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Sign preservation analysis of orthogonal greedy

algorithms
Thanh T. Nguyen, Charles Soussen, Member, IEEE, Jérôme Idier, Member, IEEE,

and El-Hadi Djermoune, Member, IEEE

Abstract

We bring a contribution to the exact recovery theory of a K-sparse vector in the noiseless setting

under the standard condition µ < 1/(2K − 1), where µ denotes the mutual coherence. While it is

known that Orthogonal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS) identify the true

support in K iterations, we prove that the weights of the selected atoms have the correct sign in the best

current approximation at any of the K iterations. Therefore, OMP and OLS identify with their sign-aware

versions, which allows us to establish an exact support recovery property based on mutual coherence for

non-negative versions of OMP and OLS.
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I. INTRODUCTION

Orthogonal Matching Pursuit (OMP) [1] and Orthogonal Least Squares (OLS) [2] are well known

greedy, iterative algorithms for sparse decomposition1. Their common principle is to sequentially select

atoms from a given dictionary, that produce a maximal decrease of the residual error in the least square

sense. Finding the K atoms that jointly minimize the residual error at a given sparsity level K is an

NP-hard subset selection problem [6]. Greedy algorithms such as OMP and OLS form a family of

approximate schemes, with a relatively low computing cost compared to exact methods [7], while convex

relaxation yields another important branch of approximate methods [8], [9].

OMP and OLS only differ by their atom selection rule. For OMP, it simply consists in maximizing the

magnitude of the inner product between the residual error and the candidate atoms, assumed normalized.

The OLS rule can be interpreted in similar terms, but the involved atoms are renormalized, projected2

versions of the candidate atoms [10], [11].

Orthogonal greedy algorithms are able to achieve exact support recovery under certain conditions. The

Mutual Incoherence Property (MIP) condition states that OMP is guaranteed to recover the K-sparse

representation of a data signal in the noiseless case if the mutual coherence of the dictionary is less

than 1
2K−1 [12], [13]. In the last years, much attention was paid to variations over such a condition. In

particular, extensions to noisy cases were considered, see, e.g., [14], [15], and relaxations given partial

information on the decomposition of the data signal were proposed [13], [16]. Other studies about the

theoretical assessment of OMP also consider the Restricted Isometry Property (RIP) condition [17]–[20].

Exact support recovery properties of OLS have been studied more recently. In [13], the MIP condition

was extended to OLS in the noiseless case, while [21], [22] are based on RIP assumptions. In [11],

[13], [16], OMP and OLS were treated as two instances of a unique orthogonal greedy scheme, and the

generic acronym Oxx was used to refer to both. We will adopt the same convention in this paper.

In the traditional K-step analysis, exact support recovery holds when each iteration of Oxx necessarily

selects an atom in the true support S∗, so that S∗ is recovered after K = card (S∗) iterations. Our main

contribution is to unveil an exact sign recovery property regarding the weights of the selected atoms

in the best current approximation under the MIP condition and in the noiseless case: at any iteration k

between 1 and K, the k coefficients found by Oxx have the same sign as the k corresponding ones in

the true decomposition of the data signal.

1In the literature, OLS is also known as Order Recursive Matching Pursuit (ORMP) [3], Optimized Orthogonal Matching

Pursuit (OOMP) [4], and Pure Orthogonal Matching Pursuit [5].
2onto the orthogonal complement of the already selected ones.
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As an immediate consequence of this sign preservation property, we can theoretically assess exact

support recovery properties for the non-negative version of OMP and other non-negative greedy schemes.

Non-negative OMP (NNOMP) was first introduced by Bruckstein et al. [23] under the name OMP, and

then renamed NNOMP in [24] (see also [25], [26]). It relies on the repeated maximization of the positive

inner product between the residual error and the dictionary atoms, followed by the resolution of a non

negative least square problem. For such a sign constrained version of OMP, existing exact support recovery

analyses are rare, and somewhat discordant. On the one hand, Bruckstein et al. conjectured that a MIP

type property holds for NNOMP [23], and that the proof is similar to the one given in [12], [27] for

OMP. Specifically, [23, Theorem 3] states that µ < 1
2K−1 is a sufficient condition for exact recovery

of any K-sparse representation using NNOMP. On the other hand, Kim et al. elaborate a unified MIP

analysis of NNOMP and its generalized version in the multiple measurement vector setting [25, Theorem

1]. In the specific case of NNOMP, that is, for single measurement vectors, the authors acknowledged

that their MIP condition turns out to be very restrictive. Indeed, µ is required to be lower than 1
K−1 −

K
2 ,

which can occur only when K = 1 or 2.

We have been unable to prove [23, Theorem 3] as prescribed by the authors (as a direct extension

of the derivations in [12], [27]). The major obstacle is that the NNOMP selection rule performs com-

parisons between signed inner products, whereas a small mutual coherence condition yields a bound on

the unsigned magnitude of inner products (see Section II-D for further details). Fortunately, the sign

preservation property of OMP implies that OMP and NNOMP coincide in the exact support recovery

regime, so [23, Theorem 3] becomes a trivial byproduct of our sign preservation analysis. Under the

same conditions, OLS and Non-negative OLS (NNOLS) [28] coincide, which allows us to extend [23,

Theorem 3] to NNOLS; NNOLS and Suboptimal NNOLS (SNNOLS) [28] also coincide, so the same

applies to SNNOLS.

The article is organized as follows. Section II introduces useful notations and briefly recalls known

results about orthogonal greedy algorithms and their non-negative versions. Section III contains our main

results on sign preservation of Oxx, as well as their consequences on sign-constrained greedy algorithms.

The key result, stated as Theorem III.1, is proved in the same section, most technical steps being postponed

in Appendix. Section IV contains a limited set of simulations to illustrate the average behavior of the

studied algorithms outside the exact support recovery regime.
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II. NOTATIONS AND BACKGROUND

A. Notations

Let us denote by y ∈ Rm the data signal and by A ∈ Rm×n the dictionary of elementary atoms

ai ∈ Rm, 1 ≤ i ≤ n. We are interested in the representation y = Ax in which the vector solution

x ∈ Rn has K non-zero elements. We call this a K-sparse representation. Without loss of generality,

we assume that the elementary atoms are normalized, that is ‖ai‖2 = 1. Hereafter, the `2 norm will also

be denoted by ‖ · ‖. Notations t and † stand for the transpose and the Moore-Penrose pseudo-inverse,

respectively. For any set of indices S ⊂ {1, . . . , n}, we denote by AS and xS the subdictionary and

subvector indexed by S, respectively. We denote by span(AS) the subspace spanned by the dictionary

atoms indexed by S, by span(AS)⊥ the orthogonal complement of span(AS), and by P⊥S = Im−ASA
†
S

the orthogonal projection onto span(AS)⊥, where Im stands for the identity matrix of size m×m. We

place the convention that P⊥S = Im when S = ∅. When AS is full column rank, one has a further explicit

formulation A†S = (At
SAS)−1At

S . Then we denote by ãSi = P⊥S ai the projected atoms. Clearly, ãSi = 0

whenever i ∈ S. Let b̃Si = ãSi /‖ãSi ‖, with the convention that b̃Si = 0 when ãSi = 0. Later, we also use

the generic notation

c̃Si =

 ãSi (OMP case),

b̃Si (OLS case)
(1)

to refer to either ãSi or b̃Si depending on the context. We will denote by ÃS (resp., B̃S and C̃S) the

matrix of size m× n formed by gathering all projected atoms ãi (resp., b̃i and c̃i).

