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OPTIMAL TRANSPORTATION OF
VECTOR-VALUED MEASURES

Xavier Bacon *

Abstract

Given two n-dimensional measures g and v on Polish spaces, we pro-
pose an optimal transportation’s formulation, inspired by classical Kan-
torovitch’s formulation in the scalar case. In particular, we established
a strong duality result and as a consequence, optimality conditions are
investigated. Wasserstein’s metrics induced by our formulation are also
investigated.

Key Words: Optimal Transport, Calculus of variations, Wasserstein dis-
tance.

1 Introduction and notations

1.1 Introduction

Starting from the article of G. Monge [1], many mathematical formulations
of optimal transportation have been offered ([2], [3] and [4]). In Monge’s formu-
lation, given two Polish spaces X and Y, if u (resp. v) is a Borelian probability
on X (resp. V) and if ¢: X x Y — R, then the Monge’s formulation consists on
a minimization of the total cost among all Borelian maps which push forward
1 to v, more precisely for T a Borelian function between X and Y and m a
positive measure on X, T#pu stands for the push forward measure which is the
measure on Y defined for all measurable set B by T#u(B) := u[T7'(B)]. Let
M(u,v) be the set of such maps, Monge transportation problem is then

M(u, v) := inf {L e[, T(2)] du(z) : T e M(u, u)} . (1)

In the middle of the 20th century, L. Kantorovitch proposed a relaxation
of (1) in [2] by allowing mass splitting. Thinking of u and v as piles of sands,
grains located at x can be sent at different places at the same time. Formally,
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Kantorovitch’s problem consists on minimizing a new total cost among all trans-
ference plans v € II(u, v), where II(u, v) is the set of couplings between u and
v i.e. v € (u,v) if for all A Borelian subset of X, v(A x Y) = u(A4) and for
all B Borelian subset of Y, 7(X x B) = v(B). Kantorovitch’s transportation
problem is then

K(p,v) = inf ﬂ c(z,y) dy(z,y) : v € W(p,v) (2)

XxX

and for reasons that are discussed below, (2) is more accurate to extend the
classical theory to vector-valued measures.

When c is the power of a distance, these two problems induce a metric on
the set of probabilities, called here Wasserstein metric (see [5], [6], [7] or [8]). In
the recent years, extensions of optimal transportation to more general objects
have been proposed, such as multimarginal transportation ([9],[10]) or density
functional theory ([11]). Notice also that optimal transportation of matricial
and tensorial measures (see [12], [13]) or vector-valued densities in [14] have
already been investigated.

In the present paper, we propose an extension to vector-valued measures.
This one is deeply based on Kantorovich’s formulation of scalar optimal trans-
portation (section 2). Given two probabilities ¢ and v and two decompositions
of them (say) = p1 + -+ pp and v = 14 + - - - + v, more than a transporta-
tion between p and v, we are interested in a description of a transportation
between these two decompositions. A naive strategy would be to study the n
subproblems of classical optimal transportation between p; and v; for i € [1,n],
assuming that for all 4, u; and v; share the same mass. If this new transportation
problem leads to a metric, then the toplogy induced is the product one, due to
the independance of each phasis. This problem has been explored in [15],[16]
and more recently in [17]. To remove the independance of each phasis, we allow
transformation similarly as explored in [18|. Introducing n? particular costs c;;
and n? particular transference plans 7;; which describe the transport of a piece
of p; into a piece of v;, we consider that the cost transportation to move dg;(z)
to dv;(y) is ¢;j(x, y)dvij(z,y). Compatibility constraints are described by the
set IT(u, v) where we ask that the n? transport plans «;; clear each p; and fill
each v;. The new minimization problem is given by

H1 1

inf{ ] ” cij(@,y) dyig(z, ),y € I |2,

(1)1l gy | | vm

In section 2, we give an existence result for this problem as well as vari-
ous examples. Then, following the shipper’s problem interpretation of optimal
transportation from L. Caffarelli (presented in [6]), we introduce a dual formu-
lation in section 3 and prove strong duality theorem. As a consequence of the
duality, optimality conditions for primal-dual optimizers are derived. Finally,



assuming that costs (¢;;) are all the same power of different distances, a metric
on vector-valued measures is presented in section 5.

1.2

Notations

In this article, we differenciate vectorial objects from scalar ones by using
bold type character like IT for the first one and non-bold type character like I1
for the latter one.

Given X a measurable space, P(X) stands for the set of probability mea-
sures on X and for all n € N*, M™(X) (resp. M"™*"(X)) refers to the set
of vectorial measure on (X, X) valued in R™ (resp. in R™*™) meaning that
each coordinate is a signed measure. M’ (X) (resp. M7}*"(X)) stands
for the subset where each coordinate is positive measure. Recall that for
T a measurable function between X and Y and m a positive measure on
X, T#m stands for the push forward measure which is the measure on Y’
defined for all measurable set B by T#m(B) = m |[T~'(B)].

