis without considering them results in unimodal distributions centered around 15 kb, consistent with the
characteristic length scale identified from GC contents (Fig. 4C). Further consistency with the analysis of GC content
is reported in Fig. 4D: similar to Fig. 2C, evolutionary characteristic lengths dsynt tend to be larger for genomes with
higher overall GC content.

In summary, the evolutionary conservation of gene context leads to essentially the same results as the analysis of
GC content: a nearly universal characteristic length around 15 kb, with systematic differences between high and low
GC genomes.

C. GC content versus synteny

The convergence between the analyses of GC content and synteny strongly suggests that they reflect the same
underlying property of genomes. To compare the two results more directly, we define a similarity in GC content SGC

ij

for each pair ij of genes (Methods) and represent it as a function of the frequency of synteny fij of the pair (Fig. 5A).
As expected, for E. coli (red curve) and B. subtilis (green curve), and more generally for all 797 studied genes, the
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FIG. 5: Comparison between evolutionary conservation of gene contexts (synteny) and GC content – A. Comparison between
the synteny frequency fij of a pair ij of genes (the fraction of genomes in which they are found within d∗ = 100 kb) and a
measure SGC

ij of GC content similarity between the two genes defined to have zero mean when averaged over all pairs of genes
(Methods). The relation between the two quantities is shown in red for E. coli and in green for B. subtilis, with the mean over
all genomes reported by the dotted line and the standard deviation by the shaded area. Pairs of genes in synteny (fij > 0.05)
are found to have a similar GC content. B. As in A, but separately for the bacterial genomes with largest (in red) and smallest
(in blue) variance in GC content. We observe that the similarity of GC content is higher for pairs of genes in synteny in
genomes with largest variations in GC content.

two quantities are correlated: pairs of genes with low synteny frequency (e.g. fij < 0.05) show poor or no similarity
in GC content (SGC

ij ' 0) while pairs with significant synteny clearly do. Note here that a synteny frequency fij = 0.1
is already very significant and that only ∼ 10% of the studied gene pairs have a synteny frequency fij > 0.1.

A finer analysis reveals that similarity of GC content between genes in synteny is all the stronger that the variance
of the GC content of the genome is larger (Fig. 5B). The top 400 genomes with largest variance (red area in Fig. 5B)
include in particular the GC-homogeneous genome E. coli, indicating that this trend is not necessarily a consequence
of localized heterogeneities such as observed in the genome of B. subtilis.

III. DISCUSSION

From an analysis of hundreds of bacterial genomes, we conclude that GC content correlations, defined from the
sequences of individual genomes, and genes in synteny, defined from a comparison of gene neighborhoods across
multiple genomes, are characterized by a similar characteristic length around 10 to 20 kb. As per our previous work
on synteny, this characteristic length can be attributed to segments of DNA that typically encompass several operons
and are co-transcribed by facilitation mechanisms that do not require transcription factors [19]. Our finding that
GC correlations mostly arise from the third site of codons further suggests that gene expression within a segment
is coordinated at the translational level (since the third site of codons controls the usage frequency of synonymous
codons [39]). Another non-exclusive possibility may also be that since it is less constrained than the other bases, the
third base of gene codons encodes specific DNA structural properties. In any case, this reinforces the conclusion that
synteny segments are fundamental units of genomes underlying the basal coordination of gene expression.

The segments appear to be universally shared across bacterial genomes. In some bacterial chromosomes, however,
they co-exist with a lesser number of longer idiosyncratic genomic domains that extend up to a few hundreds kilobases.
These are typically prophages that have been acquired by horizontal transfer. As such, they display very distinct
GC contents and, consistent with the general conclusion that variations in GC content underly the independent
expression of different functional domains, are in some case transcribed by specific RNA polymerases [40]. Segments
of intermediate length around 70 kb associated with horizontal transfers have also been reported for closely related
strains of E. coli [33]. These segments are, however, far less conserved than synteny segments discussed in this work
and, although they have distinct GC contents [41], are closer in GC content to the rest of the genome than prophages
of B. subtilis.

