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Numerical method for inertial migration of particles in 3D channels

Laurent Chupin and Nicolae Ĉındea∗

Abstract

The aim of this paper is to propose a method to model and numerically simulate the inertial migration
of particles in three-dimensional channels. The initial problem, coupling Navier-Stokes equations to the
equations modeling the displacement of a spherical particle immersed in the fluid, is replaced by a first
order expansion with respect to a small Reynolds number. We reduce the computation of the velocity of
a spherical particle situated at a given position in a channel to the numerical solutions of several Stokes
elementary problems. The proposed method is employed to numerically approach the steady solutions
for different domain configurations.

AMS Classification: 35Q35, 70-08, 70E50.
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1 Introduction

Segré and Silberberg observed in 1960s that particles in suspension in a Poiseuille flow migrate, under the
action of inertial forces, to an annular region having the same center as the circular section of the channel [16].
More recently, inertial migration of particles in microfluids was intensively studied in the perspective of very
promising applications to micro-particles filtration and separation [17]. These applications use an early
observation of Segré and Silberberg that different sized particles have different equilibrium regions, or, with
other words, different focusing positions. While for channels of circular sections the equilibrium regions
are well understood, for channels of less symmetric sections the situation is far from being clear, different
experimental or numerical studies giving different numbers of equilibrium points in cases as simple as a
channel with rectangular section [3, 2, 4, 12, 13].
The mathematical models for the inertial migration of particles in fluid flows have mostly been studied for
channels with circular section. The radial symmetry of the section allows in that case to the simplification
of the model by reducing the number of variables. Using the method of matched asymptotic expansions
to model the disturbance of the flow due to the presence of a particle, at small Reynolds numbers, it
is possible to compute the equilibrium positions in circular channels [15, 1]. More recently, a method
based on the expansion of the solution of the fluid-particle problem with respect to the Reynolds number
was proposed [8]. This method, formulated in a two-dimensional framework, allows the computation of
the inertial equilibrium positions of a ball in a two dimensional channel for small Reynolds numbers by
solving several stationary Stokes equations (the so-called elementary problems). The fact that there are only
stationary Stokes problems to be solved is an advantage, from a computational perspective, with respect
to other, more complex, approaches, such as directly solving Navier-Stokes equation coupled with a moving
rigid structure [5, 11].
The aim of the present work is to extend the method in [8] to a three-dimensional setting. More precisely,
we reformulate the three-dimensional problem in order to emphasize a structure similar to the one obtained
in the two dimensional framework and allowing the application of the ideas proposed in [8]. As in the two-
dimensional case, for low Reynolds numbers, the computation of the inertial velocity of a spherical particle
immersed in a three-dimensional fluid flowing in a channel is reduced to a small number of stationary Stokes
problems. Even if numerically solving a Stokes equation is not very difficult, the presence of a high-number
of unknowns in this case and the non-trivial geometry of the three-dimensional domain, require a finely-
tuned numerical strategy. Particularly, we exploit the symmetry of the domain with respect to the plane
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orthogonal to the direction of the channel and containing the center of the ball, in order to reduce by half the
size of the problem. The mixed finite element method is employed to discretize the model on a non-uniform
mesh which is much more refined on the surface of the ball than on the cylinder’s walls. These features
give a method which is fast enough to allow the analysis of a high number of geometrical configurations in
an acceptable amount of time on a recent computer. We present in detail the development of the method,
its implementation and we illustrate it for several channels with different sections. Afterwards, we validate
the proposed method by comparing our numerical results to the well known results of Segré and Silberberg
in a circular channel. More precisely, we obtain the same equilibrium positions just as in the physical
experiments. The two situations were considered: when the gravity field is aligned to the channel’s direction
and when the gravity field forms a non-zero angle with the direction of the channel. Finally, we apply the
method for other less symmetric geometries in order to investigate the inertial equilibrium positions of a
particle immersed in a fluid flowing in such a cylinder. These numerical experiments were motivated by
recent applications of the inertial migration of particles in a fluid to filtration and particle separation. The
results we obtained are similar to some of the results in the recent literature and apparently contradicts
other. Nevertheless, the observed disagreement could be explained by the fact that the proposed method is
appropriate only for low Reynolds numbers.
The remaining part of the paper is structured as follows. In Section 2 we introduce the framework and we
describe the model in detail. Section 3 introduce the elementary problems and study their properties. In
Sections 4 and 5 we compute the inertial velocity of a particle placed in a Stokes flow and in a Navier-Stokes
flow respectively (developed at the first order with respect to the Reynolds number). Finally, in Section 6
we propose a numerical method for the computation of the particle’s inertial velocity and we numerically
illustrate the method for different configurations. An important effort is employed to locate the steady
solutions and the corresponding focusing positions.