Given X; x --- x X,, a product space and k € [1,n], 7 denotes the
canonical projection on Xy, i.e,

T - X1><~-~><Xn —> Xk
(xlu"'axn) = T

and for [ € [1,n] and | > k, m; denotes the canonical projection on
X x X t.e,

Tkl - X1><-~-><Xn — XkXXl
(@1, s za) = (TR @)

For A a borelian subset of R, £4 stands for the Lebesgue measure on A.
If m,M € M, (X) satisfy for all A € X, m(A) < M(A), m is called a
submeasure of M and this property will be written m < M. Note that
being a submeasure of M implies the absolute continuity w.r.t. M.

Given (X, T) a topological space and (Y, d) a metric space, Cy(X,Y) refers
to the set of bounded continuous functions between (X, 7) and (Y, d).

Given (i, j) € [1,n]?, E;; refers to the matrix n x n whose coordinates are
all equal to 0 except (4,7) which is equal to 1.

Given a set X and S a subset of X, 1g denotes for the function equals to
0 on S and 40 on its complementary.

The notation A will be used to denote the minimum of two reals, and v
for the maximum.



2 Kantorovitch’s problem

2.1 Presentation
In the remainder of the paper, n will denote an element of N*.

Definition 2.1. Given (X,X’) a mesurable space, P"(X) denotes the set of
admissible distributions of n species defined by

PYX)={m=| : eMﬁ(X):ZmiGP(X)

Mp

It is straightforward that P"™(X) is a non-empty convex subset of M"(X).

Inspired by Kantorovitch’s formulation of optimal transportation, an ex-
tension of the notion of transference plan between two scalar measures is now
proposed. For a well understanding of the next definition, let us make a short
digression and present our model. Given (X,X) and (Y,)) two measurable
spaces and p € P"(X),v € P*(Y) two distributions of n species, since the
total amount of each specy is not equal transformations between species are
allowed. Given (i,j) € [1,n]?, the "transportation” (with “transformation” if
i # j) of a piece of y; into a piece of v; is described by a transference plan
vij € M4 (X xY). Constraints on v = (7i;)1<s,j<n are given by

(Clear p) Vi€ [1,n], YA€ X, p1;(A) = > yir(A x Y)
k=1
(Fill v) Vj € [1,n],¥B € ¥,v;(B) = > w;(X x B),

el
Il
—

or in other words, for all (i,5) € [1,n]?, Y _, vir has y; as first marginal and
>ir_1 Vkj has v; as second marginal. This naturally leads to the following defi-
nition.

Definition 2.2. Given p € P*(X) and v € P*(Y), II(u,v) denotes the set of
transference plans between p and v defined by

Wi = T19F (é}l %‘k)
T(p,v) = { veMP(X xY):¥(i,j) € [1,n]?, )
s ()

Remark 2.1. According to the Definition 2.2, every v € II(u,v) induces a
canonical transference plan (for n = 1, the two definitions of transference plan
are the same) between Y1", y1; and Y7, v given by 31", 7i;. However the

converse is not true since given v € II (Z?Zl fis 255y I/j) and (z,y) € X x Y,



there is still a choice to make: is the first specy sent into the first or the second
one or both? And in what proportions? Let us give a short example to clarify
this remark. Taking

p= M1 :l E[—l,o] U= 141 :l 501]

p2| 2 [Li-10 v2| 2 [Lpog
and writting 7 : ¢ — 2 + 1, it is known that v = (I,71) # (1 + p2) is a
transference plan between L[_; o) = p1 + p2 and Lo 1) = v1 + v2. Given a such
v, 1 can be sent towards vy, or towards v5. A mix is even possible and py

can be sent towards 11[0_’ 1] duvy + ]l[ 1] dvs. In other words, the following matrix

1
2
measures are transference plans,

(Ia Tl)#ﬂl 0
| 0 (I, m1)#p2 |’
[ 0 (Ia Tl)#ﬂli

| (1, 71)# 2 0 ’
LI, m)#m (I,m)#m
I,m)

1)
2 |[(I,m)#upe (

We also introduce matrix-valued cost ¢ as a function from X x Y — M, (R),
integrable w.r.t. « or positive measurable. The associated total cost is given by
the following definition.

Definition 2.3. Given v € II(p, v) and a cost matrix ¢, K () denotes the total
transportation cost according to v defined by

Kv)= D, ﬂ cij(@,y) dvij (2, y).

(&,9)e[1,n]? ¥

The Kantorovich’s transportation problem between two distributions of n species
p and v for c is given by

inf {K(y):veIl(p,v)} =: K(p,v) € [—00, +0] (KP)

Example 2.1. Note that if ¢;; = ¢ for all (4,5) € [1,n]? then (KP) shares the
same value as the scalar optimal transportation between Y!" | p; and Z?:1 v;
for the cost c¢. The most simple example of non trivial matrix cost is given by
the following one: let ¢ be a scalar cost and k be a real and define the following
matrix cost:

V(z,y) € X x Y, c(z,y) = [C(zfzayl K C(i&g,)yJ)r K] '

In other words, a constant cost is requiered for any transformation. See the
example 3.1 below for a study of this special cost.