The presence of large but localized fluctuations in GC contents required us to revisit the application of autocorre-
lation functions to the identification of characteristic lengths in genomes. Autocorrelation functions are indeed well
suited for translationally invariant systems, as typically encountered in condensed matter physics. In inhomogeneous
systems such as genomes, however, large localized heterogeneities can dominate the correlations and conceal more
widespread but smaller patterns of correlations. The issue also arises when studying synteny segments, which seem at
first sight to display not one but two characteristic lengths. However, the largest length around 30 kb originates from



8

a very small subset of genes. In contrast, the presence of a fundamental and universal characteristic length around
10-20 kb emerges as a statistically robust finding.

This conclusion leads to a simple question: What ultimately sets the characteristic length of 10 to 20 kb? In
particular, is it stemming from the physics of DNA or from the biology of gene regulation? Physically, the segments
are consistent with the structuring of bacterial chromosomes into supercoiled domains, but no fundamental constraint
is known that limits the length of these domains. Biologically, they may reflect limitations on transcriptional or trans-
lational regulation but again, no fundamental constraint is known that limits the distance at which gene expression
can be coordinated.

METHODS

1. Datasets

Genomes – Our input is a collection of complete and well-annotated genomes whose genes are assigned to orthology
classes. We rely on data from the STRING database [36] which classifies genes into C = 4866 clusters of orthologous
genes (COGs). As of December 2017, this database covers 2031 taxons, including 1675 bacterial strains. Within the
bacterial genomes, we selected those containing a chromosome of length > 1 Mb and where at least 60% of the genes
are assigned to COGs. The former constraint was used to avoid artefacts in the identification of fundamental length
scales (all much below 1 Mb), while the latter constraint was used to mitigate noise in our evolutionary analysis. Our
analysis was based on the M = 797 chromosomes resulting from this selection (when multiple chromosomes satisfying
these criteria were present we took the largest one). The list of these chromosomes is provided in FileS1. We verified
that the disregarded genomes have correlations in GC content similar to the selected ones (Fig. S1).

2. Genomic analysis

GC content autocorrelations on partionned genomes – Autocorrelation functions are sensitive to the
presence of localized motifs. To circumvent this problem, we partition a genome into subsequences of length L,
compute an autocorrelation function Γj(d) for each subsequence j and take the median at each given value of d:
Γmed(d) = med({Γj(d)}j). In Fig. 2 , we consider subsequences of length L = 500 kb.

Contrary to full genomes, we do not apply periodic boundary conditions to the subsequences. Instead, for a
subsequence starting at bin i0 and ending at bin i1, where the bin length is ` (= 1 kb), we define for each distance
d = 0, `, 2`, . . . , (N − 1)` the d-shifted signal yd[i] = x[i + d/`], for every i in [i0, i1 − d/`]. Respectively calling my,d

and σy,d the mean and standard deviation of yd, the autocorrelation function Γ[i0,i1](d) over the subsequence [i0, i1]
is then defined as

Γ[i0,i1](d) =
1

(i1 − i0 − d/`+ 1)σy,0σy,d

i1−d∑
i=i0

(y0[i]−my,0)(yd[i]−my,d). (2)

GC similarity – To compare GC correlation with synteny properties, we define a measure of GC similarity between
two genes. We start with the definition

sGC
ij = 1− |xi − xj ||xi + xj |

(3)

where xi and xj are respectively the GC contents of genes i and j. We then define a zero-centered measure of GC
similarity as

SGC
ij =

sGC
ij − 〈sGC

ij 〉
max sGC

ij − 〈sGC
ij 〉

(4)

where max sGC
ij and 〈sGC

ij 〉 are respectively the maximal and average value of SGC
ij over all pairs ij of genes.

File S1
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3. Evolutionary analysis

Genome weights – From the M = 797 genomes annotated with C = 4866 COGs, an M × C occurrence matrix
O is defined by Osi = 1 if strain s contains at least one instance of COG i, and 0 otherwise. From this matrix, we
define the similarity between strains s and t as

Sst =

∑
iOsiOti

maxs,t(
∑
iOsi,

∑
iOsi)

. (5)

The quantity ∆st = 1 − Sst may be interpreted as a phylogenetic distance. Given a threshold δ, we then assign to
each strain s a statistical weight ws defined by

w−1
s =

∑
t

1[∆st < δ], (6)

where the sum is over the strains s and where 1[X] is a generic indicator function with 1[X] = 1 if and only if X is
true. In words, the weight of s is inversely proportional to the number of strains t at phylogenetic distance 1−Sst < δ;
as those strains include s itself, 0 < ws ≤ 1.

