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Trotter Product Formula and Linear

Evolution Equations on Hilbert Spaces

Hagen Neidhardt, Artur Stephan and Valentin A. Zagrebnov

Abstract The paper is devoted to evolution equations of the form

∂

∂t
u(t) = −(A + B(t))u(t), t ∈ I = [0, T ],

on separable Hilbert spaces where A is a non-negative self-adjoint operator and B(·)

is family of non-negative self-adjoint operators such that dom(Aα) ⊆ dom(B(t)) for

some α ∈ [0, 1) and the map A−α B(·)A−α is Hölder continuous with the Hölder

exponent β ∈ (0, 1). It is shown that the solution operator U (t, s) of the evolution

equation can be approximated in the operator norm by a combination of semigroups

generated by A and B(t) provided the condition β > 2α − 1 is satisfied. The con-

vergence rate for the approximation is given by the Hölder exponent β. The result is

proved using the evolution semigroup approach.

1 Introduction

A closer look to Kato’s work shows that abstract evolution equations and Trotter

product formula were topics of high interest for Kato. Already at the beginning of

his scientific career, Kato was interested in evolution equations [16, 17]. This interest
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272 H. Neidhardt et al.

has lasted a lifetime [18–21, 26, 27, 29]. Another topic of great interest for him was

the so-called Trotter product formula [22–24, 28]. Even the paper [23] has inspired

further developments in this field [15].

The topic of the present paper is to link evolution equations with the Trotter

product formula. To this end, we consider an abstract evolution equation of type

∂u(t)

∂t
= − C(t)u(t), u(s) = xs, s ∈ [0, T ),

C(t) =A + B(t),

t ∈ I := [0, T ], (1.1)

on the separable Hilbert space H. Evolution equations of that type on Hilbert or

Banach spaces are widely investigated, cf. [1–4, 7, 29, 31, 32, 43–48, 51–53, 55,

56] or the books [5, 49, 54]. We consider the equation (1.1) under the following

assumptions.

Assumption 1.1

(S1) The operator A is self-adjoint in the Hilbert space H such that A ≥ I . Let

{B(t)}t∈I be a family of non-negative self-adjoint operators in H such that the

function (I + B(·))−1 : I −→ L(H) is strongly measurable.

(S2) There is an α ∈ [0, 1) such that for a.e. t ∈ I the inclusion dom(Aα) ⊆

dom(B(t)) holds. Moreover, the function B(·)A−α : I −→ L(H) is strongly

measurable and essentially bounded, i.e.,

Cα := ess sup
t∈I

‖B(·)A−α‖ < ∞. (1.2)

(S3) The map A−α B(·)A−α : I −→ L(H) is Hölder continuous, i.e, for some β ∈

(0, 1) there is a constant Lα,β > 0 such that the estimate

‖A−α(B(t) − B(s))A−α‖ ≤ Lα,β |t − s|β, (t, s) ∈ I × I, (1.3)

holds. △

Notice that under the assumption (S2), the operator C(t) is also an invertible

non-negative self-adjoint operator for each t ∈ I. Assumptions of that type were

made in [13, 14, 34, 35, 56]. One checks that the assumptions (S1)–(S3) and the

additional assumption β > α imply the assumptions (I), (VI), and (VII) of [56]

for the family {C(t)}∈I . Hence, Proposition 3.1 and Theorem 3.2 of [56] yield the

existence of a so-called solution (or evolution) operator for the evolution equation

(1.1), i.e., a strongly continuous, uniformly bounded family of bounded operators

{U (t, s)}(t,s)∈∆, ∆ := {(t, s) ∈ I × I : 0 ≤ s ≤ t ≤ T }, such that the conditions

U (t, t) =I, for t ∈ I,

U (t, r)U (r, s) =U (t, s), for t, r, s ∈ I with s ≤ r ≤ t,
(1.4)
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are satisfied and u(t) = U (t, 0)x is for every x ∈ H a strict solution of (1.1), see

Definition 1.1 of [56]. Because the involved operators are self-adjoint and non-

negative one checks that the solution operator consists of contractions.

The aim of the present paper is to analyze the convergence of the following

approximation to the solution operator {U (t, s)}(t,s)∈∆. Let

s =: t0 < t1 < . . . < tn−1 < tn := t, t j := s + j t−s
n

, (1.5)

j = {0, 1, 2, . . . , n}, n ∈ N, be a partition of the interval [s, t]. Let

G j (t, s; n) :=e
−

t−s
n

A
e
−

t−s
n

B(t j ), j = 0, 1, 2, . . . , n,

Vn(t, s) :=Gn−1(t, s; n)Gn−1(t, s; n) × · · · × G2(t, s; n)G0(t, s; n),
(1.6)

n ∈ N. The main result in the paper is the following. If the assumptions (S1)–(S3)

are satisfied and in addition the condition β > α holds, then the solution operator

{U (t, s)}(t,s)∈∆ of [56] admits the approximation

ess sup
(t,s)∈∆

‖Vn(t, s) − U (t, s)‖ ≤
Rβ

nβ
, n ∈ N, (1.7)

with some constant Rβ > 0. The result shows that the convergence of the approxi-

mation {Vn(t, s)}(t,s)∈∆ is determined by the smoothness of the perturbation B(·).

If the map A−α B(·)A−α : I −→ L(H) is Lipschitz continuous, then the map is

of course Hölder continuous with any exponent γ ∈ (α, 1). Hence from (1.7), it

immediately follows that for any γ ∈ (α, 1), there is a constant Rγ such that

ess sup
(t,s)∈∆

‖Vn(t, s) − U (t, s)‖ ≤
Rγ

nγ
, n ∈ N. (1.8)

In particular, for any γ close to one the estimate (1.8) holds.

In [14], the Lipschitz case was considered. It was shown that there is a constant

Υ0 > 0 such that the estimate

ess sup
t∈I

‖Vn(t, 0) − U (t, 0)‖ ≤ Υ0

log(n)

n
, n = 2, 3, . . . . (1.9)

holds. It is obvious that the estimate (1.9) is stronger than

ess sup
t∈I

‖Vn(t, 0) − U (t, 0)‖ ≤
Rγ

nγ
, n ∈ N.

(which follows from (1.8)) for any γ independent of how close it is to one.

To prove (1.7), we use the so-called evolution semigroup approach which allows

not only to verify the estimate (1.7) but also to generalise it. The approach is quite

different from the technique used in [14, 56]. We have successfully applied this
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approach already in [34, 35]. The key idea is to forget about the evolution equation

(1.1) and to consider instead of it the operators K0 and K on K = L2(I,H). The

operator K0 is the generator of the contraction semigroup {U0(τ )}τ∈R+
,

(U0(τ ) f )(t) := e−τ AχI(t − τ) f (t − τ), f ∈ L2(I,H), (1.10)

and K is given by

K = K0 + B, dom(K) = dom(K0) ∩ dom(B),

where B is the multiplication operator induced by the family {B(t)}∈I in L2(I,H)

which is self-adjoint and non-negative, for more details see Section 2. It turns out that

under the assumptions (S1) and (S2), the operatorK is the generator of a contraction

semigroup {U(τ )}τ∈R+
on L2(I,H). For the pair {K0,B}, we consider the Lie–Trotter

product formula. From the original paper of Trotter [50], one gets that

s- lim
n→∞

(
e
−

τ
n

K0 e
−

τ
n

B
)n

= e−τK, τ ∈ R+ := [0,∞), (1.11)

holds uniformly in τ on any bounded interval of R+. Since e−τK0 = 0 and e−τK = 0

for τ ≥ T one gets even uniformly in τ ∈ R+.