Example 2.2. Let p,qge A,, := {:13 eRY, Y oy = 1} and @,y € X". Define

pl 511 ql 5,7;1
K= : V= :
POz, qn 0y,

Let us first notice that for all (i, ), since supp(>}_; vir) S supp(p;) x ¥ and

supp(>, ;) S X x supp(v;) then supp(ys;) S (zi,y;) and hence v;; =
tij0(z,y,) for some t;; € [0,1]. Constraints on ~ give us that for all (i,j) €

[1,n]% >, ta = pi and Y | ti; = ¢; and finally

K= D, tic(@i,y),
(i,9)e[1,n]?

(KP) becomes in that case

n n
inf Z tijcij (i, y;),t € Myu(R) : Z ti = pis Z ty =g
=1 =1

(i,9)€l1,n]?

which reduces to the discret optimal transportation.

2.2 Existence of a minimizer

Let X and Y be two Polish spaces. In this subsection, we prove an existence
result for the problem (KP). Arguments used to establish it are the same as in
scalar case (see [6] or [7] for instance). Let us first gather the main structural
properties of problem (KP).

Lemma 2.1. Given p € P*(X), v € P"(Y) and ¢ a cost matriz, following
assertions are satisfied:

[1] TI(p,v) is a non-empty convex subset of M™*™(X xY).

[2] TI(u, v) is a weakly sequentially compact * subset of M™*™(X x Y).

[3] If for all (i,7) € [1,n]?, cij is bounded from below, then K : II(p,v) —
R U {+} is bounded from below.

[4] If for all (i,j) € [1,n]?, cij is l.s.c. and bounded from below then K :
II(p,v) = R U {400} is weakly l.s.c. with respect to the tight convergence.

Proof. [1] Convexity is clear and it is easy to check that (u; ® I/j)(i Helin]? €

I(p,v).
[2] Let (v*)xen € TI(p, v)™ and (i, ) € [1,n]%. We claim that (*yfj)keN is tight.

Indeed, let £ € R* and Kx (resp. Ky) a compact of X (resp. Y) such that?

Vie [1,n], ni(X\Kx) <e (resp. Vj € [1,n],v;(Y\Ky) < ¢). (3)

lw.r.t. the test function space Cp(X x Y, R?*").
2These two compacts exist: all u; are finite measure on Polish spaces then it exists K%
verifying these inequalities and then we just have to take union of them.



Let k£ € N, following inequalities are satisfied,

75 [(X x Y\ x x Ky)] < 75[(X\Kx) x V)] + 75X x (Y\Ky)]

N
M3 5@*

il (X\Kx) x V)] + Z THIX x (V\Ky)]
1 =1
J(X\Kx) +vj(Y\Ky) since v € II(p, v)

E.

o~
Il

Nl
N”;

This proves the claim and thanks to Prokhorov theorem, there exists a non-
negative finite measure on X x Y, ;7 and a subsequence of (fyf]) ken (still written

('Yw)ke[N) such as (”yu)keN t1ght1y converges towards ;7. In order to conclude,
we only have to check that v* € T'(u, v) Let ¢ € Cp(X x Y, R) and notice that
for all i € [1,n] and k € N,

[ ot i f [ o atwn - ([ sy
=133y =13y

[3] Straightforward.

[4] Let (v*)ren € (e, )N and v* € T(p,v) such that (v¥)ren tightly con-
verges towards 4v® in that for all (i,5) € [1,n]?, (%kj)ken\] weakly converges in
duality with Cy, towards ;7. Then, by lower semi-continuity of v;; +—< 745, ¢ij >
(see |7], Lemma 1.6), for all (4,5) € [1,--- ,n]?,

Jf cij(z,y) d”yiojo»(x y) hmlnf Jf cij(z,y d”yw z,Y)
XxY XxY
and since sum of liminf is less or equal to liminf of sum, it ends the proof. [
With these facts in hand, our main result easily follows.

Theorem 2.1. Given c a cost matriz such as for all (i,j) € [1,n]? ¢c;; is
bounded from below and l.s.c., it exists v € II(w,v) such as K(v) = K(p,v).

Proof. This proof follows the classical direct method of calculus of variations.

Let (7¥)ken be a minimizing sequence for the problem (K P) i.e

1
ke N, K(v") < Kl v) + 7.

Compactness of IT(u, v) according to Lemma 2.1 implies that (v*)gen can be
assumed to converge towards (say) v*. Lower semi-continuity implies that

K(v*) < liminfK (%) < K(p, v),

k—o0

and then 4% is a minimum. O



3 Duality

3.1 Presentation

In this section, we look for a dual formulation of (KP). In order to find it,
consider the following situation3: mines full of different metals (n kinds) and
refineries (n kinds) are distributed in space. For each kind of metal corresponds
a kind of refinery, for instance a kind refinery for iron, a kind of refinery for
gold etc. On the one hand we want to minimize the travel cost i.e. minimize
the associated Kantorovich’s problem, on the other hand a character suggests
to supervise the travelling operation for us and propose that contract: for each
ton of metal i located in z, its price will be @;(x) to extract it and for each
ton of metal j located in y its price will be ;(y) to drop it off. To guarantee
our interrest, its contraints will be that for all (7, 5) and (z,y), wi(z) + ¥;(y) <
¢ij(z,y). All these considerations suggest to give following definitions.