The residual vector and the support found by orthogonal greedy algorithms at iteration k will be

denoted rk and Sk, respectively, with card (Sk) = k. By extension, we will denote r0 = y and S0 = ∅.

Whenever unambiguous, we will use the simpler notations r and S.

In our analysis, we make use of the mutual coherence of the dictionary, defined by µ(A) = maxi 6=j |atiaj |.

This quantity tells us how much the dictionary atoms look alike.

B. OMP and OLS

OMP and OLS address the following minimization problem:

min
‖x‖0≤K

‖y −Ax‖2. (2)

Both algorithms start with a zero vector solution corresponding to the empty support. Then, at each

iteration, a new atom ` is selected and added to the support. This process is repeated until the support of
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Algorithm 1: Oxx in K steps.
Input: y, A

Output: x̂ with ‖x̂‖0 ≤ K

1 Initialization: x̂← 0; S ← ∅;

2 repeat

3 r ← y −ASx̂S ;

4 Choose an atom ` according to either (3) or (4);

5 S ← S ∪ {`};

6 x̂S ← A†Sy;

7 until card (S) = K;

cardinality K is reached (see Algorithm 1). OMP and OLS share the same coefficient update and only

differ by their selection rule:

OMP: ` ∈ arg max
i/∈S

|rtai|, (3)

OLS: ` ∈ arg max
i/∈S

|rtb̃Si | (4)

where r = P⊥S y denotes the current residual vector. Note that (3) can also be written as

` ∈ arg max
i/∈S

|rtãSi | (5)

since r is orthogonal to span(AS). These inner product expressions come from the geometrical inter-

pretation of OMP and OLS [10]. Besides, from an optimization viewpoint, the selection rule of OMP is

based on the minimization of ‖r − ziai‖2 w.r.t. scalar zi, whereas OLS relies on the minimization of

‖y − AS∪{i}z‖2 w.r.t. vector z of length card (S) + 1 [10]. From this point of view, it is obvious that

the OLS selection rule is more costly than that of OMP, although recursive update schemes are available,

see, e.g., [2], [4].

Let us state the MIP condition that holds for both OMP and OLS in the noiseless case. Note that under

the assumption of Lemma II.1, the K-sparse representation is unique [29, Theorem 7].

Lemma II.1. [12, Theorem 3.1-3.5], [13, Theorem 2]. Assume that µ(A) < 1
2K−1 . Let y = Ax∗ be a

K-sparse representation. Then Oxx recover the support of x∗ in K iterations.

Here and throughout the paper, we consider that in the special case where the Oxx selection rules (3)-

(4) yield several solutions (i.e., two atoms i1 and i2 for which |rtc̃Si1 | = |r
tc̃Si2 |) including an atom that
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Algorithm 2: Non-negative Oxx for K-sparse non-negative recovery.
Input: y, A

Output: x̂ ≥ 0 with ‖x̂‖0 ≤ K

1 Initialization: S ← ∅, x̂← 0;

2 repeat

3 r ← y −ASx̂S ;

4 Choose an atom ` according to prescribed selection rule (SR) in Table I;

5 S ← S ∪ {`};

6 x̂S ← arg min
z≥0

‖y −ASz‖2;

7 until card (S) = K or prescribed stopping condition (SC) in Table I;

TABLE I

NON-NEGATIVE GREEDY SCHEMES EXISTING IN THE LITERATURE, WITH RELATED SELECTION RULES (SR) AND STOPPING

CONDITIONS (SC).

NNOMP [23]

(SR) argmax
i/∈S

rtai

(SC) max
i/∈S

rtai ≤ 0

SNNOLS [28]
(SR) argmax

i/∈S
rtb̃Si

(SC) max
i/∈S

rtb̃Si ≤ 0

NNOLS [28]

(SR) argmin
i/∈S

(
min
z≥0
‖y −AS∪{i}z‖2

)
(SC) min

i/∈S

(
min
z≥0
‖y −AS∪{i}z‖2

)
= ‖r‖2

does not belong to the support of x∗, Oxx makes the wrong decision and hence K-step exact recovery

does not occur.

C. Non-negative setting

In many fruitful applications of sparse decomposition such as multispectral unmixing [30], microarray

data analysis [31], mass spectroscopy [32] and fluid mechanics [33], to name a few, the sought solution

is required to be non-negative. Several extensions of OMP and OLS to the non-negative setting have

been studied so far, the main being NNOMP [23], [24], NNOLS and SNNOLS [28]. All three solve non-

negative least squares (NNLS) subproblems to update the selected coefficients at each iteration according

to Algorithm 2, while they differ at the atom selection stage, see Table I. NNOMP adopts the selection

rule of OMP by simply removing the absolute value, i.e., ignoring negative inner products. Similarly, the
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selection rule of SNNOLS is the same as OLS without absolute values. On the contrary, NNOLS solves

as many NNLS subproblems as candidate atoms to find the largest decrease of the residual error. Note

that in the case of OLS, the inner product formulation (4) is equivalent to the residual error minimization

approach since the residual error is orthogonal to the column space of selected atoms, see [4], [10].

In contrast, when solving an NNLS problem, the orthogonality is not guaranteed anymore (because of

the possible activation of non-negativity constraints), so the selection rules of SNNOLS and NNOLS

are not equivalent in general. In [26], the reader can find a detailed study about the design and the

practical implementation of non-negative orthogonal greedy algorithms. In particular, compared with

basic implementations, huge possibilities of accelerations can be made possible for NNOLS using a fully

recursive implementation, assorted with a dynamic pruning strategy. To a lesser extent, this also applies

to NNOMP and to SNNOLS.

D. Exact recovery analysis in the non-negative setting

1) Extension of K-step exact recovery analysis of OMP: Bruckstein et al. [23] claimed that the K-

step exact recovery analysis of NNOMP can be carried out as a straightforward extension of the classical

K-step exact recovery analyses of OMP [12], [27]. Here, we argue that this extension does not actually

appear to be trivial.