2 Notation and description of the model

We consider a ball B immersed in a fluid which fills the interior of the cylinder ω × R ⊂ R3. Each point of
the bounded open domain ω ⊂ R2 is parametrized by a pair of two reals so that the position of the center
of the ball is determined by its coordinates (h, k) (due to the invariance with respect to the direction of the
cylinder, the last coordinate is useless). In practice, any coordinate system can be used. For example, polar
coordinates are appropriate in the case of a disk, and Cartesian coordinates are better suited when ω is a
rectangle.
We write the equations modeling this situation in a frame adapted to the configuration described above. We
then introduce the orthonormal frame (O, e1, e2, e3) as follows (see Figure 1):

• the origin O coincides with the center of the ball B,

• the direction of e2 corresponds to the direction of the cylinder,

• the plane Oe2e3 generated by the vectors e2 and e3 contains the gravity field.

In this frame, the ball B of radius R > 0 is defined by

B =
{
x = (x, y, z) ∈ R3 ; x2 + y2 + z2 < R2

}
.

Its boundary is denoted by ∂B = S and its outward unitary normal is denoted by n.

Thus, the orientation of the cylinder with respect to the vertical position will be given according to an
angle θ: if θ = 0 then the axis of the cylinder is assumed to be vertical (aligned with the gravity vector), if
θ = π

2 then the axis of the cylinder is horizontal. The intermediate values of θ ∈]0, π2 [ make it possible to
obtain any configuration. More precisely, the gravity force may be written as g = (0, g cos θ,−g sin θ).

The fluid domain corresponds to Ω =
(
ω×R

)
\B whereas its lateral boundary is denoted by Γ = ∂ω×R. It

is important to note that this domain Ω should be labeled Ωh,k since the position of the ball B with respect
to the lateral boundary Γ depends on the parameters h and k.
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Figure 1: Three-dimensional configuration.

In what follows, we are particularly interested in steady motions of the fluid-structure system described
above, that is, the situations where the translational velocity U and the angular velocity ω of the ball are
constant in time, and the motion of the fluid as seen from a frame attached to the ball and moving with
velocity U is independent of time. The fluid flow is also an unknown of the problem so we aim to determine
the velocity v of the fluid as well as its pressure p.

Mathematically, our problem can be formulated as follows. Find ((v, p), (U ,ω), (h, k)) satisfying the equa-
tions 

divσ = ρf v · ∇v, div v = 0, σ = 2µfDv − p Id in Ω,

v
∣∣
Γ

= −U , v
∣∣
S

= ω × x,
lim

|y|→+∞
(v(x, y, z)− V0(x, z)e2) = −U for all (x, z) ∈ ω,∫

S

σ · n ds(x) = −mg,
∫
S

x× σ · n ds(x) = 0.

(1)

The three relationships in the first line of this system correspond to the momentum conservation of the
fluid, the mass conservation of the fluid (reduced to a divergence free relation since we assume that the fluid
is incompressible) and the Newtonian constitutive assumption elucidating the stress σ with respect to the
velocity and the pressure, respectively. The physical constants ρf and µf correspond to the fluid density and
the fluid viscosity, respectively. It should also be noted that forces due to gravity are not directly present
in the conservation balance. In fact, they were integrated into the pressure term by writing g = ∇p̃ with
p̃(x, y, z) = g cos(θ)y − g sin(θ)z.

The second and the third lines of the system (1) correspond to the boundary conditions imposed on the
velocity field. These are Dirichlet-like conditions knowing that the model is written in a U -velocity transla-
tion frame: we assume adherence on the ball and on the lateral walls. The condition at the infinite ends of
the cylinder is given by a Poiseuille-type condition corresponding to a flow without the ball. More precisely,
a flow in the cylinder ω × R, satisfying the Navier-Stokes equation with homogeneous Dirichlet boundary
condition (on Γ) has velocity and pressure fields given by:

v0(x, y, z) = V0(x, z)e2, p0(x, y, z) = P0(y) + g cos(θ) y − g sin(θ) z, (2)

where V0 is the solution of the elliptic problem{
−∆x,zV0 = γ in ω,

V0

∣∣
∂ω

= 0,
(3)

and where P0 is given by P0(y) = γ y. The constant γ is evaluated so that the flux
∫
ω
V0 dxdz corresponds

to an imposed value Φ.
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Figure 2: Two dimensional configuration

The two last equalities in system (1) express the equilibrium of the particle (force and momentum). The two
external forces acting on the particle being due to the gravity and to the buoyancy, we introduce the quan-
tity m depending on the difference between the solid density ρs and the fluid density ρf : m = 4

3πR
3(ρs−ρf ).

