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Direct numerical simulations of turbulent suspension flows are carried out with the
Force-Coupling Method in plane Couette and pressure-driven channel configurations.
Dilute to moderately concentrated suspensions of neutrally buoyant finite-size (Ly/d =
20) spherical particles are considered when the Reynolds number is slightly above the
laminar-turbulent transition. Tests performed with synthetic streaks, in both turbulent
channel and Couette flows, show clearly that particles trigger the instability in channel
flow whereas the plane Couette flow becomes laminar. Moreover, we have shown that
particles have a pronounced impact on pressure-driven flow through a detailed temporal
and spatial analysis whereas they have no significant impact on plane Couette flow con-
figuration. The substantial difference between both flows is related to spatial preferential
distribution of particles in the large scale rolls (inactive motion) in Couette flow, whereas
they are accumulated in the ejection (active motion) regions in pressure-driven flow.
Through investigation of particle modification on two distinct flow configurations, we
were able to show the specific response of turbulent structures and the modulation of
the fundamental mechanisms composing the regeneration cycle in the buffer layer of
near-wall turbulence. Especially for pressure-driven flow, the particles enhance the lift-
up and let it act continuously whereas the particles do no significantly alter the streak
breakdown process. The reinforcement of the streamwise vortices is attributed to the
vorticity stretching term by the wavy streaks. The smaller and more numerous wavy
streaks enhance the vorticity stretching and consequently strengthen the circulation of
large scale streamwise vortex in suspension flow.

Key words: Turbulence transition, particles, simulations

1. Introduction

The experiments of Matas et al. (2003) have shed the light on the non-monotonous
effect of particles on laminar-turbulent flow transition, depending on the particle-to-pipe
size ratio and on suspension volumetric concentration. A small amount of neutrally
buoyant finite-size particles allowed sustaining the turbulent state and decreasing the
transition threshold significantly. Almost a decade later, particle-resolved numerical
simulations provided some evidences that at moderate concentration, particles have a
significant impact on the unsteady nature of the flow, enhancing the transverse turbulent

† Email address for correspondence: Micheline.Abbas@ensiacet.fr
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stress components and modifying the flow rotational structures (Loisel et al. 2013; Yu
et al. 2013; Lashgari et al. 2015). The effect of particles on the transition of Couette flow
is not yet well characterized. Recent experiments from Majji et al. (2018) have shown
that particles do not have a significant impact on the transition path in Taylor-Couette
flow, if the particle concentration is low and the particle size is relatively small compared
to the Couette gap. With larger particles (8 times smaller than the Couette gap),
Linares-Guerrero et al. (2017) have shown that particles do not change the transition
threshold of a cylindrical turbulent Couette flow at 10% volumetric concentration.
Consistent with this finding, flow statistics performed on moderately concentrated
turbulent plane Couette flow (slightly above the transition threshold), have revealed
that there is no significant difference between single- and two-phase flows at equivalent
effective Reynolds number (Wang et al. 2017).

If the size of the particles is large enough compared to the size of energetic eddies
in a turbulent flow, the local flow streamlines are significantly modified (as would
not be the case for pointwise particles). The rigid body constraints from finite-size
particles influence the turbulent kinetic energy budget in two competing ways: they add
perturbations that increase shear production of turbulence and simultaneously increase
viscous dissipation (Qureshi et al. 2007; Bellani et al. 2012). The perturbations induced
by the particles depend on their locations: their magnitude increases with the local flow
strain rate. The spatial distribution of neutrally buoyant particles depends on the flow
configuration (turbulent Couette or channel flow). Indeed, in addition to the turbulent
dispersion that particles undergo, they are experiencing a lift force due to finite flow
inertia at the particle scale. This lift force is normal to the walls, and its orientation
depends itself on the flow configuration. Therefore particles are preferentially located
either in the active region, i.e. near the walls in pressure-driven channel flow (Loisel
et al. 2013), or in the inactive region, i.e. away from the walls in Couette flow (Wang
et al. 2017).