Definition 3.1. Given c a cost matrix, A(c) denotes the set of potential couples
for cost ¢ defined by

i € Cp(X)
a@ =1 2] =15 e v eam)
wi DY < ¢y

and if there is no ambiguity on ¢, we will write A instead of A(c).

Definition 3.2. Given p € P*(X),v € P*(Y), ¢ a cost matrix and [;‘Z] =

[zl o zn] € A(c), D(p, ) denotes the dual cost of [:Z] defined by
Lo,

Dl = 3] L SCLTEEDY L 5(y) dvs (1), (1)

Finally, the dual transportation problem is given g € P"(X), v € P*(Y) and a
cost matrix c,

swp { D, 0): | 5] € M@} =D e [0 P

We establish now a weak duality result.

Proposition 3.1. Given p € P*"(X), v e P"(Y), a cost matriz ¢,y € II(p,v)

and [;’Z] € A(c), the following inequality is satisfied,

D(p, ) < K(v).

3This interpretation is due to L. Caffareli in scalar case, according to [6].




Proof. Let v € II(p,v) and [’i] € A(c). Compute:

D(p,¢) = ZJ @i dps + ZJ ¥; dv;
i=1vX j=1vY

The last equality coming from the fact that v € II(u,v). And then,

D(py)< > ” ¢i; dyij since [i] e Ae)

@Neln]? Xy
= K().

That concludes the proof. O

3.2 An extension of c-transformation

In order to prove that (DP) is attained, at least in compact case, we propose
an extension of the classical c-transform (see the recall below). First, we make
a short digression about modulus of continuity.

Definition 3.3. Given (X, d) a metric space and f : X — R, a uniform modulus
of continuity for f according to d is a function w : Ry — R, such that the
following conditions are satisfied:
[1] lim w(t) =0
t—0+

2] ¥(z,2") € X 1 |f(z) — f(a')] < wld(z,2")].

Lemma 3.1. If f admits a uniform modulus of continuity ws and g admits a
uniform modulus of continuity wy then wy + wy is a uniform modulus of conti-
nuity for min(f, g).

Proof. Let (z,2') € X2, we have

| min(f, g)(z) — min(f, g)(z")]
o @) = fE)] + g(x) — g(2)] N |1f (@) —g(@")] — |f (@) — g(=)]|
= 2 2
wrld(z,2")] + wyld(z,2")] N |f(2") = f(z) + g(x) — g(2')]
2 2
S wyld(z,2")] + weld(z, 2")].

N

This proves the lemma. O



Recall that when f is a function between X (resp. Y) and R u {—oo} and ¢
a cost function, we can define its c-transform f¢ (resp. ¢é-transform) by:

f© Y — Ru{—ow,+w}
y +— inf{c(z,y) — f(z): x € X}

<res f© X - Ru{—ow,+w} )
P e inf{c(z,y) — fly):yeY}

We introduce a new transformation and to motivate it just remark than in
our case, we have 2n potentials and n? inequalities in the dual formulation. A
naive idea would be to first subsitute ¢ by ¥{** but there is no guarantee that

cll wQ ... (P
12 w"] will still be in A(c). The
L e ey,

following definition answers this problem.

our new couple of potentials [

Definition 3.4. Given f = (f1,---, fa) : X = (Ru{—0})" and ¢ = (c1,--- ,¢p) :
X xY — (Ru {+w})", f° (resp. f°) denotes the c-transform of f (resp. ¢&-
transform of f) defined by

VyeY : fy) = min(fi" (y), -5 fin ()
(resp. Yz e X @ f%(z) = min (f{*(z), -, f5"(2)))

All benefits of this transformation is contained in the next proposition.

Proposition 3.2. Let f = (f1, -+, fn) : X > (Ru{—0})" andec = (c1, -+ ,cn) :
X xY — (Ru {+w})", then
[1] Following inequalities are satisfied,

Vie[l,n], i®@f°<c¢ (5)
Vielln],fe@®f <c (6)

[2] If h : Y — Ry {—o0} is such that for all i € [1,n], fi ® h < ¢; then
h< fC Ifh: X — Ru {—w} is such that for all j € [1,n],h® g; < ¢; then
h < fC.

Proof. [1] Let (i,7) € [1,n]? and (z,y) € X x Y. Since fi(x) + fjcj (y) < ci(z,y)
and f° < f{ the first inequality is deduced and note that the second inequality
can be proved following the same way.

[2] If such a function exists, we deduce from f; @ h < ¢; that for all (z,y) €
X xY,h(y) < ci(z,y)— fi(z), then take infimum with respect to x and arbitrary
on i concludes for the first inequality. The same proof also works for the second
inequality. O

We will show next that this process is a natural way to improve the dual cost
while staying in the constraint A(e), at least in compact case and continuous
costs. Moreover, it provides a common uniform modulus of continuity for all
the potentials.