Previously, it was shown that under certain assumptions, the strong convergence

can be improved to operator-norm convergence on Hilbert spaces, see [9, 10, 15, 38,

42] as well as on Banach spaces, see [11]. For an overview, the reader is referred to

[37]. To consider the Trotter product formula for evolution, equations is relatively

new and was first realized in [34, 35] for Banach spaces.

In the following, we improve the convergence (1.11) to operator-norm conver-

gence. We show that under the assumptions (S1)–(S3) and β > 2α − 1, there is a

constant Rβ > 0 such that

sup
τ∈R+

∥∥∥
(

e
−

τ
n

K0 e
−

τ
n

B
)n

− e−τK

∥∥∥ ≤
Rβ

nβ
, n ∈ N, (1.12)

holds.

It turns out that K is the generator of an evolution semigroup. This means, there

is a propagator {U (t, s)}(t,s)∈∆0
, ∆0 := {(t, s) ∈ I0 × I0 : s ≤ t}, I0 = (0, T ], such

that the contraction semigroup {U(τ ) = e−τK}τ∈R+
admits the representation

(U(τ ) f )(t) = U (t, t − τ)χI(t − τ) f (t − τ), f ∈ L2(I,H). (1.13)
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We recall that a strongly continuous, uniformly bounded family of bounded operators

{U (t, s)}(t,s)∈∆0
is called a propagator if (1.4) is satisfied for I0 and ∆0 instead of I

and ∆, respectively. Roughly speaking, a propagator is a solution operator restricted

to ∆0 where the assumption that U (t, 0)x should be a strict solution is dropped.

Obviously, the notion of a propagator is weaker then that one of a solution operator.

For its existence, one needs only the assumptions (S1) and (S2), see Theorem 4.4

and 4.5 in [34] or Theorem 3.3 [35]. Of course, the propagator coincides with the

solution operator of [56] if the assumptions (S1)–(S3) are satisfied and β > α.

By Proposition 3.8 of [37] and (1.12) we immediately get that under the assump-

tions (S1)–(S3) and β > 2α − 1 the estimate

ess sup
(t,s)∈∆0

‖Vn(t, s) − U (t, s)‖ ≤
Rβ

nβ
, n ∈ N, (1.14)

holds, where the constant Rβ is that one of (1.12). Notice that the condition β >

2α − 1 is weaker than β > α, i.e., if β > α, then β > 2α − 1 holds. If α satisfies

the condition
1+β

2
> α > β, then the assumptions (I), (VI), and (VII) of [56] for

the family {C(t)}∈I are not valid but nevertheless, we get an approximation of the

corresponding propagator {U (t, s)}(t,s)∈∆0
.

The results are stronger than those in [34, 35] for Banach spaces. In [34], a

convergence rate O(n−(β−α)) was found, whereas in [35], the Lipschitz case has

been considered and the rate O(n−(1−α)) for α ∈ ( 1
2
, 1) was proved.

It turns out that the result (1.7) can be hardly improved. Indeed in [36], the simple

case H := C and A = 1 was considered. In that case, the family {B(t)}t∈I reduces

to a non-negative bounded measurable function: b(·) : I −→ R which has to be

Hölder continuous with exponent β ∈ (0, 1). For that case, it was found in [36] that

the convergence rate is O(n−β) which coincides with (1.7). For the Lipschitz case,

it was found O(n−1) which suggests that (1.8) and (1.9) might be not optimal.

The paper is organised as follows. In Section 2, we give a short introduction into

evolution semigroups. For more details, the reader referred to [33, 34, 39, 40]. The

results are proven in Section 3. In Section 3.1, we prove auxiliary results which are

necessary to prove the main results of Section 3.2.

Notation: Spaces, in particular, Hilbert are denoted by Gothic capital letters like

H, K, etc. Operators are denoted by Latin or italic capital letters. The Banach space

of bounded operators on space is denoted by L(·), like L(H). We set R+ := [0,∞).

If a function is called measurable, then it means Lebesgue measurable. The notation

“a.e.” means that a statement or relation fails at most for a set of Lebesgue measure

zero. In the following, we use the notation ess sup(t,s)∈∆ or ess sup(t,s)∈∆0
. In that

case, the Lebesgue measure of R
2 is meant.

We point out that we call operator K to be generator of a semigroup {e−τK}τ∈R+
,

see e.g., [41], although in [12, 25] it is the operator −K, which is called the generator.
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2 Evolution Semigroups

Below, we consider the Hilbert space K = L2(I,H) consisting of all measurable

functions f (·) : I −→ H such that the norm function ‖ f (·)‖ : I −→ R+ is square

integrable. Further, let D0 be the generator of the right-hand sift semigroup on

L2(I,H), i.e.,

(e−τ D0 f )(t) = χI(t − τ) f (t − τ), t ∈ I, τ ∈ R+, f ∈ L2(I,H).

Notice that e−τ D0 = 0 for τ ≥ T . The generator D0 is given by

(D0 f )(t) :=
∂

∂t
f (t),

f ∈ dom(D0) :=W
1,2
0 (I,H) = { f ∈ W 1,2(I,H) : f (0) = 0}.

(2.1)

We remark that D0 is a closure of the maximal symmetric operator and its semigroup

is contractive.

Further, we consider the multiplication operator A in L2(I,H),

(A f )(t) :=A f (t),

f ∈ dom(A) :=

{
f ∈ L2(I,H) :

f (t) ∈ dom(A) for a.e. t ∈ I

A f (t) ∈ L2(I,H).

}

If (S1) is satisfied, then A is self-adjoint and A ≥ IL2(I,H). For the resolvent, one

has the representation

((A− z)−1 f )(t) = (A − z)−1 f (t), t ∈ I0, f ∈ L2(I,H), z ∈ ρ(A) = ρ(A),

and the corresponding semigroup {e−τA}τ∈R+
is given by

(e−τA f )(t) = e−τ A f (t), t ∈ I, f ∈ L2(I,H), τ ∈ R+. (2.2)

Notice that the operators e−τ D0 and e−τA commute. Let us consider the contraction

semigroup

U0(τ ) := e−τ D0 e−τA, τ ∈ R+. (2.3)

Obviously, the semigroup {U0(τ )}τ∈R+
admits the representation (1.13). Due to the

maximal L2-regularity of A, cf. [6], its generator K0 is given by

K0 := D0 +A, dom(K0) := dom(D0) ∩ dom(A).

Further, we consider the multiplication operator B, defined as
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(B f )(t) :=B(t) f (t)

f ∈ dom(B) :=

{
f ∈ L2(I,H) :

f (t) ∈ dom(B(t)) for a.e. t ∈ I

B(t) f (t) ∈ L2(I,H)

}
.

(2.4)

If (S1) is satisfied, thenB is self-adjoint and non-negative. For the resolvent, we have

the representation

((B − z)−1 f )(t) = (B(t) − z)−1 f (t), f ∈ L2(I,H), z ∈ C−−,

for a.e. t ∈ I. The semigroup {e−τB}τ∈R+
, admits the representation

(e−τB f )(t) = e−τ B(t) f (t), f ∈ L2(I,H),

for a.e. t ∈ I.

