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OPTIMAL TRANSPORTATION OF

VECTOR-VALUED MEASURES

Xavier Bacon
∗†

Abstract

Given two n-dimensional measures µ and ν on Polish spaces, we pro-

pose an optimal transportation’s formulation, inspired by classical Kan-

torovitch’s formulation in the scalar case. In particular, we established

a strong duality result and as a consequence, optimality conditions are

investigated. Wasserstein’s metrics induced by our formulation are also

investigated.

Key Words: Optimal Transport, Calculus of variations, Wasserstein dis-
tance.

1 Introduction and notations

1.1 Introduction

Starting from the article of G. Monge [1], many mathematical formulations
of optimal transportation have been offered ([2], [3] and [4]). In Monge’s formu-
lation, given two Polish spaces X and Y , if µ (resp. ν) is a Borelian probability
on X (resp. Y ) and if c : X ˆY Ñ R, then the Monge’s formulation consists on
a minimization of the total cost among all Borelian maps which push forward
µ to ν, more precisely for T a Borelian function between X and Y and m a
positive measure on X , T#µ stands for the push forward measure which is the
measure on Y defined for all measurable set B by T#µpBq :“ µ

“

T´1pBq
‰

. Let
Mpµ, νq be the set of such maps, Monge transportation problem is then

Mpµ, νq :“ inf

"
ż

X

c rx, T pxqs dµpxq : T P Mpµ, νq

*

. (1)

In the middle of the 20th century, L. Kantorovitch proposed a relaxation
of (1) in [2] by allowing mass splitting. Thinking of µ and ν as piles of sands,
grains located at x can be sent at different places at the same time. Formally,
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Kantorovitch’s problem consists on minimizing a new total cost among all trans-
ference plans γ P Πpµ, νq, where Πpµ, νq is the set of couplings between µ and
ν i.e. γ P Πpµ, νq if for all A Borelian subset of X , γpA ˆ Y q “ µpAq and for
all B Borelian subset of Y , γpX ˆ Bq “ νpBq. Kantorovitch’s transportation
problem is then

Kpµ, νq :“ inf

$

&

%

ĳ

XˆX

cpx, yqdγpx, yq : γ P Πpµ, νq

,

.

-

(2)

and for reasons that are discussed below, (2) is more accurate to extend the
classical theory to vector-valued measures.

When c is the power of a distance, these two problems induce a metric on
the set of probabilities, called here Wasserstein metric (see [5], [6], [7] or [8]). In
the recent years, extensions of optimal transportation to more general objects
have been proposed, such as multimarginal transportation ([9],[10]) or density
functional theory ([11]). Notice also that optimal transportation of matricial
and tensorial measures (see [12], [13]) or vector-valued densities in [14] have
already been investigated.

In the present paper, we propose an extension to vector-valued measures.
This one is deeply based on Kantorovich’s formulation of scalar optimal trans-
portation (section 2). Given two probabilities µ and ν and two decompositions
of them (say) µ “ µ1 ` ¨ ¨ ¨ ` µn and ν “ ν1 ` ¨ ¨ ¨ ` νn, more than a transporta-
tion between µ and ν, we are interested in a description of a transportation
between these two decompositions. A naive strategy would be to study the n
subproblems of classical optimal transportation between µi and νi for i P v1, nw,
assuming that for all i, µi and νi share the same mass. If this new transportation
problem leads to a metric, then the toplogy induced is the product one, due to
the independance of each phasis. This problem has been explored in [15],[16]
and more recently in [17]. To remove the independance of each phasis, we allow
transformation similarly as explored in [18]. Introducing n2 particular costs cij
and n2 particular transference plans γij which describe the transport of a piece
of µi into a piece of νj , we consider that the cost transportation to move dµipxq
to dνjpyq is cijpx, yqdγijpx, yq. Compatibility constraints are described by the
set Πpµ,νq where we ask that the n2 transport plans γij clear each µi and fill
each νj . The new minimization problem is given by

inf

$

’

&

’

%

ÿ

pi,jqPv1,nw2

ĳ

XˆY

cijpx, yqdγijpx, yq,γ P Π

¨

˚

˝

»

—

–

µ1

...
µn

fi

ffi

fl
,

»

—

–

ν1
...
νn

fi

ffi

fl

˛

‹

‚

,

/

.

/

-

.

In section 2, we give an existence result for this problem as well as vari-
ous examples. Then, following the shipper’s problem interpretation of optimal
transportation from L. Caffarelli (presented in [6]), we introduce a dual formu-
lation in section 3 and prove strong duality theorem. As a consequence of the
duality, optimality conditions for primal-dual optimizers are derived. Finally,
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assuming that costs pcijq are all the same power of different distances, a metric
on vector-valued measures is presented in section 5.

1.2 Notations

In this article, we differenciate vectorial objects from scalar ones by using
bold type character like Π for the first one and non-bold type character like Π

for the latter one.

• Given X a measurable space, PpXq stands for the set of probability mea-
sures on X and for all n P N

˚, MnpXq (resp. MnˆnpXq) refers to the set
of vectorial measure on pX,X q valued in R

n (resp. in R
nˆn) meaning that

each coordinate is a signed measure. Mn
`pXq (resp. Mnˆn

` pXq) stands
for the subset where each coordinate is positive measure. Recall that for
T a measurable function between X and Y and m a positive measure on
X , T#m stands for the push forward measure which is the measure on Y
defined for all measurable set B by T#mpBq “ m

“

T´1pBq
‰

.

• Given X1 ˆ ¨ ¨ ¨ ˆ Xn a product space and k P v1, nw, πk denotes the
canonical projection on Xk i.e,

πk : X1 ˆ ¨ ¨ ¨ ˆXn ÝÑ Xk

px1, ¨ ¨ ¨ , xnq ÞÑ xk

and for l P v1, nw and l ą k, πk,l denotes the canonical projection on
Xk ˆXl i.e,

πk,l : X1 ˆ ¨ ¨ ¨ ˆXn ÝÑ Xk ˆXl

px1, ¨ ¨ ¨ , xnq ÞÑ pxk, xlq

• For A a borelian subset of R, LA stands for the Lebesgue measure on A.
If m,M P M`pXq satisfy for all A P X ,mpAq ď MpAq, m is called a
submeasure of M and this property will be written m ď M . Note that
being a submeasure of M implies the absolute continuity w.r.t. M .