In order to write a model in a dimensionless form, we introduce the following changes of variables and of
unknowns:

x = Lx?, v = V v?, σ =
µfV

L
σ?, p =

µfV

L
p?, U = V U?, ω =

V

L
ω?, R = LR?, V0 =

Φ

L2
V ?0 ,

where L is the characteristic length of the domain ω and V =
√
gR is the reference velocity. The system (1)

becomes the following dimensionless system (for simplicity all the stars (?) appearing as upper indices are
omitted): 

divσ = Rev · ∇v, div v = 0, σ = 2Dv − p Id in Ω,

v
∣∣
Γ

= −U , v
∣∣
S

= ω × x,
lim

|y|→+∞
(v(x, y, z)− V0(x, z)e2) = −U for all (x, z) ∈ ω,∫

S

σ · n ds(x) = GaRe (cos(θ)e2 + sin(θ)e3),

∫
S

x× σ · n ds(x) = 0.

(4)

The scalar velocity V0 appearing in the third equation of system (4) is the unique solution to

∆x,zV0 = c on ω,

∫
ω

V0 dxdz = Fr , V0

∣∣
∂ω

= 0,

where c is a constant. Obviously, in the system (4), we have Ω =
(
ω × R

)
\ B where ω ⊂ R2 is a bounded

domain of characteristic size 1 and where B is the ball centered in (0, 0, 0) and with radius R
L . The dimen-

sionless numbers Re , Fr and Ga correspond to the Reynolds number, the Froude number and to the Gravity
number respectively. They are defined from physical quantities characterizing the situation:

Re =
ρf V L

µf
, Fr =

Φ

L2 V
and Ga =

4π

3

(R
L

)2( ρs
ρf
− 1
)
. (5)

Remark 2.1 (2D). The three-dimensional model generalizes the two-dimensional setting described in Fig-
ure 2. In the two-dimensional case, the variable x is not present and the position vector is given by x = (y, z).
The flow (V 0, P0) corresponds to the usual Poiseuille flow in a channel.

Remark 2.2 (Slip boundary condition). We can consider the case where slip is allowed at the fluid/solid
interface, through a Navier condition. This consists in rewriting the boundary condition v

∣∣
S

= ω × x as
follows:

v · n = 0 and v + ξn× (σ · n)× n = ω × x. (6)

In other words, only the normal component of the relative velocity of the fluid is zero, to ensure imperme-
ability. The tangential components are non-zero, and are proportional to the stress constraint, with constant
slip length ξ > 0. In the same way, it is also possible to consider slip on the lateral boundary Γ.
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System (4) is in fact the stationary case of an evolutionary model. The boundary condition v
∣∣
Γ

= −U must
involve a non-penetration condition. Given the shape of the domain (a cylinder), this condition implies that
a physical steady solution must satisfy U1 = 0 and U3 = 0. We then give the following definition:

Definition 2.1. We call a steady solution to system (4) any solution (v, p,U ,ω) such that U1 = U3 = 0.

3 Study of elementary problems

The construction of the solution for problem (4) is based on the use of the so called elementary problems.
More precisely, we will consider the following Stokes problems, for i ∈ {1, 2, . . . , 6}:

divσ(i) = 0, div v(i) = 0, σ(i) = 2Dv(i) − p(i) Id in Ω,

v(i)
∣∣
Γ

= 0, v(i)
∣∣
S

= βi,

lim
|y|→+∞

v(i)(x, y, z) = 0 for all (x, z) ∈ ω,
(7)

where βi = ei for i ∈ {1, 2, 3} and βi = ei−3 × x for i ∈ {4, 5, 6}.
The existence and uniqueness of the regular solutions (v(i), p(i)) of (7) is classical.

Remark 3.1. Note that every couple (v(i), p(i)) depends on the parameters (h, k) only through the definition
of the fluid domain Ω. Furthermore, v(i), p(i) and all their derivatives decay exponentially fast to zero as
|y| → +∞, see [6, Chap. XI]. From a numerical point of view, it is therefore reasonable to solve these linear
problems in a bounded domain given by ΩM = Ω ∩ {(x, y, z) ∈ R3 ; −M < y < M}, for M large enough.