Even though the stability in Couette and channel single-phase flows is different,
they share at high Reynolds numbers some common turbulence features in the near
wall regions. In the inner region of a boundary layer, the turbulent motion consists
of an active part and an inactive part based on Townsend (1980). Near the walls,
the active motion contains eddies with streamwise characteristic length of the order
of 1000 wall units in highly turbulent flows that constitute the essential contribution
to the Reynolds shear stress (−u′v′). Statistical properties of the flow stress in the
active region are universal functions of the wall shear stress τw and the wall-normal
position y, whereas the inactive motion gives no correlation between u′ and v′ and it
is mainly related to the flow geometry (Bradshaw 1967; Jiménez 2011; Panton 2001;
Tuerke & Jiménez 2013). The essential difference in both flow configurations is due
to the mean velocity (u) profile which is anti-symmetric (resp. symmetric) in plane
Couette (resp. pressure-driven) flow with respect to the midplane. The production term
(−u′v′du/dy) in the turbulent kinetic energy equation has different roles according to the
flow configuration. In Couette flow, the fluid is pumped away from one wall to the other
one, extracting energy from the mean flow, leading to the enhancement of turbulent
structures (Papavassiliou & Hanratty 1997). However in pressure-driven channel flow,
the shear layers are divided into two regions and the production is of opposite sign in
both channel halves, making the turbulent structures relatively independent on each wall.

The temporal and spatial development of wall turbulence consists of a self-sustained
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Figure 1. Sketch of the regeneration cycle sub-steps

process, namely the near-wall regeneration cycle (located in the vicinity of the non-slip
boundary condition 20 < y+ < 60, see Waleffe (1997)). During this complete cycle,
coherent large-scale streaks and alternating staggered rotating vortices sustain each
other, altogether having impact on the wall friction. This cycle has been demonstrated
to be independent of the outer layer: it can survive without any input from the core flow.
Indeed Jiménez & Pinelli (1999) carried out some simulations after removing all the
fluctuations from the velocity field above y+ = 60 (in a channel flow), and after hundreds
of time units, they observed an almost unchanged turbulent flow compared to the original
one. The regeneration cycle consists of three sequential sub-processes sketched in figure
1: streak formation, streak breakdown and streamwise vortex regeneration. The streaks
are generated by a linear process, the so-called lift-up effect, whereas the following two
processes are the result of non-linear interactions.

In order to understand how particles affect the flow turbulence and the transition
from one regime to another, we are concerned in this paper with their impact on the
regeneration cycle. Klinkenberg et al. (2013) have shown that inertial pointwise particles
modify the transition to turbulence not by altering the lift-up effect but rather by
modifying the dynamics of the oblique waves necessary for the streaks regeneration
and breakdown. In this work, we consider the effect of neutrally buoyant finite-size
particles on the regeneration cycle, in turbulent flows slightly above the transition limit
of single-phase flows (Reynolds number equal to 500 for Couette and 2600 for channel
flows). Numerical simulations are performed in a domain (so-called miniunit) which
contains one set of coherent structures sufficient to sustain the flow turbulence. The
size of this miniunit is different for both flows and it follows the findings of Jiménez &
Moin (1991) and Hamilton et al. (1995). The coupling between the fluid motion and
the particle dynamics is taken into account using the Force Coupling Method (Climent
& Maxey 2009). Neutrally buoyant particles 20 times smaller than the Couette gap or
channel height are considered here at moderate volumetric concentration from 1% up to
10%.

The paper is organized as following. Section 2 summarizes the numerical configurations
in both single- and two-phase flows. In section 3, we show how particles affect the laminar-
turbulent transition by using specific initial conditions for each flow configuration. Then,
we discuss the effect of particles on the flow energy modulation in section 4 and on the
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different stages of the regeneration cycle in section 5. Both analogies and divergences
between Couette and pressure-driven flows are discussed all along the paper before
conclusion.

2. Suspension flow configurations

The coupling of fluid flow and particle dynamics follows the Force Coupling Method
(FCM), as described in Wang et al. (2017). The validation tests were carefully detailed.
The method is valid to study suspension Couette or pressure-driven channel flows, with
particle Reynolds numbers (Rep is defined in Table 1) up to 10 and particle volume
fraction less than 20%.