10



Lemma 3.2. Let X, Y two compact metric spaces, ¢ a continuous cost matrix
and (p,) € A(c). It exists (p,v) € A(c) such that

[1] D{p, ) < D(¢, ).

[2] o1, ,on, 01, yn—1 and ¥, admit a common uniform modulus of
continuity which depends only on ¢.

Proof. First, make the following substitutions:
Vi€ [1,n] : ¢y — @l o) = oy,

then, thanks to Proposition 3.2, (¢,1) € A(e) and D(p,1) < D(p,1). De-
noting w,; a uniform modulus of continuity of c;ij for (i,7) € [1,n]?, wc; is also
a uniform modulus of continuity of ¢} according to [7] (Box. 1.8). Thanks to
Lemma 3.1, we conclude that wy, = we,; + -+ + we,; is a uniform modulus of
continuity of ;. Then, make the following substitutions:

Vie[l,n]:p; < g(c“"”’cm) =9

and of course the new couple of potentials is still in A(c) and the dual cost is
increased. To conclude, we just have to check that >, ; ., we,; is a common
uniform modulus of continuity for (¢, %), which is clear. O

Example 3.1. Coming back to the example 2.1, let us compute this new c-
transform to reduce the problem. Fix x to be strictly non-negative and assume
that X =Y and ¢ is symetric (then, e-transform is equivalent to €-transform).
Constraints of (DP) are given by the following system:

e1(x) + ¥i(y) < c(z,y)
o1(x) +Y2(y) < clz,y) + &
() +P1(y) < clz,y) +
p2(z) + Y2(y) < c(z,y)

First step: it is easy to check that:

(f1, f2)oT = [fi A (fo— )]
(f1, ) = [(fr — k) A f2]°,

then make the following substitutions:

c,ct+kK r

Y1 < (1, 92) =[p1 A (g2 —K)] =1
1/}2 — (‘Pla@Q) )

ct+kK,C

= [(p1 = K) A 2] =: 9o

11



Second step: following the proof below, we make the following substitutions:

!
o
i

2 — k)¢ since (supfq )¢ = inf f$
e (0%

(
( NV ([(p1 = &) A 2] = K)

@1 A (P2 = K)] v [(p1 = 26) A (P2 — K)]
= [p1 A (p2 — k)] since if f < g then g¢ < f€

g — (1#],1/?2)”“’0 = wg for the same reasons.

When ¢ = d is a distance, according to [7] (Proposition 3.1):

h1(y) — 1 (x) < d(z,y)
Ua(y) — Pr(x) < d(w,y) + &
D1(y) — ha(x) < d(z,y) + K
Pa(y) — Po(x) < d(x,y),

which is equivalent to the following system, thanks to the symmetry of d:

[Y1(z) = 41 (y)] < d(, )
[1(2) = 2(y)| < d(x,
|2 () — 2(y)| < d(x,

e. (1/;1, 7,/;2) are solution to the system below if and only if they are 1-Lipschitz
w.r.t. to d and satisfy |11 — 2] < K

<
<

3.3 Existence of a maximizer

Theorem 3.1. Given X et Y two compact metric spaces, p € P"(X), v €
P™(Y) and ¢ a continuous cost matriz, there exists (p,1) € A(e) such as

D(p,v) = D(i, ).

Proof. The constraint set is non-empty since ¢ is bounded by below (continuous

on compact). Let:
4.
Y |en 1 Unlien

be a maximizing sequence for (DP). According to Lemma 3.2, we may assume
that our 2n sequences share a common uniform modulus of continuity. We now
prove that the sequence is uniformly bounded with respect to n. Indeed, setting
for all k e N:

— mi inf k . _inf k
mi min |:m1(rElX(p1 (x)u 7112X90n(x):| ’

12



and since my, is finite, we can substitute:

Vie[l, - ,n]:@f «— @F —my still written F
Vie[l, - ,n]: 1/)5c — 1/)5 + my, still written 1/1;-“,

and these new potentials are still admissible, have the same dual cost and for
all i € [1,n],k € N, ¥ > 0. Therefore we have:

Vie [1,n],keN: ¢f <wldiam(X)],
which concludes the case of . Next, let us make new following substitutions:
Vje [Ln]:; — @@ eni) still written 1b;.
We have for all y e Y, j € [1,n] and k € N,
min (15, - - - ¢nj) — w [diam(X)]

<[ 15 0.0) = (o), s ) — )

Il
&
Py
Neg
N~—

and () = min | g o)~ H0). - infens (o) — (o)
< max (Clj7 e 7an) )

which leads to the conclusion on . Finally, the Ascoli-Arzela theorem applied
to each sequence provides the existence of a continuous couple

[sow} _ [w? 90%0]
(e R s
which belong to A(e¢) thanks to pointwise convergence and D(p®,9™) =
D(w,v) thanks to uniform convergence on finite measure sets. (]

3.4 Strong duality

We establish a strong duality result. The proof follows the one of strong duality
theorem for scalar optimal transportation proposed by C. Jimenez (see [7]).