Proposition 3.1. The matrix A ∈M6,6(R) defined by

Aij =

∫
S

(σ(i) · n) · βj ds(x), 1 ≤ i, j ≤ 6

is symmetric. Moreover, half of its coefficients are zero and the structure of this matrix is given by

A =


A11 0 A13 0 A15 0
0 A22 0 A24 0 A26

A31 0 A33 0 A35 0
0 A42 0 A44 0 A46

A51 0 A53 0 A55 0
0 A62 0 A64 0 A66

 .

The matrices obtained by keeping only the even rows and columns and by keeping the odd rows and columns,
respectively, denoted by

AI =

A11 A13 A15

A31 A33 A35

A51 A53 A55

 and AP =

A22 A24 A26

A42 A44 A46

A62 A64 A66


are invertible.

Proof. Multiplying the first equation of (7) by v(j) and integrating by parts, we deduce that

Aij = 2

∫
Ω

Dv(i) : Dv(j) dx.

The symmetry immediately follows.
The cancellation of certain coefficients is a consequence of the parity of the solutions with respect to the

variable y. For instance, the components v
(1)
1 and v

(1)
3 are even (with respect to y), as well as the pressure p(1),

whereas v
(1)
2 is odd. We deduce that the components σ

(1)
11 , σ

(1)
22 , σ

(1)
33 , σ

(1)
13 and σ

(1)
31 are even. Thus

(σ(1) · n) · e2 is odd: its integral over S is zero, that is A12 = 0.

5



To prove the inversibility of matrices AI and AP , we proceed as follows: let v̂ =
∑
i λiv

(i) and p̂ =
∑
i λip

(i).
By linearity, (v̂, p̂) satisfies a Stokes system. Multiplying this Stokes equation by v̂ and integrating by parts,
we obtain ∑

i,j

λiλjAij = 2

∫
Ω

|Dv̂|2 dx ≥ 0.

Taking λ2 = λ4 = λ6 = 0, we obtain that the quadratic form associated to the matrix AI is positive definite,
and thus that AI is invertible. Similarly, if we take λ1 = λ3 = λ5 = 0 we deduce that AP is invertible.

In order to find the conditions at infinity, we define (v(∞), p(∞)) the unique solution of the following problem:
divσ(∞) = 0, div v(∞) = 0, σ(∞) = 2Dv(∞) − p(∞) Id in Ω,

v(∞)
∣∣
Γ

= 0, v(∞)
∣∣
S

= 0,

lim
|y|→+∞

(v(∞)(x, y, z)− V0(x, z)e2) = 0 for all (x, z) ∈ ω.
(8)

Remark 3.2. In the two dimensional situation, only vectors v(2), v(3), v(4) and v(∞) are relevant and the
matrices AI and AP become

A(2d)
I =

(
A33

)
and A(2d)

P =

(
A22 A24

A42 A44

)
.

Remark 3.3 (Slip boundary condition). If the slip boundary conditions are considered at the fluid/solid
interface (see Remark 2.2), the boundary condition v(i)

∣∣
S

= βi in system (7) becomes

v(i) · n = 0 and v(i) + ξn× (σ(i) · n)× n = βi. (9)

Proposition 3.1 remains also true also in this case. Indeed, we have

Aij = 2

∫
Ω

Dv(i) : Dv(j) dx+ ξ

∫
S

((σ(i) · n) · n) ((σ(j) · n) · n) ds(x).

Remark 3.4. Taking into account the symmetry of the domain (with respect to the plane Oe1e3), we can
evaluate the coefficients Aij using only the values of the solutions of (7), for i ∈ {1, 2, . . . , 6} in the half
domain Ω+:

Aij = 4

∫
Ω+

Dv(i) : Dv(j) dx, (10)

where
Ω+ = {(x, y, z) ∈ Ω ; y > 0}.

Since it is sufficient to consider the elementary problems on the half domain Ω+, this remark is useful for the
numerical implementation of the proposed method. We therefore divide by two the size of the linear system
to solve.

4 Steady solutions and Stokes flow

This section is devoted to a preliminary study of the Stokes flow, formally obtained by setting Re = 0 in (4).
More precisely, we consider the following Stokes system:

divσS = 0, div vS = 0, σS = 2DvS − pS Id in Ω,

vS
∣∣
Γ

= −US , vS
∣∣
S

= ωS × x,
lim

|y|→+∞
(vS(x, y, z)− V0(x, z)e2) = −US for all (x, z) ∈ ω,∫

S

σS · n ds(x) = 0,

∫
S

x× σS · n ds(x) = 0.