Tropp’s reasoning in [12] consists in lower bounding the absolute value of the inner product |rtai|

between the residual and the correct dictionary atoms based on induced matrix norm identities. Unfortu-

nately, similar lower bounds cannot be directly extended when absolute values are dropped. Donoho et

al.’s recursive proof [27] exploits that for noiseless sparse inputs, the data residual lays in the subspace

spanned by the true atoms. So the result at the first iteration (guaranteed selection of a true atom)

can be exploited again in the next iterations by replacing the original input signal by the residual. To

generalize this reasoning to the non-negative case, one would need to prove that for non-negative sparse

decompositions y = Ax∗ (i.e., inputs laying in the positive span of the true atoms), the residual lays

in the positive span of the dictionary atoms as well. This conjecture turns out to be false; if true atoms

are selected until iteration k, the residual r = A(x∗ − x̂(k)) lays in the subspace spanned by the true

atoms, where x̂(k) denotes the NNOMP iterate. Provided that the latter atoms are linearly independent, it

is clear that r lays in their positive span if and only if x̂(k) ≤ x∗. Simple numerical tests show that even

for toy problems, x̂(k) ≤ x∗ may not hold when x∗ ≥ 0 and µ(A) < 1
2K−1 : see § IV-B and Fig. 2(a).

Therefore, sign-preservation does not apply to the residual vector, hence Donoho et al.’s reasoning cannot

be directly extended to the non-negative case.
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2) `1 analysis with non-negativity constraints: The theoretical analysis of non-negative versions of

Basis Pursuit (BP: minx ‖x‖1 s.t. y = Ax) and Basis Pursuit Denoising (BPDN: minx ‖y − Ax‖2 +

λ‖x‖1) turns out to be far simpler than the analysis of orthogonal greedy algorithms. Indeed, it is well-

known that contrary to greedy algorithms, the exact recovery analysis of Basis Pursuit heavily depends

on the sign pattern. Fuchs [34] proved that when y = Ax∗, BP and BPDN (for sufficiently small λ)

both have a unique solution under the MIP assumption, and that this solution identifies with x∗ as long

as AS∗ is full rank and

∀j /∈ S∗, |〈σ∗, A†S∗aj〉| < 1 (6)

where S∗ := supp(x∗) and σ∗ := sign(x∗S∗) ∈ {−1, 1}K denotes the sign pattern. It is noticeable that the

latter condition3 only depends on the sign pattern, but not on the magnitudes of coefficients x∗i . Denoting

by 1 the “all-ones” vector of size K, condition (6) with σ∗ ← 1 thus guarantees exact recovery of x∗

for any x∗ ≥ 0 supported by S∗. It follows that x = x∗ is not only the unique solution of BP/BPDN

but also of their non-negative counterpart

min
x≥0
‖y −Ax‖2 + λ‖x‖1, (7)

often referred to as the non-negative Garrote in statistics [36]. Indeed, the minimum value of ‖y−Ax‖2+

λ‖x‖1 over x ≥ 0 can be reached only for x = x∗. Summarizing, the sign preservation property of BP

is guaranteed as long as Fuchs condition (6) is met.

3) Extension of K-step exact recovery analysis of `1 homotopy: Homotopy is a popular greedy

algorithm dedicated to `1 minimization. It was originally proposed in [37] in the undercomplete setting,

and named modified Least Angle Regression (LARS). It was later renamed homotopy by Donoho and

Tsaig, and further analyzed in the overcomplete setting under the MIP assumption in the same paper [9].

Homotopy aims to solve the BPDN problem minx ‖y − Ax‖2 + λ‖x‖1 for a continuum of λ’s. The

principle of homotopy is to reconstruct the regularization path (defined as the set of solutions for all λ)

by solving the `1 problem for gradually decreasing λ’s starting from λ = +∞, with the corresponding

solution x = 0. Homotopy has a stepwise mechanism with an atom selection or deselection at each

iteration. It turns out [9, Theorem 1] that when µ(A) < 1
2K−1 , K-step recovery of any K-sparse vector

x∗ from noise-free observations y = Ax∗ is guaranteed. Not only the support but also the magnitudes

of x∗ are found after K iterations (no deselection occurs).

3referred to as Fuchs corollary condition in [35] as opposed to the sharp (but more involved) Fuchs condition in [35, Theorem 2].

The latter condition solely depends on the sign pattern as well.

January 7, 2019 DRAFT



TECHNICAL REPORT 9

Although homotopy has a greedy structure, a major difference with Oxx algorithms is that homotopy

solves an `1-penalized least square problem at each iteration. Therefore, the related exact recovery analysis

significantly differs from that of Oxx. The exact recovery analysis in [9, Theorem 1] is based on two

ingredients: the correct selection of atoms indexed by supp(x∗) and the so-called sign agreement property.

The latter ensures that elements from the solution support are never removed, so the deselection event

never occurs. Sign agreement is defined as follows: at every iteration k, the homotopy iterate x̂ satisfies

sign(x̂S) = sign(At
Sr), where S = supp(x̂). Donoho and Tsaig showed that when µ(A) < 1

2K−1 , the

magnitudes of the active atoms always increase while λ is decreasing. Since the correct magnitudes are

exactly found at iteration K (x̂ = x∗), it follows that their sign is unchanged throughout the iterations.

So, a sign preservation result in the `1 case is truly obtained as a byproduct of [9, Theorem 1]. In the

Oxx setting, the sign preservation result will be obtained here using far less straightforward reasoning.

Moreover, the sign agreement property “sign(x̂S) = sign(At
Sr)” does not make sense anymore since

At
Sr = 0, due to the orthogonality between the residual vector and the selected atoms.

III. EXACT RECOVERY AND SIGN PRESERVATION

This section contains our main results concerning sign preservation of Oxx when the exact recovery

condition in terms of mutual coherence is met. The cornerstone of our study is Theorem III.1, while the

other results of Subsection III-A are rather direct consequences. In Subsection III-B, we have decomposed

the proof of Theorem III.1 into distinct steps, most technical elements being postponed in Appendix.

A. Main results

The sign preservation property for arbitrary K-sparse representations is stated now.

Theorem III.1. Assume that µ(A) < 1
2K−1 . Let y = Ax∗ be a K-sparse representation. Then Oxx

recovers the support of x∗ in K iterations, and at each iteration, the weights of selected atoms are of

the same sign as the corresponding magnitudes of x∗.

An obvious corollary can be stated in the special case of K-sparse representations with non-negative

weights.

Corollary III.1. Assume that µ(A) < 1
2K−1 . Let y = Ax∗ be a K-sparse representation with x∗ ≥ 0.

Then, Oxx recovers the support of x∗ in K iterations, and at each iteration, the weights of selected atoms

are positive.
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In the non-negative setting, Corollary III.1 has interesting implications concerning non-negative versions

of Oxx. Let us start with the following lemma.

Lemma III.1. Let y ∈ Rm and assume that any combination of K dictionary columns is linearly

independent.