Definition 3.5. Given u € P"(X), v € P*(Y) and ¢ a cost matrix, we denote
by H the value function of the perturbated dual problem, i.e.

b

Lemma 3.3. Let X and Y two metric compact spaces. H satisfy the following
properties:

[1] H is concave.

[2] Suppose that ¢ is continuous, then H is u.s.c. with respect to the uniform
norm.

Ve e O(X x Y,R™*™), H(e) = sup {D(go, P) : [“0] e Ale— r-:)}

13



Proof. [1] Let t € [0,1], €% € C(X x Y,R"*") (resp. €' € C(X x Y,R"*")) and
let (%, 4°) (resp. (¢pt,11)) be optimal in (DP) associated to ¢ — &% (resp.
to ¢ — e!). Note that they exist thanks to the existence result below. Define
er = (1 —1)e® +tel,op = (1 — )% + tept,9pr = (1 — t)yp° + tap!. Therefore
(¢t, ) is admissible for the dual problem associated to ¢ — &; and then by
definition of H we have

H(es) = D(ps, ) = (1 —t)H (%) + tH(e")

And the conclusion follows.

[2] Let (*)renw € C(X x Y,R™™)N and €* € C(X x Y,R" ") such that for
all (i,5) € [1,n]? ek, Wllg . Let (e¥)ren a subsequence (e¥)icy satisfy-
ing for all (i,5) € [1,n]? limsup H(e;) = li%n H(sfj) Ascoli-Arzela theorem

k

ensures that for all (i,7) € [1,n]?, (Eg)leN are equicontinuous and uniformly
bounded with respect to [ therefore chose the corresponding optimal potentials
(p*, 4p*) equicontinuous and uniformly bounded in [/, thanks to the Ascoli-
Arzela theorem again, there is a uniform convergence towards (say) (¢®, 9 ™)

up to an extraction, therefore thanks to pointwise convergence there is for all
(i,7) € [1,n]?, 0 @ VP < ¢ij — eij and so:
H(e) = D(e™,9™) = lilmH(ekl) = limsup H(e*).
k

This concludes the proof. O

Finally, the strong duality theorem follows.

Theorem 3.2. Suppose that X and Y are both metric compact spaces and that
c is continuous, then for all (u,v) e P*"(X) x P*"(Y),K(un,v) = D(u,v).

Proof. Let (p,v) € P*(X) x P™(Y), since (—H) is convex and l.s.c. and ac-
cording to the Fenchel-Moreau theorem, we have:
D, v) = H(0)
= —[-H(0)]
= —[-H]*™(0)

=—  sup <0,y > —[-H[|*(v)
YEMP X (X XY)

= inf —HI*(7).
Wewg}l(my)[ 1*(v)

Next, we compute for all vy € M™*"(X x Y),

[—H]*(v) = sup Z Jf €ijdvyij +  sup Z f @i dpi + Z f ¥j dv;
€ X i—1JY
Xxy i=1

1<i,j<n POP<sc—e ;i

= sup sup Z JJ €45 dysj + Z J w; dp + Z J ; du;
XxY =1 =1

€ PpPPp<c—e 1<i,j<n

14



If it exists (io, jo) such as v, j, ¢ My (X xY)and e} . suchas {§, , €2 dyiyj, >
0, then take (ef ; Jxews such as ef ;= ¢y, + ke, for k € N* and take @;, =0

and v¢;, = 0. Then putting all the other potentials equals at the value 0 and
find (g;;) such that all the contraints are still satisfied (c is bounded), we get
[—H]*(v) = 4w if v ¢ MP""(X x Y). Now, suppose that v € M}*"(X xY),
when (¢, 1) are fixed, we are interested in taking the largest ¢;; possible for
every (i,7) € [1,n]?, that is £;; = ¢;j — ¢; — ¢; and we get

[-H]*(y) = sup Z Jf cij — @i — V5 dvyij
POVSC—e1gij<n o2

+Zf (pidui—i_ZJ‘ wjduj

i=1vX j=1YY

= sup K(v) + ZJ pidps— Y Jf pi i
i=1vX 1<i,j<n

(¢,9) o

1<i,j<n

= sup K(v) +;nl JX wi dpi — JJ ‘Pidg%‘j

(p,) Oy

n

+J§1 ij dv; _X[[/ %‘di%‘j

= U11(p,v) () according to [7], Lemma 1.45.

This ends the proof. O

4 Optimality conditions

In this subsection, X and Y are two metric compact spaces. As a direct
consequence of Theorem 3.2, we deduce optimality contraints linking (KP) and
(DP).

Proposition 4.1. Given v € II(u,v) and (p, 1) € A(c), the following asser-
tions are equivalent:

[1] ~ is optimal in (KP) and (g, ) is optimal in (DP).

[2]¥(i,3), pi @ 5 = cij ij-a-e.

Proof. If [1] is satisfied, according to Theorem 3.2, K(v) = D(¢p, ). We then

15



compute D(p, ) as a function of ~.