By [34, Proposition 4.4], we get that under the assumptions (S1) and (S2) the

operator

K := K0 + B, dom(K) := dom(K0) ∩ dom(B),

is a generator of a contraction semigroup on L2(I,H). From [34, Proposition 4.5],

we obtain thatK is the generator of an evolution semigroup. BecauseK is a generator

of a contraction semigroup it turns out that the corresponding propagator consists of

contractions.

If {U (t, s)}(t,s)∈∆0
is a propagator, then by virtue of (1.13) it defines a semigroup,

which by definition is an evolution semigroup. It turns out that there is a one-to-one

correspondence between the set of evolution semigroups on L2(I,H) and propa-

gators. It is interesting to note that evolution generators can be characterised quite

independent from a propagator, see [33, Theorem 2.8] or [34, Theorem 3.3].

3 Results

We start with a general observation concerning the conditions (S1)–(S3).

Remark 3.1 If the conditions (S1)–(S3) are satisfied for some α ∈ [0, 1), then they

are also satisfied for each α′ ∈ (α, 1]. Indeed, the condition (S1) is obviously satisfied.

To show (S2), we note that dom(Aα′

) ⊆ dom(Aα) ⊆ dom(B(t)) for a.e. t ∈ I. Using

the representation

B(t)A−α′

= B(t)A−α A−(α′−α) (3.1)

for a.e. t ∈ I we get that the map B(·)A−α′

: I −→ L(H) is strongly measurable.

Further, from (3.1)

Cα′ := ess sup
t∈I

‖B(t)A−α′

‖ ≤ ess sup
t∈I

‖B(t)A−α‖ = Cα < ∞.
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Moreover we have

‖A−α′

(B(t) − B(s))A−α′

‖ ≤ ‖A−α(B(t) − B(s))A−α‖ ≤ Lα,β |t − s|β,

(t, s) ∈ I × I, which shows that there is a constant Lα′,β ≤ Lα,β such that

‖A−α′

(B(t) − B(s))A−α′

‖ ≤ Lα′,β |t − s|β (t, s) ∈ I × I.

holds for (t, s) ∈ I × I. △

Since A is self-adjoint and non-negative, one has ‖Aγ e−τ A‖ ≤ 1/τ γ for any τ ∈

R+ and γ ∈ [0, 1]. Then by virtue of (2.2) and of (1.10), (2.3), one gets the estimates

‖Aγ e−τA‖ = ‖e−τAAγ ‖ ≤
1

τ γ
and ‖Aγ e−τK0‖ = ‖e−τK0Aγ ‖ ≤

1

τ γ
. (3.2)

3.1 Auxiliary Estimates

In this section, we prove a series of estimates necessary to establish (1.12). The

following lemma can be partially derived from [34, Lemma 7.4].

Lemma 3.2 Let the assumptions (S1) and (S2) be satisfied. Then for any γ ∈ [α, 1),

there is a constant Λγ ≥ 1 such that

‖Aγ e−τK‖ ≤
Λγ

τ γ
and ‖e−τKAγ ‖ ≤

Λγ

τ γ
, τ > 0, (3.3)

holds.

Proof The proof of the first estimate follows from Lemma 7.4 of [34] and Remark

3.1. The second estimate can be proved similarly as the first one. One has only to

modify the proof of Lemma 7.4 of [34] in a suitable manner and to apply again

Remark 3.1. �

Remark 3.3 Lemma 2.1 of [14] claims that for the Lipschitz case, the solution oper-

ator {U (t, s)}(t,s)∈∆ of (1.1) admits the estimates

sup
(t,s)∈∆

(t − s)γ ‖Aγ U (t, s)‖ < ∞ and sup
(t,s)∈∆

(t − s)γ ‖U (t, s)Aγ ‖ < ∞

for γ ∈ [0, 1]. Proposition 2.1 of [36] immediately yields that the corresponding

evolution semigroup {U(τ ) = e−τK}τ∈R+
satisfies the estimates (3.3) for γ = 1. △

Now we set

T (τ ) = e−τK0 e−τB, τ ∈ R+. (3.4)

Notice that T (τ ) = 0 for τ ≥ T .
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Lemma 3.4 Let the assumptions (S1) and (S2) be satisfied. Then for any γ ∈ [α, 1),

the estimates

‖A−γ (T (τ ) − U(τ ))‖ ≤ 2Cγ τ and ‖(T (τ ) − U(τ ))A−γ ‖ ≤ 2Cγ τ, (3.5)

hold for τ ≥ 0, where

Cγ := ess sup
t∈I

‖B(t)A−γ ‖. (3.6)

Proof The proof of the first estimate follows from Lemma 7.6 of [34] and Remark

3.1. The specific constant 2Cγ is obtained following carefully by the proof of Lemma

7.6 of [34]. The second estimate can be proved by modifying the proof of the first

estimate in an obvious manner. �

Lemma 3.5 Let the assumptions (S1)–(S3) be satisfied. Then for any γ ∈ [α, 1) and

β ∈ (0, 1), there is a constant Zγ,β > 0 such that

‖A−γ (T (τ ) − U(τ ))A−γ ‖ ≤ Zγ,βτ 1+κ, τ ∈ R+, (3.7)

holds where κ := min{γ, β}.

Proof We use the representation

d

dσ
e−(τ−σ)Ke−σK0 e−σB =e−(τ−σ)K

{
Ke−σK0 − e−σK0K0 − e−σK0B

}
e−σB

=e−(τ−σ)K
{
Be−σK0 − e−σK0B

}
e−σB

which yields

e−(τ−σ)K
{
Be−σK0 − e−σK0B

}
e−σB

=(e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
(e−σB − I )+

e−(τ−σ)K0

{
Be−σK0 − e−σK0B

}
(e−σB − I )+

(e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
+

e−(τ−σ)K0

{
Be−σK0 − e−σK0B

}
.

Hence, we obtain the identity

A
−γ e−(τ−σ)K

{
Be−σK0 − e−σK0B

}
e−σB

A
−γ

=A−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ +

e−(τ−σ)K0A
−γ

{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ +

A
−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
A

−γ +
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e−(τ−σ)K0A
−γ

{
Be−σK0 − e−σK0B

}
A

−γ

which leads to the estimate

∥∥∥A−γ e−(τ−σ)K
{
Be−σK0 − e−σK0B

}
e−σB

A
−γ

∥∥∥ ≤
∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ

∥∥∥+ (3.8)
∥∥∥e−(τ−σ)K0A

−γ
{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ

∥∥∥+ (3.9)
∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
A

−γ
∥∥∥+ (3.10)

∥∥∥e−(τ−σ)K0A
−γ

{
Be−σK0 − e−σK0B

}
A

−γ
∥∥∥. (3.11)

Note that by (3.2) and (3.6), one gets

‖e−σK0B‖ =‖e−σK0A
γ
A−γB‖ ≤ σ−γ ‖A−γB‖ = Cγ σ−γ ,

‖Be−σK0‖ =‖BA−γ
A

γ e−σK0‖ ≤ σ−γ ‖BA−γ ‖ = Cγ σ−γ ,
(3.12)

for σ > 0. Due to (3.12), one estimates (3.8) as

∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ

∥∥∥

≤2 Cγ σ−γ
∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

∥∥∥
∥∥∥(e−σB − I )A−γ

∥∥∥.