Couette flow was driven by two walls moving at equal and opposite velocities. Pressure-
driven channel flow was generated by imposing a global pressure drop in the streamwise
direction, that is timely tuned in order to maintain constant flow rate. In both flow
configurations, x and z are respectively the streamwise and spanwise flow directions,
with periodic boundary conditions (the so-called homogeneous directions) while y stands
for the wall-normal or velocity gradient direction. Turbulent flow simulations were
performed using a so-called “miniunit” configuration, which is the minimal geometric
domain that is sufficient to accommodate the self-sustained flow structures for single-
phase turbulence, while allowing reasonable time for the computation of suspension
flows with finite-size particles. The minimal simulation domain (different in both flow
configurations) was carefully examined in Couette flow configuration by Hamilton et al.
(1995) and pressure-driven flow by Jiménez & Moin (1991). In both cases, the spanwise
length is larger than 100 wall units which corresponds to the spanwise characteristic
spacing between two coherent structures. The length and velocity in wall units are
y+ ≡ yuτ/ν, and u+ ≡ u/uτ, where uτ =

√
τw/ρ is the friction velocity based on the

wall shear stress and fluid density.

Table 1 contains a summary of all the parameters selected for this study. Through all
the paper, we note C for plane Couette and P for pressure-driven channel flows. The size
ratio between the Couette gap or channel height and the particle diameter is Ly/d = 20
in most cases. Particles experience turbulent fluctuations, and their inertia can be
characterized by the dimensionless Stokes number Stturb = τ+p /τ

+
f , where τ+p is the

particle relaxation time scale in response to the turbulent flow forcing which characteristic
time scale is τ+f . The latter is considered here as the ratio between the characteristic

size of the large scale streamwise vortices L+
y in Couette or L+

y /2 in channel flow, and
the characteristic velocity fluctuation scale max(v′+, w′+) in the flow cross-section. The
ability of the FCM to capture accurately the particle response to flow fluctuations was
tested in Wang et al. (2017), where the motion of a rigid particle submitted to an
external oscillating force in a still fluid was considered. The numerical solution of the
particle motion was in a good agreement with the theoretical prediction when the ratio
of the particle radius to the developed Stokes layer thickness δ2 ≡ ωa2/ν was less than 2
(ω being the oscillation frequency of the external forcing). This ratio is directly related
to the particle Reynolds and Stokes numbers, i.e. δ2 = 9πStturb/(ρp/ρf + 1/2). In the
simulations considered for this work, with neutrally buoyant particles, δ2 is always below
0.5 in Couette and 1.4 in pressure-driven flows.

Table 1 contains also the Stokes number based on the local shear which achieves its
maximum value near the channel or Couette walls, where the shear rate is the highest.
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Couette(C)
Ly/d = 20, Lx × Ly × Lz = 2.85× 1.0× 1.91,Nx ×Ny ×Nz = 382× 134× 256

pressure− driven(P )
Ly/d = 20, Lx × Ly × Lz = 1.57× 1.0× 0.63,Nx ×Ny ×Nz = 158× 106× 64

Case Np Φ(%) Ubulk uτ L+
y d+ Reb Reτ Rep(max) St(max) Stturb

C500− 0 0 0 0.5 0.040 80 – 500 40 – – –
C500− 5 3968 5 0.5 0.041 82 4.1 500 41 4.4 0.97 0.017
C500− 10 7936 10 0.5 0.042 84 4.2 500 42 4.4 0.97 0.017

P2600− 0 0 0 0.5 0.048 187 – 2600 94 – – –
P2600− 1 151 1 0.5 0.052 203 10.15 2600 102 10.6 2.36 0.068
P2600− 5 757 5 0.5 0.056 218 10.9 2600 109 7.8 1.73 0.074

Table 1. Parameters of the numerical simulations. The Reynolds number Reb ≡ Ubulkh/ν for
Couette flow and Reb ≡ Q/ν for channel flow. h = Ly/2 is half of the Couette gap or channel
height. In channel flow, the flow rate per unit depth is Q = 4UbulkLy/3. Ubulk is the velocity
of the moving walls in Couette flow whereas it is half the central velocity that the channel
flow would have if the flow was laminar. The Reynolds number based on the friction velocity
and on the channel half-width is Reτ ≡ uτh/ν. The particle Reynolds number Rep ≡ Γa2/ν
based on local shear rate Γ = |du/dy|, and the Stokes number St ≡ 2ρp/(9ρf )Rep are low near
the Couette and channel centers and they are maximum near the walls where the shear rate is
the highest. The maximum particle Reynolds and Stokes numbers are based on the shear rate
calculated at one particle diameter away from the walls.