• Assume that at every iteration k = 1, . . . ,K of OMP, the selection rule yields a unique optimal

index ` and that the weights of selected atoms are all positive. Then NNOMP provides the same

iterates as OMP (i.e., with the same support and the same weights at every iteration).

• The same applies if OMP and NNOMP are replaced by OLS and SNNOLS, respectively.

• It also applies if OMP and NNOMP are replaced by OLS and NNOLS, respectively.

This result is intuitive since at each iteration of Oxx, the weights of selected atoms form a vector

defined as a least squares solution. Clearly, if an unconstrained least squares solution is positive, then it

is also the solution of the corresponding NNLS problem.

Proof: See Appendix VI-C.

From Corollary III.1 and Lemma III.1, we can deduce the following result.

Corollary III.2. Assume that µ(A) < 1
2K−1 . Let y = Ax∗ be a K-sparse representation with non-

negative weights. Then NNOMP identifies with OMP whereas both NNOLS and SNNOLS identify with

OLS. Thus, NNOMP, NNOLS and SNNOLS all recover the support of x∗ in K iterations.

It is known that the MIP condition µ(A) < 1
2K−1 is not only sufficient but also necessary for uniform

(i.e., irrespective of the magnitudes of nonzero coefficients in the sparse representation and of the choice

of the dictionary) K-step exact support recovery [13], [38] by Oxx. Cai et al. [38] indeed exhibited

an equiangular dictionary whose mutual coherence equals µ(A) = 1
2K−1 and a vector y having two

K-sparse representations y = Ax = Az with distinct supports. K-step exact support recovery does not

make sense anymore in this situation, since either the support of x or z cannot be reconstructed in K

steps. The same analysis can be made concerning non-negative extensions of Oxx.

Corollary III.3. The MIP condition µ(A) < 1
2K−1 is necessary for K-step exact recovery of any non-

negative K-sparse vector by non-negative orthogonal greedy algorithms, since there exists a dictionary

A with µ(A) = 1
2K−1 and a vector y having two non-negative K-sparse representations with distinct

supports.

Proof: Consider the dictionary A ∈ Rm×n with µ(A) = 1
2K−1 and the vector y ∈ Rm proposed

in [38, Section III], the latter vector having two K-sparse representations y = Ax = Az with distinct
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supports. Since both supports are distinct, one can define the subrogate dictionary A′ ∈ Rm×n as:

a′i =


sign(xi)ai if i ∈ supp(x),

sign(zi)ai if i ∈ supp(z),

ai otherwise.

(8)

Moreover, let |x| and |z| ∈ Rn denote the non-negative vectors whose entries are equal to |xi| and |zi|,

respectively. Obviously, y = A′|x| = A′|z|, and µ(A′) = µ(A) = 1
2K−1 .

B. Proof of Theorem III.1

Let us remark that it is sufficient to consider the case of non-negative weights. Indeed, an arbitrary K-

sparse representation can be reduced to the case with non-negative weights, by an obvious transformation

where each negative weight is replaced by its opposite value, the corresponding atom being also replaced

by the opposite one. Moreover, it is straightforward to check that the list of atoms selected by Oxx is

invariant through such a transformation. We therefore simply need to prove the result for non-negative

weights, which corresponds to the setting of Corollary III.1.

Before going further, let us denote by

C+K := {Ax∗, x∗ > 0 and ‖x∗‖0 = K} (9)

the set of K-sparse representations with positive weights, where the `0-“norm” ‖ . ‖0 counts the number

of nonzero elements. Now, consider y = Ax∗ ∈ C+K . From Lemma II.1, Oxx recovers the support S∗

of x∗ in K iterations. At any iteration k ≤ K, the support Sk of the current solution x̂(k) is therefore

a subset of S∗. Recall that x̂(k)
Sk

is the unconstrained least squares solution related to support Sk, see

Algorithm 1. Let rk = P⊥Sk
y denote the related residual vector, with r0 = y corresponding to S0 = ∅.

We proceed in two distinct steps to prove that x̂(k)
Sk

> 0 for all k ∈ {1, . . . , K}. First, we prove

that the weight of each newly selected atom x̂
(k)
Sk\Sk−1

is positive for any k ≤ K. Then, we show that

the updated coefficients x̂(k)
Sk−1

remain positive. Let us remark that Theorem III.1 states a trivial fact at

iteration K, since x̂(K) = x∗ according to Lemma II.1.

Let us first characterize the last k − j coefficients of x̂(k)
Sk

, j < k being an arbitrary index.

Lemma III.2. Let y ∈ Rm, and let j and k be two iteration indices such that 0 ≤ j < k. Assume that

ASk
is full column rank. Then, the k-th iterate of Oxx satisfies

x̂
(k)
Sk\Sj

=
[
Ã

Sj

Sk\Sj

]†
rj . (10)

Proof: See Appendix VI-B.
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Then, the two main steps of the proof of Theorem III.1 correspond to the following lemmas.

Lemma III.3 (non-negativity of new coefficient). Let y ∈ C+K and assume that µ(A) < 1
2K−1 . For all

k ∈ {1, . . . ,K}, x̂(k)Sk\Sk−1
> 0.

Proof: See Appendix VI-D.

Lemma III.4 (non-negativity of updated coefficients). Let y ∈ C+K and assume that µ(A) < 1
2K−1 . For

all k ∈ {2, . . . , K}, x̂(k)
Sk−1

> 0.

Proof: See Appendix VI-E.

IV. NUMERICAL STUDY

A. Comparison of Oxx and their sign-aware versions

The previous section shows that in some specifically favorable situations, greedy algorithms such as

OMP have not only the capacity to recover the support of the true solution, but also to recover the

correct weight signs. In such conditions, according to Lemma III.1, implementing non-negative (or more

generally, sign-aware) versions of such greedy algorithms is useless. However, one cannot generalize such

a conclusion to more realistic scenarios. On the contrary, one can empirically observe that sign-aware

greedy algorithms tend to reach superior performance, which is in agreement with the fact that they exploit

more information than usual greedy algorithms. To illustrate this fact, let us consider a dictionary A with

22 regularly spaced, discretized Gaussian-shaped atoms, with a constant standard deviation σ = 0.5,

and a mutual coherence µ(A) = 0.37. We randomly choose K = 10 atoms in A, whose location in

the dictionary are distributed according to the uniform distribution. The atoms are all equally weighted

with a unit weight, and we generate data y = Ax∗ +n with some additive Gaussian noise n. Note that

µ(A) > 1
2K−1 , which implies that exact support recovery is not mathematically guaranteed even at low

noise. Within a certain range of signal-to-noise ratio (SNR, defined by 10 log10(‖Ax∗‖2/‖n‖2)), we have

generated average performance for OMP, NNOMP, OLS, SNNOLS and NNOLS in terms of rate of exact

support recovery, the stopping condition being that the cardinality of the estimated support should be