• Given pX, T q a topological space and pY, dq a metric space, CbpX,Y q refers
to the set of bounded continuous functions between pX, T q and pY, dq.

• Given pi, jq P v1, nw2, Eij refers to the matrix nˆn whose coordinates are
all equal to 0 except pi, jq which is equal to 1.

• Given a set X and S a subset of X , ιS denotes for the function equals to
0 on S and `8 on its complementary.

• The notation ^ will be used to denote the minimum of two reals, and _
for the maximum.
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2 Kantorovitch’s problem

2.1 Presentation

In the remainder of the paper, n will denote an element of N
˚.

Definition 2.1. Given pX,X q a mesurable space, PnpXq denotes the set of
admissible distributions of n species defined by

PnpXq “

$

’

&

’

%

m “

»

—

–

m1

...
mn

fi

ffi

fl
P Mn

`pXq :
n
ÿ

i“1

mi P PpXq

,

/

.

/

-

.

It is straightforward that PnpXq is a non-empty convex subset of MnpXq.
Inspired by Kantorovitch’s formulation of optimal transportation, an ex-

tension of the notion of transference plan between two scalar measures is now
proposed. For a well understanding of the next definition, let us make a short
digression and present our model. Given pX,X q and pY,Yq two measurable
spaces and µ P PnpXq,ν P PnpY q two distributions of n species, since the
total amount of each specy is not equal transformations between species are
allowed. Given pi, jq P v1, nw2, the ”transportation” (with ”transformation” if
i ‰ j) of a piece of µi into a piece of νj is described by a transference plan
γij P M`pX ˆ Y q. Constraints on γ “ pγijq1ďi,jďn are given by

pClear µq @i P v1, nw,@A P X , µipAq “
n
ÿ

k“1

γikpA ˆ Y q

pFill νq @j P v1, nw,@B P Y, νjpBq “
n
ÿ

k“1

γkjpX ˆBq,

or in other words, for all pi, jq P v1, nw2,
řn
k“1

γik has µi as first marginal and
řn

k“1
γkj has νj as second marginal. This naturally leads to the following defi-

nition.

Definition 2.2. Given µ P PnpXq and ν P PnpY q, Πpµ,νq denotes the set of
transference plans between µ and ν defined by

Πpµ,νq “

$

’

’

’

’

&

’

’

’

’

%

µi “ π1#

ˆ

n
ř

k“1

γik

˙

γ P Mnˆn
` pX ˆ Y q : @pi, jq P v1, nw2,

νj “ π2#

ˆ

n
ř

k“1

γkj

˙

,

/

/

/

/

.

/

/

/

/

-

.

Remark 2.1. According to the Definition 2.2, every γ P Πpµ,νq induces a
canonical transference plan (for n “ 1, the two definitions of transference plan
are the same) between

řn

i“1
µi and

řn

j“1
νj given by

řn

i,j“1
γij . However the

converse is not true since given γ P Π
´

řn

i“1
µi,

řn

j“1
νj

¯

and px, yq P X ˆ Y ,
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there is still a choice to make: is the first specy sent into the first or the second
one or both? And in what proportions? Let us give a short example to clarify
this remark. Taking

µ “

„

µ1

µ2



“
1

2

„

Lr´1,0s

Lr´1,0s



,ν “

„

ν1
ν2



“
1

2

„

Lr0,1s

Lr0,1s



and writting τ1 : x Ñ x ` 1, it is known that γ “ pI, τ1q# pµ1 ` µ2q is a
transference plan between Lr´1,0s “ µ1 ` µ2 and Lr0,1s “ ν1 ` ν2. Given a such
γ, µ1 can be sent towards ν1, or towards ν2. A mix is even possible and µ1

can be sent towards 1r0, 1
2

s dν1 `1r 1

2
,1s dν2. In other words, the following matrix

measures are transference plans,

„

pI, τ1q#µ1 0

0 pI, τ1q#µ2



,

„

0 pI, τ1q#µ1

pI, τ1q#µ2 0



,

1

2

„

pI, τ1q#µ1 pI, τ1q#µ1

pI, τ1q#µ2 pI, τ1q#µ2



.

We also introduce matrix-valued cost c as a function from XˆY Ñ MnpRq,
integrable w.r.t. γ or positive measurable. The associated total cost is given by
the following definition.

Definition 2.3. Given γ P Πpµ,νq and a cost matrix c, Kpγq denotes the total
transportation cost according to γ defined by

Kpγq “
ÿ

pi,jqPv1,nw2

ĳ

XˆY

cijpx, yqdγijpx, yq.

The Kantorovich’s transportation problem between two distributions of n species
µ and ν for c is given by

inf tKpγq : γ P Πpµ,νqu “: Kpµ,νq P r´8,`8s (KP)

Example 2.1. Note that if cij “ c for all pi, jq P v1, nw2 then (KP) shares the
same value as the scalar optimal transportation between

řn

i“1
µi and

řn

j“1
νj

for the cost c. The most simple example of non trivial matrix cost is given by
the following one: let c be a scalar cost and κ be a real and define the following
matrix cost:

@px, yq P X ˆ Y, cpx, yq “

„

cpx, yq cpx, yq ` κ

cpx, yq ` κ cpx, yq



.

In other words, a constant cost is requiered for any transformation. See the
example 3.1 below for a study of this special cost.
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Example 2.2. Let p, q P ∆n :“
 

x P R
n
`,

řn

i“1
xi “ 1

(

and x,y P Xn. Define

µ “

»

—

–

p1δx1

...
pnδxn

fi

ffi

fl
,ν “

»

—

–

q1δy1
...

qnδyn

fi

ffi

fl
.

Let us first notice that for all pi, jq, since suppp
řn

l“1
γilq Ď supppµiq ˆ Y and

suppp
řn

l“1
γljq Ď X ˆ supppνjq then supppγijq Ď pxi, yjq and hence γij “

tijδpxi,yjq for some tij P r0, 1s. Constraints on γ give us that for all pi, jq P
v1, nw2,

řn

l“1
til “ pi and

řn

l“1
tlj “ qj and finally

Kpγq “
ÿ

pi,jqPv1,nw2

tijcijpxi, yjq,

(KP) becomes in that case

inf

$

&

%

ÿ

pi,jqPv1,nw2

tijcijpxi, yjq, t P MnpRq :
n
ÿ

l“1

til “ pi,

n
ÿ

l“1

tlj “ qj

,

.

-

which reduces to the discret optimal transportation.

