Xavier Bacon 
email: xavier.bacon@etu.univ-paris1.fr
  
OPTIMAL TRANSPORTATION OF VECTOR-VALUED MEASURES

Keywords: Optimal Transport, Calculus of variations, Wasserstein distance cpx, yq dγpx, yq : γ P Πpµ, νq

Given two n-dimensional measures µ and ν on Polish spaces, we propose an optimal transportation's formulation, inspired by classical Kantorovitch's formulation in the scalar case. In particular, we established a strong duality result and as a consequence, optimality conditions are investigated. Wasserstein's metrics induced by our formulation are also investigated.

Introduction and notations

Introduction

Starting from the article of G. Monge [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF], many mathematical formulations of optimal transportation have been offered ( [START_REF] Kantorovitch | On the translocation of masses[END_REF], [START_REF] Beckmann | A continuous model of transportation[END_REF] and [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF]). In Monge's formulation, given two Polish spaces X and Y , if µ (resp. ν) is a Borelian probability on X (resp. Y ) and if c : X ˆY Ñ R, then the Monge's formulation consists on a minimization of the total cost among all Borelian maps which push forward µ to ν, more precisely for T a Borelian function between X and Y and m a positive measure on X, T #µ stands for the push forward measure which is the measure on Y defined for all measurable set B by T #µpBq :" µ " T ´1pBq ‰ . Let M pµ, νq be the set of such maps, Monge transportation problem is then Mpµ, νq :" inf "ż X c rx, T pxqs dµpxq : T P M pµ, νq

* . (1) 
In the middle of the 20th century, L. Kantorovitch proposed a relaxation of (1) in [START_REF] Kantorovitch | On the translocation of masses[END_REF] by allowing mass splitting. Thinking of µ and ν as piles of sands, grains located at x can be sent at different places at the same time. Formally, [START_REF] Kantorovitch | On the translocation of masses[END_REF] and for reasons that are discussed below, (2) is more accurate to extend the classical theory to vector-valued measures.

When c is the power of a distance, these two problems induce a metric on the set of probabilities, called here Wasserstein metric (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], [START_REF] Villani | Topics in optimal transportation[END_REF], [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] or [START_REF] Villani | Optimal transport: old and new[END_REF]). In the recent years, extensions of optimal transportation to more general objects have been proposed, such as multimarginal transportation ( [START_REF] Carlier | Optimal transportation for the determinant[END_REF], [START_REF] Kitagawa | The multi-marginal optimal partial transport problem[END_REF]) or density functional theory ( [START_REF] Cotar | Infinite-body optimal transport with coulomb cost[END_REF]). Notice also that optimal transportation of matricial and tensorial measures (see [START_REF] Maas | An analog of the 2-wasserstein metric in nonommutative probability under which the fermionic fokker-planck equation is gradient flow for the entropy[END_REF], [START_REF] Chen | Matricial wasserstein-1 distance[END_REF]) or vector-valued densities in [START_REF] Zinsl | Transport distances and geodesic convexity for systems of degenerate diffusion equations[END_REF] have already been investigated.

In the present paper, we propose an extension to vector-valued measures. This one is deeply based on Kantorovich's formulation of scalar optimal transportation (section 2). Given two probabilities µ and ν and two decompositions of them (say) µ " µ 1 `¨¨¨`µ n and ν " ν 1 `¨¨¨`ν n , more than a transportation between µ and ν, we are interested in a description of a transportation between these two decompositions. A naive strategy would be to study the n subproblems of classical optimal transportation between µ i and ν i for i P v1, nw, assuming that for all i, µ i and ν i share the same mass. If this new transportation problem leads to a metric, then the toplogy induced is the product one, due to the independance of each phasis. This problem has been explored in [START_REF] Benamou | Numerical resolution of a multiphasic optimal mass transport problem[END_REF], [START_REF] Benamou | Numerical analysis of a multi-phasic mass transport problem[END_REF] and more recently in [START_REF] Lavenant | Time-convexity of the entropy in the multiphasic formulation of the incompressible euler equation[END_REF]. To remove the independance of each phasis, we allow transformation similarly as explored in [START_REF] Chen | Vectorvalued optimal mass transport[END_REF]. Introducing n 2 particular costs c ij and n 2 particular transference plans γ ij which describe the transport of a piece of µ i into a piece of ν j , we consider that the cost transportation to move dµ i pxq to dν j pyq is c ij px, yqdγ ij px, yq. Compatibility constraints are described by the set Πpµ, νq where we ask that the n 2 transport plans γ ij clear each µ i and fill each ν j . The new minimization problem is given by inf

$ ' & ' % ÿ pi,jqPv1,nw 2 ij XˆY c ij px, yq dγ ij px, yq, γ P Π ¨» - - µ 1 . . . µ n fi ffi fl , » - - ν 1 . . . ν n fi ffi fl ‹ ' , / . / - .
In section 2, we give an existence result for this problem as well as various examples. Then, following the shipper's problem interpretation of optimal transportation from L. Caffarelli (presented in [START_REF] Villani | Topics in optimal transportation[END_REF]), we introduce a dual formulation in section 3 and prove strong duality theorem. As a consequence of the duality, optimality conditions for primal-dual optimizers are derived. Finally, assuming that costs pc ij q are all the same power of different distances, a metric on vector-valued measures is presented in section 5.

Notations

In this article, we differenciate vectorial objects from scalar ones by using bold type character like Π for the first one and non-bold type character like Π for the latter one.

• Given X a measurable space, PpXq stands for the set of probability measures on X and for all n P N ˚, M n pXq (resp. M nˆn pXq) refers to the set of vectorial measure on pX, X q valued in R n (resp. in R nˆn ) meaning that each coordinate is a signed measure. M n `pX q (resp. M nˆn `pX q) stands for the subset where each coordinate is positive measure. Recall that for T a measurable function between X and Y and m a positive measure on X, T #m stands for the push forward measure which is the measure on Y defined for all measurable set B by T #mpBq " m " T ´1pBq ‰ .