10. This experiment has been repeated 1000 times to obtain the average results shown in Fig. 1. Several

empirical conclusions can be drawn. Some of them are already acknowledged facts. For instance, greedy

algorithms keep some exact recovery capacities far beyond the “zero defect” area. In contrast, in the

low SNR regime, the exact recovery capacity almost surely vanishes. The intermediate zone is the most

interesting. Specifically, one can notice that there is a significant difference of performance between the

usual greedy algorithms and their non-negative extensions. We have also performed a sign-preservation
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Fig. 1. Rate of exact support recovery (SK = S∗) and non-negativity at all iterations (∀k, x̂(k) ≥ 0) w.r.t. the signal-to-noise

ratio for a simulated data experiment involving Gaussian-shaped atoms. SNNOLS (not shown here) yields the exact same curve

as NNOLS.

test for OMP and OLS that simply consists in checking whether at all iterations, all estimated weights

are positive. Fig. 1 shows that such a sign-preservation property is rather robust, and that empirically,

sign-preservation is always reached with Oxx whenever exact support recovery is found.

B. Non-monotony of the magnitude variations

As argued in § II-D3, `1 homotopy is a stepwise greedy algorithm for which the sign preservation

guarantee holds whenever µ(A) < 1
2K−1 . In [9], Donoho and Tsaig proved a stronger result under

the mutual coherence condition: the magnitudes x̂(k)i of the selected atoms keep increasing while k is

increasing. In contrast, such monotony property does not hold for Oxx algorithms, since the magnitudes

may either increase or decrease during the iterations. This claim can be proven analytically at iteration

2, by using the fact that x̂(1)S1
> 0 and x̂(2)

S2
> 0 according to Corollary III.1. Since x̂(1) and x̂(2) have

closed-form expressions, a simple calculation (skipped for brevity reasons) shows that the first magnitude

is decreasing, i.e., x̂(1)S1
− x̂(2)S1

> 0 if and only if the inner product between the atoms selected in the first

two iterations is non-negative. So, the magnitude of x̂S1
may either increase or decrease depending on the

sign of the inner product. We further compare `1-homotopy with the Oxx algorithms for a toy problem

of dimension (m,n) = (5, 5), with an equiangular dictionary A such that µ(A) = 0.9
2K−1 . The columns
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(a) OMP/OLS (b) `1-homotopy

Fig. 2. Behavior of Oxx and `1-homotopy in the case of a toy problem (m = n = 5) corresponding to a 4-sparse noiseless

representation. (a) The OMP and OLS iterates are identical and yield magnitudes x̂
(k)
i with non-monotonous variations

throughout the iterations k. (b) On the contrary, the magnitudes of the `1-homotopy iterates are always increasing. The ground

truth magnitudes x∗i are represented with bullets for k = 4, and are exactly recovered after K = 4 iterations (x̂(k) = x∗).

of A satisfy 〈ai,aj〉 = ±µ(A), where the sign of the inner product is randomly chosen. The ground

truth vector x∗ is K-sparse with K = 4, with nonzero magnitudes drawn from the uniform distribution

U([0.6, 1]). Since µ(A) < 1
2K−1 , K-step exact recovery holds for all considered algorithms. In Fig. 2,

the variation of each entry x̂(k)i with respect to k is represented with a specific color. As expected (since

exact support recovery holds), the black magnitude, which corresponds to the wrong atom i /∈ S∗, is

equal to 0 throughout the iterations. `1-homotopy yields magnitudes that are indeed increasing with k,

which is consistent with the theoretical result in [9]. On the contrary, the OMP and OLS iterates (which

are identical here; the same indices are selected at each iteration) are non-monotonous.

V. CONCLUSION

We have established that OMP and OLS satisfy the sign preservation property when dealing with

sufficiently incoherent dictionaries: in the exact recovery regime µ(A) < 1
2K−1 , the Oxx estimates are

guaranteed to keep the same sign as the ground-truth sparse vector, at all iterations. This interesting

property enables us to establish the first K-step recovery analysis of three non-negative greedy algorithms

proposed previously, namely NNOMP, NNOLS and SNNOLS, under the MIP condition µ(A) < 1
2K−1 .

This exact recovery condition turns out to be identical for both Oxx algorithms and their non-negative

extensions. Moreover, it is not only a sufficient but also a (worst-case) necessary condition of exact
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recovery. Therefore, one cannot distinguish the performance of Oxx and their nonnegative counterparts

from this theoretical viewpoint. There is still room for improvement though in cases where the dictionary

atoms are known to be non-negative valued, since then the MIP condition is not guaranteed to be

necessary anymore. This setting covers many application fields ranging from sparse deconvolution [39]

to tomographic image reconstruction [40].

Empirically, we observed that the sign preservation property holds for noiseless scenarios when µ(A)

is substantially greater than 1
2K−1 . However, for truly coherent dictionaries and for noisy observations,

Oxx algorithms do yield iterates with negative entries, thus sign-aware versions are worth being consid-

ered [26]. Furthermore, the latter versions yield improvement of empirical exact recovery performance

for random dictionaries when µ(A) > 1
2K−1 .

A first perspective of this work is to elaborate on exact recovery conditions when µ(A) ≥ 1
2K−1 .

We argued that the MIP condition µ(A) < 1
2K−1 is both necessary and sufficient for uniform recovery

of K-sparse signals, that is, irrespective of the magnitudes of the nonzero coefficients in the K-sparse

representation. It is well-known that such worst case analysis is pessimistic since practically, algorithms

may succeed far beyond the exact recovery regime µ(A) < 1
2K−1 . It was shown in [16] that exact

recovery guarantees can be obtained for Oxx when µ(A) ∈ [ 1
2K−1 ,

1
K ) provided that the decay of the

magnitudes of the nonzero coefficients is fast enough (the minimum rate of decay required to ensure

exact support recovery depends on µ(A)). It would then be interesting to generalize our sign preservation

analysis to the case µ(A) ∈ [ 1
2K−1 ,

1
K ). However, this extension does not appear to be obvious and is

left for future work. With the same idea of elaborating on sign preservation under weaker K-step support

recovery conditions, Tropp’s exact recovery condition (ERC) is worth being considered. Indeed, it is both

necessary and sufficient for uniform K-step exact recovery of all representations having a given support

S∗ with both OMP and OLS [11], [12]. In all our empirical tests, we found that sign preservation holds

whenever the ERC is met. However, proving this conjecture would necessitate more involved theoretical

analysis than those we derived in this paper.