2.2 Existence of a minimizer

Let X and Y be two Polish spaces. In this subsection, we prove an existence
result for the problem (KP). Arguments used to establish it are the same as in
scalar case (see [6] or [7] for instance). Let us first gather the main structural
properties of problem (KP).

Lemma 2.1. Given µ P PnpXq, ν P PnpY q and c a cost matrix, following
assertions are satisfied:

[1] Πpµ,νq is a non-empty convex subset of MnˆnpX ˆ Y q.
[2] Πpµ,νq is a weakly sequentially compact 1 subset of MnˆnpX ˆ Y q.
[3] If for all pi, jq P v1, nw2, cij is bounded from below, then K : Πpµ,νq Ñ

R Y t`8u is bounded from below.
[4] If for all pi, jq P v1, nw2, cij is l.s.c. and bounded from below then K :

Πpµ,νq Ñ R Y t`8u is weakly l.s.c. with respect to the tight convergence.

Proof. [1] Convexity is clear and it is easy to check that pµi b νjqpi,jqPv1,nw2 P

Πpµ,νq.
[2] Let pγkqkPN P Πpµ,νqN and pi, jq P v1, nw2. We claim that pγkijqkPN is tight.

Indeed, let ε P R
˚
` and KX (resp. KY q a compact of X (resp. Y ) such that2

@i P v1, nw, µipXzKXq ď ε (resp. @j P v1, nw, νjpY zKY q ď ε). (3)

1w.r.t. the test function space CbpX ˆ Y,Rnˆnq.
2These two compacts exist: all µi are finite measure on Polish spaces then it exists Ki

X

verifying these inequalities and then we just have to take union of them.
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Let k P N, following inequalities are satisfied,

γkij rpX ˆ Y qzpKX ˆKY qs ď γkijrpXzKXq ˆ Y qs ` γkijrX ˆ pY zKY qs

ď
n
ÿ

l“1

γkilrpXzKXq ˆ Y qs `
n
ÿ

l̃“1

γk
l̃j

rX ˆ pY zKY qs

“ µipXzKXq ` νjpY zKY q since γ P Πpµ,νq

ď 2ε.

This proves the claim and thanks to Prokhorov theorem, there exists a non-
negative finite measure on XˆY, γ8

ij and a subsequence of pγkijqkPN (still written

pγkijqkPN) such as pγkijqkPN tightly converges towards γ8
ij . In order to conclude,

we only have to check that γ8 P Γpµ,νq Let φ P CbpX ˆ Y,Rq and notice that
for all i P v1, nw and k P N,

ż

X

φpxqdµipxq “
n
ÿ

l“1

ĳ

XˆY

φpxqdγkilpx, yq Ñ
n
ÿ

l“1

ĳ

XˆY

φpxqdγ8
il px, yq

.
[3] Straightforward.
[4] Let pγkqkPN P Πpµ,νqN and γ8 P Πpµ,νq such that pγkqkPN tightly con-
verges towards γ8 in that for all pi, jq P v1, nw2, pγkijqkPN weakly converges in
duality with Cb towards γ8

ij . Then, by lower semi-continuity of γij ÞÑă γij , cij ą

(see [7], Lemma 1.6), for all pi, jq P v1, ¨ ¨ ¨ , nw2,

ĳ

XˆY

cijpx, yqdγ8
ij px, yq ď lim inf

kÑ8

ĳ

XˆY

cijpx, yqdγkijpx, yq

and since sum of lim inf is less or equal to lim inf of sum, it ends the proof.

With these facts in hand, our main result easily follows.

Theorem 2.1. Given c a cost matrix such as for all pi, jq P v1, nw2, cij is
bounded from below and l.s.c., it exists γ P Πpµ,νq such as Kpγq “ Kpµ,νq.

Proof. This proof follows the classical direct method of calculus of variations.
Let pγkqkPN be a minimizing sequence for the problem pKP q i.e

@k P N,Kpγkq ď Kpµ,νq `
1

k
.

Compactness of Πpµ,νq according to Lemma 2.1 implies that pγkqkPN can be
assumed to converge towards (say) γ8. Lower semi-continuity implies that

Kpγ8q ď lim inf
k ÞÑ8

Kpγkq ď Kpµ,νq,

and then γ8 is a minimum.
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3 Duality

3.1 Presentation

In this section, we look for a dual formulation of (KP). In order to find it,
consider the following situation3: mines full of different metals (n kinds) and
refineries (n kinds) are distributed in space. For each kind of metal corresponds
a kind of refinery, for instance a kind refinery for iron, a kind of refinery for
gold etc. On the one hand we want to minimize the travel cost i.e. minimize
the associated Kantorovich’s problem, on the other hand a character suggests
to supervise the travelling operation for us and propose that contract: for each
ton of metal i located in x, its price will be ϕipxq to extract it and for each
ton of metal j located in y its price will be ψjpyq to drop it off. To guarantee
our interrest, its contraints will be that for all pi, jq and px, yq, ϕipxq ` ψjpyq ď
cijpx, yq. All these considerations suggest to give following definitions.

Definition 3.1. Given c a cost matrix, ∆pcq denotes the set of potential couples
for cost c defined by

∆pcq “

$

’

’

&

’

’

%

ϕi P CbpXq
„

ϕ

ψ



“

„

ϕ1 ¨ ¨ ¨ ϕn
ψ1 ¨ ¨ ¨ ψn



,@pi, jq P v1, nw2, ψj P CbpY q

ϕi ‘ ψj ď cij

,

/

/

.

/

/

-

and if there is no ambiguity on c, we will write ∆ instead of ∆pcq.

Definition 3.2. Given µ P PnpXq,ν P PnpY q, c a cost matrix and

„

ϕ

ψ



“
„

ϕ1 ¨ ¨ ¨ ϕn
ψ1 ¨ ¨ ¨ ψn



P ∆pcq, Dpϕ,ψq denotes the dual cost of

„

ϕ

ψ



defined by

Dpϕ,ψq “
n
ÿ

i“1

ż

X

ϕipxqdµipxq `
n
ÿ

j“1

ż

Y

ψjpyqdνjpyq. (4)

Finally, the dual transportation problem is given µ P PnpXq, ν P PnpY q and a
cost matrix c,

sup

"

Dpϕ,ψq :

„

ϕ

ψ



P ∆pcq

*

“: Dpµ, νq P r´8,`8s (DP)

We establish now a weak duality result.