On this scale, the distance between E. coli and B. subtilis is ∆ = 0.43, close to the mean distance between all
strains 〈∆〉 = 0.47, and the mean distance between the 8 strains of E. coli present in our dataset is ∆ = 0.06 with a
maximum at ∆ = 0.1, which also corresponds to the mean distance between E. coli and Salmonella strains. We take
this value, δ = 0.1, as a cut-off in Eq. (6). This corresponds to an effective number of genomes M ′ =

∑
s ws = 553

(we verified that taking δ = 0.2 does not alter our conclusions).

Co-occurence – We use these weights when taking averages over genomes from different strains. In particular,
we estimate the effective number of genomes where COG i and j co-occur as

Mij =
∑
s

ws1[i ∩ s 6= ∅]1[j ∩ s 6= ∅]. (7)

Here, 1[i ∩ s 6= ∅] = 1 if i is represented in strain s and 0 otherwise.

Synteny – Given two COGs i, j, we estimate the effective number of strains in which i and j are both present and
within a given distance d∗ as

Xij =
∑
s

ws1[dij < d∗], (8)

where dij is the distance between genes along a chromosome measured in base pairs. We take d∗ = 100 kb, chosen
to be much larger than the characteristic lengths that we find. More generally, to account for the possible presence
within a same genome of multiple pairs of genes in two given COGs ij, we correct Eq. (9) by averaging over all these
pairs:

Xij =
∑
s

ws
1

|i ∩ s||j ∩ s|
∑

gi∈i∩s,gj∈j∩s
1[dgigj < d∗], (9)

where i∩ s is as before the set of genes in COG i and in strain s and |i∩ s| the size of this set. Finally, the frequency
fij reporting the fraction of genomes in which i and j at distance dij < d∗ is defined as

fij =
Xij

Mij
. (10)

For these fractions to be significant we restrict our analysis to the pairs ij that satisfy Mij > 100. In E. coli , this
corresponds to 2122 pairs involving 2687 different genes and in B. subtilis to 2122 pairs involving 2372 genes.

Our formula are identical to those used in our previous work [42] with only one difference: in Eq. (9), we use a
common distance d∗ = 100 kb for all strains rather than a strain-specific distance d∗s = 2p∗/Ls that varies with the
length Ls of the chromosome. In principle, the later choice is required to define a null model where every pair of genes
has same probability p∗ to be found in synteny in all genomes. In this work, however, we fix d∗ to make clear the fact
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that the value of d∗ has no incidence on the characteristic lengths that we find. In practice, the two definitions lead
to indistinguishable results since the characteristic lengths are much shorter than d∗ or any of the d∗s.
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SUPPLEMENTARY FILES

FileS1 lists the 797 chromosomes used in this study. Each line provides, separated by “:”, (1) the taxon id, (2) the
fll name of the strain, (3) the chromosome id; (4) the length of the chromosome (in bp).
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FIG. S1: Panels on the first line: same as Fig. 2 (without the OU analysis) but considering bins of length ` = 500 bp instead of
` = 1000 bp to compute GC contents, showing that characteristic lengths are similar with shorter bins. Panels on the second
line: same as Fig. 2 (without the OU analysis) but considering the 861 genomes of length ≥ 500 kb from the STRING database
that we discarded in the main figures because of their unsuitability for the evolutionary analysis (see Methods).
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FIG. S2: Characteristic lengths dGC1, dGC2 and dGC3 computed respectively from the first, second and third base of codons,
as a function of the characteristic length dGC of the overall GC signal, showing that the highest correlation is obtained with
the third base.
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FIG. S3: Characteristic lengths from evolutionary conservation of gene context. As in Fig. 4, but showing here how the
characteristic lengths dsynt vary as a function of fmin, the frequency above which two genes are considered in synteny, for a
given genome (the genome of E. coli in red and of B. subtilis in green). The two plateaus around 15 kb and 30 kb, which are
particularly stricking for E. coli (red), show that the two modes of Fig. 4B can also be observed within a given genome.
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