• Given X 1 ˆ¨¨¨ˆX n a product space and k P v1, nw, π k denotes the canonical projection on X k i.e,

π k : X 1 ˆ¨¨¨ˆX n ÝÑ X k px 1 , ¨¨¨, x n q Þ Ñ x k
and for l P v1, nw and l ą k, π k,l denotes the canonical projection on

X k ˆXl i.e, π k,l : X 1 ˆ¨¨¨ˆX n ÝÑ X k ˆXl px 1 , ¨¨¨, x n q Þ Ñ px k , x l q
• For A a borelian subset of R, L A stands for the Lebesgue measure on A.

If m, M P M `pX q satisfy for all A P X , mpAq ď M pAq, m is called a submeasure of M and this property will be written m ď M . Note that being a submeasure of M implies the absolute continuity w.r.t. M .

• Given pX, T q a topological space and pY, dq a metric space, C b pX, Y q refers to the set of bounded continuous functions between pX, T q and pY, dq.

• Given pi, jq P v1, nw 2 , E ij refers to the matrix n ˆn whose coordinates are all equal to 0 except pi, jq which is equal to 1.

• Given a set X and S a subset of X, ι S denotes for the function equals to 0 on S and `8 on its complementary.

• The notation ^will be used to denote the minimum of two reals, and _ for the maximum.

2 Kantorovitch's problem

Presentation

In the remainder of the paper, n will denote an element of N ˚.

Definition 2.1. Given pX, X q a mesurable space, P n pXq denotes the set of admissible distributions of n species defined by

P n pXq " $ ' & ' % m " » - - m 1 . . . m n fi ffi fl P M n `pX q : n ÿ i"1 m i P PpXq , / .
/ -.

It is straightforward that P n pXq is a non-empty convex subset of M n pXq.

Inspired by Kantorovitch's formulation of optimal transportation, an extension of the notion of transference plan between two scalar measures is now proposed. For a well understanding of the next definition, let us make a short digression and present our model. Given pX, X q and pY, Yq two measurable spaces and µ P P n pXq, ν P P n pY q two distributions of n species, since the total amount of each specy is not equal transformations between species are allowed. Given pi, jq P v1, nw 2 , the "transportation" (with "transformation" if i ‰ j) of a piece of µ i into a piece of ν j is described by a transference plan γ ij P M `pX ˆY q. Constraints on γ " pγ ij q 1ďi,jďn are given by pClear µq @i P v1, nw, @A P X , µ i pAq " n ÿ k"1 γ ik pA ˆY q pFill νq @j P v1, nw, @B P Y, ν j pBq "

n ÿ k"1 γ kj pX ˆBq,
or in other words, for all pi, jq P v1, nw 2 , ř n k"1 γ ik has µ i as first marginal and ř n k"1 γ kj has ν j as second marginal. This naturally leads to the following definition.

Definition 2.2. Given µ P P n pXq and ν P P n pY q, Πpµ, νq denotes the set of transference plans between µ and ν defined by

Πpµ, νq " $ ' ' ' ' & ' ' ' ' % µ i " π 1 # ˆn ř k"1 γ ik γ P M nˆn `pX ˆY q : @pi, jq P v1, nw 2 , ν j " π 2 # ˆn ř k"1 γ kj ˙, / / / / . / / / / - . Remark 2.1.
According to the Definition 2.2, every γ P Πpµ, νq induces a canonical transference plan (for n " 1, the two definitions of transference plan are the same) between ř n i"1 µ i and ř n j"1 ν j given by ř n i,j"1 γ ij . However the converse is not true since given γ P Π ´řn i"1 µ i , ř n j"1 ν j ¯and px, yq P X ˆY , there is still a choice to make: is the first specy sent into the first or the second one or both? And in what proportions? Let us give a short example to clarify this remark. Taking

µ " " µ 1 µ 2  " 1 2 " L r´1,0s L r´1,0s  , ν " " ν 1 ν 2  " 1 2 " L r0,1s L r0,1s
 and writting τ 1 : x Ñ x `1, it is known that γ " pI, τ 1 q # pµ 1 `µ2 q is a transference plan between L r´1,0s " µ 1 `µ2 and L r0,1s " ν 1 `ν2 . Given a such γ, µ 1 can be sent towards ν 1 , or towards ν 2 . A mix is even possible and µ 1 can be sent towards 1 r0, 1 2 s dν 1 `1r 1 2 ,1s dν 2 . In other words, the following matrix measures are transference plans,

" pI, τ 1 q#µ 1 0 0 pI, τ 1 q#µ 2  , " 0 pI, τ 1 q#µ 1 pI, τ 1 q#µ 2 0  , 1 2 " pI, τ 1 q#µ 1 pI, τ 1 q#µ 1 pI, τ 1 q#µ 2 pI, τ 1 q#µ 2  .
We also introduce matrix-valued cost c as a function from X ˆY Ñ M n pRq, integrable w.r.t. γ or positive measurable. The associated total cost is given by the following definition. The Kantorovich's transportation problem between two distributions of n species µ and ν for c is given by inf tKpγq : γ P Πpµ, νqu ": Kpµ, νq P r´8, `8s (KP)

Example 2.1. Note that if c ij " c for all pi, jq P v1, nw 2 then (KP) shares the same value as the scalar optimal transportation between ř n i"1 µ i and ř n j"1 ν j for the cost c. The most simple example of non trivial matrix cost is given by the following one: let c be a scalar cost and κ be a real and define the following matrix cost: @px, yq P X ˆY, cpx, yq "

" cpx, yq cpx, yq `κ cpx, yq `κ cpx, yq  .
In other words, a constant cost is requiered for any transformation. See the example 3.1 below for a study of this special cost.