Proposition 3.1. Given µ P PnpXq, ν P PnpY q, a cost matrix c,γ P Πpµ,νq

and

„

ϕ

ψ



P ∆pcq, the following inequality is satisfied,

Dpϕ,ψq ď Kpγq.

3This interpretation is due to L. Caffareli in scalar case, according to [6].
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Proof. Let γ P Πpµ,νq and

„

ϕ

ψ



P ∆pcq. Compute:

Dpϕ,ψq “
n
ÿ

i“1

ż

X

ϕi dµi `
n
ÿ

j“1

ż

Y

ψj dνj

“
n
ÿ

i“1

ĳ

XˆY

ϕi d

˜

n
ÿ

j“1

γij

¸

`
n
ÿ

j“1

ĳ

XˆY

ψj d

˜

n
ÿ

i“1

γij

¸

.

The last equality coming from the fact that γ P Πpµ,νq. And then,

Dpϕ,ψq ď
ÿ

pi,jqPv1,nw2

ĳ

XˆY

cij dγij since

„

ϕ

ψ



P ∆pcq

“ Kpγq.

That concludes the proof.

3.2 An extension of c-transformation

In order to prove that (DP) is attained, at least in compact case, we propose
an extension of the classical c-transform (see the recall below). First, we make
a short digression about modulus of continuity.

Definition 3.3. Given pX, dq a metric space and f : X Ñ R, a uniform modulus
of continuity for f according to d is a function ω : R` Ñ R` such that the
following conditions are satisfied:

[1] lim
tÑ0`

ωptq “ 0

[2] @px, x1q P X2 : |fpxq ´ fpx1q| ď ω rdpx, x1qs.

Lemma 3.1. If f admits a uniform modulus of continuity ωf and g admits a
uniform modulus of continuity ωg then ωf ` ωg is a uniform modulus of conti-
nuity for minpf, gq.

Proof. Let px, x1q P X2, we have

|minpf, gqpxq ´ minpf, gqpx1q|

ď
|fpxq ´ fpx1q| ` |gpxq ´ gpx1q|

2
`

||fpx1q ´ gpx1q| ´ |fpxq ´ gpxq||

2

ď
ωf rdpx, x1qs ` ωgrdpx, x1qs

2
`

|fpx1q ´ fpxq ` gpxq ´ gpx1q|

2

ď ωf rdpx, x1qs ` ωgrdpx, x1qs.

This proves the lemma.
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Recall that when f is a function between X (resp. Y ) and R Y t´8u and c
a cost function, we can define its c-transform f c (resp. c-transform) by:

f c : Y Ñ R Y t´8,`8u
y ÞÑ inf tcpx, yq ´ fpxq : x P Xu

ˆ

resp.
f c : X Ñ R Y t´8,`8u

x ÞÑ inf tcpx, yq ´ fpyq : y P Y u

˙

We introduce a new transformation and to motivate it just remark than in
our case, we have 2n potentials and n2 inequalities in the dual formulation. A
naive idea would be to first subsitute ϕ1 by ψc11

1
but there is no guarantee that

our new couple of potentials

„

ψc11
1

ϕ2 ¨ ¨ ¨ ϕn
ψ1 ¨ ¨ ¨ ¨ ¨ ¨ ψn



will still be in ∆pcq. The

following definition answers this problem.

Definition 3.4. Given f “ pf1, ¨ ¨ ¨ , fnq : X Ñ pRYt´8uqn and c “ pc1, ¨ ¨ ¨ , cnq :
X ˆ Y Ñ pR Y t`8uqn, fc (resp. f c̄) denotes the c-transform of f (resp. c̄-
transform of f) defined by

@y P Y : fcpyq “ min pf c1
1

pyq, ¨ ¨ ¨ , f cnn pyqq
`

resp. @x P X : f c̄pxq “ min
`

f c̄1
1

pxq, ¨ ¨ ¨ , f c̄nn pxq
˘˘

All benefits of this transformation is contained in the next proposition.

Proposition 3.2. Let f “ pf1, ¨ ¨ ¨ , fnq : X Ñ pRYt´8uqn and c “ pc1, ¨ ¨ ¨ , cnq :
X ˆ Y Ñ pR Y t`8uqn, then

[1] Following inequalities are satisfied,

@i P v1, nw, fi ‘ fc ď ci (5)

@j P v1, nw,f c̄ ‘ fj ď cj (6)

[2] If h : Y Ñ R Y t´8u is such that for all i P v1, nw, fi ‘ h ď ci then
h ď fc. If h : X Ñ R Y t´8u is such that for all j P v1, nw, h ‘ gj ď cj then
h ď f c̄.

Proof. [1] Let pi, jq P v1, nw2 and px, yq P X ˆ Y . Since fipxq ` f
cj
j pyq ď cipx, yq

and fc ď f cii the first inequality is deduced and note that the second inequality
can be proved following the same way.
[2] If such a function exists, we deduce from fi ‘ h ď ci that for all px, yq P
XˆY, hpyq ď cipx, yq´fipxq, then take infimum with respect to x and arbitrary
on i concludes for the first inequality. The same proof also works for the second
inequality.

We will show next that this process is a natural way to improve the dual cost
while staying in the constraint ∆pcq, at least in compact case and continuous
costs. Moreover, it provides a common uniform modulus of continuity for all
the potentials.
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Lemma 3.2. Let X,Y two compact metric spaces, c a continuous cost matrix
and pϕ,ψq P ∆pcq. It exists pϕ,ψq P ∆pcq such that

[1] Dpϕ,ψq ď Dpϕ,ψq.
[2] ϕ1, ¨ ¨ ¨ , ϕn, ψ1, ¨ ¨ ¨ , ψn´1 and ψn admit a common uniform modulus of

continuity which depends only on c.

Proof. First, make the following substitutions:

@j P v1, nw : ψj Ð ϕpc1j ,¨¨¨ ,cnjq :“ ψj ,

then, thanks to Proposition 3.2, pϕ,ψq P ∆pcq and Dpϕ,ψq ď Dpϕ,ψq. De-

noting ωcij a uniform modulus of continuity of cij for pi, jq P v1, nw2, ωcij is also
a uniform modulus of continuity of ϕ

cij
i according to [7] (Box. 1.8). Thanks to

Lemma 3.1, we conclude that ωψj
“ ωc1j ` ¨ ¨ ¨ ` ωcnj

is a uniform modulus of

continuity of ψj . Then, make the following substitutions:

@i P v1, nw : ϕi Ð ψpci1,¨¨¨ ,cinq :“ ϕi

and of course the new couple of potentials is still in ∆pcq and the dual cost is
increased. To conclude, we just have to check that

ř

1ďi,jďn ωcij is a common
uniform modulus of continuity for pϕ,ψq, which is clear.

