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Abstract

This paper proposes an exact recovery analysis of greedy algorithms for non-

negative sparse representations. Orthogonal greedy algorithms such as Orthog-

onal Matching Pursuit (OMP) and Orthogonal Least Squares (OLS) consist of

gradually increasing the solution support and updating the nonzero coefficients

in the least squares sense. From a theoretical viewpoint, greedy algorithms have

been extensively studied in terms of exact support recovery. In contrast, the

exact recovery analysis of their non-negative extensions (NNOMP, NNOLS) re-

mains an open problem. We show that when the mutual coherence µ is lower

than 1
2K−1 , the iterates of NNOMP / NNOLS coincide with those of OMP /

OLS, respectively, the latter being known to reach K-step exact recovery. Our

analysis heavily relies on a sign preservation property satisfied by OMP and

OLS. This property is of stand-alone interest and constitutes our second im-

portant contribution. Finally, we provide an extended discussion of the main

challenges of deriving improved analyses for correlated dictionaries.
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1. Introduction

Greedy schemes are standard techniques for sparse approximation, with a

relatively low computing cost compared to exact methods [4, 28], while convex

relaxation yields another important branch of approximate methods [33, 14].

The principle of greedy schemes is to sequentially select atoms from a given dic-

tionary in order to decrease the residual error. In orthogonal greedy algorithms,

the decrease is maximal in the least square sense, and the approximated signal

is computed as the orthogonal projection of the data vector onto the subspace

spanned by the selected atoms. Orthogonal Matching Pursuit (OMP) [30] and

Orthogonal Least Squares (OLS) [9] are two well-known instances of orthogonal

greedy algorithms which only differ by their atom selection rule. For OMP,

it simply consists in maximizing the magnitude of the inner product between

the residual vector and the candidate atoms, assumed normalized. The OLS

rule can be interpreted similarly, but the involved atoms are renormalized, pro-

jected versions of the candidate atoms [3, 32]. OLS is known under many other

names, e.g., ORMP [11] and OOMP [31]. Throughout this paper, we will use

the generic acronym Oxx in statements that refer to both OMP and OLS.

In many applications such as multispectral unmixing [20], machine learn-

ing [23], mass spectroscopy [10] and fluid mechanics [1], the sought solution

is required to be sparse and non-negative. Non-negative sparse reconstruc-

tion can be addressed using iterative thresholding algorithms (including NNSP,

NNCoSaMP, and NNHTP) [21], but also using orthogonal greedy algorithms.

The latter were naturally extended to the non-negativity setting [5, 38, 21], the

main impact of the sign constraint is that Non-Negative Least-Square (NNLS)

problems need to be solved to update the sparse approximation coefficients.

This yields an increase of computation time since NNLS subproblems do not

have closed-form solutions, and an iterative subroutine is needed. In [29], fol-

lowing the early work of [38], we proposed fully recursive implementations. We

showed that non-negative greedy algorithms yield accurate empirical results and

that their computation cost is of the same order of magnitude as those of Oxx
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for moderate size problems.

The primary motivation of this paper is to elaborate mathematical condi-

tions guaranteeing that the support of non-negative K-sparse representations is

exactly recovered in K steps. While there is a rich literature on K-step recovery

analysis with Oxx (based on e.g., mutual incoherence [2, 6, 19] and restricted

isometry assumptions [24, 36, 35, 22]) and other greedy algorithms, much less

attention was paid to their non-negative versions. The existing analyses are

scarce, and sharp worst-case exact recovery conditions are not even available.

Our objective is to fill this gap in the literature and to derive sharp conditions

for exact support recovery with non-negative versions of OMP and OLS.

Non-negative OMP was first introduced by Bruckstein et al. [5] under the

name OMP, and then renamed NNOMP in [38] (see also [21, 29]). It relies on

the repeated maximization of the positive inner product between the residual

vector and the dictionary atoms, followed by the resolution of an NNLS problem.

Existing analyses of NNOMP are rare and somewhat discordant. On the one

hand, Bruckstein et al. claimed that the Mutual Incoherence Property (MIP)

µ < 1
2K−1 holds for NNOMP [5] and that the proof should be similar to the one

given in [34, 13] for OMP. Specifically, [5, Th. 3] states without proof that any

K-sparse representation can be exactly recovered in K steps using NNOMP as

long as µ < 1
2K−1 . On the other hand, Kim et al. elaborated a unified MIP

analysis of NNOMP and its generalized version in the multiple measurement

vector setting [21, Th. 1]. In the specific case of NNOMP, i.e., for single

measurement vectors, the related MIP turns out to be very restrictive: µ <

1
K−1 −

1
2 is required, which can occur only when K ∈ {1, 2}.

Indeed, we think that it is impossible to prove [5, Th. 3] as a direct exten-

sion of [34, 13], as claimed by Bruckstein et al. The major obstacle is that the

NNOMP selection rule performs comparisons between signed inner products,

whereas a small mutual coherence condition yields a bound on the unsigned

magnitude of inner products (see Section 2.4 for further details). This is pre-

cisely why Kim et al.’s analysis, closely following Donoho et al.’s approach [13],

yields over-pessimistic guarantees, instead of the expected result.
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Our first contribution is to show that any non-negative K-sparse representa-

tion can be exactly recovered in K steps with NNOMP when the mutual coher-

ence of the dictionary is less than 1
2K−1 . We further show that under the same

condition, the non-negative extensions of OLS proposed in [37], named NNOLS

and Suboptimal NNOLS (SNNOLS), are also guaranteed to recover the true

support in K steps. To the best of our knowledge, the latter algorithms have

never been analyzed. The analysis of NNOMP, NNOLS and SNNOLS is carried

out in a unified way, and applies to noisy cases with bounded noise.

Our second contribution is to unveil a sign preservation property satisfied

by Oxx for non-negative sparse representations. It is well-known that when

µ < 1
2K−1 , Oxx algorithms achieve K-step exact support recovery [34, 19]. We

further show that at any iteration, the nonzero coefficients found by Oxx are

positive. This property is of stand-alone interest, and turns out to be the cor-

nerstone of our recovery analysis of non-negative extensions of Oxx. It enables

us to prove that OMP and NNOMP coincide when µ < 1
2K−1 , so [5, Th. 3] be-

comes a byproduct of our sign preservation analysis. Under the same conditions,

we prove that OLS coincides with both NNOLS and SNNOLS [37].

The paper is organized as follows. Section 2 recalls known results about

greedy algorithms and their non-negative versions. Section 3 contains our K-

step analysis of non-negative greedy algorithms. The central sign preservation

property of Oxx is stated as Theorem 3.1 and proved in the same section, most

technical steps being postponed in Appendix. The numerical simulations of

Section 4 illustrate the average behavior of algorithms outside the exact support

recovery regime. In Section 5, an extensive discussion is provided on possible

analyses for coherent dictionaries, and using other analysis techniques.