Example 2.2. Let p, q P ∆ n :"

x P R n `, ř n i"1 x i " 1 ( and x, y P X n . Define µ " » - - p 1 δ x1 . . . p n δ xn fi ffi fl , ν " » - - q 1 δ y1 . . . q n δ yn fi ffi fl .
Let us first notice that for all pi, jq, since suppp ř n l"1 γ il q Ď supppµ i q ˆY and suppp ř n l"1 γ lj q Ď X ˆsupppν j q then supppγ ij q Ď px i , y j q and hence γ ij " t ij δ pxi,yjq for some t ij P r0, 1s. Constraints on γ give us that for all pi, jq P v1, nw2 , ř n l"1 t il " p i and ř n l"1 t lj " q j and finally

Kpγq " ÿ pi,jqPv1,nw 2 t ij c ij px i , y j q, (KP) becomes in that case inf $ & % ÿ pi,jqPv1,nw 2 t ij c ij px i , y j q, t P M n pRq : n ÿ l"1 t il " p i , n ÿ l"1 t lj " q j
, .

which reduces to the discret optimal transportation.

Existence of a minimizer

Let X and Y be two Polish spaces. In this subsection, we prove an existence result for the problem (KP). Arguments used to establish it are the same as in scalar case (see [START_REF] Villani | Topics in optimal transportation[END_REF] or [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] for instance). Let us first gather the main structural properties of problem (KP).

Lemma 2.1. Given µ P P n pXq, ν P P n pY q and c a cost matrix, following assertions are satisfied:

[1] Πpµ, νq is a non-empty convex subset of M nˆn pX ˆY q.

[2] Πpµ, νq is a weakly sequentially compact1 subset of M nˆn pX ˆY q.

[3] If for all pi, jq P v1, nw 2 , c ij is bounded from below, then K : Πpµ, νq Ñ R Y t`8u is bounded from below.

[4] If for all pi, jq P v1, nw 2 , c ij is l.s.c. and bounded from below then K : Πpµ, νq Ñ R Y t`8u is weakly l.s.c. with respect to the tight convergence.

Proof. [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF] Convexity is clear and it is easy to check that pµ i b ν j q pi,jqPv1,nw 2 P Πpµ, νq.

[2] Let pγ k q kPN P Πpµ, νq N and pi, jq P v1, nw 2 . We claim that pγ k ij q kPN is tight. Indeed, let ε P R ˚and K X (resp. K Y q a compact of X (resp. Y ) such that 2 @i P v1, nw, µ i pXzK X q ď ε (resp. @j P v1, nw, ν j pY zK Y q ď ε).

(

) 3 
Let k P N, following inequalities are satisfied,

γ k ij rpX ˆY qzpK X ˆKY qs ď γ k ij rpXzK X q ˆY qs `γk ij rX ˆpY zK Y qs ď n ÿ l"1 γ k il rpXzK X q ˆY qs `n ÿ l"1 γ k lj rX ˆpY zK Y qs " µ i pXzK X q `νj pY zK Y q since γ P Πpµ, νq ď 2ε.
This proves the claim and thanks to Prokhorov theorem, there exists a nonnegative finite measure on X ˆY, γ 8 ij and a subsequence of pγ k ij q kPN (still written pγ k ij q kPN ) such as pγ k ij q kPN tightly converges towards γ 8 ij . In order to conclude, we only have to check that γ 8 P Γpµ, νq Let φ P C b pX ˆY, Rq and notice that for all i P v1, nw and k P N,

ż X φpxq dµ i pxq " n ÿ l"1 ij XˆY φpxq dγ k il px, yq Ñ n ÿ l"1 ij XˆY φpxq dγ 8 il px, yq . [3] Straightforward.
[4] Let pγ k q kPN P Πpµ, νq N and γ 8 P Πpµ, νq such that pγ k q kPN tightly converges towards γ 8 in that for all pi, jq P v1, nw 2 , pγ k ij q kPN weakly converges in duality with C b towards γ 8 ij . Then, by lower semi-continuity of γ ij Þ Ñă γ ij , c ij ą (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], Lemma 1.6), for all pi, jq P v1, ¨¨¨, nw 2 ,

ij XˆY c ij px, yq dγ 8 ij px, yq ď lim inf kÑ8 ij XˆY c ij px, yq dγ k ij px, yq
and since sum of lim inf is less or equal to lim inf of sum, it ends the proof.

With these facts in hand, our main result easily follows.

Theorem 2.1. Given c a cost matrix such as for all pi, jq P v1, nw 2 , c ij is bounded from below and l.s.c., it exists γ P Πpµ, νq such as Kpγq " Kpµ, νq.

Proof. This proof follows the classical direct method of calculus of variations. Let pγ k q kPN be a minimizing sequence for the problem pKP q i.e @k P N, Kpγ k q ď Kpµ, νq `1 k .

Compactness of Πpµ, νq according to Lemma 2.1 implies that pγ k q kPN can be assumed to converge towards (say) γ 8 . Lower semi-continuity implies that Kpγ 8 q ď lim inf kÞ Ñ8

Kpγ k q ď Kpµ, νq, and then γ 8 is a minimum.

Duality

Presentation

In this section, we look for a dual formulation of (KP). In order to find it, consider the following situation3 : mines full of different metals (n kinds) and refineries (n kinds) are distributed in space. For each kind of metal corresponds a kind of refinery, for instance a kind refinery for iron, a kind of refinery for gold etc. On the one hand we want to minimize the travel cost i.e. minimize the associated Kantorovich's problem, on the other hand a character suggests to supervise the travelling operation for us and propose that contract: for each ton of metal i located in x, its price will be ϕ i pxq to extract it and for each ton of metal j located in y its price will be ψ j pyq to drop it off. To guarantee our interrest, its contraints will be that for all pi, jq and px, yq, ϕ i pxq `ψj pyq ď c ij px, yq. All these considerations suggest to give following definitions.