Another perspective is to address the sign-preservation analysis of Oxx and the exact recovery analysis

of non-negative greedy algorithms for noisy observations. Here, the noisy case was addressed from the

empirical viewpoint. Theoretical analyses of greedy algorithms for noisy data, see e.g., [14], [15], could

be generalized to sign-aware versions, leading to conditions depending on both the mutual coherence and

the noise level for various kinds of noise distributions.
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VI. APPENDIX

A. Useful lemmas

Let us recall some useful lemmas. Lemma VI.1 provides an upper bound on the `1-norm of the Gram

matrix columns by means of mutual coherence. Lemma VI.2 provides lower and upper bounds on the

inner product of projected atoms. Lemma VI.3 is related to the full rankness of the matrix of projected

atoms. Lemma VI.4 is a simple algebraic manipulation related to the pseudo-inverse.

Lemma VI.1. [41, Theorem 5.3], [12, Proposition 2.1, Theorem 3.5]. If B is a column-normalized matrix

with k columns and µ(B) < 1
k−1 then B is full column rank and

‖(BtB)−1‖1,1 ≤
1

1− (k − 1)µ(B)
(11)

wherein ‖ · ‖1,1 equals the maximum absolute column sum of its argument.

Lemma VI.2. [16, Lemmas 2 & 3]. If µ(A) ≤ 1
k+1 with k = card (S) then

∀i /∈ S, ‖ãSi ‖2 ≥ βk, (12)

∀p 6= q, |(c̃Sp )tãSq | ≤ µkηk, (13)

where

βk =
(µ(A) + 1)(1− kµ(A))

1− (k − 1)µ(A)
(14)

µk =
µ(A)

1− kµ(A)
(15)

ηk =

βk for OMP,
√
βk for OLS.

(16)

Lemma VI.3. [11, Lemma 8] If S ∩ S′ = ∅ and AS∪S′ is full column rank, then matrices ÃS
S′ and B̃S

S′

are full column rank.

Lemma VI.4. Consider a full column rank matrix A =
[
a1, A2

]
∈ Rp×q where a1 ∈ Rp and A2 ∈

R
p×(q−1) denotes the submatrix formed of the last q − 1 column vectors. Then,

∀r ∈ Rp,
(
A†r

)
1

=
〈r, P⊥S2

a1〉
‖P⊥S2

a1‖2
. (17)

where the index set S2 = {2, . . . , q} corresponds to the columns of A2.

Proof: Let r ∈ Rp. Since A is full column rank, r can be uniquely decomposed as

r = pA + pA⊥ = (A†r)1a1 + rA2
+ pA⊥ (18)
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where pA and pA⊥ are the orthogonal projections of r onto span(A) and span(A)⊥, respectively, and

rA2
∈ span(A2). Note though that the decomposition pA = (A†r)1a1 +rA2

is not orthogonal. Rewriting

a1 as PS2
a1 + P⊥S2

a1 yields the orthogonal decomposition:

r =
(
A†r

)
1
P⊥S2
a1 + (rA2

+ PS2
a1) + pA⊥ . (19)

(17) is obtained directly from (19) by writing the inner product 〈r, P⊥S2
a1〉 because the latter decompo-

sition is orthogonal. The denominator in (17) is nonzero because of the full rankness of A.

B. Proof of Lemma III.2

Let us now start with the proof of Lemma III.2, since this Lemma will be used later in the proofs of

Lemmas III.1, III.3, and III.4.

Since x̂(k)
Sk

is the unconstrained least squares solution related to subset Sk, we have for j < k,

x̂
(k)
Sk

= arg min
z∈Rk

‖y −ASk
z‖2

= arg min
v,w

‖y −ASj
v −ASk\Sj

w‖2. (20)

In addition,

min
v,w
‖y −ASj

v −ASk\Sj
w‖2 = min

w

(
min
v
‖(y −ASk\Sj

w)−ASj
v‖2
)

= min
w
‖P⊥Sj

(y −ASk\Sj
w)‖2

= min
w
‖rj − ÃSj

Sk\Sj
w‖2. (21)

Since ASk
is full column rank, ÃSj

Sk\Sj
is full column rank as well according to Lemma VI.3. The

minimum corresponding to (21) is reached for

w =
[
Ã

Sj

Sk\Sj

]†
rj (22)

which identifies with x̂(k)
Sk\Sj

according to (20).

C. Proof of Lemma III.1

We prove by induction that the supports found by OMP and NNOMP (respectively, by OLS and

NNOLS/SNNOLS) coincide at each iteration.
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1) NNOMP vs OMP: Let us first prove the claim at the first iteration. Let us denote by ` the index

of the atom selected by OMP. The first OMP iterate is the one-sparse vector supported by {`} such that

x̂
(1)
` = at`y. By assumption, x̂(1)` > 0. Since ` is the unique solution to (3) with r0 = y, we have:

{`} = arg max
i
{atiy}, (23)

which implies that ` is also selected by NNOMP. Since at`y > 0, x̂(1) ≥ 0 corresponds to both the

unconstrained and non-negative solutions related to subset {`}, that is, to both NNOMP and OMP very

first iterates.

Let us assume that OMP and NNOMP deliver the same support Sk−1 and solution after k−1 iterations.

The residual vectors rk−1 corresponding to OMP and NNOMP therefore coincide. Let Sk = Sk−1 ∪ {`}

denote the support found by OMP at iteration k with ` the index of the atom selected at iteration k, and

let x̂(k) denote the OMP iterate. Lemma III.2 with j ← k − 1 implies that:

x̂
(k)
` =

[
ã
Sk−1

`

]†
rk−1

=
rtk−1ã

Sk−1

`

‖ãSk−1

` ‖2
(24)

=
rtk−1a`

‖ãSk−1

` ‖2
. (25)

ã
Sk−1

` 6= 0 in (24) follows from Lemma VI.3 and the full rankness assumption of ASk
. (25) holds

because ãSk−1

` − a` lays in span(ASk−1
), and the OMP residual rk−1 is orthogonal to span(ASk−1

). By

assumption, x̂(k) ≥ 0, so (25) implies that rtk−1a` ≥ 0. Since ` is the unique solution to (3), we have:

{`} = arg max
i/∈Sk−1

{rtk−1ai}. (26)

So, ` is also selected by NNOMP at iteration k, leading to the same subset Sk as for OMP. Because the

OMP iterate is non-negative, it is also the NNLS solution corresponding to Sk. Hence, NNOMP yields

the same iterate as OMP.

2) SNNOLS vs OLS: We can make a similar argument as in the previous case by replacing the

dictionary atoms ai by their normalized projections b̃Si .

At the first iteration, b̃∅i = ã∅i = ai, so the very first iterates of SNNOLS and OLS respectively

identify with those of NNOMP and OMP. They coincide according to § VI-C1. At iteration k, the proof

of § VI-C1 can be repeated, where x̂(k) now denotes the OLS iterate. The right-hand side of (24) rereads(
rtk−1b̃

Sk−1

`

)
/‖ãSk−1

` ‖ ≥ 0, so rtk−1b̃
Sk−1

` ≥ 0. Finally, since ` is the only maximizer of the OLS selection

rule (4), we have

{`} = arg max
i/∈Sk−1

{
rtk−1b̃

Sk−1

i

}
. (27)
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So, ` is also selected by SNNOLS. Similar to the NNOMP vs OMP case, we conclude that NNOLS and

SNNOLS yield the same iterate at iteration k.