2. Notations and background

2.1. Notations

Let us denote by y ∈ Rm the data signal and by A ∈ Rm×n the dictionary

of elementary atoms ai ∈ Rm, 1 ≤ i ≤ n. We are interested in the so-called
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K-sparse representation y = Ax, in which the vector x ∈ Rn has K non-zero

elements. Without loss of generality, the atoms are assumed to be normalized,

that is ‖ai‖ = 1, where ‖·‖ denotes the `2 norm. Notations t and † stand for the

transpose and the Moore-Penrose pseudo-inverse, respectively. For any set of

indices S ⊂ {1, . . . , n}, the subdictionary and subvector indexed by S are respec-

tively denoted by AS and xS . We denote by span(AS) the subspace spanned

by the dictionary atoms indexed by S, by span(AS)⊥ its orthogonal comple-

ment, and by P⊥S = Im − ASA
†
S the orthogonal projection onto span(AS)⊥,

where Im stands for the identity matrix of size m. We place the convention

that P⊥∅ = Im. When AS is full column rank, one has a further explicit for-

mulation A†S = (At
SAS)−1At

S . Then we denote by ãS
i = P⊥S ai the projected

atoms. Clearly, ãS
i = 0 whenever i ∈ S. Let b̃Si =

ãS
i

‖ãS
i ‖

with the convention

that b̃Si = 0 when ãS
i = 0. We will denote by ÃS (resp., B̃S) the matrix of size

m× n gathering all projected atoms ãS
i (resp., b̃Si ).

The mutual coherence is defined by µ(A) = maxi 6=j |at
iaj |. This quantity

tells us how much the dictionary atoms look alike. The residual vector and the

support found by orthogonal greedy algorithms at iteration k will be denoted

rk and Sk, respectively, with card (Sk) = k. By extension, r0 = y and S0 = ∅.

Whenever unambiguous, the simpler notations r and S will be used.

2.2. OMP and OLS

OMP and OLS are heuristics aiming to minimize the approximation error

‖y − Ax‖2 subject to ‖x‖0 ≤ K, where ‖x‖0 counts the number of nonzero

elements. Both algorithms start with the zero vector corresponding to the empty

support. At each iteration, a new atom ` is added to the support. This process

is repeated until K atoms are selected (see Algorithm 1). OMP and OLS share

the same coefficient update and only differ by their selection rule:

OMP: ` ∈ arg max
i/∈S

|rtai|, (1)

OLS: ` ∈ arg max
i/∈S

|rtb̃Si | (2)
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Algorithm 1: Oxx in K steps.

Input: y, A, K

Output: x̂ with ‖x̂‖0 ≤ K

1 Initialization: x̂← 0; S ← ∅;

2 repeat

3 r ← y −ASx̂S ;

4 S ← S ∪ {`}, with atom ` chosen according to (1) or (2);

5 x̂S ← A†Sy;

6 until card (S) = K;

where r = P⊥S y denotes the current residual. (1) can also be written as:

` ∈ arg max
i/∈S

|rtãS
i | (3)

since r is orthogonal to span(AS). These inner product expressions come from

the geometrical interpretation of OMP and OLS [3]. From an optimization

viewpoint, the selection rule of OMP is based on the minimization of ‖r−ziai‖2

w.r.t. scalar zi, whereas OLS relies on the minimization of ‖y−AS∪{i}z‖2 w.r.t.

vector z [3]. So, it is clear that the OLS selection rule is the most costly, although

recursive update schemes are available [9].

In [34] and [19], it was shown that when µ(A) < 1
2K−1 , any K-sparse rep-

resentation y = Ax∗ can be exactly recovered by OMP and OLS, respectively,

in K iterations. These analyses were then generalized to noisy settings. Let us

recall the results in [6, 18] in the case of a bounded noise satisfying

‖n‖ < 1− (2K − 1)µ(A)

2
min{|x∗i |, x∗i 6= 0}. (4)

Lemma 2.1. [6, Th. 1], [18, Th. 4]. Assume that µ(A) < 1
2K−1 . Let y =

Ax∗ + n where x∗ is K-sparse and the noise term n satisfies (4). Then Oxx

recover the support of x∗ in K iterations.
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Algorithm 2: Non-negative Oxx for K-sparse non-negative recovery.

Input: y, A, K

Output: x̂ ≥ 0 with ‖x̂‖0 ≤ K

1 Initialization: S ← ∅, x̂← 0;

2 repeat

3 Choose atom ` according to prescribed selection rule (SR) in Table 1;

4 S ← S ∪ {`};

5 x̂S ← arg min
z≥0

‖y −ASz‖2;

6 until card (S) = K or prescribed stopping condition (SC) in Table 1;

(SR) (SC)

NNOMP [5] max
i/∈S

rtai max
i/∈S

rtai ≤ 0

SNNOLS [37] max
i/∈S

rtb̃Si max
i/∈S

rtb̃Si ≤ 0

NNOLS [37] min
i/∈S

min
z≥0
‖y −AS∪{i}z‖2 ‖r‖2 = min

i/∈S
min
z≥0
‖y −AS∪{i}z‖2

Table 1: Possible selection rules (SR) and stopping conditions (SC) of non-negative Oxx. The

current residual is computed as r = y −ASx̂S .

2.3. Non-negative setting

The main non-negative extensions of OMP and OLS are NNOMP [38, 5],

NNOLS and SNNOLS [37]. All three solve NNLS subproblems to update the

selected coefficients according to Algorithm 2, while they differ at the atom

selection stage, see Table 1. NNOMP adopts the selection rule of OMP by simply

removing the modulus, i.e., ignoring negative inner products. Similarly, the

selection rule of SNNOLS is the same as OLS without modulus. NNOLS is built

upon the dual formulation of OLS in the optimization viewpoint: NNOLS solves

as many NNLS subproblems as candidate atoms to find the lowest residual error.

Efficient implementation schemes can be found in [29] using a fully recursive

implementation, including huge possibilities of accelerations for NNOLS.
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2.4. Exact recovery analysis in the non-negative setting

2.4.1. Extension of K-step exact recovery analysis of OMP

Bruckstein et al. [5] claimed that the K-step exact recovery analysis of

NNOMP can be carried out as a straightforward extension of the classical anal-

yses of OMP [34, 13]. We argue that this extension is a more complex matter.

Tropp’s reasoning [34] consists of minorizing the modulus |rtai| for correct

dictionary atoms ai. Unfortunately, similar bounds cannot be obtained when

the modulus is dropped. Donoho et al.’s recursive proof [13] exploits that for

sparse inputs, the residual lays in the subspace spanned by the true atoms when

true atoms have been selected at previous iterations. Therefore, the reasoning at

the first iteration can be repeated in the next iterations. To generalize this proof,

one would need that for non-negative representations (i.e., for inputs laying in

the positive span of the true atoms), the residual lays in the same positive span.

This conjecture turns out to be false. Indeed, for noiseless inputs y = Ax∗, if

true atoms are selected until iteration k, the residual reads r = A(x∗ − x̂(k)),

where x∗ and x̂(k) respectively denote the true solution and the NNOMP iterate.