Example 3.1. Coming back to the example 2.1, let us compute this new c-
transform to reduce the problem. Fix κ to be strictly non-negative and assume
that X “ Y and c is symetric (then, c-transform is equivalent to c-transform).
Constraints of (DP) are given by the following system:

$

’

’

’

&

’

’

’

%

ϕ1pxq ` ψ1pyq ď cpx, yq

ϕ1pxq ` ψ2pyq ď cpx, yq ` κ

ϕ2pxq ` ψ1pyq ď cpx, yq ` κ

ϕ2pxq ` ψ2pyq ď cpx, yq

First step: it is easy to check that:

pf1, f2qc,c`κ “ rf1 ^ pf2 ´ κqsc

pf1, f2qc`κ,c “ rpf1 ´ κq ^ f2s
c
,

then make the following substitutions:

ψ1 Ð pϕ1, ϕ2qc,c`κ “ rϕ1 ^ pϕ2 ´ κqsc “: ψ̃1

ψ2 Ð pϕ1, ϕ2qc`κ,c “ rpϕ1 ´ κq ^ ϕ2s
c

“: ψ̃2

11



Second step: following the proof below, we make the following substitutions:

ϕ1 Ð pψ̃1, ψ̃2qc,c`κ “
”

ψ̃1 ^ pψ̃2 ´ κq
ıc

“ ψ̃1

c
_ pψ̃2 ´ κqc since psup

α
fαqc “ inf

α
f cα

“ rϕ1 ^ pϕ2 ´ κqs
cc

_ prpϕ1 ´ κq ^ ϕ2s ´ κqcc

“ rϕ1 ^ pϕ2 ´ κqscc _ rpϕ1 ´ 2κq ^ pϕ2 ´ κqscc

“ rϕ1 ^ pϕ2 ´ κqs
cc

since if f ď g then gc ď f c

“ ψ̃1

c

ϕ2 Ð pψ̃1, ψ̃2qc`κ,c “ ψ̃2

c
for the same reasons.

When c “ d is a distance, according to [7] (Proposition 3.1):
$

’

’

’

’

&

’

’

’

’

%

ψ̃1pyq ´ ψ̃1pxq ď dpx, yq

ψ̃2pyq ´ ψ̃1pxq ď dpx, yq ` κ

ψ̃1pyq ´ ψ̃2pxq ď dpx, yq ` κ

ψ̃2pyq ´ ψ̃2pxq ď dpx, yq,

which is equivalent to the following system, thanks to the symmetry of d:
$

’

’

&

’

’

%

|ψ̃1pxq ´ ψ̃1pyq| ď dpx, yq

|ψ̃1pxq ´ ψ̃2pyq| ď dpx, yq ` κ

|ψ̃2pxq ´ ψ̃2pyq| ď dpx, yq

i.e. pψ̃1, ψ̃2q are solution to the system below if and only if they are 1-Lipschitz
w.r.t. to d and satisfy }ψ̃1 ´ ψ̃2}8 ď κ.

3.3 Existence of a maximizer

Theorem 3.1. Given X et Y two compact metric spaces, µ P PnpXq, ν P
PnpY q and c a continuous cost matrix, there exists pϕ,ψq P ∆pcq such as
Dpµ,νq “ Dpϕ,ψq.

Proof. The constraint set is non-empty since c is bounded by below (continuous
on compact). Let:

„

ϕk

ψk



kPN

“

„

ϕk
1

¨ ¨ ¨ ϕkn
ψk
1

¨ ¨ ¨ ψkn



kPN

be a maximizing sequence for (DP). According to Lemma 3.2, we may assume
that our 2n sequences share a common uniform modulus of continuity. We now
prove that the sequence is uniformly bounded with respect to n. Indeed, setting
for all k P N:

mk :“ min

„

inf
xPX

ϕk
1
pxq, ¨ ¨ ¨ , inf

xPX
ϕknpxq



,
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and since mk is finite, we can substitute:

@i P v1, ¨ ¨ ¨ , nw : ϕki Ð ϕki ´mk still written ϕki

@j P v1, ¨ ¨ ¨ , nw : ψkj Ð ψkj `mk still written ψkj ,

and these new potentials are still admissible, have the same dual cost and for
all i P v1, nw, k P N, ϕki ě 0. Therefore we have:

@i P v1, nw, k P N : ϕki ď ω rdiampXqs ,

which concludes the case of ϕ. Next, let us make new following substitutions:

@j P v1, nw : ψj Ð ϕpc1j ,¨¨¨ ,cnjq still written ψj .

We have for all y P Y, j P v1, nw and k P N,

min pc1j , ¨ ¨ ¨ cnjq ´ ω rdiampXqs

ď min

„

inf
xPX

c1jpx, yq ´ ϕk1pxq, ¨ ¨ ¨ , inf
xPX

cnjpx, yq ´ ϕknpxq



:“ ψkj pyq

and ψkj pyq :“ min

„

inf
xPX

c1jpx, yq ´ ϕk
1
pxq, ¨ ¨ ¨ , inf

xPX
cnjpx, yq ´ ϕknpxq



ď max pc1j , ¨ ¨ ¨ , cnjq ,

which leads to the conclusion on ψ. Finally, the Ascoli-Arzelà theorem applied
to each sequence provides the existence of a continuous couple

„

ϕ8

ψ8



“

„

ϕ8
1

¨ ¨ ¨ ϕ8
n

ψ8
1

¨ ¨ ¨ ψ8
n



which belong to ∆pcq thanks to pointwise convergence and Dpϕ8,ψ8q “
Dpµ,νq thanks to uniform convergence on finite measure sets.

3.4 Strong duality

We establish a strong duality result. The proof follows the one of strong duality
theorem for scalar optimal transportation proposed by C. Jimenez (see [7]).

Definition 3.5. Given µ P PnpXq, ν P PnpY q and c a cost matrix, we denote
by H the value function of the perturbated dual problem, i.e.