(11)

For any (h, k), we explicitly determine a solution to this problem as a linear combination of solutions to the
elementary problems (7). For this purpose, given (US ,ωS) ∈ R3 × R3, we consider the solution (vS , pS) to
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the first three lines in (11). Multiplying the first equation of (11) by v(i) and integrating by parts, we obtain
that for every i ∈ {1, 2, . . . , 6} we have

2

∫
Ω

DvS : Dv(i)dx =

∫
S

(σS · n) · βi ds(x). (12)

Given the definition of the vectors βi, the last two conditions of system (11) are fulfilled if and only if, for
every i ∈ {1, 2, . . . , 6} we have ∫

Ω

DvS : Dv(i) dx = 0. (13)

Moreover, multiplying the first equation of (7) by vS − V0e2 +US , we get:

2

∫
Ω

DvS : Dv(i) dx =

∫
S

(σ(i) · n) · (ωS × x− V0e2 +US) ds(x) + 2

∫
Ω

D(V0e2) : Dv(i) dx. (14)

Finally, the last two conditions of system (11) are equivalent to choose (US ,ωS) ∈ R3 × R3 such that for
every i ∈ {1, 2, . . . , 6} the following equality is verified:∫
S

(σ(i) ·n) ·US ds(x) +

∫
S

(x×σ(i) ·n) ·ωS ds(x) =

∫
S

(σ(i) ·n) ·v0 ds(x)−2

∫
Ω

D(V0e2) : Dv(i) dx. (15)

These six linear equations can be put in a matrix form using the matrix A introduced in the previous section:

A


U1

U2

U3

ω1

ω2

ω3

 =


b1
b2
b3
b4
b5
b6

 , (16)

where, for any i ∈ {1, 2, . . . , 6} the right-hand side of the equality is given by:

bi =

∫
S

(σ(i) · n) · v0 ds(x)− 2

∫
Ω

D(V0e2) : Dv(i) dx. (17)

A symmetry with respect to the variable y argument shows that b1 = b3 = b5 = 0 (see the proof of the
Proposition 3.1 for similar computations). Thus, by rearranging the system (16), it can be written as:

AI

U1

U3

ω2

 =

0
0
0

 and AP

U2

ω1

ω3

 =

b2b4
b6

 . (18)

Matrices AI , AP being invertible, we deduce that the velocity US will have only one non-zero component
(the component U2), and that it could be expressed using the solution of a linear system. In conclusion, we
can state the following result:

Theorem 4.1. For any parameters (h, k), there exists a unique steady solution (vS , pS ,US ,ωS) to the
system (11). This solution is explicitly given by

vS = U2v
(2) + ω1v

(4) + ω3v
(6) + v(∞) −U2e2,

pS = U2p
(2) + ω1p

(4) + ω3p
(6) + p(∞),

US = U2e2,

ωS = ω1e1 + ω3e3,

(19)

where (v(i), p(i)), i ∈ {1, 2, . . . , 6},(resp. (v(∞), p(∞))) are the solutions of the elementary Stokes problems (7)
(resp. (8)), and where (U2,ω1,ω3) is the unique solution to APX = b, the matrix AP and the source term b
being respectively given in Proposition 3.1 and by (17).
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Proof. It is enough to verify that the proposed solution is indeed adapted and verifies all the relationships
in system (11). The uniqueness directly follows from the linearity of the Stokes equations.

Remark 4.1. For the two-dimensional case we obtain that for any h ∈ ω, there exists a unique solution
(vS , pS ,US ,ωS) to the system (11). This solution is explicitly given by

vS = U2v
(2) + ω1v

(4) + v(∞) −U2e2,

pS = U2p
(2) + ω1p

(4) + p(∞),

US = U2e2,

ωS = ω1,

(20)

where (U2,ω1, 0) is the unique solution to A(2d)
P X = b(2d), the matrix A(2d)

P and the source term b(2d) being
respectively given in Remark 3.2 and by (17) by taking i = 2, 4.

5 Steady solutions for flows governed by Navier-Stokes equation

From Galdi [7, Th 3.4, page 252], we know that there is only one solution to the problem (4) when the
Reynolds number Re is assumed to be small. Moreover, we know that this solution is continuous with
respect to the Reynolds number:

v = vS +O0(Re ),

where the velocity vS corresponds to the solution for the Stokes system (that is, the solution obtained in
the previous section, see Theorem 4.1).
Multiplying the first equation of the system (4) by the elementary velocity fields v(i), we proceed as in the
beginning of the previous section and we obtain the relations

2

∫
Ω

Dv : Dv(i) dx+Re
∫

Ω

(v · ∇v) · v(i) dx =

∫
S

(σ · n) · βi ds(x). (21)