So, r lays in the positive span of true atoms if and only if x̂(k) ≤ x∗. Simple

numerical tests show that the latter condition may not hold when x∗ ≥ 0 and

µ(A) < 1
2K−1 : see § 4.2 and Fig. 3(a). Consequently, Donoho et al.’s reasoning

at the first iteration cannot be fruitfully repeated at the subsequent ones.

2.4.2. `1 analysis with non-negativity constraints

The analysis of non-negative versions of Basis Pursuit (BP: minx ‖x‖1 s.t.

y = Ax) and Basis Pursuit Denoising (BPDN: minx ‖y − Ax‖2 + λ‖x‖1) is

closely linked to the standard analysis of BP and BPDN. Indeed, it is well-known

that contrary to greedy algorithms, the exact recovery analysis of BP heavily

depends on the sign pattern. Fuchs [17] proved that when y = Ax∗ with x∗ ≥ 0,

BP and BPDN (for sufficiently small λ) both have a unique solution under the

MIP assumption, which identifies with x∗ as long as AS∗ is full rank and ∀j /∈

S∗, |1t
(
A†S∗aj

)
| < 1, where S∗ := supp(x∗) and 1 denotes the all-ones vector

of size card (S∗). The latter condition does not depend on the magnitudes of
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coefficients x∗i , therefore it is a uniform exact recovery condition for BP/BPDN

for any x∗ ≥ 0 supported by S∗. Since the cost function ‖y −Ax‖2 + λ‖x‖1 is

minimum for x = x∗ ≥ 0, it follows that x∗ is also the unique solution of the

so-called non-negative Garrote [25] minx≥0 ‖y −Ax‖2 + λ‖x‖1.

2.4.3. Extension of K-step exact recovery analysis of `1 homotopy

Homotopy is a popular greedy algorithm dedicated to BPDN for a contin-

uum of λ’s [15]. The principle is to reconstruct the regularization path (defined

as the set of solutions for all λ) for gradually decreasing λ’s starting from +∞.

Homotopy has a stepwise mechanism akin to OMP with an atom selection or

deselection at each iteration. When µ(A) < 1
2K−1 , K-step recovery is guaran-

teed for any K-sparse representation y = Ax∗ [14]. This analysis is based on

two ingredients: the correct selection of atoms indexed by supp(x∗) and the so-

called sign agreement property1, ensuring that no deselection occurs. Donoho

and Tsaig further showed that when µ(A) < 1
2K−1 , the magnitudes of the ac-

tive atoms always increase while λ is decreasing. Since the correct magnitudes

are exactly found after K iterations, their sign is preserved throughout the it-

erations. Consequently, the non-negative extension (NLARS) of `1 homotopy

proposed in [27] yields the same iterates as homotopy for all K-sparse non-

negative representations, and NLARS achieves uniform K-step recovery when

µ(A) < 1
2K−1 . Although OMP shares structural similarities with `1 homotopy,

the analysis of NNOMP turns out to be far more difficult than that of NLARS.

In particular, the sign agreement property of [14] (which essentially depends

on the sign of the inner products between the current residual and the active

atoms) does not make sense anymore in the context of OMP, since the latter

inner products vanish. We will devise a brandnew sign preservation property,

that will be proved valid for both OMP and OLS.

1Sign agreement is defined as follows: at every iteration of the homotopy algorithm, the

iterate x̂ satisfies sign(x̂S) = sign(At
Sr), where S = supp(x̂).
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3. Exact recovery and sign preservation

This section contains our main results concerning the exact recovery analysis

of non-negative greedy algorithms under the MIP assumption. The cornerstone

of our study is Theorem 3.1, the subsequent exact recovery results being direct

consequences. In Subsection 3.2, the proof of Theorem 3.1 is decomposed into

distinct steps, most technical elements being postponed in Appendix.

3.1. Main results

Theorem 3.1 (sign preservation). Assume that µ(A) < 1
2K−1 . Let y = Ax∗+n

be a noisy K-sparse representation, where x∗ ≥ 0 and n satisfies (4). Then, Oxx

recovers the support of x∗ in K iterations, and at each iteration, the estimated

coefficients of selected atoms are positive.

Theorem 3.1 has interesting implications concerning non-negative versions

of Oxx. Let us start with the following lemma.

Lemma 3.1. Let y ∈ Rm and assume that any set of K dictionary columns is

linearly independent.

• Assume that at every iteration k = 1, . . . ,K, the OMP selection rule yields

a unique optimal index ` and that the estimated coefficients of selected

atoms are all positive. Then NNOMP provides the same iterates as OMP

(i.e., with the same support and coefficients at every iteration).

• The same applies if OMP and NNOMP are replaced by OLS and SNNOLS.

• It also applies if OMP and NNOMP are replaced by OLS and NNOLS.

This result is intuitive since the nonzero coefficients are estimated in the least

squares sense. Clearly, if an unconstrained least squares solution is positive, then

it is also the solution of the corresponding NNLS problem.

Proof. See Appendix 6.3.

From Theorem 3.1 and Lemma 3.1, we can deduce the following result.
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Corollary 3.1. Assume that µ(A) < 1
2K−1 . Let y = Ax∗ + n be a noisy K-

sparse representation, where x∗ ≥ 0 and n satisfies (4). Then NNOMP iden-

tifies with OMP whereas both NNOLS and SNNOLS identify with OLS. Thus,

NNOMP, NNOLS and SNNOLS all recover the support of x∗ in K iterations.

It is known that the MIP condition µ(A) < 1
2K−1 is not only sufficient

but also necessary for uniform (i.e., irrespective of the magnitudes of nonzero

coefficients in the sparse representation and of the choice of the dictionary)

K-step exact support recovery [7, 19] by Oxx. Cai et al. [7] indeed exhibited

an equiangular dictionary whose mutual coherence equals µ(A) = 1
2K−1 and

a vector y having two K-sparse representations y = Ax = Az with disjoint

supports. K-step exact support recovery does not make sense anymore in this

situation, since either the support of x or z cannot be reconstructed in K steps.

The same analysis can be made concerning non-negative extensions of Oxx.

Corollary 3.2. Condition µ(A) < 1
2K−1 is necessary for uniform non-negative

K-step recovery: there exists a dictionary A with µ(A) = 1
2K−1 and a vector y

having two non-negative K-sparse representations with disjoint supports.

Proof. Consider the dictionary A ∈ Rm×n with µ(A) = 1
2K−1 and the vector

y ∈ Rm proposed in [7, Sect. III], the latter having two K-sparse representations

y = Ax = Az with disjoint supports. Since both supports are disjoint, one can

define the subrogate dictionary A′ ∈ Rm×n as a′i = sign(xi)ai if i ∈ supp(x),

a′i = sign(zi)ai if i ∈ supp(z), and a′i = ai otherwise.

Moreover, let |x| denote the vector whose entries are equal to |xi|, and define

|z| similarly. Obviously, y = A′|x| = A′|z|, and µ(A′) = µ(A) = 1
2K−1 .

3.2. Proof of Theorem 3.1

Let y = Ax∗ + n with x∗ ≥ 0 and a noise term satisfying (4). According

to Lemma 2.1, Oxx recovers the support S∗ of x∗ in K iterations. For any

k ≤ K, the support Sk of the current solution x̂(k) is therefore a subset of S∗.