3) NNOLS vs OLS: The very first iterates of OLS and NNOLS identify to those of OMP and NNOMP,

respectively. We have proved above that they coincide.

Assume that OLS and NNOLS deliver the same support Sk−1 after k − 1 iterations, and the same

iterate x̂(k)
Sk−1

= A†Sk−1
y > 0. Let ` denote the atom selected by OLS at iteration k, with Sk = Sk−1∪{`}.

Since OLS selects the atom yielding the least squared error and the optimal index ` is unique, we have

∀i /∈ Sk, min
z
‖y −ASk

z‖2 < min
z
‖y −ASk−1∪{i}z‖

2. (28)

Clearly,

min
z
‖y −ASk−1∪{i}z‖

2 ≤ min
z≥0
‖y −ASk−1∪{i}z‖

2. (29)

Moreover, since the OLS iterate at iteration k is non-negative, it is also an NNLS solution related to Sk.

Therefore,

min
z
‖y −ASk

z‖2 = min
z≥0
‖y −ASk

z‖2. (30)

From (28)-(30), we get

∀i /∈ Sk, min
z≥0
‖y −ASk

z‖2 < min
z≥0
‖y −ASk−1∪{i}z‖

2,

which implies that ` is also selected by NNOLS. By assumption, ASk
is full column rank, so the

unconstrained and non-negative least-squares solutions related to Sk are unique. (30) implies that they

coincide. Hence, OLS and NNOLS yield the same iterate at iteration k.

D. Proof of Lemma III.3

In this proof, the abridged notations ỹ, ãi, b̃i, c̃i correspond to projected vectors onto span(ASk−1
)⊥. In

a somewhat counter-intuitive manner, our proof of Lemma III.3 is not recursive: to prove that x̂(k)Sk\Sk−1
>

0, we exploit that good atoms have been selected at previous iterations, but the current weight signs are

not taken into consideration. We denote by ` the atom selected at iteration k, so that Sk\Sk−1 = {`}.

First, the claim is obvious for K = 1. We therefore address the case where K ≥ 2 hereafter. Also, it

should be noticed that µ(A) < 1
2K−1 implies that AS∗ is full column rank according to Lemma VI.1.

Applying Lemma III.2 for j ← k − 1, we have

x̂
(k)
Sk\Sk−1

= ãt`rk−1. (31)

Therefore, x̂(k)Sk\Sk−1
has the same sign as c̃t`rk−1 since c̃` = ã` or ã`/‖ã`‖ (ã` 6= 0 according to

Lemma VI.3). The remaining part of the proof consists in showing that c̃t`rk−1 > 0.
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Since a` is selected at the k-th iteration, we have

∀j /∈ Sk, |c̃t`rk−1| ≥ |c̃tjrk−1|. (32)

To prove that c̃t`rk−1 > 0, we are going to exhibit an index p /∈ Sk such that

c̃t`rk−1 > −|c̃tprk−1|. (33)

(33) and (32) with j ← p indeed imply that c̃t`rk−1 > 0.

Let us introduce the decomposition

rk−1 = P⊥Sk−1
y =

∑
i/∈Sk−1

x∗i ãi. (34)

For any j ∈ S∗\Sk−1, we deduce

c̃tjrk−1 = x∗j ã
t
j c̃j +

∑
i/∈Sk−1∪{j}

x∗i ã
t
i c̃j . (35)

Clearly,

ãtj c̃j =

‖ãj‖
2 for OMP,

‖ãj‖ for OLS.
(36)

Since for K ≥ 2, µ(A) < 1
2K−1 ≤

1
k+1 , Lemma VI.2 yields:

ãtj c̃j ≥ ηk−1, (37)

|ãti c̃j | ≤ µk−1ηk−1 (38)

with µk−1 and ηk−1 defined in (15)-(16). From (35), we get for j ∈ S∗\Sk−1,

c̃tjrk−1 ≥ ηk−1
(
x∗j − µk−1

∑
i/∈Sk−1∪{j}

x∗i

)
. (39)

Notice that there are K − k nonzero terms in the sum in (39) since x∗ is K-sparse. The latter sum can

then be upper bounded as:

∑
i/∈Sk−1∪{j}

x∗i ≤

 x∗` + (K − k − 1)x∗p if j 6= `,

(K − k)x∗p if j = `
(40)

with p defined as:

p ∈ arg max
i∈S∗\Sk

x∗i . (41)

Apply (39) twice with j ← p and j ← `. We get

c̃tprk−1 ≥ ηk−1
(
(1− (K − k − 1)µk−1)x

∗
p − µk−1x∗`

)
,

c̃t`rk−1 ≥ ηk−1
(
x∗` − (K − k)µk−1x

∗
p

)
,
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from which we deduce

c̃tprk−1 + c̃t`rk−1 ≥ ηk−1(τ1x∗` + τ2x
∗
p), (42)

with

τ1 := 1− µk−1, (43)

τ2 := 1− (2K − 2k − 1)µk−1. (44)

According to (15), τ1 > 0 if µ(A) < 1
k and τ2 > 0 if (2K − k − 2)µ(A) < 1. Since µ(A) < 1

2K−1 , it

holds true that τ1 > 0 and τ2 > 0. Hence, from (42) we get c̃tprk−1 + c̃t`rk−1 > 0, which implies (33).

We thus conclude that c̃t`rk−1 and x̂(k)Sk\Sk−1
are positive quantities.

E. Proof of Lemma III.4

In this proof, the abridged notations ãi, b̃i, c̃i correspond to projected vectors onto span(Aj−1)
⊥ (the

latter space being different from that of Subsection VI-D). Similarly, we will use the abridged notations

Ã, B̃ to refer to ÃSj−1 , B̃Sj−1 and C̃Sj−1 , respectively. For any subset S, the Gram matrices of ÃS

and B̃S will be respectively denoted by GOMP
S := Ãt

SÃS and GOLS
S := B̃t

SB̃S . For statements that are

common to both OMP and OLS, we will use the simpler generic notation GS := C̃t
SC̃S .

The proof of Lemma III.4 is not recursive. However, in order to prove that x̂(k)
Sk−1

> 0, we use the fact

that x̂(j)Sj\Sj−1
> 0 for j < k, which holds according to Lemma III.3.