Following the same strategy as in the Stokes case, the solution of the system (4) satisfies

AI

U1

U3

ω2

 = −Re

c1c3
c5

− GaRe
 0

sin θ
0

+O0(Re 2) (22)

and

AP

U2

ω1

ω3

 =

b2b4
b6

−Re
c2c4
c6

+ GaRe

cos θ
0
0

+O0(Re 2), (23)

where the additional terms come from the non-linearity of the Navier-Stokes equations. For any i ∈
{1, 2, . . . , 6}, they are given by

ci =

∫
Ω

(vS · ∇vS) · v(i). (24)

Clearly, the corresponding solution (U1,U3,ω2) to system (22) does not necessarily satisfy the conditions
U1 = U3 = 0 required to obtain a steady solution. More precisely, the system (22) is equivalent to (using
the fact that A55 6= 0):

(A55A11 −A2
15)U1 + (A55A13 −A15A35)U3 = Re

(
A15c5 −A55c1

)
+O0(Re 2)

(A55A13 −A15A35)U1 + (A55A33 −A2
35)U3 = Re

(
A35c5 −A55(c3 + Ga sin θ)

)
+O0(Re 2)

A51U1 +A53U3 +A55ω2 = −Re c5 +O0(Re 2).

(25)

At first order with respect to the Reynolds number, the two first equations of this system write{
(A55A11 −A2

15)Ũ1 + (A55A13 −A15A35)Ũ3 = A15c5 −A55c1

(A55A13 −A15A35)Ũ1 + (A55A33 −A2
35)Ũ3 = A35c5 −A55(c3 + Ga sin θ).

(26)

We can state now the following theorem.
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Theorem 5.1. We consider the solution (v, p,U ,ω) to the system (4) associated to parameters (h, k) and to
the Reynolds number Re (which is supposed to be small enough to have a unique solution). The asymptotic
development of the velocity U with respect to the Reynolds number takes the following form:

U = (0,U2, 0) +Re (Ũ1, Ũ2, Ũ3) +O0(Re 2), (27)

the components Ũ1 and Ũ3 being the solution of the linear system (26).

The linear system (26) can be written as (Ũ1, Ũ3) = G(h, k). The quantity G(h, k) represents, at first order
in Re the components of the force exerted by the liquid in the directions orthogonal to the translational
velocity of the disk (the lift).

Corollary 5.1. The positions (h, k) ∈ ω of the ball providing steady solutions of (4) (at first order in Re )
correspond to the zeros of the vector field G : ω → R2. More precisely, the current lines of this field are
colinear with the projection of the ball trajectories to the plane Oe1e3.

Remark 5.1. In the two dimensional situation, since A55 = 0, the condition to have a steady state solution

reads Ũ3 = 0, which is equivalent (at the first order) tp the condition c3 = −Ga sin θ. Such a condition can
be viewed as

G(h) = 0.

The objective of the remaining part of this work is to describe the strategy employed to numerically compute
the vector field G for channels of different sections ω.

6 Numerical applications

The aim of this section is to explain the implementation of the method proposed in the previous sections and
to illustrate numerically the Segré-Silberberg effect [16] for cylinders having different sections ω. A similar
study was done in a two-dimensional situation using a similar approach in [8].

6.1 Implementation of the method

In order to numerically implement the methodology described in the previous section we used several software.
Firstly, for the description of the geometry of the half-domain Ω+ and for the construction of a tetrahedral
mesh of this domain, we employed Gmsh [9]. Particularly, we replace the infinite domain Ω+ by a truncated
domain in the direction e2: Ω+

M = ω × (0,M), see Remarks 3.1 and 3.4 for mathematical explanations.
An example of the geometry and of a non-uniform mesh of such a domain are displayed in Figure 3. The
boundary conditions on the left extremity of the domain Ω+

M corresponding to y = 0 should be carefully
tackled, taking into account the symmetry of the variables. Since we have to compute several integrals on
the surface S of the ball, we consider non-uniform meshes which are much more refined on the surface of the
ball B than on the lateral boundary of the cylinder.