Since the fundamental properties of semigroups and (3.6) yield
∥∥∥(e−σB − I )A−γ

∥∥∥ ≤ ‖BA−γ ‖ σ ≤ Cγ σ, σ ∈ R+, (3.13)

and ∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

∥∥∥ ≤ Cγ (τ − σ), σ ∈ R+,

we get for (3.8) the estimate
∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ

∥∥∥
≤2 C3

γ σ 1−γ (τ − σ), 0 ≤ σ ≤ τ.
(3.14)

To estimate (3.9), we recall that A and K0 commute. Then by (3.6), one gets

∥∥∥e−(τ−σ)K0A
−γ

{
Be−σK0 − e−σK0B

}
(e−σB − I )A−γ

∥∥∥

≤2Cγ ‖(e−σB − I )A−γ ‖ ≤ 2 C2
γ σ, 0 ≤ σ ≤ τ ,

(3.15)

where (3.13) was used for the last inequality.
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To estimate (3.10), we have

∥∥∥A−γ (e−(τ−σ)K − e−(τ−σ)K0)

{
Be−σK0 − e−σK0B

}
A

−γ
∥∥∥

≤2 Cγ ‖A−γ (e−(τ−σ)K − e−(τ−σ)K0)‖ ≤ 2 C2
γ (τ − σ), 0 ≤ σ ≤ τ.

(3.16)

To estimate (3.11), we use the representation

A
−γ

{
Be−σK0 − e−σK0B

}
A

−γ

=A−γ
B(e−σA − I )A−γ e−σD0 − e−σ D0A

−γ (e−σA − I )BA−γ +

A
−γ

{
Be−σ D0 − e−σD0B

}
A

−γ ,

that yields

∥∥∥A−γ
{
Be−σK0 − e−σK0B

}
A

−γ
∥∥∥

≤

∥∥∥A−γ
B(e−σA − I )A−γ

∥∥∥ +

∥∥∥A−γ (e−σA − I )BA−γ
∥∥∥+

∥∥∥A−γ
{
Be−σ D0 − e−σD0B

}
A

−γ
∥∥∥ .

Then by (3.6) and by semigroup properties one gets

∥∥∥A−γ
B(e−σA − I )A−γ

∥∥∥ ≤
Cγ

γ
σ γ , σ ∈ R+,

and ∥∥∥A−γ (e−σA − I )BA−γ
∥∥∥ ≤

Cγ

γ
σ γ , σ ∈ R+.

The last term is obtained by using (S3) (for α substituted by γ ) and the definitions

(2.1), (2.4):

∥∥∥A−γ
{
Be−σ D0 − e−σD0B

}
A

−γ
∥∥∥ ≤ σ β Lγ,β, σ ∈ R+.

Summing up one finds that

∥∥∥A−γ
{
Be−σK0 − e−σK0B

}
A

−γ
∥∥∥ ≤

2Cγ

γ
σ γ + Lγ,βσ β , σ ∈ R+. (3.17)

Using the estimates (3.14)–(3.17), we get
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∥∥∥A−γ e−(τ−σ)K
{
Be−σK0 − e−σK0B

}
e−σB

A
−γ

∥∥∥

≤2C3
γ σ 1−γ (τ − σ) + 2C2

γ σ + 2C2
γ (τ − σ) +

2Cγ

γ
σ γ + Lγ,βσ β

=2C3
γ σ 1−γ (τ − σ) + 2C2

γ τ +
2Cγ

γ
σ γ + Lγ,βσ β ,

or returning back to its derivative

∥∥∥A−γ d

dσ
e−(τ−σ)Ke−σK0 e−σB

A
−γ

∥∥∥

≤2C3
γ σ 1−γ (τ − σ) + 2C2

γ τ +
2Cγ

γ
σ γ + Lγ,βσ β , 0 ≤ σ ≤ τ.

Since

A
−γ (e−τK0 e−τB − e−τK)A−γ =

∫ τ

0

A
−γ d

dσ
e−(τ−σ)Ke−σK0 e−σB

A
−γ dσ,

we find the estimate

∥∥∥A−γ (e−τK0 e−τB − e−τK)A−γ
∥∥∥ ≤

∫ τ

0

∥∥∥A−γ d

dσ
e−(τ−σ)Ke−σK0 e−σB

A
−γ

∥∥∥dσ,

which yields the estimate

∥∥∥A−γ (e−τK0 e−τB − e−τK)A−γ
∥∥∥

≤2C3
γ

∫ τ

0

σ 1−γ (τ − σ)dσ + 2C2
γ τ 2 +

2Cγ

(1 + γ )γ
τ 1+γ +

Lγ,β

1 + β
τ 1+β

or after integration

∥∥∥A−γ (e−τK0 e−τB − e−τK)A−γ
∥∥∥

≤
2C3

γ

(2 − γ )(3 − γ )
τ 3−γ + 2C2

γ τ 2 +
2Cγ

(1 + γ )γ
τ 1+γ +

Lγ,β

1 + β
τ 1+β , τ ∈ R+ .

If γ ∈ [α, 1) and γ ≤ β < 1, then one gets

∥∥∥A−γ (e−τK0 e−τB − e−τK)A−γ
∥∥∥ (3.18)

≤

( 2C3
γ

(2 − γ )(3 − γ )
τ 2−2γ + 2C2

γ τ 1−γ +
2Cγ

(1 + γ )γ
+

Lγ,β

1 + β
τ β−γ

)
τ 1+γ ,

τ ∈ R+, which immediately yields (3.7).
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If γ ∈ [α, 1) and 0 < β < γ , then one can rewrite it as

∥∥∥A−γ (e−τK0 e−τB − e−τK)A−γ
∥∥∥ (3.19)

≤

(
2C3

γ

(2 − γ )(3 − γ )
τ 2−γ−β + 2C2

γ τ 1−β +
2Cγ

(1 + γ )γ
τ γ−β +

Lγ,β

1 + β

)
τ 1+β ,

τ ∈ R+, which shows (3.7) for this choice of γ and β. �

Remark 3.6 For γ ∈ [α, 1) and γ ≤ β < 1, we find from (3.18) that

Zγ,β :=
2C3

γ

(2 − γ )(3 − γ )
T 2−2γ + 2C2

γ T 1−γ +
2Cγ

(1 + γ )γ
+

Lγ,β

1 + β
T β−γ . (3.20)

For γ ∈ [α, 1) and 0 < β < γ , we get from (3.19) that

Zγ,β :=
2C3

γ

(2 − γ )(3 − γ )
T 2−γ−β + 2C2

γ T 1−β +
2Cγ

(1 + γ )γ
T γ−β +

Lγ,β

1 + β
.

Here, Cγ := ess supt∈I ‖BA−γ ‖, see (3.3), and Lγ,β is the Hölder constant of the

function A−γ B(·)A−γ : I −→ L(H), see (S3).

Lemma 3.7 Let the assumptions (S1) and (S2) be satisfied. Then

‖Aγ (U(τ ) − T (τ ))A−γ ‖ ≤

(
Λγ

1−γ
+ 1

)
Cγ τ 1−γ , τ ∈ R+, (3.21)

for γ ∈ [α, 1).

Proof We use the representation

U(τ ) − T (τ ) = e−τK − e−τK0 + e−τK0(I − e−τB)

which yields

A
γ (U(τ ) − T (τ ))A−γ = Aγ (e−τK − e−τK0)A−γ +Aγ e−τK0(I − e−τB)A−γ

Using the semigroup property we obtain for the first term the representation:

A
γ (e−τK − e−τK0)A−γ = −

∫ τ

0

A
γ e−(τ−x)K

BA
−γ e−xK0 dx .