Let ` ∈ Sk−1 and denote by j < k the iteration at which the atom indexed by ` has been selected by

Oxx, so that Sj\Sj−1 = {`}. According to Lemma III.2 and since ` is the first entry in the ordered set

Sk\Sj−1, we have

x̂
(k)
` =

(
Ã†Sk\Sj−1

rj−1
)
1
. (45)

In order to exploit the Oxx selection rule which is based on the atoms c̃i defined in (1), let us rewrite (45)

with respect to matrix C̃. Obviously, one can rewrite ÃSk\Sj−1
= C̃Sk\Sj−1

∆, where ∆ > 0 is a square

diagonal matrix whose diagonal elements are either equal to 1 (OMP, C̃ ← Ã) or to ‖ãi‖ > 0, i ∈

Sk\Sj−1 (OLS, C̃ ← B̃). The positivity property is related to the full rankness of C̃Sk\Sj−1
, which

deduces from that of ASk
according to Lemma VI.3. From standard properties of pseudo-inverses, we

have Ã†Sk\Sj−1
= ∆−1C̃†Sk\Sj−1

. (45) yields

x̂
(k)
` ∝+

(
C̃†Sk\Sj−1

rj−1
)
1

=
([
c̃`, C̃Sk\Sj

]†
rj−1

)
1

(46)

=

〈
rj−1, P̃

⊥
Sk\Sj

c̃`
〉∥∥P̃⊥Sk\Sj

c̃`
∥∥2 (47)
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where ∝+ indicates proportionality up to a positive factor, P̃⊥Sk\Sj
denotes the orthogonal projection onto

the orthogonal complement of span(C̃Sk\Sj
), and (47) deduces from Lemma VI.4.

(47) implies that:

x̂
(k)
` > 0 ⇐⇒ 〈P̃⊥Sk\Sj

rj−1, c̃`〉 > 0 (48)

⇐⇒ 〈C̃Sk\Sj
C̃†Sk\Sj

rj−1, c̃`〉 < 〈rj−1, c̃`〉 (49)

⇐⇒ 〈C̃†Sk\Sj
rj−1, C̃

t
Sk\Sj

c̃`〉 < 〈rj−1, c̃`〉. (50)

By Hölder’s inequality and since C̃†Sk\Sj
= G−1Sk\Sj

C̃t
Sk\Sj

, the left-hand side (LHS) of (50) is upper

bounded by

‖C̃t
Sk\Sj

c̃`‖∞‖C̃†Sk\Sj
rj−1‖1 ≤ ‖C̃t

Sk\Sj
c̃`‖∞‖G−1Sk\Sj

‖1,1‖C̃t
Sk\Sj

rj−1‖1

≤ µ(C̃) ‖G−1Sk\Sj
‖1,1‖C̃t

Sk\Sj
rj−1‖1

≤ µ(C̃) ‖G−1Sk\Sj
‖1,1 (k − j) |〈rj−1, c̃`〉|. (51)

To obtain the last inequality, we exploit that a` has been selected at the j-th iteration of Oxx, therefore:

∀i ∈ Sk\Sj , |〈rj−1, c̃i〉| ≤ |〈rj−1, c̃`〉|. (52)

From Lemma III.3, we have x̂(j)` > 0, and as already remarked in the proof of Lemma III.3, c̃t`rj−1 is

of same sign as x̂(j)` , see (31). The upper bound in (51) thus rewrites

(k − j)µ(C̃) ‖G−1Sk\Sj
‖1,1 〈rj−1, c̃`〉 (53)

and we deduce from (50) that(
(k − j)µ(C̃)‖G−1Sk\Sj

‖1,1 < 1
)

=⇒
(
x̂
(k)
` > 0

)
. (54)

Let us now provide some upper bounds on µ(C̃) and ‖G−1Sk\Sj
‖1,1 in order to show that the LHS

of (54) holds true.

1) Upper bound on µ(C̃): Since µ(A) < 1
2K−1 <

1
j , Lemma VI.2 yields:

∀i /∈ Sj−1, ‖ãi‖2 ≥ βj−1, (55)

∀p 6= q, |ãtpãq| ≤ µj−1βj−1, (56)

with µj−1 and βj−1 defined in (14)-(15), from which we can easily deduce that

µ(C̃) =

 µ(Ã) ≤ µj−1βj−1 (OMP case),

µ(B̃) ≤ µj−1 (OLS case).
(57)
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2) Upper bound on ‖G−1Sk\Sj
‖1,1 in the OLS case: We have shown that for i ∈ Sk\Sj , ãi 6= 0,

so matrix B̃Sk\Sj
is column-normalized, hence GOLS

Sk\Sj
has a unit diagonal. Since µ(A) < 1

2K−1 , (57)

and (15) imply that:

µ(B̃) ≤ µj−1 ≤
1

2K − j
≤ 1

k − j
. (58)

Lemma VI.1 then applies to matrix B̃Sk\Sj
∈ Rm×(k−j), so the latter is full column rank, and∥∥[GOLS

Sk\Sj

]−1∥∥
1,1
≤ 1

1− (k − j − 1)µ(B̃Sk\Sj
)
≤ 1

1− (k − j − 1)µ(B̃)
. (59)

It follows from (57) that

µ(B̃)
∥∥[GOLS

Sk\Sj

]−1∥∥
1,1
≤ µj−1

∥∥[GOLS
Sk\Sj

]−1∥∥
1,1

≤ µj−1

1− (k − j − 1)µ(B̃)
,

≤ 1

2K − k + 1
(60)

<
1

k − j
(61)

where (60) follows from the second upper bound in (58). (61) thus implies that the LHS of (54) is true

in the OLS case.

3) Upper bound on ‖G−1Sk\Sj
‖1,1 in the OMP case: Contrary to the OLS case, the diagonal elements

of GOMP
Sk\Sj

(‖ãi‖2, i ∈ Sk\Sj) are not equal to 1, so Lemma VI.1 does not apply. Let ∆ be the square

diagonal matrix with the elements ‖ãi‖, i ∈ Sk\Sj on its diagonal. Clearly, ÃSk\Sj
= B̃Sk\Sj

∆, hence[
GOMP

Sk\Sj

]−1
= ∆−1

[
GOLS

Sk\Sj

]−1
∆−1, (62)

and thus ∥∥[GOMP
Sk\Sj

]−1∥∥
1,1
≤
∥∥[GOLS

Sk\Sj

]−1∥∥
1,1
‖∆−1‖21,1. (63)

Moreover,

‖∆−1‖21,1 =
1

mini∈Sk\Sj
‖ãi‖2

≤ 1

βj−1
(64)

by (55). We have thus

µ(Ã)
∥∥[GOMP

Sk\Sj

]−1∥∥
1,1
≤ µ(Ã)

βj−1

∥∥[GOLS
Sk\Sj

]−1∥∥
1,1
≤ µj−1

∥∥[GOLS
Sk\Sj

]−1∥∥
1,1

according to (57). From (61), we conclude that the LHS of (54) is also true in the OMP case.
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