@ε P CpX ˆ Y,Rnˆnq, Hpεq “ sup

"

Dpϕ,ψq :

„

ϕ

ψ



P ∆pc ´ εq

*

Lemma 3.3. Let X and Y two metric compact spaces. H satisfy the following
properties:

[1] H is concave.
[2] Suppose that c is continuous, then H is u.s.c. with respect to the uniform

norm.
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Proof. [1] Let t P r0, 1s, ε0 P CpX ˆ Y,Rnˆnq (resp. ε1 P CpX ˆ Y,Rnˆnq) and
let pϕ0,ψ0q (resp. pϕ1,ψ1qq be optimal in (DP) associated to c ´ ε0 (resp.
to c ´ ε1). Note that they exist thanks to the existence result below. Define
εt “ p1 ´ tqε0 ` tε1,ϕt “ p1 ´ tqϕ0 ` tϕ1,ψt “ p1 ´ tqψ0 ` tψ1. Therefore
pϕt,ψtq is admissible for the dual problem associated to c ´ εt and then by
definition of H we have

Hpεtq ě Dpϕt,ψtq “ p1 ´ tqHpε0q ` tHpε1q

And the conclusion follows.
[2] Let pεkqkPN P CpX ˆ Y,RnˆnqN and ε8 P CpX ˆ Y,Rnˆnq such that for

all pi, jq P v1, nw2, εkij
}¨}8

ÝÑ ε8
ij . Let pεkqkPN a subsequence pεklqlPN satisfy-

ing for all pi, jq P v1, nw2, lim sup
k

Hpεkijq “ lim
l
Hpεklij q. Ascoli-Arzelà theorem

ensures that for all pi, jq P v1, nw2, pεklij qlPN are equicontinuous and uniformly
bounded with respect to l therefore chose the corresponding optimal potentials
pϕkl ,ψklq equicontinuous and uniformly bounded in l, thanks to the Ascoli-
Arzelà theorem again, there is a uniform convergence towards (say) pϕ8,ψ8q
up to an extraction, therefore thanks to pointwise convergence there is for all
pi, jq P v1, nw2, ϕ8

i ‘ ψ8
j ď cij ´ εij and so:

Hpεq ě Dpϕ8,ψ8q “ lim
l
Hpεklq “ lim sup

k

Hpεkq.

This concludes the proof.

Finally, the strong duality theorem follows.

Theorem 3.2. Suppose that X and Y are both metric compact spaces and that
c is continuous, then for all pµ,νq P PnpXq ˆ PnpY q,Kpµ,νq “ Dpµ,νq.

Proof. Let pµ,νq P PnpXq ˆ PnpY q, since p´Hq is convex and l.s.c. and ac-
cording to the Fenchel-Moreau theorem, we have:

Dpµ,νq “ Hp0q

“ ´r´Hp0qs

“ ´r´Hs˚˚p0q

“ ´ sup
γPMnˆnpXˆY q

ă 0,γ ą ´r´Hs˚pγq

“ inf
γPMnˆnpXˆY q

r´Hs˚pγq.

Next, we compute for all γ P MnˆnpX ˆ Y q,

r´Hs˚pγq “ sup
ε

¨

˝

ÿ

1ďi,jďn

ĳ

XˆY

εij dγij ` sup
ϕ‘ψďc´ε

n
ÿ

i“1

ż

X

ϕi dµi `
n
ÿ

j“1

ż

Y

ψj dνj

˛

‚

“ sup
ε

¨

˝ sup
ϕ‘ψďc´ε

»

–

ÿ

1ďi,jďn

ĳ

XˆY

εij dγij `
n
ÿ

i“1

ż

X

ϕi dµi `
n
ÿ

j“1

ż

Y

ψj dνj

fi

fl

˛

‚.
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If it exists pi0, j0q such as γi0j0 R M`pXˆY q and ε0i0j0 such as
ť

XˆY
ε0i0j0dγi0j0 ą

0, then take pεki0j0qkPN˚ such as εki0j0 “ ci0j0 `kε0i0j0 for k P N
˚ and take ϕi0 “ 0

and ψj0 “ 0. Then putting all the other potentials equals at the value 0 and
find pεijq such that all the contraints are still satisfied (c is bounded), we get
r´Hs˚pγq “ `8 if γ R Mnˆn

` pX ˆ Y q. Now, suppose that γ P Mnˆn
` pX ˆ Y q,

when pϕ,ψq are fixed, we are interested in taking the largest εij possible for
every pi, jq P v1, nw2, that is εij “ cij ´ ϕi ´ ψj and we get

r´Hs˚pγq “ sup
ϕ‘ψďC´ε

ÿ

1ďi,jďn

ĳ

XˆY

cij ´ ϕi ´ ψj dγij

`
n
ÿ

i“1

ż

X

ϕi dµi `
n
ÿ

j“1

ż

Y

ψj dνj

“ sup
pϕ,ψq

Kpγq `

¨

˝

n
ÿ

i“1

ż

X

ϕi dµi ´
ÿ

1ďi,jďn

ĳ

XˆY

ϕi dγij

˛

‚

`

¨

˝

n
ÿ

j“1

ż

Y

ψj dνj ´
ÿ

1ďi,jďn

ĳ

XˆY

ψj dγij

˛

‚

“ sup
pϕ,ψq

Kpγq `
n
ÿ

i“1

¨

˝

ż

X

ϕi dµi ´

ĳ

XˆY

ϕi d

n
ÿ

j“1

γij

˛

‚

`
n
ÿ

j“1

¨

˝

ż

Y

ψj dνj ´

ĳ

XˆY

ψj d

n
ÿ

i“1

γij

˛

‚

“ ιΠpµ,νqpγq according to [7], Lemma 1.45.

This ends the proof.

4 Optimality conditions

In this subsection, X and Y are two metric compact spaces. As a direct
consequence of Theorem 3.2, we deduce optimality contraints linking (KP) and
(DP).

Proposition 4.1. Given γ P Πpµ,νq and pϕ,ψq P ∆pcq, the following asser-
tions are equivalent:

[1] γ is optimal in (KP) and pϕ,ψq is optimal in (DP).
[2] @pi, jq, ϕi ‘ ψj “ cij γij-a.e.

Proof. If [1] is satisfied, according to Theorem 3.2, Kpγq “ Dpϕ,ψq. We then
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compute Dpϕ,ψq as a function of γ.