Hence, by (3.3) and (3.6) one gets
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‖Aγ (e−τK − e−τK0)A−γ ‖ ≤

∫ τ

0

‖Aγ e−(τ−x)K‖‖BA−γ ‖dx ≤

Λγ Cγ

∫ τ

0

1

(τ − x)γ
dx =

Λγ Cγ

1 − γ
τ 1−γ . (3.22)

To estimate the second term we use the inequality

‖Aγ e−τK0(I − e−τB)A−γ ‖ ≤ ‖Aγ e−τK0‖‖(I − e−τB)A−γ ‖.

Using (3.2) and (3.13) we estimate the second term as

‖Aγ e−τK0(I − e−τB)A−γ ‖ ≤ Cγ τ 1−γ . (3.23)

Now the estimates (3.22) and (3.23) yield (3.21). �

Lemma 3.8 Let the assumption (S1) be satisfied. If for each γ ∈ [α, 1) there is a

constant Mγ > 0 such that

‖Aγ
T (τ )m‖ ≤

Mγ

(mτ)γ
, m ∈ N, τ ∈ R+, (3.24)

holds for T (τ ) defined in (3.4), then

‖Aσ
T (τ )m‖ ≤

Mδ
γ

(mτ)σ
, m ∈ N, (3.25)

holds for σ ∈ [0, γ ] and δ := σ/γ .

Proof If (3.24) is satisfied, then

‖(T (τ )∗)mAγ ‖ ≤
Mγ

(mτ)γ
, m ∈ N,

holds, which is equivalent to

A
γ
T (τ )m(T (τ )∗)mAγ ≤

M2
γ

(mτ)2γ
, m ∈ N,

or

T (τ )m(T (τ )∗)m ≤
M2

γ

(mτ)2γ
A

−2γ , m ∈ N.

Let δ ∈ (0, 1). Using the Heinz inequality [8, Theorem X.4.2] we get

(
T (τ )m(T (τ )∗)m

)δ

≤
M2δ

γ

(mτ)2δγ
A

−2δγ , m ∈ N.
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Since T (τ )m(T (τ )∗)m is a self-adjoint contraction we get

T (τ )m(T (τ )∗)m ≤

(
T (τ )m(T (τ )∗)m

)δ

, m ∈ N,

which yields

T (τ )m(T (τ )∗)m ≤
M2δ

γ

(mτ)2δγ
A

−2δγ , m ∈ N,

or

A
δγ
T (τ )m(T (τ )∗)mAδγ ≤

M2δ
γ

(mτ)2δγ
, m ∈ N.

Therefore, one gets

∥∥∥(T (τ )∗)mAδγ

∥∥∥ ≤
Mδ

γ

(mτ)δγ
, m ∈ N,

or ∥∥∥Aδγ
T (τ )m

∥∥∥ ≤
Mδ

γ

(mτ)δγ
, m ∈ N.

Setting δ = σ/γ we obtain the proof of (3.25). �

Lemma 3.9 Let the assumptions (S1) and (S2) be satisfied and let γ ∈ (α, 1). Then

there is a constant Mγ > 0 such that

‖Aγ
T (τ )m‖ ≤

Mγ

(mτ)γ
, m = 1, 2, . . . n, (3.26)

holds for any T > 0 if τ ∈ (0, T
n
) and n ≥ n0 where n0 := ⌊(2(

Λγ

1−γ
+ 1)

Cγ )
1

1−γ T ⌋ + 1 and ⌊x⌋ denotes the largest integer smaller than x.

Proof Let Mγ > 0 be a constant which satisfies the inequality

5Λγ + 2

(
Λγ

1 − γ
+ 1

)
Cγ Mγ T 1−γ 1

n1−γ
+ 4Λγ Cγ M

α
γ
γ B(1 − α, 1 − γ ) T 1−α ≤ Mγ (3.27)

for n ≥ n0. Here, constants Λγ and Cγ are defined by Lemmas 3.2 and 3.4, respec-

tively, while B(·, ·) denotes the Euler Beta-function. (Note that such Mγ > 0 always

exists, see Remark 3.10 below.)

Let m = 1. Then by (3.2) and (3.4) we get

‖Aγ
T (τ )‖ ≤ ‖Aγ e−τK0‖ ≤

1

τ γ
≤

Λγ

τ γ
≤

Mγ

τ γ
,

for τ > 0 and, in particular, for τ ∈ (0, T/n). Hence (3.26) holds for m = 1.
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Let us assume that (3.26) holds for l = 1, 2, . . . , m − 1, with m ≤ n, i.e.,

‖Aγ
T (τ )l‖ ≤

Mγ

(lτ)γ
, l = 1, 2, . . . m − 1, (3.28)

for τ ∈ (0, T/n). We are going to show that (3.28) holds for l = m. To this aim, we

use the representation

U(τ )m − T (τ )m =

m−1∑

k=0

U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k, m = 2, 3, . . . ,

which implies

T (τ )m = U(τ )m −

m−1∑

k=0

U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k, m = 2, 3, . . . .

Hence

A
γ
T (τ )m = Aγ

U(τ )m −

m−1∑

k=0

A
γ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k

or

A
γ
T (τ )m = Aγ

U(τ )m −Aγ
U(τ )m−1(U(τ ) − T (τ ))

−Aγ (U(τ ) − T (τ ))T (τ )m−1 −

m−2∑

k=1

A
γ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k .

for m = 3, 4, . . . . This yields the inequality

‖Aγ
T (τ )m‖ ≤ ‖Aγ

U(τ )m‖ + ‖Aγ
U(τ )m−1(U(τ ) − T (τ ))‖+ (3.29)

‖Aγ (U(τ ) − T (τ ))T (τ )m−1‖ +

m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

for m = 3, 4, . . . . From Lemma 3.2, we get the estimates

‖Aγ
U(τ )m‖ ≤

Λγ

(mτ)γ
, m = 2, 3, . . . ,

and consequently

‖Aγ
U(τ )m−1(U(τ ) − T (τ ))‖ ≤

2Λγ

((m − 1)τ )γ
≤

4Λγ

(mτ)γ
, m = 2, 3, . . . .
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Then, summing up estimates for the first two terms in the right-hand side of (3.29),

we obtain

‖Aγ
U(τ )m‖ + ‖Aγ

U(τ )m−1(U(τ ) − T (τ ))‖ ≤
5Λγ

(mτ)γ
, m = 2, 3, . . . . (3.30)

Next, we get for the third term in the right-hand side of (3.29), the estimate

‖Aγ (U(τ ) − T (τ ))T (τ )m−1‖ ≤ ‖Aγ (U(τ ) − T (τ ))A−γ ‖‖Aγ
T (τ )m−1‖,

m = 2, 3, . . . . Then using Lemma 3.7 we find that

‖Aγ (U(τ ) − T (τ ))T (τ )m−1‖ ≤

(
Λγ

1 − γ
+ 1

)
Cγ τ1−γ ‖Aγ

T (τ )m−1‖, m = 2, 3, . . . .

By assumption (3.28) this yields

‖Aγ (U(τ ) − T (τ ))T (τ )m−1‖ ≤

(
Λγ

1 − γ
+ 1

)
Mγ Cγ

1

((m − 1)τ )γ
τ1−γ , m = 2, 3, . . . ,

for τ ∈ (0, T/n), which leads to

‖Aγ (U(τ ) − T (τ ))T (τ )m−1‖ ≤

(
Λγ

1 − γ
+ 1

)
Mγ Cγ

2

(mτ)γ
τ1−γ , m = 2, 3, . . . . (3.31)

Finally, one gets for the sum in (3.29)

m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

≤

m−2∑

k=1

‖Aγ
U(τ )m−1−k‖‖(U(τ ) − T (τ ))A−α‖‖Aα

T (τ )k‖, m = 2, 3, . . . .