Definition 3.1. Given c a cost matrix, ∆pcq denotes the set of potential couples for cost c defined by

∆pcq " $ ' ' & ' ' % ϕ i P C b pXq " ϕ ψ  " " ϕ 1 ¨¨¨ϕ n ψ 1 ¨¨¨ψ n  , @pi, jq P v1, nw 2 , ψ j P C b pY q ϕ i ' ψ j ď c ij , / / . / / -
and if there is no ambiguity on c, we will write ∆ instead of ∆pcq.

Definition 3.2. Given µ P P n pXq, ν P P n pY q, c a cost matrix and

" ϕ ψ  " " ϕ 1 ¨¨¨ϕ n ψ 1 ¨¨¨ψ n  P ∆pcq, Dpϕ, ψq denotes the dual cost of " ϕ ψ  defined by Dpϕ, ψq " n ÿ i"1 ż X ϕ i pxq dµ i pxq `n ÿ j"1 ż Y ψ j pyq dν j pyq. (4) 
Finally, the dual transportation problem is given µ P P n pXq, ν P P n pY q and a cost matrix c, sup " Dpϕ, ψq :

" ϕ ψ  P ∆pcq * ": Dpµ, νq P r´8, `8s (DP) 
We establish now a weak duality result.

Proposition 3.1. Given µ P P n pXq, ν P P n pY q, a cost matrix c, γ P Πpµ, νq and " ϕ ψ  P ∆pcq, the following inequality is satisfied, Dpϕ, ψq ď Kpγq.

Proof. Let γ P Πpµ, νq and " ϕ ψ  P ∆pcq. Compute:

Dpϕ, ψq " n ÿ i"1 ż X ϕ i dµ i `n ÿ j"1 ż Y ψ j dν j " n ÿ i"1 ij XˆY ϕ i d ˜n ÿ j"1 γ ij ¸`n ÿ j"1 ij XˆY ψ j d ˜n ÿ i"1 γ ij ¸.
The last equality coming from the fact that γ P Πpµ, νq. And then,

Dpϕ, ψq ď ÿ pi,jqPv1,nw 2 ij XˆY c ij dγ ij since " ϕ ψ  P ∆pcq " Kpγq.
That concludes the proof.

An extension of c-transformation

In order to prove that (DP) is attained, at least in compact case, we propose an extension of the classical c-transform (see the recall below). First, we make a short digression about modulus of continuity.

Definition 3.3. Given pX, dq a metric space and f : X Ñ R, a uniform modulus of continuity for f according to d is a function ω : R `Ñ R `such that the following conditions are satisfied:

[1] lim tÑ0 `ωptq " 0 [2] @px, x 1 q P X 2 : |f pxq ´f px 1 q| ď ω rdpx, x 1 qs. Lemma 3.1. If f admits a uniform modulus of continuity ω f and g admits a uniform modulus of continuity ω g then ω f `ωg is a uniform modulus of continuity for minpf, gq.

Proof. Let px, x 1 q P X 2 , we have

| minpf, gqpxq ´minpf, gqpx 1 q| ď |f pxq ´f px 1 q| `|gpxq ´gpx 1 q| 2 `||f px 1 q ´gpx 1 q| ´|f pxq ´gpxq|| 2 ď ω f rdpx, x 1 qs `ωg rdpx, x 1 qs 2 `|f px 1 q ´f pxq `gpxq ´gpx 1 q| 2 ď ω f rdpx, x 1 qs `ωg rdpx, x 1 qs.
This proves the lemma.

Recall that when f is a function between X (resp. Y ) and R Y t´8u and c a cost function, we can define its c-transform f c (resp. c-transform) by:

f c : Y Ñ R Y t´8, `8u y Þ Ñ inf tcpx, yq ´f pxq : x P Xu ˆresp. f c : X Ñ R Y t´8, `8u x Þ Ñ inf tcpx, yq ´f pyq : y P Y u

Ẇe

introduce a new transformation and to motivate it just remark than in our case, we have 2n potentials and n 2 inequalities in the dual formulation. A naive idea would be to first subsitute ϕ 1 by ψ c11 1 but there is no guarantee that our new couple of potentials

" ψ c11 1 ϕ 2 ¨¨¨ϕ n ψ 1 ¨¨¨¨¨¨ψ n 
will still be in ∆pcq. The following definition answers this problem.

Definition 3.4. Given f " pf 1 , ¨¨¨, f n q : X Ñ pRYt´8uq n and c " pc 1 , ¨¨¨, c n q : X ˆY Ñ pR Y t`8uq n , f c (resp. f c) denotes the c-transform of f (resp. ctransform of f ) defined by @y P Y : f c pyq " min pf c1 1 pyq, ¨¨¨, f cn n pyqq `resp. @x P X : f cpxq " min `f c1 1 pxq, ¨¨¨, f cn n pxq ˘Ȃll benefits of this transformation is contained in the next proposition.

Proposition 3.2. Let f " pf 1 , ¨¨¨, f n q : X Ñ pRYt´8uq n and c " pc 1 , ¨¨¨, c n q : X ˆY Ñ pR Y t`8uq n , then [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF] Following inequalities are satisfied, @i P v1, nw, f i ' f c ď c i (5)

@j P v1, nw, f c ' f j ď c j (6) [2] If h : Y Ñ R Y t´8u is such that for all i P v1, nw, f i ' h ď c i then h ď f c . If h : X Ñ R Y t´8u
is such that for all j P v1, nw, h ' g j ď c j then h ď f c.

Proof. [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF] Let pi, jq P v1, nw 2 and px, yq P X ˆY . Since f i pxq `f cj j pyq ď c i px, yq and f c ď f ci i the first inequality is deduced and note that the second inequality can be proved following the same way. [START_REF] Kantorovitch | On the translocation of masses[END_REF] If such a function exists, we deduce from f i ' h ď c i that for all px, yq P X ˆY, hpyq ď c i px, yq´f i pxq, then take infimum with respect to x and arbitrary on i concludes for the first inequality. The same proof also works for the second inequality.