Recall that x̂
(k)
Sk

is the unconstrained least squares solution related to Sk, see

Algorithm 1. Let rk = P⊥Sk
y denote the related residual, with r0 = y.

11



We proceed in two steps to show that x̂
(k)
Sk

> 0 for all k ∈ {1, . . . , K}. First,

we prove that the coefficient of each newly selected atom x̂
(k)
Sk\Sk−1

is positive.

Then, we show that the updated coefficients x̂
(k)
Sk−1

remain positive. Let us first

characterize the coefficients x̂
(k)
Sk\Sj

, j < k being an arbitrary iteration.

Lemma 3.2. Let y ∈ Rm, and let j and k be two iteration indices with 0 ≤ j <

k. Assume that ASk
is full column rank. Then, the k-th iterate of Oxx satisfies

x̂
(k)
Sk\Sj

=
(
Ã

Sj

Sk\Sj

)†
rj . (5)

Proof. See Appendix 6.2.

The two steps of the proof of Theorem 3.1 are stated now.

Lemma 3.3 (non-negativity of new coefficient). Assume that µ(A) < 1
2K−1 .

Let y = Ax∗ + n be a noisy K-sparse representation, where x∗ ≥ 0 and n

satisfies (4). For all k ∈ {1, . . . ,K}, x̂(k)Sk\Sk−1
> 0.

Proof. See Appendix 6.4.

Lemma 3.4 (non-negativity of updated coefficients). Assume that µ(A) <

1
2K−1 . Let y = Ax∗ + n be a noisy K-sparse representation, where x∗ ≥ 0

and n satisfies (4). For all k ∈ {2, . . . , K}, x̂(k)
Sk−1

> 0.

Proof. See Appendix 6.5.

Notice that Lemmas 3.3 and 3.4 are straightforward results at the last it-

eration k = K. Indeed, the correct support S∗ is found by Oxx according to

Lemma 2.1. Thus, Oxx algorithms yield the output x̂(K) supported by S∗, with

x̂
(K)
S∗ = A†S∗y. According to the local stability analysis in [13, Th. 5.1],

‖x∗ − x̂(K)‖2 ≤ ‖n‖2

1− (K − 1)µ(A)
. (6)

Combining (6) with (4), one can check that ‖x∗ − x̂(K)‖ < min
{
x∗i , i ∈ S∗

}
.

Hence, for all i ∈ S∗, |x∗i − x̂
(K)
i | ≤ x∗i , which proves that the entries of x̂(K)

are non-negative since x∗ ≥ 0.

12



4. Numerical study

4.1. Comparison of Oxx and their non-negative versions

The previous section showed that in some specifically favorable situations,

greedy algorithms such as OMP not only recover the support of the true solution,

but also yield sparse representations with non-negative weights. In such condi-

tions, according to Lemma 3.1, implementing non-negative versions of greedy

algorithms is useless. On the contrary, one can empirically observe that non-

negative greedy algorithms reach superior performance for coherent dictionaries

and for noisy scenarios [29], which is in agreement with the fact that they ex-

ploit more information than usual greedy algorithms. The next two numerical

simulations further illustrate this fact.

4.1.1. Deconvolution problem

Let us consider a dictionary A ∈ R50×22 corresponding to a convolution

operation y(t) = (h ∗ x)(t) with a Gaussian-shaped impulse response h. The

dictionary atoms therefore identify with delayed and discretized versions of h(t).

Specifically, 22 atoms are considered, corresponding to regularly spaced integer

delays. The width of the Gaussian impulse response is σ = 0.5, yielding a

mutual coherence µ(A) = 0.37. We randomly choose K = 10 atoms in A,

whose locations in the dictionary are drawn with a uniform distribution. The

atoms are equally weighted with x∗i = 1 for all i ∈ S∗, and we generate data

y = Ax∗+n with additive Gaussian noise n. Note that µ(A) ≈ 7
2K−1 , so exact

support recovery is not guaranteed even at low noise. Within a certain range

of signal-to-noise ratio (SNR, defined by 10 log10(‖Ax∗‖2/‖n‖2)), generated

average performance have been measured for OMP, NNOMP, OLS, SNNOLS

and NNOLS in terms of K-step support recovery rates. This experiment has

been repeated 1000 times to obtain the average results shown in Fig. 1.

Several empirical conclusions can be drawn. Some of them are already ac-

knowledged facts [5, 21]. For high SNRs, greedy algorithms keep some exact

recovery capacities far beyond the zero defect area µ ∈
[
0, 1

2K−1
]
. In the low

13
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Figure 1: Rates of trials in which K-step exact support recovery (left) and sign preservation

(right) is achieved, for a simulated data experiment involving a convolutive dictionary with

Gaussian-shaped atoms. The sign preservation rate refers to the trials in which for all iteration

k ≤ K, x̂(k) ≥ 0. SNNOLS (not shown here) yields the exact same curve as NNOLS.

SNR regime, the exact recovery capacity almost surely vanishes. For interme-

diate SNRs, one can notice a significant difference of performance between the

usual greedy algorithms and their non-negative extensions. We also performed

a sign-preservation test, checking that at all iterations of Oxx, the estimated

weights are all positive, regardless of whether K-step recovery is achieved or

not. Fig. 1 shows that this sign-preservation property is rather robust. Specif-

ically, sign-preservation occurs whenever the support is exactly recovered by

Oxx. In alternative cases, the non-negativity constraint is truly effective within

NNOMP/NNOLS, which makes it possible to achieve higher K-step recovery

rates as compared to Oxx. Note that in the simulation of Fig. 1, the SNR is lower

than 15 dB, so greedy algorithms mainly capture the main broad signal features

embedded in noise. Therefore, OMP and OLS show similar performance. Their

performance can be more clearly distinguished for problems involving correlated

dictionaries and for larger values of SNR and K, see, e.g., [29].

4.1.2. Random dictionaries

The goal of this simulation is to assess the performance of algorithms with

respect to the size (m,n) of the dictionary and the subset cardinality K. Here,

the dictionary entries are drawn independently using a standard Gaussian dis-

tribution. We choose A ∈ Rm×n with fixed n = 500 and with m ranging from

14
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(a) OMP recovery rates (b) Sign preservation (c) NNOMP recovery rates

Figure 2: K-step recovery and sign preservation evaluation for Gaussian random dictionaries of

variable size (m/n) and for various sparsity levels (K/n). (a,c) For both OMP and NNOMP,

empirical phase transition curves (in red) are the contour plots corresponding to exact recovery

rates of 20, 60, 90 and 98%, respectively. (b) Similar contour plots are computed for the OMP

sign preservation rates.