Then by Lemma 3.2 this implies

m−2∑

k=1

‖Aγ
U(τ )m−1−k (U(τ ) − T (τ ))T (τ )k‖

≤ Λγ

m−2∑

k=1

1

((m − 1 − k)τ )γ
‖(U(τ ) − T (τ ))A−α‖‖Aα

T (τ )k‖, m = 2, 3, . . . .

Taking into account Lemma 3.4 we get
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m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

≤ 2Λγ Cα

m−2∑

k=1

τ

((m − 1 − k)τ )γ
‖Aα
T (τ )k‖, m = 2, 3, . . . .

Finally, using assumption (3.28) and Lemma 3.8 one obtains

m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

≤ 2Λγ Cα M

α
γ
γ

m−2∑

k=1

τ

((m − 1 − k)τ )γ

1

(kτ)α
, m = 2, 3, . . . ,

or
m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

≤ 2Λγ Cγ M

α
γ
γ

(
m−2∑

k=1

1

(m − 1 − k)γ

1

kα

)
τ 1−γ−α, m = 2, 3, . . . ,

for τ ∈ (0, T/n). Since Lemma 3.11 below yields

m−2∑

k=1

1

(m − 1 − k)γ

1

kα
≤ B(1 − α, 1 − γ )(m − 1)1−γ−α, m = 2, 3, . . . , (3.32)

where B(·, ·) is the Euler Beta-function, we get

m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

≤2Λγ Cγ M

α
γ
γ B(1 − α, 1 − γ )τ 1−γ−α(m − 1)1−γ−α, m = 2, 3, . . . ,

which in turn leads to

m−2∑

k=1

‖Aγ
U(τ )m−1−k(U(τ ) − T (τ ))T (τ )k‖

≤
4Λγ Cγ M

α
γ
γ B(1 − α, 1 − γ )

(mτ)γ
τ 1−αm1−α,

(3.33)

for m = 2, 3, . . . and any τ ∈ (0, T/n).
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Now we take into account (3.29)–(3.31) and (3.33) to conclude that

‖Aγ
T (τ )m‖ ≤

{
5Λγ + 2

(
Λγ

1 − γ
+ 1

)
Mγ Cγ τ1−γ + 4Λγ Cγ M

α
γ
γ B(1 − α, 1 − γ )τ1−αm1−α

} 1

(mτ)γ
,

for m = 2, 3, . . . and τ ∈ (0, T/n). Then

‖Aγ
T (τ )m‖ ≤

{
5Λγ + 2

(
Λγ

1 − γ
+ 1

)
Mγ Cγ T 1−γ 1

n1−γ
+ 4Λγ Cγ M

α
γ
γ B(1 − α, 1 − γ ) T 1−α

} 1

(mτ)γ
.

From assumption (3.27) we get

5Λγ + 2

(
Λγ

1 − γ
+ 1

)
Mγ Cγ T 1−γ 1

n1−γ
+ 4Λγ Cγ M

α
γ
γ B(1 − α, 1 − γ ) T 1−α ≤ Mγ

for n ≥ n0, which shows that (3.28) holds for l = 1, 2, 3, . . . , n and n ≥ n0 which

proves (3.26). �

Remark 3.10 One checks that condition (3.27) is always satisfied for sufficiently

large M = Mγ and n ≥ n0. Indeed, after setting

c0 := 5Λγ , c1 := 2

(
Λγ

1 − γ
+ 1

)
Cγ T 1−γ , c2 := 4Λγ Cγ B(1 − α, 1 − γ ) T 1−α

we get the condition

c0 +
c1

n1−γ
M + c2 M

α
γ ≤ M

which yields

c0 + c2 M
α
γ ≤ (1 −

c1

n1−γ
)M

or
c0

M
+

c2

M
1−

α
γ

≤ 1 −
c1

n1−γ

Since n > c

1
1−γ

1 we have 1 − c1/n1−γ > 0. The left-hand side tends to zero if M →

∞. Hence, choosing M sufficiently large we guarantee the existence of Mγ such that

condition (3.27) is satisfied for any n ≥ n0. △

It remains only to verify the following statement.

Lemma 3.11 Let α ∈ [0, 1) and γ ∈ [α, 1). Then

n−1∑

k=1

1

(n − k)γ

1

kα
≤ B(1 − α, 1 − γ )n1−γ−α, n ∈ 2, 3, . . . .
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the estimate holds where B(·, ·) is the Euler Beta-function.

B(1 − α, 1 − γ ) :=

∫ 1

0

1

xα(1 − x)γ
dx

Proof If x ∈ (k − 1, k], then

1

kα
≤

1

xα
and

1

(n − k)γ
≤

1

(n − 1 − x)γ

for k = 1, 2, . . . , n − 1. Hence

1

(n − k)γ kα
≤

1

(n − 1 − x)γ xα
, x ∈ (k − 1, k].

Therefore

1

(n − k)γ kα
=

∫ k

k−1

1

(n − k)γ kα
dx ≤

∫ k

k−1

1

(n − 1 − x)γ xα
dx, x ∈ (k − 1, k],

or

n−1∑

k=1

1

(n − k)γ kα
=

n−1∑

k=1

∫ k

k−1

1

(n − k)γ kα
dx ≤

n−1∑

k=1

∫ k

k−1

1

(n − 1 − x)γ xα
dx

=

∫ n−1

0

1

(n − 1 − x)γ xα
dx = B(1 − α, 1 − γ )n1−α−γ .

�

3.2 Main Results

In this section, we collect our main results and their proofs. They are based on

preliminaries established in Section 3.1.

Theorem 3.12 Let the assumptions (S1)–(S3) be satisfied and let β > 2α − 1. Then

there is a constant Rβ > 0 such that

sup
τ∈R+

‖U(τ ) − T (τ/n)n‖ ≤
Rβ

nβ
(3.34)

holds for n ∈ N and τ ∈ R+.

Proof Taking into account the representation
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U(τ/n)n − T (τ/n)n =

n−1∑

m=0

U(τ/n)n−m−1(U(τ/n) − T (τ/n))T (τ/n)m, n ∈ N,

or, identically,

U(τ/n)n − T (τ/n)n

=U(τ/n)n−1(U(τ/n) − T (τ/n)) + (U(τ/n) − T (τ/n))T (τ/n)n−1+

n−2∑

m=1

U(τ/n)n−m−1(U(τ/n) − T (τ/n))T (τ/n)m, n = 3, 4, . . . ,

we obtain the estimate

‖U(τ/n)n − T (τ/n)n‖

≤ ‖U(τ/n)n−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))‖

+ ‖(U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)n−1‖ (3.35)

+

n−2∑

m=1

‖U(τ/n)n−m−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)m‖,

n = 3, 4, . . . .

Note that using Lemmas 3.2 and 3.4 one gets

‖U(τ/n)n−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))‖ ≤ 2
Λγ Cγ

(τ (n − 1)/n)γ

τ

n
,

which yields

‖U(τ/n)n−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))‖ ≤ 21+γ Λγ Cγ T 1−γ 1

n
. (3.36)

for n = 3, 4, . . . and τ ∈ [0, T ].