2 f st 5 [ oot
> H i(@) dy (@, y) + ) ﬂwj ) dvij (2, y)

D(p, ) :

1<i,j<n 1<z,_]<n
= 3] e+ ) .
I<i,jsn 5y

Comparing the latter expression with K () gives
= K(v) — D(e, %)
=3 [ (et~ Tote) + 65000 a0,

YW XxY

0

The conclusion follows from the fact that (¢,1)) € A(e).
Conversely, if [2] is satisfied, it is clear that K (v) = D(, %) which implies
that both v and (¢, ®) are optimal according to Proposition 3.1. O

The result above is not surprising since any given ~ € II(u, v) induces n? scalar
optimal transportation problems between each marginals (say) mi#7vi; := fi;dps
and Wg#’yij = gijde

H%@mwmmemmm%mw, (KP;)
XxY

and looking at contraints in vectorial Kantorovitch’s problem, it is easy to see
that v has to be optimal in every subproblems (K P;;) to be optimal between
w and v (if not, take a better one and compare the total cost, which is nothing
less than another proof of the result above).

5 Induced metrics

In this section, we take X =Y a Polish space. We investigate how to extend
the well-known Wasserstein distance and answer the question ”does the problem
(KP) define a distance on the space P™(X)?".

Let (dij) (i, j)e[1,n]2 b€ n? finite, symmetric and non negative functions on X x
X satisfying the triangle inequality (we do not assume that they are distances).
Then let p € [1,0), 9 € X and define

Py(X) = {m e PM(X),V(i,j) € [[1,71]]2,[)( dy; (20, ) + d5; (20, ¥) dm;(z) < oo}

and notice that as in scalar case, this set does not depend on xg.
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Definition 5.1. Given p,v € Pg(X), the p-transportation distance between p
and v is defined by

WZD(H; V) = (Hlf {ZJJ\ dij(xvy)p dfyij(xvy)aﬁy € H(H‘a V)}) '

= (K(p,v))7 .

The symmetry of W), is clear provided the costs are symmetric themselves.
However, the fact that W, (p,v) = 0 implies that p = v is never satisfied if all
costs are (power of) distances. In place of it, if W, (p,v) = 0 then )" | p; =
> j—1Vj- In other words, Wy, is pseudodistance in that case. To prevent that,
we add new hypothesis on (d”) described in the next proposition.

Proposition 5.1. Let (dij) (i j)e[1,n]? be n? symetric finite non negative func-
tions on X x X satisfyong the triangle inequality. Assume moreover that for all
(i,7) € [1,n]?,i # j,d;j is strictly non negative and d;; is a distance. Then for
allu,ve?’z’,‘( ), if Wp(p,v) =0 then p =v.

Proof. Let p,v € Py(X) be such as Wj,(u,v) = 0 and let v* be optimal in
(KP), then

O—Zﬂdkwy dyie (2, ) +ZH i (2, )" dvj (2, y)
kl

i#] X2

According to the strict positivity of non diagonal distances, for all ¢ # j, 7;’;- =0
and then for all k € [1,n], v} is a transport plan between p and v;. The proof
of Theorem 7.3. in [6] concludes. O

However, without any other constraints on (d;;), the following example shows
that the triangle inequality fails.

Example 5.1. Let X = R,n = 2 and set:

[ -

Then set p = 1,d1; = |- | and dy2 = do1 := d. the e-discrete distance on R
(with € € RY) defined by d.(z,y) = € if # = y and 0 otherwise and an arbitrary
distance for dgs. Clearly,

Wi (p, ) =2, Wi(p,v) =Wi(v,A) =¢ (7)

And these three numbers do not satisfy to triangle inequality as soon as ¢ is
smaller enough.

The main problem in the example above is the lack of comparison between
all (di;). To give a everyday-life example, it could be more expansive to travel
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between Paris and Berlin using plane than to first travel between Paris and
Amsterdam using car and then going to Berlin from Amsterdam using train.
To avoid this phenomenon above, we add new constraints on (d;;):

V(i,j, k) € [[17 nﬂsu V(.’IJ, Y, Z) € X37 dik(.’l], Z) < dij(xa y) + djk(ya Z) (MTI)
and from now on we assume that these contraints are satisfied.

Remark 5.1. Note that (MT1I) (for Mixed Triangle Inequalities) contain the
fact that all costs satisfy triangle inequality (take ¢ = j = k) and if one of theses
inequalities is false for some (zg, yo, 2z0) then one can exhibit a counterexample
to fail the triangle inequality on W, similar to the (counter)Example 5.1 above.

Example 5.2. An easy way to construct objects that satisfy (MTI) is (and
then, we do not work on empty set) given a distance d on X and a non negative
scalar ¢ (for transformation), d;; = d for all ¢ and d;; = d + ¢ for all (7, 7) with
1% 7.

Proposition 5.2. Let p € [1,0) and (dij) (i j)ef1,n]> be such that (MTI) are
satisfied. Then W), satisfies the triangle inequality.