We will show next that this process is a natural way to improve the dual cost while staying in the constraint ∆pcq, at least in compact case and continuous costs. Moreover, it provides a common uniform modulus of continuity for all the potentials. Lemma 3.2. Let X, Y two compact metric spaces, c a continuous cost matrix and pϕ, ψq P ∆pcq. It exists pϕ, ψq P ∆pcq such that [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF] Dpϕ, ψq ď Dpϕ, ψq.

[2] ϕ 1 , ¨¨¨, ϕ n , ψ 1 , ¨¨¨, ψ n´1 and ψ n admit a common uniform modulus of continuity which depends only on c.

Proof. First, make the following substitutions: @j P v1, nw : ψ j Ð ϕ pc1j ,¨¨¨,cnjq :" ψ j , then, thanks to Proposition 3.2, pϕ, ψq P ∆pcq and Dpϕ, ψq ď Dpϕ, ψq. Denoting ω cij a uniform modulus of continuity of c ij for pi, jq P v1, nw 2 , ω cij is also a uniform modulus of continuity of ϕ cij i according to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] (Box. 1.8). Thanks to Lemma 3.1, we conclude that ω ψj " ω c1j `¨¨¨`ω cnj is a uniform modulus of continuity of ψ j . Then, make the following substitutions: @i P v1, nw : ϕ i Ð ψ pci1,¨¨¨,cinq :" ϕ i and of course the new couple of potentials is still in ∆pcq and the dual cost is increased. To conclude, we just have to check that ř 1ďi,jďn ω cij is a common uniform modulus of continuity for pϕ, ψq, which is clear.

Example 3.1. Coming back to the example 2.1, let us compute this new ctransform to reduce the problem. Fix κ to be strictly non-negative and assume that X " Y and c is symetric (then, c-transform is equivalent to c-transform). Constraints of (DP) are given by the following system:

$ ' ' ' & ' ' ' % ϕ 1 pxq `ψ1 pyq ď cpx, yq ϕ 1 pxq `ψ2 pyq ď cpx, yq `κ ϕ 2 pxq `ψ1 pyq ď cpx, yq `κ ϕ 2 pxq `ψ2 pyq ď cpx, yq
First step: it is easy to check that:

pf 1 , f 2 q c,c`κ " rf 1 ^pf 2 ´κqs c pf 1 , f 2 q c`κ,c " rpf 1 ´κq ^f2 s c ,
then make the following substitutions:

ψ 1 Ð pϕ 1 , ϕ 2 q c,c`κ " rϕ 1 ^pϕ 2 ´κqs c ": ψ1 ψ 2 Ð pϕ 1 , ϕ 2 q c`κ,c
" rpϕ 1 ´κq ^ϕ2 s c ": ψ2

Second step: following the proof below, we make the following substitutions:

ϕ 1 Ð p ψ1 , ψ2 q c,c`κ " " ψ1 ^p ψ2 ´κq ı c " ψ1 c _ p ψ2 ´κq c since psup α f α q c " inf α f c α " rϕ 1 ^pϕ 2 ´κqs cc _ prpϕ 1 ´κq ^ϕ2 s ´κq cc " rϕ 1 ^pϕ 2 ´κqs cc _ rpϕ 1 ´2κq ^pϕ 2 ´κqs cc " rϕ 1 ^pϕ 2 ´κqs cc since if f ď g then g c ď f c " ψ1 c ϕ 2 Ð p ψ1 , ψ2 q c`κ,c " ψ2 c for the same reasons.
When c " d is a distance, according to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF] (Proposition 3.1):

$ ' ' ' ' & ' ' ' ' %
ψ1 pyq ´ψ 1 pxq ď dpx, yq ψ2 pyq ´ψ 1 pxq ď dpx, yq `κ ψ1 pyq ´ψ 2 pxq ď dpx, yq `κ ψ2 pyq ´ψ 2 pxq ď dpx, yq, which is equivalent to the following system, thanks to the symmetry of d:

$ ' ' & ' ' % | ψ1 pxq ´ψ 1 pyq| ď dpx, yq | ψ1 pxq ´ψ 2 pyq| ď dpx, yq `κ
| ψ2 pxq ´ψ 2 pyq| ď dpx, yq i.e. p ψ1 , ψ2 q are solution to the system below if and only if they are 1-Lipschitz w.r.t. to d and satisfy } ψ1 ´ψ 2 } 8 ď κ.

Existence of a maximizer

Theorem 3.1. Given X et Y two compact metric spaces, µ P P n pXq, ν P P n pY q and c a continuous cost matrix, there exists pϕ, ψq P ∆pcq such as Dpµ, νq " Dpϕ, ψq.

Proof. The constraint set is non-empty since c is bounded by below (continuous on compact). Let:

" ϕ k ψ k  kPN " " ϕ k 1 ¨¨¨ϕ k n ψ k 1 ¨¨¨ψ k n  kPN
be a maximizing sequence for (DP). According to Lemma 3.2, we may assume that our 2n sequences share a common uniform modulus of continuity. We now prove that the sequence is uniformly bounded with respect to n. Indeed, setting for all k P N:

m k :" min " inf xPX ϕ k 1 pxq, ¨¨¨, inf xPX ϕ k n pxq  ,
and since m k is finite, we can substitute:

@i P v1, ¨¨¨, nw : ϕ k i Ð ϕ k i ´mk still written ϕ k i @j P v1, ¨¨¨, nw : ψ k j Ð ψ k j `mk still written ψ k j ,
and these new potentials are still admissible, have the same dual cost and for all i P v1, nw, k P N, ϕ k i ě 0. Therefore we have:

@i P v1, nw, k P N : ϕ k i ď ω rdiampXqs ,
which concludes the case of ϕ. Next, let us make new following substitutions: @j P v1, nw : ψ j Ð ϕ pc1j ,¨¨¨,cnjq still written ψ j .