50 to 190. Moreover, for a given size (m,n), the numerical tests of § 4.1.1 (eval-

uation of K-step recovery and sign preservation rates) are repeated for various

support cardinalities K. For a given setting (m,n,K), the support of x∗ is

randomly chosen, and the coefficients x∗i are distributed according to the uni-

form distribution in (0, 1), yielding K-sparse representations y = Ax∗. The

performance of OMP and NNOMP, averaged over 300 trials, are displayed in

Fig. 2 where the horizontal and vertical axes respectively refer to the dictionary

size (m/n) and sparsity level (K/n). As one would expect, the exact recovery

rates increase with the number of measurements (high values of m/n) and for

highly sparse representations (low values of K/n). The OMP and NNOMP per-

formance are further compared by means of phase transition curves, defined as

contour plots of Figs. 2(a,c). We observe similar conclusions as in § 4.1.1: the

phase transition curves of NNOMP are shifted to the left as compared to those

of OMP, which highlights the benefit of using non-negative versions. Moreover,

the OMP sign preservation rates (Fig. 2(b)) are very similar to the OMP re-

covery rates (Fig. 2(a)). This result is consistent with that of Fig. 1 for high

SNRs.

The experiment of Fig. 2 was repeated for OLS and SNNOLS, and OLS and
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Figure 3: Behavior of Oxx and `1-homotopy for a toy problem (m = n = 5) corresponding to

a 4-sparse noiseless representation. (a) The OMP and OLS iterates are identical and yield

magnitudes x̂
(k)
i with non-monotonous variations. (b) On the contrary, the magnitudes of the

`1-homotopy iterates are always increasing. The ground truth magnitudes x∗
i are represented

with bullets. They are exactly recovered after K = 4 iterations (x̂(K) = x∗).

NNOLS. The related results are very similar to those obtained with OMP and

NNOMP, with slight increases of the recovery rates of Fig. 1(a,c).

4.2. Non-monotony of the magnitude variations

As argued in § 2.4, `1 homotopy is a stepwise greedy algorithm for which

sign preservation holds whenever µ(A) < 1
2K−1 . In [14], Donoho and Tsaig

proved a stronger result under the mutual coherence condition: the magnitudes

x̂
(k)
i of the selected atoms keep increasing while k is increasing. In contrast,

we observe that this monotony property does not hold for Oxx algorithms,

since the magnitudes may either increase or decrease during iterations. We in-

deed compare `1-homotopy with Oxx algorithms for a toy problem of dimension

(m,n) = (5, 5), with an equiangular dictionary A such that µ(A) = 0.9
2K−1 . The

columns of A satisfy at
iaj = ±µ(A) for i 6= j, where the sign of the inner prod-

uct is randomly chosen. The ground truth vector x∗ is K-sparse with K = 4,

with nonzero magnitudes drawn from the uniform distribution U([0.6, 1]). Since

µ(A) < 1
2K−1 , K-step exact recovery holds for all considered algorithms. In

Fig. 3, the variation of each entry x̂
(k)
i with respect to k is represented with

a specific color. As expected (since exact support recovery holds), the black

magnitude corresponding to the wrong atom i /∈ S∗, is equal to 0 throughout

the iterations. `1-homotopy yields magnitudes that are increasing with k, which
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is consistent with the theoretical result in [14]. On the contrary, the OMP and

OLS iterates (which are identical here; the same indices are selected at each

iteration) are non-monotonous.

5. Discussion and conclusion

5.1. Contributions and links with alternative algorithms

Our analysis of non-negative greedy algorithms essentially relies on the dis-

covery of the sign preservation property for Oxx algorithms. Indeed, we could

show that the Oxx algorithms yield the same iterates as their non-negative ex-

tensions under the MIP condition. Moreover, the latter condition is not only a

sufficient but also a (worst-case) necessary condition of exact recovery. A strong

feature of our analysis is that NNOMP, NNOLS and SNNOLS are analyzed in

a unified way. In contrast, many OMP and OLS analyses in the literature are

done separately, because the OLS selection rule is more sophisticated than that

of OMP (see the next paragraph for details). One may wonder whether the

proposed analysis applies to other approaches and algorithms. In Section 4.2,

we pointed out that `1 algorithms enjoy a sign preservation property, hence

their non-negative extensions achieve K-step recovery when µ(A) < 1
2K−1 . The

analysis of the non-negative versions of CoSaMP and Subspace Pursuit (SP)

appears to be less straightforward. The so-called NN-CoSaMP and NN-SP al-

gorithms proposed in [21], aim to update an estimated support of constant

size K by repeatedly performing support merging, NNLS estimation of coef-

ficients and support pruning. To our knowledge, no thorough exact recovery

analysis of these algorithms has been carried out in the literature. Since the

classical analyses of CoSaMP and SP are substantially different from those of

greedy algorithms (the former usually aim to guarantee that the coefficient error

‖x̂(k) − x∗‖ is decreasing at each iteration k), we conjecture that the sign of

coefficients x̂(k) does not play such a critical role, thus the line of reasoning may

be substantially different from the one elaborated here.
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5.2. Towards analyses for dictionaries of higher coherence

The experiments of Section 4 confirm that non-negative greedy algorithms

remain accurate when µ(A) is far greater than 1
2K−1 . Similar observations were

made in [5, 21]. In [29], an extensive set of numerical tests were carried out for

highly coherent dictionaries and/or noisy observations. It turns out that Oxx

algorithms do yield iterates with negative entries (the sign preservation property

is violated), and that their non-negative versions are worth being considered.

Let us now discuss the main challenges of deriving improved analyses for corre-

lated dictionaries, in order to fill the gap between the theoretical understanding

for low coherence dictionaries and the practitioner knowledge [29].

5.2.1. ERC based analyses

With a view to further distinguish the influence of true and wrong atoms

and to relax the conditions of Theorem 3.1, Tropp’s exact recovery condition

(ERC) [34] is worth being considered. The ERC

max
j /∈S∗

∥∥A†S∗aj

∥∥
1
< 1 (ERC(A,S∗))

turns out to be necessary and sufficient for uniform (i.e., for any x∗ supported

by S∗) K-step recovery using both OMP [34] and OLS [32]. It is therefore

weaker than the MIP and Restricted Isometry Property (RIP) conditions which

hold for all K-sparse representations irrespective of their supports. To the best

of our knowledge, the fact that K-step support recovery is achieved with non-

negative versions of Oxx under the ERC is an open question. Hereafter, we

highlight that the sign preservation property is not guaranteed under the ERC.

Proposition 5.1. For any K ≥ 4, there exists a dictionary A and a non-

negative K-sparse representation for which ERC(A,S∗) holds and the non-negative

signs are not preserved with OMP and OLS.

Proof. The following counterexample exploits that the ERC remains true when

wrong atoms are orthogonal to the span of the true atoms, regardless of the

correlation between the true atoms. Let us consider a normalized dictionary
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A ∈ R(K+1)×(K+1) such that at
iaj = − 1

K for i 6= j and i, j ≤ K, and at
K+1aj =

0 for all j ≤ K, i.e., the last atom is orthogonal to the others.

Let us further define y = Ax∗ with x∗ = [a, . . . , a, 1, 0]t and a > K−1
K−3 .