Now using Lemmas 3.4 and 3.9 for m = n − 1 we find

‖(U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)n−1‖ ≤ 2 Cγ

τ

n

Mγ

(τ (n − 1)/n)γ
,

for n ≥ n0, where n0 is defined in Lemma 3.9 and τ ∈ [0, T ]. Hence,

‖(U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)n−1‖ ≤ 21+γ Cγ Mγ T 1−γ 1

n
. (3.37)

Taking into account Lemmas 3.2, 3.5, and 3.9 (for κ = min{γ, β}) one gets
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n−2∑

m=1

‖U(τ/n)n−m−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)m‖

≤

n−2∑

m=1

Λγ Zγ,β

((n − m − 1) τ/n)γ

(τ

n

)1+κ Mγ

(m τ/n)γ

=
Λγ Zγ,β Mγ τ 1+κ−2γ

n1+κ−2γ

n−2∑

m=1

1

(n − m − 1)γ

1

mγ
,

for n > max {2, n0} and τ ∈ [0, T ]. Then by (3.32) we obtain

n−2∑

m=1

‖U(τ/n)n−m−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)m‖

≤
Λγ Zγ,β Mγ τ 1+κ−2γ

n1+κ−2γ
B(1 − γ, 1 − γ ) n1−2γ ,

or

n−2∑

m=1

‖U(τ/n)n−m−1
A

γ ‖‖A−γ (U(τ/n) − T (τ/n))A−γ ‖‖Aγ
T (τ/n)m‖

≤ Λγ Zγ,β Mγ B(1 − γ, 1 − γ ) T 1+κ−2γ 1

nκ
.

(3.38)

Therefore, by virtue of (3.35)–(3.38) we get for n > max {2, n0} and τ ∈ [0, T ]

the estimate

‖U(τ ) − T (τ/n)n‖ = ‖U(τ/n)n − T (τ/n)n‖

≤21+γ Λγ Cγ T 1−γ 1

n
+ 21+γ Cγ Mγ T 1−γ 1

n
+ Λγ Zγ,β Mγ B(1 − γ, 1 − γ )T 1+κ−2γ 1

nκ

≤

{
21+γ Λγ Cγ T 1−γ + 21+γ Cγ Mγ T 1−γ + Λγ Zγ,β Mγ B(1 − γ, 1 − γ )T 1+κ−2γ

} 1

nκ
.

If α < β < 1, then we choose γ = β, i.e., κ = β and 1 + κ − 2γ = 1 − β ≥ 0.

Setting

R′
β := 21+βΛβCβ T 1−β + 21+βCβ Mβ T 1−β + Λβ Zβ,β Mβ B(1 − β, 1 − β)T 1−β

one obtains the estimate

‖U(τ )n − T (τ/n)n‖ ≤
R′

β

nβ
, (3.39)

for n > max {2, n0} and τ ∈ [0, T ] .
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Now let 0 < β ≤ α. Since 1 + β − 2α > 0, there exists γ ∈ (α, 1) such that 1 +

β − 2γ ≥ 0. Indeed, there is a ε > 0 verifying 1 + β − 2α > 2ε. Setting γ = α + ε

we get 1 + β − 2γ > 0. Notice that κ = β. Then setting

R′
β := 21+γ Λγ Cγ T 1−γ + 21+γ Cγ Mγ T 1−γ + Λγ Zγ,β Mγ B(1 − γ, 1 − γ )T 1+β−2γ ,

we obtain (3.39) for n > max {2, n0}.

Both results immediately imply that there is a constant Rγ such that (3.34) holds

for τ ∈ [0, T ] and n ∈ N. Finally, using U(τ ) = 0 and T (τ/n)n = 0 for τ ≥ T we

obtain (3.28) for any τ ∈ R+. �

Now we set

T̃ (τ ) := e−τBe−τK0 , τ ∈ R+.

Corollary 3.13 Let the assumptions (S1)–(S3) be satisfied and β > 2α − 1. Then

there exists R̃β > 0 such that estimate

sup
τ∈R+

‖U(τ ) − T̃ (τ/n)n‖ ≤
R̃β

nβ
(3.40)

holds for n ∈ N and τ ∈ R+.

Proof Notice that

T̃ (τ/n)n+1 = e−τB/n
T (τ/n)n e−τK0/n, τ ∈ R+, n ∈ N.

Hence

U((n + 1)τ/n) − T̃ (τ/n)n+1 = e−(n+1)τK/n − e−τB/n
T (τ/n)ne−τK0/n

=e−(n+1)τK/n − e−τB/ne−τKe−τK0/n + e−τB/n(U(τ ) − T (τ/n)n)e−τK0/n

=(I − e−τB/n)e−τKe−τK0/n + e−τK(e−τK/n − e−τK0/n)+

e−τB/n(U(τ ) − T (τ/n)n)e−τK0/n, τ ∈ R+, n ∈ N,

which yields the estimate

‖U((n + 1) τ
n
) − T̃ ( τ

n
)n+1‖

≤‖(I − e
−

τ
n

B
)e−τK‖ + ‖e−τK(e

−
τ
n

K
− e

−
τ
n

K0)‖+

‖U(τ ) − T ( τ
n
)n‖, τ ∈ R+, n ∈ N.

(3.41)

Obviously, one has

‖(I − e
−

τ
n

B
)e−τK‖ ≤ ‖(I − e

−
τ
n

B
)A−α‖‖Aαe−τK‖, τ ∈ R+, n ∈ N.
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Using

(I − e
−

τ
n

B
)A−α =

∫ τ
n

0

e−σB
BA

−αdσ, τ ∈ R+, n ∈ N,

we get the estimate

‖(I − e
−

τ
n

B
)A−α‖ ≤ Cα

τ

n
, τ ∈ R+, n ∈ N.

Taking into account condition (S2) and Lemma 3.2 we find

‖(I − e
−

τ
n

B
)e−τK‖ ≤ CαΛα

τ 1−α

n
≤ CαΛαT 1−α 1

n
, τ ∈ R+, n ∈ N, (3.42)

where we have used that e−τK = 0 for τ ≥ T .

Further, we have

‖e−τK(e
−

τ
n

K
− e

−
τ
n

K0)‖ ≤ ‖e−τK
A

α‖ ‖A−α(e
−

τ
n

K
− e

−
τ
n

K0)‖,

τ ∈ R+, n ∈ N. Then using

A
−α(e

−
τ
n

K
− e

−
τ
n

K0) = −

∫ τ
n

0

e−σK0A−αBe−(τ−σ)Kdσ,

τ ∈ R+, n ∈ N, we find the estimate

‖A−α(e
−

τ
n

K
− e

−
τ
n

K0)‖ ≤ Cα

τ

n
, τ ∈ R+, n ∈ N.

Applying again Lemma 3.2 one gets

‖e−τK(e
−

τ
n

K
− e

−
τ
n

K0)‖ ≤ CαΛαT 1−α 1

n
, τ ∈ R+, n ∈ N. (3.43)

The insertion of (3.42) and (3.43) into (3.41) yields

‖U((n + 1) τ
n
) − T̃ ( τ

n
)n+1‖ ≤ 2CαΛα

1

n
+ ‖U(τ ) − T ( τ

n
)n)‖, τ ∈ R+, n ∈ N.