We have for all y P Y, j P v1, nw and k P N, min pc 1j , ¨¨¨c nj q ´ω rdiampXqs ď min

" inf xPX c 1j px, yq ´ϕk 1 pxq, ¨¨¨, inf xPX c nj px, yq ´ϕk n pxq  :" ψ k j pyq
and ψ k j pyq :" min

" inf xPX c 1j px, yq ´ϕk 1 pxq, ¨¨¨, inf xPX c nj px, yq ´ϕk n pxq  ď max pc 1j , ¨¨¨, c nj q ,
which leads to the conclusion on ψ. Finally, the Ascoli-Arzelà theorem applied to each sequence provides the existence of a continuous couple

" ϕ 8 ψ 8  " " ϕ 8 1 ¨¨¨ϕ 8 n ψ 8 1 ¨¨¨ψ 8 n 
which belong to ∆pcq thanks to pointwise convergence and Dpϕ 8 , ψ 8 q " Dpµ, νq thanks to uniform convergence on finite measure sets.

Strong duality

We establish a strong duality result. The proof follows the one of strong duality theorem for scalar optimal transportation proposed by C. Jimenez (see [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]).

Definition 3.5. Given µ P P n pXq, ν P P n pY q and c a cost matrix, we denote by H the value function of the perturbated dual problem, i.e.

@ε P CpX ˆY, R nˆn q, Hpεq " sup " Dpϕ, ψq :

" ϕ ψ  P ∆pc ´εq * Lemma 3.3.
Let X and Y two metric compact spaces. H satisfy the following properties:

[1] H is concave.

[2] Suppose that c is continuous, then H is u.s.c. with respect to the uniform norm.

Proof. [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF] Let t P r0, 1s, ε 0 P CpX ˆY, R nˆn q (resp. ε 1 P CpX ˆY, R nˆn q) and let pϕ 0 , ψ 0 q (resp. pϕ 1 , ψ 1 qq be optimal in (DP) associated to c ´ε0 (resp. to c ´ε1 ). Note that they exist thanks to the existence result below. Define ε t " p1 ´tqε 0 `tε 1 , ϕ t " p1 ´tqϕ 0 `tϕ 1 , ψ t " p1 ´tqψ 0 `tψ 1 . Therefore pϕ t , ψ t q is admissible for the dual problem associated to c ´εt and then by definition of H we have Hpε t q ě Dpϕ t , ψ t q " p1 ´tqHpε 0 q `tHpε 1 q And the conclusion follows.

[2] Let pε k q kPN P CpX ˆY, R nˆn q N and ε 8 P CpX ˆY, R nˆn q such that for all pi, jq P v1, nw 2 , ε k ij }¨}8 ÝÑ ε 8 ij . Let pε k q kPN a subsequence pε kl q lPN satisfying for all pi, jq P v1, nw 2 , lim sup k Hpε k ij q " lim l Hpε k l ij q. Ascoli-Arzelà theorem ensures that for all pi, jq P v1, nw 2 , pε k l ij q lPN are equicontinuous and uniformly bounded with respect to l therefore chose the corresponding optimal potentials pϕ kl , ψ kl q equicontinuous and uniformly bounded in l, thanks to the Ascoli-Arzelà theorem again, there is a uniform convergence towards (say) pϕ 8 , ψ 8 q up to an extraction, therefore thanks to pointwise convergence there is for all pi, jq P v1, nw 2 , ϕ 8 i ' ψ 8 j ď c ij ´εij and so:

Hpεq ě Dpϕ 8 , ψ 8 q " lim l Hpε kl q " lim sup k Hpε k q.

This concludes the proof.

Finally, the strong duality theorem follows.

Theorem 3.2. Suppose that X and Y are both metric compact spaces and that c is continuous, then for all pµ, νq P P n pXq ˆPn pY q, Kpµ, νq " Dpµ, νq.

Proof. Let pµ, νq P P n pXq ˆPn pY q, since p´Hq is convex and l.s.c. and according to the Fenchel-Moreau theorem, we have: Dpµ, νq " Hp0q " ´r´Hp0qs

" ´r´Hs ˚˚p0q " ´sup γPM nˆn pXˆY q ă 0, γ ą ´r´Hs ˚pγ q " inf γPM nˆn pXˆY q r´Hs ˚pγq.

Next, we compute for all γ P M nˆn pX ˆY q, r´Hs ˚pγq " sup ε ¨ÿ 1ďi,jďn

ij XˆY ε ij dγ ij `sup ϕ'ψďc´ε n ÿ i"1 ż X ϕ i dµ i `n ÿ j"1 ż Y ψ j dν j ' " sup ε ¨sup ϕ'ψďc´ε » - ÿ 1ďi,jďn ij XˆY ε ij dγ ij `n ÿ i"1 ż X ϕ i dµ i `n ÿ j"1 ż Y ψ j dν j fi fl '.
If it exists pi 0 , j 0 q such as γ i0j0 R M `pX ˆY q and ε 0 i0j0 such as ť XˆY ε 0 i0j0 dγ i0j0 ą 0, then take pε k i0j0 q kPN ˚such as ε k i0j0 " c i0j0 `kε 0 i0j0 for k P N ˚and take ϕ i0 " 0 and ψ j0 " 0. Then putting all the other potentials equals at the value 0 and find pε ij q such that all the contraints are still satisfied (c is bounded), we get r´Hs ˚pγq " `8 if γ R M nˆn `pX ˆY q. Now, suppose that γ P M nˆn `pX ˆY q, when pϕ, ψq are fixed, we are interested in taking the largest ε ij possible for every pi, jq P v1, nw 2 , that is ε ij " c ij ´ϕi ´ψj and we get