Dpϕ,ψq : “
n
ÿ

i“1

ż

X

ϕipxqdµipxq `
n
ÿ

j“1

ż

Y

ψjpxqdνjpxq

“
ÿ

1ďi,jďn

ĳ

XˆY

ϕipxqdγijpx, yq `
ÿ

1ďi,jďn

ĳ

XˆY

ψjpxqdγijpx, yq

“
ÿ

1ďi,jďn

ĳ

XˆY

rϕipxq ` ψjpyqs dγijpx, yq.

Comparing the latter expression with Kpγq gives

0 “ Kpγq ´Dpϕ,ψq

“
ÿ

ij

ĳ

XˆY

pcijpx, yq ´ rϕipxq ` ψjpyqsq dγijpx, yq.

The conclusion follows from the fact that pϕ,ψq P ∆pcq.
Conversely, if [2] is satisfied, it is clear that Kpγq “ Dpϕ,ψq which implies

that both γ and pϕ,ψq are optimal according to Proposition 3.1.

The result above is not surprising since any given γ P Πpµ,νq induces n2 scalar

optimal transportation problems between each marginals (say) π1#γij :“ fijdµi
and π2#γij :“ gijdνj

inf

$

&

%

ĳ

XˆY

cijpx, yqdγijpx, yq : γij P Πpfijdµi, gijdνjq

,

.

-

, (KPij)

and looking at contraints in vectorial Kantorovitch’s problem, it is easy to see
that γ has to be optimal in every subproblems (KPij) to be optimal between
µ and ν (if not, take a better one and compare the total cost, which is nothing
less than another proof of the result above).

5 Induced metrics

In this section, we take X “ Y a Polish space. We investigate how to extend
the well-known Wasserstein distance and answer the question ”does the problem
(KP) define a distance on the space PnpXq?”.

Let pdijqpi,jqPv1,nw2 be n2 finite, symmetric and non negative functions onXˆ
X satisfying the triangle inequality (we do not assume that they are distances).
Then let p P r1,8q, x0 P X and define

Pnp pXq “

"

m P PnpXq,@pi, jq P v1, nw2,

ż

X

d
p
ijpx0, xq ` d

p
jipx0, xqdmipxq ă 8

*

and notice that as in scalar case, this set does not depend on x0.
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Definition 5.1. Given µ,ν P Pnp pXq, the p-transportation distance between µ
and ν is defined by

Wppµ,νq “

˜

inf

#

ÿ

ij

ĳ

dijpx, yqp dγijpx, yq,γ P Πpµ,νq

+¸
1

p

:“ pKpµ,νqq
1

p .

The symmetry of Wp is clear provided the costs are symmetric themselves.
However, the fact that Wppµ,νq “ 0 implies that µ “ ν is never satisfied if all
costs are (power of) distances. In place of it, if Wppµ,νq “ 0 then

řn

i“1
µi “

řn
j“1

νj . In other words, Wp is pseudodistance in that case. To prevent that,
we add new hypothesis on pdijq described in the next proposition.

Proposition 5.1. Let pdijqpi,jqPv1,nw2 be n2 symetric finite non negative func-
tions on X ˆX satisfyong the triangle inequality. Assume moreover that for all
pi, jq P v1, nw2, i ‰ j, dij is strictly non negative and dii is a distance. Then for
all µ,ν P Pnp pXq, if Wppµ,νq “ 0 then µ “ ν.

Proof. Let µ,ν P Pnp pXq be such as Wppµ,νq “ 0 and let γ˚ be optimal in
(KP), then

0 “
n
ÿ

k“1

ĳ

X2

dkkpx, yqp dγ˚
kkpx, yq `

ÿ

i‰j

ĳ

X2

dijpx, yqp dγ˚
ijpx, yq

According to the strict positivity of non diagonal distances, for all i ‰ j, γ˚
ij “ 0

and then for all k P v1, nw, γ˚
kk is a transport plan between µk and νk. The proof

of Theorem 7.3. in [6] concludes.

However, without any other constraints on pdijq, the following example shows
that the triangle inequality fails.

Example 5.1. Let X “ R, n “ 2 and set:

µ “

„

δ0
0



,ν “

„

0

δ1



,λ “

„

δ2
0



Then set p “ 1, d11 “ | ¨ | and d12 “ d21 :“ dε the ε-discrete distance on R

(with ε P R
˚
`) defined by dεpx, yq “ ε if x “ y and 0 otherwise and an arbitrary

distance for d22. Clearly,

W1pµ,λq “ 2,W1pµ,νq “ W1pν,λq “ ε (7)

And these three numbers do not satisfy to triangle inequality as soon as ε is
smaller enough.

The main problem in the example above is the lack of comparison between
all pdijq. To give a everyday-life example, it could be more expansive to travel
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between Paris and Berlin using plane than to first travel between Paris and
Amsterdam using car and then going to Berlin from Amsterdam using train.
To avoid this phenomenon above, we add new constraints on pdijq:

@pi, j, kq P v1, nw3,@px, y, zq P X3, dikpx, zq ď dijpx, yq ` djkpy, zq (MTI)

and from now on we assume that these contraints are satisfied.

Remark 5.1. Note that pMTIq (for Mixed Triangle Inequalities) contain the
fact that all costs satisfy triangle inequality (take i “ j “ k) and if one of theses
inequalities is false for some px0, y0, z0q then one can exhibit a counterexample
to fail the triangle inequality on Wp similar to the (counter)Example 5.1 above.

Example 5.2. An easy way to construct objects that satisfy (MTI) is (and
then, we do not work on empty set) given a distance d on X and a non negative
scalar t (for transformation), dii “ d for all i and dij “ d ` t for all pi, jq with
i ‰ j.

Proposition 5.2. Let p P r1,8q and pdijqpi,jqPv1,nw2 be such that (MTI) are
satisfied. Then Wp satisfies the triangle inequality.