Then by Theorem 3.12 we obtain

‖U((n + 1) τ
n
) − T̃ ( τ

n
)n+1‖ ≤ 2CαΛα

1

n
+ Rγ

1

nγ
, τ ∈ R+, n ∈ N.

Therefore, by setting R′
γ := 2CαΛα + Rγ we obtain

valentin.zagrebnov@univ-amu.fr



Trotter Product Formula and Linear Evolution Equations on Hilbert Spaces 295

‖U((n + 1) τ
n
) − T̃ ( τ

n
)n+1‖ ≤

R′
γ

nγ
, τ ∈ R+, n ∈ N.

which yields

sup
τ∈R+

‖U((n + 1) τ
n
) − T̃ ( τ

n
)n+1‖ ≤

R′
γ

nγ
, τ ∈ R+, n ∈ N.

Let τ = τ ′n/(n + 1) for τ ′ ∈ R+. Then

sup
τ∈R+

‖U((n + 1) τ
n
) − T̃ ( τ

n
)n+1‖ = sup

τ ′∈R+

‖U(τ ′) − T̃ ( τ ′

n+1
)n+1‖ ≤

R′
γ

nγ
,

or

sup
τ ′∈R+

‖U(τ ′) − T̃ ( τ ′

n+1
)n+1‖ ≤ 2γ

R′
γ

(n + 1)γ
,

τ ∈ R+, n ∈ N. Setting R̃γ := max{2, 2γ R′
γ } we prove (3.40).

�

These results can be immediately extended to propagators. To this end we set

G̃ j (t, s; n) :=e
−

t−s
n

B(t j )e
−

t−s
n

A
, j = 0, 1, 2, . . . , n,

Ṽn(t, s) :=G̃n(t, s; n)G̃n−1(t, s; n) × · · · × G̃2(t, s; n)G̃1(t, s; n),
(3.44)

t j := s + j t−s
n

, j = 0, 1, 2, . . . , n, in analogy to (1.6).

Theorem 3.14 Let the assumptions (S1)–(S3) be satisfied. Further, let {U (t, s)}(t,s)∈∆0

be the propagator corresponding to the evolution generatorK and let {Vn(t, s)}(t,s)∈∆0

and {Ṽn(t, s)}(t,s)∈∆0
be defined by (1.6) and (3.44), respectively. If β > 2α − 1, then

the estimates

ess sup
(t,s)∈∆0

‖U (t, s) − Vn(t, s)‖ ≤
Rβ

nβ
and ess sup

(t,s)∈∆0

‖U (t, s) − Ṽn(t, s)‖ ≤
R̃β

nβ
(3.45)

hold for n ∈ N, where the constants Rγ and R̃γ are those of Theorem 3.12 and

Corollary 3.13.

Proof Note that Proposition 2.1 of [36] yields

sup
τ∈R+

‖U(τ ) − T ( τ
n
)n‖ = ess sup

(t,s)∈∆0

‖U (t, s) − Vn(t, s)‖, n ∈ N.

Then applying Theorem 3.12 we prove (3.45).
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To proof the second estimate, we use Proposition 3.8 of [37] where the relation

sup
τ∈R+

‖U(τ ) − T̃ ( τ
n
)n‖ = ess sup

(t,s)∈∆0

‖U (t, s) − Ṽn(t, s)‖, n ∈ N.

was shown. Applying Corollary 3.13 we complete the proof. �

4 Example

As an example, we consider the diffusion equation perturbed by a time-dependent

scalar potential. For this aim, let H = L2(Ω), where Ω ⊂ R
3 is a bounded domain

with sufficiently smooth boundary. Domains in higher dimension can be treated

analogously. The equation reads as

u̇(t) = ∆u(t) − B(t)u(t), u(s) = us ∈ H, t, s ∈ [0, T ] , (4.1)

where ∆ denotes the Laplace operator in L2(Ω) with Dirichlet boundary conditions,

i.e., ∆ : dom(∆) = H 2(Ω) ∩ H 1
0 (Ω) → L2(Ω) and H 1

0 (Ω) denotes the subset of

functions that vanish at the boundary. Then operator −∆ is self-adjoint on H and

positive. For any α ∈ (0, 1) the fractional power of operator −∆ is defined on the

domain dom((−∆)α), i.e., (−∆)α : dom((−∆)α) → L2(Ω). The domain is given

by a fractional Sobolev space and for α > 1/2, we have dom((−∆)α) = H 2α
0 (Ω) ⊂

H 2α(Ω) (see [30] for more information).

Moreover, let B(t) denote a time-dependent scalar-valued multiplication operator

given by

(B(t) f )(x) =V (t, x) f (x),

dom(B(t)) ={ f ∈ L2(I,H) : V (·, x) f (x) ∈ L2(I,H)}
(4.2)

where V : I × Ω → R is measurable. We assume that the potential V (·, ·) is real

and non-negative. Then B(t) is obviously self-adjoint and non-negative on H.

Theorem 4.1 Let A be the Laplacian operator −∆ with Dirichlet boundary condi-

tions in L2(Ω), see above. Further, let {B(t)}i∈I be the family of multiplication oper-

ators defined by (4.2). If V (·, ·) : I × Ω −→ R is measurable, real, non-negative

with regularity V ∈ L∞(I, L2+ε(Ω)) ∩ Cβ(I, L1+ε(Ω)) for β ∈ (0, 1) and some

ε > 0, then the assumptions (S1)–(S3) are satisfied with α ∈ [3/4, 1). Moreover, if

β > 2α − 1 then the converging rates of Theorem 3.12, Corollary 3.13 and Theorem

3.14 hold.

Proof Since Ω is bounded there one has inf σ(A) > 0 which does not satisfy A ≥ I

in general and, hence, assumption (S1) is not satisfied. Nevertheless, inf σ(A) > 0

is sufficient to prove the converging results. So we can believe that (S1) is satisfied.

Let α ≥ 3/4. Using the Sobolev space embeddings, we get that H 2α(Ω) ⊂ Lγ (Ω)

for any γ ∈ [2,∞[. Hence, if V ∈ L∞(I, L2+ε(Ω)), we conclude that the function
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[0, T ] ∋ t �→ B(t)(−∆)−α is essentially operator-norm bounded in t ∈ I and thus,

(S2) is satisfied. Now, we consider

F(t) := (−∆)−α B(t)(−∆)−α : L2(Ω) → H 2α(Ω) ⊂ L2(Ω).

The function F(·) : I → L(H) is bounded for fixed t ∈ [0, T ] if for any f, g ∈

H 2α(Ω) the function 〈 f, B(t)g〉 is bounded. This holds since V (t, ·) ∈ L1+ε(Ω)

and H 2α(Ω) ⊂ Lγ (Ω) for any γ ∈ [2,∞[. Hence we conclude that (S3) is satisfied

and the claim is proved. �

Theorem 4.1 provides a convergence rate of an approximation of the solution of (4.1)

by the time-ordered product

Ṽn(t, s) =

n∏

j=1

e− t−s
n

V (
j t+(n− j)s

n
,·)e

t−s
n

∆ (4.3)

This looks elaborate, but is indeed simple. There are strategies to compute the semi-

group of the Laplace operator for bounded domains and there are also explicit for-

mulas on special domains like disks, etc. The factors e−τ V (t j ), j = 1, 2, . . . , n are

scalar valued and can be easily computed.

Acknowledgements We thank Takashi Ichinose and Hideo Tamura for the explanation of details

of the proof of Theorem 1.1 of [14], which makes possible to prove Lemmas 3.8 and 3.9.
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