X Y

Z

X Y

Z

Figure 3: The geometry and the mesh of domain Ω+
M=0.5 for a cylinder with circular section ω of radius

L = 0.5, with a ball of radius R = 0.05 and of length M = 0.5.
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For the numerical approximation of Stokes elementary problems (7), for the computation of the matrices
AP and AI and for solving system (26), we used FreeFem++ [10]. More precisely, we numerically solve the
weak formulations associated to these systems using P1b/P1 mixed finite elements combined with a pressure
stabilization technique.
For every geometrical situation considered, i.e. for every section ω and for every position (h, k) of the ball,
we compute the solutions of system (25). Thus we obtain an approximation of the vector field G provided
by Corollary 5.1

6.2 Numerical illustrations

In this subsection we numerically illustrate the proposed method for different cross-sections ω. Firstly, we
validate the method in the case of a cylinder with a circular section considering two directions for the gravity
field. Secondly, we study the dynamic of a ball due to inertial forces in a cylinder with a rectangular section.
Finally, we consider the situation reported in [13] in the context of particle separation using inertial focusing.

In what follows we compute the solution (Ũ1, Ũ3) of the linear system (26) for different geometric configu-
rations. Nevertheless, to simplify the notation, we drop the tilde on Ui and we denote by G the vector field
G(h, k).

6.2.1 Cylinder with circular cross-section

We consider cylinders with section ω being a disk of radius L = 0.5. The radius of the ball is set to R = 0.05
and the length of Ω+

M is chosen M = 0.5. Such a length seems to be sufficiently large such that the L2-norms
of the traces of solutions of elementary problems (7) on the boundary ω × {M} are close to the precision of
the numerical scheme employed to solve these problems.

Gravity field perpendicular to the plane Oe1e3 First, we consider the situation where the gravity field
and the vector e2 are colinear, which is equivalent to take θ = 0. Therefore, taking into account the symmetry
of the disk, it is enough to take the center of the ball of coordinates (h, k) = (0, z) with z ∈ [0, L−αR), where
parameter α > 1 is such that the ball does not touch the lateral wall of the cylinder. The first numerical
experiment consists in computing the solution of system (25) for twenty such different positions of the ball.
For each geometry we considered a non-uniform mesh with a characteristic size cS = 0.0025 on the surface
of the ball and c = 0.03 on the lateral boundary. For example, one such mesh consists of a number of 164784
tetrahedra when the ball is positioned at the center of the cross section. In Figure 4 we display the value
of the component U3 of the field G which corresponds to the lift of the ball in the direction e3. Remark
that the lift in the direction e1 is zero and that U3(0, z) = −U3(0,−z). The result illustrated in Figure 4
is similar to the numerical results obtained in a two-dimensional framework in [8] and is in agreement with
the experimental results in [14]. Concerning the positions of the ball for which steady solutions are obtained
there is an unstable equilibrium in the center of the disk (s) and a circle having the same center as the
disk ω of stable equilibria (l).
In order to illustrate the convergence when the mesh size tends to zero, we consider the solution on a fine
mesh with cS = 0.001 and c = 0.05. On this fine mesh we compute a reference solution denoted (Ur1 , U

r
3 , ω

r
2).

We compare the solutions computed on six different levels of mesh (denoted (U i1, U
i
3, ω

i
2)) obtained by taking

c = 0.05 and cS ∈ {0.002, 0.003, 0.004, 0.005, 0.006, 0.007} to the reference solution. The results are displayed
in Figure 5. More precisely, we observe that the error ‖((Ur1 , Ur3 , ωr2))−(U i1, U

i
3, ω

i
2)‖ decreases at a sub-linear

order with respect to the characteristic size cS . Since the numerical procedure combines numerical solving of
partial differential equations and the resolution of a linear system with coefficients depending on integral and
boundary integral of solutions of the partial differential equations, is difficult to obtain theoretical results
concerning the order of the error.

Gravity colinear to the vector e3 We set θ = π/2, which corresponds to a gravity filed with an opposite
orientation with respect to the vector e3. We consider a fluid of density ρf = 103 kg ·m−3 and solid balls
of slightly higher density ρ1

s = 1.05 × 103 kg · m−3 and ρ2
s = 1.1 × 103 kg · m−3 respectively. Taking into

account the symmetry of the disk and the orientation of g, it is enough to take (h, k) = (r cosβ, r sin(β))
with r ∈ [0, L− αR) and β ∈ (−π2 , π2 ). We consider one hundred different positions of the ball of this form
and we proceed as in the case where the gravity field was perpendicular to the plane Oe1e3 treated in the
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Figure 4: Velocity U3 of a ball situated at the position (0, z) in a circular cylinder.

previous paragraph. In Figure 6 (left) we display the field G obtained for balls of density ρ1
s and in Figure 6

(right) the corresponding results obtained for ρ2
s. We remark that the number of the equilibrium points

changes with respect to ball’s density. For ρ1
s there are three equilibrium positions all situated on the z-axis:

one stable node (l), one unstable node (s), and a saddle point (u). If the ball B has density ρ2
s there is

only one stable equilibrium situated at the bottom of the z-axis. This behaviour is exactly the same as the
one observed in a two-dimensional framework in [7].