The related true support reads S∗ = {1, . . . ,K}. Clearly, the MIP does not

hold since µ(A) = 1
K > 1

2K−1 . On the contrary, ERC(A,S∗) is trivially met

since the single wrong atom aK+1 is orthogonal to the true ones. Therefore,

S∗ is exactly recovered in K steps by Oxx. However, the iterates of Oxx and

their nonnegative versions differ from the very first iteration. Indeed, we have

Aty = (AtA)x∗ = [b, . . . , b, c, 0]t with b = 2a−1
K > 0 and c = 1 − (K−1)a

K < 0.

Since −c > b, aK is the first atom to be selected by Oxx algorithms (in violation

with the sign preservation property, since y is negatively correlated with aK),

whereas NNOMP, NNOLS, and SNNOLS pick any of the first (K−1) atoms.

This example tends to indicate that the sign preservation property of Oxx is

only met in restrictive situations, while the K-step exact recovery property of

non-negative versions could hold under broader conditions. The exact recovery

analyses that can be foreseen would be substantially different from the one

proposed here, since sign-preservation with Oxx is not guaranteed anymore.

5.2.2. RIP based analyses

In recent years, various K-step recovery analyses of Oxx algorithms have

been proposed under the restricted isometry property. OMP was analyzed first.

Improved conditions have been gradually proposed on the RIP factor or order

K + 1, denoted by δK+1 [12, 26, 8, 36, 22]. The OLS algorithm was analyzed

more recently with increasingly sharp bounds [35, 22]. For both OMP and

OLS, it was shown in [22] that when N ≥ 4, the condition δK+1 <
1√
K

is a

sharp bound; on the one hand, it is sufficient for K-step exact recovery of any

K-sparse representation. On the other hand, there exist dictionaries for which

δK+1 = 1√
K

and Oxx fail to recover a good atom in the first iteration.

A natural perspective of our work is to investigate whether exact recovery

guarantees could be derived under restricted isometry assumptions. The fact
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that the sign preservation property is guaranteed when δK+1 <
1√
K

is an open

question. It turns out that the mutual coherence analysis of Lemma 3.3 can-

not be easily adapted since it strongly relies on the derivation of lower bounds

of signed inner products such as rtãj . In contrast, classical RIP analyses [22]

consist of deriving (i) an accurate lower bound of the modulus |rtãj | for true

atoms aj , and (ii) an upper bound of |rtãj | for wrong atoms, in order to show

that the maximum of |rtãj | is reached for a true atom. Regarding step (i),

the most accurate techniques make use of the inequality ‖t‖∞ ≥ ‖t‖/
√
‖ t ‖0

to minorize max
{
|rtãj |, j ∈ S∗\Sk−1

}
= ‖Ãt

S∗\Sk−1
r‖∞, see, e.g., [24]. Un-

fortunately, the latter techniques cannot be used to minorize the signed inner

product max
{
rtãj , j ∈ S∗\Sk−1

}
. Therefore, it seems that brandnew analysis

techniques need to be elaborated in the non-negative setting.
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6. Appendix

6.1. Useful lemmas

Let us recall useful lemmas. Lemma 6.1 provides an upper bound on the `1-

norm of the columns of the inverse Gram matrix by means of mutual coherence.

Lemma 6.2 bounds the inner product between projected atoms. Lemma 6.3 is re-

lated to the full rankness of the matrices formed of projected atoms. Lemma 6.4

is a simple algebraic manipulation related to the pseudo-inverse.

Lemma 6.1. [16, Th. 5.3], [34, Th. 3.5]. If B is a column-normalized matrix

with k columns and µ(B) < 1
k−1 then B is full column rank and

‖(BtB)−1‖1,1 ≤
1

1− (k − 1)µ(B)
(7)

wherein ‖ · ‖1,1 equals the maximum absolute column sum of its argument.
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Lemma 6.2. [18, Lemma 1]. If µ(A) ≤ 1
k+1 with k = card (S) then

∀i /∈ S, ‖ãS
i ‖2 ≥ βk, (8)

∀p 6= q,
∣∣(ãS

p

)t
ãS
q

∣∣ ≤ µkβk, (9)

where

βk =
(1 + µ(A))(1− kµ(A))

1− (k − 1)µ(A)
and µk =

µ(A)

1− kµ(A)
. (10)

Lemma 6.3. [32, Lemma 8] If S ∩ S′ = ∅ and AS∪S′ is full column rank, then

matrices ÃS
S′ and B̃S

S′ are full column rank.

Lemma 6.4. Let A =
[
a1, A2

]
∈ Rp×q be a full column rank matrix, where

a1 ∈ Rp and A2 ∈ Rp×(q−1) is formed of the last q − 1 columns of A. Then,

∀r ∈ Rp,
(
A†r

)
1

=
rt
(
P⊥S2

a1

)
‖P⊥S2

a1‖2
(11)

where the index set S2 = {2, . . . , q} corresponds to the columns of A2.

Proof. Any r ∈ Rp can be uniquely decomposed as r = pA+pA⊥ where pA and

pA⊥ are the orthogonal projections of r onto span(A) and span(A)⊥. Moreover,

the vector A†r gathers the weights of the decomposition of pA in the column

span of A. Specifically, we have pA = (A†r)1a1+A2α with α ∈ Rq−1. Now, we

make use of the orthogonal decomposition a1 = P⊥S2
a1 + A2β, with β ∈ Rq−1

to derive the following orthogonal decomposition of r:

r =
(
A†r

)
1
P⊥S2

a1 +A2(α+
(
A†r

)
1
β) + pA⊥ . (12)

(11) is obtained directly from (12) by calculating the inner product rt
(
P⊥S2

a1

)
.

The denominator in (11) is nonzero because A is the full rank.

Let us now start with the proof of Lemma 3.2, since this lemma will be used

later in the proofs of Lemmas 3.1, 3.3, and 3.4.

6.2. Proof of Lemma 3.2

Let j < k. Since x̂
(k)
Sk

is the least squares solution related to subset Sk,

x̂
(k)
Sk

= arg min
z∈Rk

‖y −ASk
z‖2 = arg min

v,w
‖y −ASj

v −ASk\Sj
w‖2. (13)
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In addition, the minimum squared error reads

min
v,w
‖y −ASj

v −ASk\Sj
w‖2 = min

w

(
min
v
‖(y −ASk\Sj

w)−ASj
v‖2
)

= min
w
‖P⊥Sj

(y −ASk\Sj
w)‖2

= min
w
‖rj − Ã

Sj

Sk\Sj
w‖2. (14)

Since ASk
is full column rank, Ã

Sj

Sk\Sj
is full column rank as well according to

Lemma 6.3. The minimum corresponding to (14) is reached forw =
(
Ã

Sj

Sk\Sj

)†
rj

which identifies with x̂
(k)
Sk\Sj

according to (13).

6.3. Proof of Lemma 3.1

We prove by induction that the supports found by OMP and NNOMP (resp.,

by OLS and NNOLS/SNNOLS) coincide. This is sufficient to prove the claim,

since when the supports coincide, the estimated coefficients coincide as well.

Indeed, denoting x̂(k) the coefficients yielded by Oxx, x̂(k) reads as the uncon-

strained least-square solution related to Sk. By assumption, x̂(k) ≥ 0, thus

x̂
(k)
Sk

= arg min
z

‖y −ASk
z‖2 = arg min

z≥0
‖y −ASk

z‖2, (15)

so x̂(k) is also the NNLS solution related to Sk.