Proof. Let γ˚ “ pγ˚
ijq (resp. γ̃˚ “ pγ̃˚

jkq) be optimal4 between µ and ν (resp. ν

and λ). Let j P v1, nw and define for all i, k P v1, nw the marginals νi,Ðj :“ π2#γ
˚
ij

and ν
k,Ñ
j :“ π1#γ̃

˚
jk. These marginals are all submeasures of νj and then,

according to Radon-Nikodym theorem, we denote by f
i,Ð
j (resp. f

k,Ñ
j ) the

density of νi,Ðj (resp. νk,Ñj ) w.r.t. νj . Finally, define for each i, j, k P v1, nw the
following transference plans

γ˚
ijk is defined as the measure with density px, yq Ñ f

k,Ñ
j pyq w.r.t. γ˚

ij , (8)

γ̃˚
ijk is defined as the measure with density py, zq Ñ f

i,Ð
j pyq w.r.t. γ̃˚

jk, (9)

these definitions imply that

@pi, jq P v1, nw2, γ˚
ij “

n
ÿ

k“1

γ˚
ijk, (10)

@pj, kq P v1, nw2, γ̃˚
jk “

n
ÿ

i“1

γ̃˚
ijk, (11)

@pi, j, kq P v1, nw3, π2#γ
˚
ijk “ π1#γ̃

˚
ijk. (12)

4they exist according to 2.1, even if it is not necessary here: passing to supremum bound
aposteriori otherwise.
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To obtain the last equality, fix B a measurable subset of Y and compute

π2#γ
˚
ijkpBq “ γ˚

ijkpX ˆBq

“

ĳ

XˆB

f
k,Ñ
j pyqdγ˚

ijpx, yq by (8)

“

ż

B

f
k,Ñ
j pyqdνi,Ðj pyq by definition of νi,Ðj

“

ż

B

f
k,Ñ
j pyqf i,Ðj pyqdνjpyq by definition of f i,Ðj

“

ż

B

f
i,Ð
j pyqdνk,Ñj pyq by definition of fk,Ñj

“

ĳ

BˆZ

f
i,Ð
j pyqdγ̃˚

ijpy, zq by definition of νk,Ñj

“ π1#γ̃
˚
ijkpBq by (9).

Then, equalities (12) allow us to apply the Gluing Lemma (see [6], Lemma 7.6)
and guarantee the existence of Πijk a measure on X ˆ Y ˆ Z such that

π1,2#Πijk “ γ˚
ijk and π2,3#Πijk “ γ̃ijk.

We next define for all pi, kq P v1, nw2,Πik “
n
ř

j“1

Πijk and compute

π1#

n
ÿ

k“1

Πik “
n
ÿ

k“1

n
ÿ

j“1

π1#Πijk by definition

“
n
ÿ

k“1

n
ÿ

j“1

π1#γ
˚
ijk by (13)

“
n
ÿ

j“1

π1#

˜

n
ÿ

k“1

γ˚
ijk

¸

“
n
ÿ

j“1

π1#γ
˚
ij by (10)

“ µi.

For identical reasons π3#
n
ř

i“1

Πik “ λk and as a consequence:

γ :“ pπ1,3#Πikq1ďi,kďn P Πpµ,λq.
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Finally, we have:

Wppµ,λq ď

˜

ÿ

ik

ĳ

dikpx, zqp dγikpx, y, zq

¸
1

p

“

˜

ÿ

ijk

¡

dikpx, zqp dΠijkpx, y, zq

¸
1

p

by definition of γ and Π

ď

˜

ÿ

ijk

¡

pdijpx, yq ` djkpy, zqq
p
dΠijkpx, y, zq

¸
1

p

by (MTI)

ď

˜

ÿ

ijk

¡

dijpx, yqp dΠijkpx, y, zq

¸
1

p

`

˜

ÿ

ijk

¡

djkpy, zqp dΠijkpx, y, zq

¸
1

p

“

˜

ÿ

ijk

ĳ

dijpx, yqp dγ˚
ijkpx, zq

¸
1

p

`

˜

ÿ

ijk

ĳ

djkpy, zqp dγ̃˚
ijkpx, y, zq

¸
1

p

by (13)

“

˜

ÿ

ij

ĳ

dijpx, yqp dγ˚
ijpx, yq

¸
1

p

`

˜

ÿ

jk

ĳ

djkpy, zqp dγ̃˚
jkpy, zq

¸
1

p

“ Wppµ,νq `Wppν,λq.

Theorem 5.1. Let X be a Polish space. Let p P r1,8q. Let pdijq be n2 functions
on X ˆX valued in R` such that:

[1] @pi, jq P v1, nw2, dij is symmetric,
[2] (MTI) is satisfied,
[3] @i P v1, nw,@x P X, diipx, xq “ 0.
[4] @pi, jq P v1, nw2, i ‰ j,@px, yq P X ˆ Y, dijpx, yq ‰ 0.

Wp is a distance on Pnp pXq.

Example 5.3. Coming back to the Example 2.2, let us fix all weights

p “ q “
1

n

»

—

–

1
...
1

fi

ffi

fl
(13)

and given x, y P Xn, we define the distance wppx,yq between them by

wppx,yq “ Wp

¨

˚

˝

1

n

»

—

–

δx1

...
δxn

fi

ffi

fl
,
1

n

»

—

–

δy1
...
δyn

fi

ffi

fl

˛

‹

‚
.
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According to 2.2, wp is given by

wppx,yqp “ inf

$

&

%

ÿ

pi,jqPv1,nw2

tijdijpxi, yjq
p, t P MnpRq,

n
ÿ

l“1

til “
1

n
,

n
ÿ

l“1

tlj “
1

n

,

.

-

“
1

n
min

$

&

%

ÿ

pi,jqPv1,nw2

tijdijpxi, yjq
p, t bistochastic matrix n ˆ n

,

.

-

,

the last equality providing from classical arguments of linear programing. This
example show a way to define new distances on a finite product of spaces using
n2 distances.

6 Conclusion

The aim of this paper was to present a new point of view in vector-valued
optimal transportation. Writing this paper, we discover that in [18] that these
authors suggest to use the same idea to treat this problem and allowed mixing
of species. Their point of view follows a dynamical formulation of optimal
transportation (presented in [4]) while in our paper, Kantorovitch’s point of
view of optimal transportation was our approach angle.

Concerning this approach angle, let us make another small digression about
Monge’s optimal transportation’s problem and present it. Given two proba-
bilities µ and ν we are interrested in knowing if the optimal tranference plan
between µ and ν split mass i.e if (formaly) the support of γ˚ is included in a
function’s graph, say T ˚. A natural question here is if there exists a similar
problem associated to pKP q? An possible answer is given γ P Πpµ,νq we de-
clare that γ has a Monge1s form if for all pi, jq, γij is included in a function’s
graph say Tij . The main problem here is given pTijq, it is not possible to build
the associated γij . Indeed, the knowledge of pTijq does not include which parts
of µi is transported into νj or in other words we have still to fix pfijq and pgijq.
This remark makes hard to use only entropic relaxations (see [19]) to solve our
problem since the main data to find optimal transference plan is to find these
pfijq and pgijq.
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