6.2.2 Cylinder with rectangular cross-section

We consider here the flow around balls B of radius R = 0.05 immersed in a fluid flowing inside a rectangular
prism, or in other words, inside a cylinder of rectangular cross-section ω. The gravity field is oriented
along the direction e2, i.e. θ = 0. We take the cross-section of the rectangular prism to be the rectangle
ω = (−L,L) × (−`, `) with L = 0.5 and ` = 0.2. Taking into account the symmetry of the rectangle, it is
enough to compute the solutions of system (25) for positions of the ball in the upper-right quarter of ω, i.e.,
we consider (h, k) ∈ {(iδ1, jδ2) for 0 ≤ i, j ≤ n}, δ1 = (L − αR)/n and δ2 = (` − αR)/n. Here, we have
taken α = 1.25. In Figure 7 we represent the results obtained for this configuration. On the left-hand side
we represent the field G in ω obtained by symmetry from the field computed in a quarter of the domain (the
gray rectangle) and the positions of the ball B which correspond to steady solutions. The same situation is
represented in a three-dimensional view in the right-hand side of Figure 7. To obtain some more information
about the nature of these equilibrium positions we represent in Figure 8 four different zooms around the
points where the field G is close to zero. It seems that there are nine such equilibrium positions:
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Figure 5: Evolution of error ‖((Ur1 , Ur3 , ωr2))− (U i1, U
i
3, ω

i
2)‖ with respect to cS .
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Figure 6: Vector field G in the case of cylinder with circular section and a gravity field corresponding to
θ = π

2 , a fluid of density ρf = 103 kg · m−3 and a ball of density ρ1
s = 1.05 × 103kg · m−3 (left) and

ρ2
s = 1.1× 103 kg ·m−3 (right).

• one unstable node (s)

• four saddle points near the middles of the edges (u)

• four stable nodes around the diagonals and near the corners of the rectangle (l).

These results are in agreement with the results obtained in [3, 2]. We mention that our method is not able
to reproduce the behaviour observed in some other recent papers in microfluidics, where only two stable
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Figure 7: Vector field G in a case of a cylinder with rectangular section.

equilibria, situated near the middle of the longer edges of the rectangle are observed experimentally [17, 12].
This is probably due to the fact that we approach the Navier-Stokes initial model by a first order development
with respect to the Reynolds number and therefore our approach may be applied only for small enough
Reynolds numbers.

6.2.3 Cylinder with triangular cross-section

In a recent article by Kim et al. [13] it was presented an application of the inertial migration for the separation
of particles in suspension in a micro-fluid. The authors proposed an experimental setup consisting of several
micro-channels of rectangular and triangular shapes in order to separate particles of different sizes being in
suspension in a fluid.
In this last part, we consider the case of triangular shaped tubes. Let ω be an equilateral triangle of edge
L = 1. Using the symmetry of this domain, it is enough to consider the sixth part of this domain (triangle
in gray in Figure 9) for the positions of the ball. Nevertheless, we need to solve a number of 210 different
geometric configurations in order to obtain the graphical representation in this figure.
There seem to be a number of seven positions for the ball B such that the corresponding field G is zero.
Among these positions, there is one unstable node near the mass center of the triangle (s), three saddle-
points near the middle of each edge (u) and three stable nodes near the angles (l). The results are in
agreement with the results in [13] concerning the number of equilibrium points. As in the case of rectangles,
due to the fact that our method is based on the approximation of the non-linear Navier-Stokes problem by
linearizing at the first order with respect to the Reynolds number, we are probable not sufficiently close to
the physical situations in a micro-channel to be able to seize the behavior described in [13].
In fact, for the applications to particle separations it is important that for balls of different sizes have different
positions (h, k) providing steady solutions. In Figure 10 we represent the positions for which we obtain steady
solutions for balls of radius R = 0.05 (s, u, l) and for balls of radius R = 0.1 (the corresponding unfilled
shapes). We therefore observe that bigger particles have focusing positions situated closer to the center of
the channel than smaller particles.
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Figure 8: Several zooms of the vector field G in the case of a cylinder with rectangular section.
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Figure 9: Field G and positions of the ball B for which steady solutions are obtained in the case where ω is
an equilateral triangle.
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Figure 10: Position of the ball for which steady solutions are obtained: filled shapes are obtained for a ball
of radius R = 0.05 and empty shapes for R = 0.1.
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