r´Hs ˚pγq " sup ϕ'ψďC´ε ÿ 1ďi,jďn ij XˆY c ij ´ϕi ´ψj dγ ij `n ÿ i"1 ż X ϕ i dµ i `n ÿ j"1 ż Y ψ j dν j " sup pϕ,ψq Kpγq `¨n ÿ i"1 ż X ϕ i dµ i ´ÿ 1ďi,jďn ij XˆY ϕ i dγ ij ' `¨n ÿ j"1 ż Y ψ j dν j ´ÿ 1ďi,jďn ij XˆY ψ j dγ ij ' " sup pϕ,ψq Kpγq `n ÿ i"1 ¨żX ϕ i dµ i ´ij XˆY ϕ i d n ÿ j"1 γ ij ' `n ÿ j"1 ¨żY ψ j dν j ´ij XˆY ψ j d n ÿ i"1 γ ij '
" ι Πpµ,νq pγq according to [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF], Lemma 1.45.

This ends the proof.

Optimality conditions

In this subsection, X and Y are two metric compact spaces. As a direct consequence of Theorem 3.2, we deduce optimality contraints linking (KP) and (DP). Proposition 4.1. Given γ P Πpµ, νq and pϕ, ψq P ∆pcq, the following assertions are equivalent:

[1] γ is optimal in (KP) and pϕ, ψq is optimal in (DP).

[2] @pi, jq, ϕ i ' ψ j " c ij γ ij -a.e.

Proof. If [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais: Histoire de 1'academieroyale des sciences[END_REF] is satisfied, according to Theorem 3.2, Kpγq " Dpϕ, ψq. We then between Paris and Berlin using plane than to first travel between Paris and Amsterdam using car and then going to Berlin from Amsterdam using train.

To avoid this phenomenon above, we add new constraints on pd ij q: @pi, j, kq P v1, nw 3 , @px, y, zq P X 3 , d ik px, zq ď d ij px, yq `djk py, zq

and from now on we assume that these contraints are satisfied.

Remark 5.1. Note that pM T Iq (for Mixed Triangle Inequalities) contain the fact that all costs satisfy triangle inequality (take i " j " k) and if one of theses inequalities is false for some px 0 , y 0 , z 0 q then one can exhibit a counterexample to fail the triangle inequality on W p similar to the (counter)Example 5.1 above.

Example 5.2. An easy way to construct objects that satisfy (MTI) is (and then, we do not work on empty set) given a distance d on X and a non negative scalar t (for transformation), d ii " d for all i and d ij " d `t for all pi, jq with i ‰ j.

Proposition 5.2. Let p P r1, 8q and pd ij q pi,jqPv1,nw 2 be such that (MTI) are satisfied. Then W p satisfies the triangle inequality.

Proof. Let γ ˚" pγ ij q (resp. γ˚" pγ jk q) be optimal4 between µ and ν (resp. ν and λ). Let j P v1, nw and define for all i, k P v1, nw the marginals ν i,Ð j :" π 2 #γ ij and ν k,Ñ j :" π 1 #γ jk . These marginals are all submeasures of ν j and then, according to Radon-Nikodym theorem, we denote by f i,Ð j (resp. f k,Ñ j ) the density of ν i,Ð j (resp. ν k,Ñ j ) w.r.t. ν j . Finally, define for each i, j, k P v1, nw the following transference plans γ ijk is defined as the measure with density px, yq Ñ f k,Ñ j pyq w.r.t. γ ij , (8) γi jk is defined as the measure with density py, zq Ñ f i,Ð j pyq w.r.t. γj k , (9) these definitions imply that @pi, jq P v1, nw 2 , γ ij "

n ÿ k"1 γ ijk , (10) 
@pj, kq P v1, nw 2 , γj k "

n ÿ i"1 γi jk , (11) 
@pi, j, kq P v1, nw 3 , π 2 #γ ijk " π 1 #γ ijk .

Finally, we have: Theorem 5.1. Let X be a Polish space. Let p P r1, 8q. Let pd ij q be n 2 functions on X ˆX valued in R `such that:

W p pµ,
[1] @pi, jq P v1, nw 2 , d ij is symmetric, [START_REF] Kantorovitch | On the translocation of masses[END_REF] (MTI) is satisfied, [3] @i P v1, nw, @x P X, d ii px, xq " 0.

[4] @pi, jq P v1, nw 2 , i ‰ j, @px, yq P X ˆY, d ij px, yq ‰ 0. W p is a distance on P n p pXq. 

Definition 2 . 3 .

 23 Given γ P Πpµ, νq and a cost matrix c, Kpγq denotes the total transportation cost according to γ defined by Kpγq " ÿ pi,jqPv1,nw 2 ij XˆY c ij px, yq dγ ij px, yq.

Example 5 . 3 .

 53 Coming back to the Example 2.2, let us fix all weights p " q "

  x, y P X n , we define the distance w p px, yq between them by w p px, yq " W p

  λq ď ˜ÿ ik ij d ik px, zq p dγ ik px, y, zq ¸1 p " ˜ÿ ijk ¡ d ik px, zq p dΠ ijk px, y, zq ¸1 p by definition of γ and Π ď ˜ÿ ijk ¡ pd ij px, yq `djk py, zqq p dΠ ijk px, y, zq ij px, yq p dΠ ijk px, y, zq jk py, zq p dΠ ijk px, y, zq ¸1 p " ˜ÿ ijk ij d ij px, yq p dγ ijk px, zq

					¸1 p
					by (MTI)
	ď	˜ÿ ijk	¡	d ¸1 p	`˜ÿ
				¸1 p	
				`˜ÿ

ijk ¡ d ijk ij d jk py, zq p dγ ijk px, y, zq ¸1 p by (13) " ˜ÿ ij ij d ij px, yq p dγ ij px, yq ¸1 p `˜ÿ jk ij d jk py, zq p dγ jk py, zq ¸1 p " W p pµ, νq `Wp pν, λq.