6.3.1. NNOMP vs OMP

The first atom selected by OMP is indexed by {`} = arg maxi |ytai|. The

related 1-sparse approximation reads y ≈ x̂(1)` a` with x̂
(1)
` = yta`. By assump-

tion, x̂
(1)
` > 0. It follows that {`} = arg maxi{ytai}, so ` is also selected at the

first iteration of NNOMP with input y.

The same argument is repeated at iteration k. Assume OMP and NNOMP

deliver the same iterate after k−1 iterations, and denote by rk−1 the (identical)

residual vector. Let Sk = Sk−1 ∪ {`} and x̂(k) denote the support and iterate

found by OMP at iteration k. Applying Lemma 3.2 with j ← k − 1, we get

x̂
(k)
` =

(
ã
Sk−1

`

)†
rk−1 where

(
ã
Sk−1

`

)†
=
(
ã
Sk−1

`

)t
/‖ãSk−1

` ‖2 and ã
Sk−1

` 6= 0
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according to Lemma 6.3 and the full rankness of ASk
. It follows that

x̂
(k)
` =

rtk−1ã
Sk−1

`

‖ãSk−1

` ‖2
=

rtk−1a`

‖ãSk−1

` ‖2
(16)

where the last equality comes from the fact that ã
Sk−1

` = P⊥Sk−1
a` and rk−1 ∈

span(ASk−1
)⊥. By assumption, x̂(k) ≥ 0. (16) implies that rtk−1a` ≥ 0. Since `

is the unique solution to (1), we also have {`} = arg max
i/∈Sk−1

{rtk−1ai}. So, ` is also

selected at the k-th iteration of NNOMP with input y.

6.3.2. SNNOLS vs OLS

The very first iterates of SNNOLS and OLS respectively identify with those

of NNOMP and OMP. They coincide according to § 6.3.1. At iteration k, the

previous proof can be repeated, where x̂(k) now denotes the OLS iterate. Intro-

ducing the normalized projected atoms in (16), we get x̂
(k)
` =

(
rtk−1b̃

Sk−1

`

)
/‖ãSk−1

` ‖,

and rtk−1b̃
Sk−1

` ≥ 0 since x
(k)
` ≥ 0. Since ` is the maximizer of the OLS selection

rule (2), we have {`} = arg max
i/∈Sk−1

{
rtk−1b̃

Sk−1

i

}
. So, ` is also selected by SNNOLS.

6.3.3. NNOLS vs OLS

The very first iterates of OLS and NNOLS identify to those of OMP and

NNOMP, respectively. We have proved above that they coincide.

Assume that OLS and NNOLS deliver the same support Sk−1, and let us

denote by Sk = Sk−1 ∪ {`} the OLS support at iteration k. Since OLS selects

the atom yielding the minimum squared error, we have for all i /∈ Sk,

min
z
‖y −ASk

z‖2 < min
z
‖y −ASk−1∪{i}z‖

2. (17)

The left-hand side (LHS) of (17) rereads min
z≥0
‖y − ASk

z‖2 according to (15).

Also, it is clear that the right-hand side (RHS) of (17) is upper bounded by

min
z≥0
‖y −ASk−1∪{i}z‖

2. Therefore, we get for all i /∈ Sk,

min
z≥0
‖y −ASk

z‖2 < min
z≥0
‖y −ASk−1∪{i}z‖

2,

which implies that ` is also selected by NNOLS.
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6.4. Proof of Lemma 3.3

Here, the abridged tilded notations ỹ, ãi, b̃i, ñ correspond to projected

vectors onto span(ASk−1
)⊥. We also use the context-dependent notation

c̃i =

{
ãi (OMP case),

b̃i (OLS case)
(18)

to refer to ãi or b̃i. ` denotes the atom selected at iteration k, so Sk\Sk−1 = {`}.

Let us recall that Sk ⊂ S∗ (Lemma 2.1). Note also that ASk
is full column rank

since µ(A) < 1
2K−1 (Lemma 6.1) and then ã` 6= 0 (Lemma 6.3). Applying

Lemma 3.2 for j ← k−1 yields (16), so x̂
(k)
` has the same sign as rtk−1ã` and as

rtk−1b̃`. The remaining part of the proof consists in showing that rtk−1c̃` > 0.

Since atom ` is selected at the k-th iteration, we have

∀j /∈ Sk, |rtk−1c̃`| ≥ |rtk−1c̃j |. (19)

To prove that rtk−1c̃` > 0, we are going to exhibit an index j /∈ Sk such that

|rtk−1c̃j | > −rtk−1c̃`. (20)

(20) can be consistent with (19) only if rtk−1c̃` > 0. It is therefore sufficient to

show that (20) holds to complete the proof. Specifically, we show (20) for any

j ∈ arg max
i∈{1,...,n}\Sk

x∗i . (21)

Let y = Ax∗ + n =
∑

i∈S∗ x
∗
iai + n. The residual at iteration k − 1 reads

rk−1 = P⊥Sk−1
y =

∑
i∈S∗\Sk−1

x∗i ãi + ñ. (22)

So for any p ∈ S∗\Sk−1,

rtk−1c̃p = x∗pã
t
pc̃p +

∑
i∈S∗\(Sk−1∪{p})

x∗i ã
t
i c̃p + ñtc̃p. (23)

Since x∗p = 0 when p /∈ S∗, (23) is also met for p /∈ S∗. Thus, (23) holds for all

p /∈ Sk−1.
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Since K ≥ k ≥ 1, µ(A) < 1
2K−1 ≤

1
k . Lemma 6.2 implies that ãt

p ãp ≥ βk−1
and |ãt

iãp| ≤ µk−1βk−1 with βk−1 and µk−1 defined in (10). From b̃p =
ãp

‖ãp‖ ,

we get ãt
p b̃p = ‖ãp‖ ≥ β1/2

k−1 and |ãt
i b̃p| ≤ µk−1β

1/2
k−1. The latter bounds can be

rewritten in a unified way: ãt
pc̃p ≥ ηk−1 and |ãt

i c̃p| ≤ µk−1ηk−1 with

ηk−1 =

{
βk−1 if c̃← ã,

β
1/2
k−1 if c̃← b̃.

(24)

Furthermore, the Cauchy-Schwarz inequality implies that |ñtc̃p| ≤ ‖ñ‖ ≤ ‖n‖

since ‖c̃p‖ ≤ 1. (23) yields

rtk−1c̃p ≥ ηk−1
(
x∗p − µk−1

∑
i∈S∗\(Sk−1∪{p})

x∗i

)
− ‖n‖. (25)

Notice that Sk−1 ∪ {p} = Sk for p = `. Using the definition of j in (21) and the

fact that ` ∈ S∗\Sk−1, we have∑
i∈S∗\(Sk−1∪{`})

x∗i =
∑

i∈S∗\Sk

x∗i ≤ (K − k)x∗j , (26)

∀p 6= `,
∑

i∈S∗\(Sk−1∪{p})

x∗i ≤
∑

i∈S∗\Sk−1

x∗i = x∗` + (K − k)x∗j (27)

with j 6= ` because j /∈ Sk. Now, apply (25) twice with p← ` and p← j:

rtk−1c̃` ≥ ηk−1
(
x∗` − (K − k)µk−1x

∗
j

)
− ‖n‖,

rtk−1c̃j ≥ ηk−1
(

(1− (K − k)µk−1)x∗j − µk−1x
∗
`

)
− ‖n‖,

Summing up both inequalities, we get

rtk−1c̃j + rtk−1c̃` ≥ ηk−1
(

(1− µk−1)x∗` + (1− 2(K − k)µk−1)x∗j

)
− 2‖n‖.