Proof. Let v* = (v}%) (resp. 4% = (7};)) be optimal* between p and v (resp. v
and A). Let j € [1,n] and define for all 4, k € [1, n] the marginals V;’H = maA
and V;-C’_’ = wl#ﬁ;‘k. These marginals are all submeas_ures of v; and then,
according to Radon-Nikodym theorem, we denote by f; (resp. ff’ﬁ) the
density of 1/;"_ (resp. 1/;-“_’) w.r.t. vj. Finally, define for each 7, j, k € [1,n] the
following transference plans

ik is defined as the measure with density (z,y) — ff’_’(y) wrt S, (8)

0,

i 1s defined as the measure with density (y,2) — ;" (y) w.r.t. i (9)

these definitions imply that

k=1

V(j,k) € Hlvnﬂ2u’~7;k = Z /ﬁ;lcv (11)
i=1

V(i,5,k) € [L,n]®, ma#tnfe = mati s (12)

4they exist according to 2.1, even if it is not necessary here: passing to supremum bound
aposteriori otherwise.
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To obtain the last equality, fix B a measurable subset of Y and compute
mo# i (B) = v (X x B)

_ J J 57 () dai(, y) by (8)

XxB

J fk —( “(y) by definition of 1/
= J kaH(y)f;&(y) de (y) by definition of f;H

= J fZ H ~(y) by definition of f

1y ~ .. k,—
Jf [ (y) d%5(y, 2) by definition of v/
BxZ

= m #7355 (B) by (9).

Then, equalities (12) allow us to apply the Gluing Lemma (see [6], Lemma 7.6)
and guarantee the existence of 1I;;; a measure on X x Y x Z such that

" ~
m12# Wik = Vi and o 3# ik = Yijk-

We next define for all (i,k) € [1,n]? IL;;, = Y, I, and compute
j=1

3

sk Z L, = Z w1715, by definition
k=1 k=1j=1

Z Wl#%;k by (13)

(5

m#7;; by (10)

Il
M: TM: ] M:

<
Il
—

I
F

n
For identical reasons m3# Y. Iz = A\ and as a consequence:
i=1

v := (m1 37 ik )1<i k<n € TE(2, A).
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Finally, we have:

A) < (Zk: fJ.dik(CC,Z)p d%‘k(iﬂ,y,z)>%

(Z Jff ik (z, 2)P ALk (x, v, 2 )) by definition of 4 and TI

(Z};Jff i (@, y) + dik(y, 2))" dHijk(l',y,Z))% by (MTI)
< ([ st ams ) (St ams >)
(% ﬂ i ()P Aoy ( 2) (%H ik (y, 2)P A% (2,9, 2 )>_ by (13)

;

(o) (3]

:WP( K, )+WP( a>‘)
O

Theorem 5.1. Let X be a Polish space. Letp € [1,00). Let (d;j) be n? functions
on X x X wvalued in Ry such that:

[1] V(i,5) € [1,n]?, d;j is symmetric,

[2] (MTI) is satisfied,

[3] Vi€ [1,n],Vx e X,d;i(z,z) =0.

[4] ¥ (i,5) € [1,n]?,i # j,¥(z,y) € X x Y,d;;(z,y) # 0.

W, is a distance on 'P;L(X

Example 5.3. Coming back to the Example 2.2, let us fix all weights

and given z,y € X", we define the distance wy(x,y) between them by

) Ouy Oy,
'(Up(.’B, y) = WZD ﬁ ; :
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According to 2.2, w,, is given by

3

. 1 & 1

wy(z,y)” = inf Z tijdij(wi,y;)P t € Mu(R), D tu = - Z tij = -
(i,9)el1,n]? =1 =1

= — min Z tijdij(xi, y;)P, t bistochastic matrix n x n » ,

" (i-)<lL,n]?
the last equality providing from classical arguments of linear programing. This
example show a way to define new distances on a finite product of spaces using
n? distances.

6 Conclusion

The aim of this paper was to present a new point of view in vector-valued
optimal transportation. Writing this paper, we discover that in [18] that these
authors suggest to use the same idea to treat this problem and allowed mixing
of species. Their point of view follows a dynamical formulation of optimal
transportation (presented in [4]) while in our paper, Kantorovitch’s point of
view of optimal transportation was our approach angle.

Concerning this approach angle, let us make another small digression about
Monge’s optimal transportation’s problem and present it. Given two proba-
bilities u and v we are interrested in knowing if the optimal tranference plan
between p and v split mass i.e if (formaly) the support of v* is included in a
function’s graph, say T*. A natural question here is if there exists a similar
problem associated to (K P)? An possible answer is given v € II(u,v) we de-
clare that v has a Monge's form if for all (4, ),7;; is included in a function’s
graph say T;;. The main problem here is given (T3;), it is not possible to build
the associated ~;;. Indeed, the knowledge of (T;;) does not include which parts
of p; is transported into v; or in other words we have still to fix (f;;) and (gi;).
This remark makes hard to use only entropic relaxations (see [19]) to solve our
problem since the main data to find optimal transference plan is to find these

(fij) and (gi;).
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