 

w.r.t. the test function space C b pX ˆY, R nˆn q.

These two compacts exist: all µ i are finite measure on Polish spaces then it exists K i X verifying these inequalities and then we just have to take union of them.

This interpretation is due to L. Caffareli in scalar case, according to[START_REF] Villani | Topics in optimal transportation[END_REF].

they exist according to 2.1, even if it is not necessary here: passing to supremum bound aposteriori otherwise.
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The conclusion follows from the fact that pϕ, ψq P ∆pcq. Conversely, if [START_REF] Kantorovitch | On the translocation of masses[END_REF] is satisfied, it is clear that Kpγq " Dpϕ, ψq which implies that both γ and pϕ, ψq are optimal according to Proposition 3.1.

The result above is not surprising since any given γ P Πpµ, νq induces n 2 scalar optimal transportation problems between each marginals (say)

-

and looking at contraints in vectorial Kantorovitch's problem, it is easy to see that γ has to be optimal in every subproblems (KP ij ) to be optimal between µ and ν (if not, take a better one and compare the total cost, which is nothing less than another proof of the result above).

Induced metrics

In this section, we take X " Y a Polish space. We investigate how to extend the well-known Wasserstein distance and answer the question "does the problem (KP) define a distance on the space P n pXq?".

Let pd ij q pi,jqPv1,nw 2 be n 2 finite, symmetric and non negative functions on X X satisfying the triangle inequality (we do not assume that they are distances). Then let p P r1, 8q, x 0 P X and define P n p pXq " " m P P n pXq, @pi, jq P v1, nw 2 ,

* and notice that as in scalar case, this set does not depend on x 0 .

Definition 5.1. Given µ, ν P P n p pXq, the p-transportation distance between µ and ν is defined by

The symmetry of W p is clear provided the costs are symmetric themselves. However, the fact that W p pµ, νq " 0 implies that µ " ν is never satisfied if all costs are (power of) distances. In place of it, if W p pµ, νq " 0 then ř n i"1 µ i " ř n j"1 ν j . In other words, W p is pseudodistance in that case. To prevent that, we add new hypothesis on pd ij q described in the next proposition.

Proposition 5.1. Let pd ij q pi,jqPv1,nw 2 be n 2 symetric finite non negative functions on X ˆX satisfyong the triangle inequality. Assume moreover that for all pi, jq P v1, nw 2 , i ‰ j, d ij is strictly non negative and d ii is a distance. Then for all µ, ν P P n p pXq, if W p pµ, νq " 0 then µ " ν.

Proof. Let µ, ν P P n p pXq be such as W p pµ, νq " 0 and let γ ˚be optimal in (KP), then

According to the strict positivity of non diagonal distances, for all i ‰ j, γ ij " 0 and then for all k P v1, nw, γ kk is a transport plan between µ k and ν k . The proof of Theorem 7.3. in [START_REF] Villani | Topics in optimal transportation[END_REF] concludes.

However, without any other constraints on pd ij q, the following example shows that the triangle inequality fails.

Example 5.1. Let X " R, n " 2 and set: 

And these three numbers do not satisfy to triangle inequality as soon as ε is smaller enough.

The main problem in the example above is the lack of comparison between all pd ij q. To give a everyday-life example, it could be more expansive to travel To obtain the last equality, fix B a measurable subset of Y and compute

Then, equalities [START_REF] Maas | An analog of the 2-wasserstein metric in nonommutative probability under which the fermionic fokker-planck equation is gradient flow for the entropy[END_REF] allow us to apply the Gluing Lemma (see [START_REF] Villani | Topics in optimal transportation[END_REF], Lemma 7.6) and guarantee the existence of Π ijk a measure on X ˆY ˆZ such that π 1,2 #Π ijk " γ ijk and π 2,3 #Π ijk " γijk .

We next define for all pi, kq P v1, nw 2 , Π ik " n ř j"1 Π ijk and compute 10)

For identical reasons π 3 #

Π ik " λ k and as a consequence:

γ :" pπ 1,3 #Π ik q 1ďi,kďn P Πpµ, λq.

, .

-

.

-, the last equality providing from classical arguments of linear programing. This example show a way to define new distances on a finite product of spaces using n 2 distances.

Conclusion

The aim of this paper was to present a new point of view in vector-valued optimal transportation. Writing this paper, we discover that in [START_REF] Chen | Vectorvalued optimal mass transport[END_REF] that these authors suggest to use the same idea to treat this problem and allowed mixing of species. Their point of view follows a dynamical formulation of optimal transportation (presented in [START_REF] Benamou | A computational fluid mechanics solution to the monge-kantorovich mass transfer problem[END_REF]) while in our paper, Kantorovitch's point of view of optimal transportation was our approach angle.

Concerning this approach angle, let us make another small digression about Monge's optimal transportation's problem and present it. Given two probabilities µ and ν we are interrested in knowing if the optimal tranference plan between µ and ν split mass i.e if (formaly) the support of γ ˚is included in a function's graph, say T ˚. A natural question here is if there exists a similar problem associated to pKP q? An possible answer is given γ P Πpµ, νq we declare that γ has a M onge 1 s f orm if for all pi, jq, γ ij is included in a function's graph say T ij . The main problem here is given pT ij q, it is not possible to build the associated γ ij . Indeed, the knowledge of pT ij q does not include which parts of µ i is transported into ν j or in other words we have still to fix pf ij q and pg ij q. This remark makes hard to use only entropic relaxations (see [START_REF] Nenna | Numerical methods for multi-marginal optimal transportation[END_REF]) to solve our problem since the main data to find optimal transference plan is to find these pf ij q and pg ij q.