One can easily check from (10) that µk−1 <
1

2(K−k) when µ(A) < 1
2K−1 . Thus,

rtk−1c̃j + rtk−1c̃` ≥ ηk−1(1− µk−1)x∗` − 2‖n‖

>
(
ηk−1(1− µk−1)− (1− (2K − 1)µ(A))

)
min
i∈S∗

x∗i (28)

where the last inequality follows from (4). (8) and (24) imply that βk−1 ≤ 1,
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thus ηk−1 ≥ βk−1. Since µk−1 < 1 and using (10), we get

ηk−1(1− µk−1) ≥ βk−1(1− µk−1) =
(1 + µ(A))

1− (k − 2)µ(A)
(1− kµ(A))

≥

{
1− µ(A) if k = 1,

(1 + µ(A)) (1− kµ(A)) if k ≥ 2.
(29)

When k = 2, the RHS in (29) can be expanded and then lower bounded by

1 − (2k − 1)µ(A) by noticing that µ(A)2 ≤ µ(A) ≤ 1. The latter bound holds

as well when k = 1.

From (28), we get rtk−1c̃j + rtk−1c̃` > 0, which implies (20). We conclude

from (19) that rtk−1c̃` > 0 and thus x̂
(k)
` > 0.

6.5. Proof of Lemma 3.4

In this proof, the abridged tilded notations ãi and b̃i refer to projected

vectors onto span(ASj−1
)⊥ (the latter space differs from that of Subsection 6.4).

We still use the generic notation c̃i in (18) to refer to either ãi or b̃i depending

on the context. Similarly, C̃ refers to the matrices Ã and B̃ gathering the

projected atoms. To prove that x̂
(k)
Sk−1

> 0, we will exploit that x̂
(j)
Sj\Sj−1

> 0

for j < k, which holds according to Lemma 3.3.

Let ` ∈ Sk−1 and denote by j < k the iteration at which the atom a` has

been selected by Oxx, so that Sj\Sj−1 = {`}. According to Lemma 3.2 and

since ` is the first entry in the ordered set Sk\Sj−1, we have

x̂
(k)
` =

(
(ÃSk\Sj−1

)†rj−1
)
1
. (30)

The full rankness ofASk
implies that ÃSk\Sj−1

is full column rank (see Lemma 6.3).

Then, Lemma 6.4 yields:

x̂
(k)
`

+∝ rtj−1(ã` − P̃Sk\Sj
ã`) (31)

where
+∝ refers to proportionality up to a positive factor, and P̃Sk\Sj

denotes

the orthogonal projection onto span(ÃSk\Sj
). Since for all i, b̃i is proportional

to ãi, we have span(ÃSk\Sj
) = span(B̃Sk\Sj

), thus P̃Sk\Sj
= C̃Sk\Sj

G−1C C̃t
Sk\Sj
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holds for both C̃ = Ã and C̃ = B̃, with GC := C̃t
Sk\Sj

C̃Sk\Sj
. Since ã` is

proportional to c̃` up to a positive factor, (31) implies that

x̂
(k)
` > 0 ⇐⇒ rtj−1C̃Sk\Sj

G−1C C̃t
Sk\Sj

c̃` < r
t
j−1c̃`. (32)

By Hölder’s inequality, the LHS of (32) is upper bounded by

‖C̃t
Sk\Sj

c̃`‖∞ ‖G−1C C̃t
Sk\Sj

rj−1‖1 ≤ µ(C̃) ‖G−1C ‖1,1 ‖C̃
t
Sk\Sj

rj−1‖1

≤ (k − j) µ(C̃) ‖G−1C ‖1,1 |r
t
j−1c̃`| (33)

where the last inequality exploits that index ` is selected at the j-th iteration

of Oxx, i.e., ∀i, |rtj−1c̃i| ≤ |rtj−1c̃`|. From Lemma 3.3, we have x̂
(j)
` > 0, hence

rtj−1c̃` > 0, see (16). We deduce from (32)-(33) that

(
(k − j) µ(C̃) ‖GC

−1‖1,1 < 1
)

=⇒
(
x̂
(k)
` > 0

)
. (34)

To complete the proof, we will show that the LHS of (34) holds true. Let

us start by bounding µ(C̃). First, we note that c̃p = 0 for p ∈ Sj−1. Since

µ(A) < 1
2K−1 < 1

j , Lemma 6.2 yields µ(Ã) ≤ µj−1βj−1 and µj−1 < 1
2K−j .

Since b̃p =
ãp

‖ãp‖ for p /∈ Sj−1, it follows from (8) that

µ(B̃) ≤ µ(Ã)

βj−1
<

1

2K − j
. (35)

The cases of OMP and OLS are now treated separately.

OLS case. B̃Sk\Sj
is a column normalized matrix corresponding to a subset

of columns of B̃. Moreover, µ(B̃Sk\Sj
) ≤ µ(B̃) < 1

2K−j ≤
1

k−j according

to (35). So, we can apply Lemma 6.1 to matrix B̃Sk\Sj
: the Gram matrix

GB = B̃t
Sk\Sj

B̃Sk\Sj
is invertible and

∥∥G−1B

∥∥
1,1
≤ 1

1− (k − j − 1)µ(B̃Sk\Sj
)
≤ 2K − j

2K − k + 1
, (36)

where the last bound follows from (35). Combining (35) and (36), µ(B̃)
∥∥G−1B

∥∥
1,1

is upper bounded by 1
2K−k+1 <

1
k−j . So, the LHS of (34) holds true.
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OMP case. Let ∆ be the square diagonal matrix diag(‖ãi‖, i ∈ Sk\Sj). Clearly,

ÃSk\Sj
= B̃Sk\Sj

∆ and G−1A = ∆−1G−1B ∆−1. The submultiplicative property of

induced norms yields ∥∥G−1A

∥∥
1,1
≤
∥∥G−1B

∥∥
1,1
‖∆−1‖21,1 (37)

where ‖∆−1‖1,1 = max
{
‖ãi‖−1, i ∈ Sk\Sj

}
≤ β−1/2j−1 by Lemma 6.2. Thus,

µ(Ã)
∥∥G−1A

∥∥
1,1
≤ µ(Ã)

βj−1

∥∥G−1B

∥∥
1,1
<

1

2K − k + 1
<

1

k − j

according to (35) and (36). We conclude that the LHS of (34) is true.
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