It is nearly 1 in Couette and 2.4 in channel flow. Note that the results of simulations in
Couette flow with 1 < St < 4 (4 < d+ < 8) reported in Wang et al. (2017) were similar
to those obtained in the present paper at St ≈ 1 (d+ ≈ 4). For both flow configurations,
the effect of particles on the statistics were formed at an effective Reynolds number 40%
to 50% higher than the corresponding critical Reynolds number (estimated from figure 2).

3. Particle effect on the transition

A theoretical analysis of flow stability in the presence of freely moving finite-size
particles is actually impossible, from a mathematical point of view. For this reason we
determined the transition threshold from an engineering point of view, by considering
a fully-developed turbulent flow experiencing successive reductions of the Reynolds
number down to a limit where the flow becomes eventually laminar. Every time the
Reynolds number was decreased, the simulation was run for longer than 500 time
units. Transition of single-phase flow was observed at Rec C ∼ 320 for Couette and at
Rec P ∼ 2200 for pressure-driven flows. It should be kept in mind that, first the value
of the critical Reynolds number depends on the simulation domain because periodic
boundary conditions influence interactions between large scale vortices. Second, the
relaminarization is a process that may occur randomly. Therefore the determination of
a “rigourous” laminar-turbulent transition threshold (which is not the main scope of the
present paper) would require a large amount of simulations to form statistics. Instead,
an indicative threshold is determined in order to assess the impact of the particle
presence on the flow features, and to evaluate qualitatively an eventual transition delay
or enhancement.
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Figure 2. Effect of neutrally buoyant particles on the laminar-turbulent transition threshold,
as depicted from the temporal evolution of Cf , after decreasing Reb in (a) Couette flow and (b)
pressure-driven flow. The initial flow configuration of the Couette (resp. channel) flow is taken
from a fully-turbulent simulation at Reb = 500 (resp. 2300). (a): Reb = 500, Φ = 5%;

Reb = 470, Φ = 10%; Reb = 455, Φ = 10%; Reb = 440, Φ = 10%; Reb = 455
to 345, Φ = 5% and I to V corresponding to Reb = 455, 415, 390, 365 and 355. (b):
Reb = 2000, Φ = 1%; Reb = 2000, Φ = 5%; Reb = 1700, Φ = 5%; Reb = 1500,
Φ = 5%.

In the range of investigated suspension flow parameters (particle size and volumetric
concentration), particles are expected to decrease significantly the laminar-turbulent
transition threshold in pressure-driven flow based on the experiments of Matas et al.
(2003), in opposite to Couette flow where particles seem to not affect the flow stability
(see our previous study of Wang et al. (2017)). The wall friction coefficient Cf
(summed on both walls) was considered as an indicator of current flow regime,
Cf = 2τw/(ρU

2
bulk) for Couette flow and 2τw/(ρ(Q/Ly)2) for pressure-driven flow.

The initial flow configurations were chosen from the single-phase flow simulations at
Reb = 500 for Couette and Reb = 2300 for channel flow. The particles were then
randomly seeded in the simulation domain, at different volumetric concentrations
(Φ = 5 or 10% in Couette and Φ = 1 or 5% in channel flow). The two-phase flow
simulations were carried out for several hundreds of time units (typically more than
300), before the Reynolds number was decreased in order to evaluate the transition
threshold. The evolution in time of the wall friction coefficient of the suspension flow
is shown in figure 2 for different cases, after the Reynolds number was abruptly decreased.

In Couette flow, the Reynolds number was decreased from 500 separately to 470, 455
or 440. At Φ = 10%, the flow became laminar for the two simulations at Reb = 455 and
440. At Φ = 5%, the flow remained turbulent at Reb = 455. When the Reynolds number
was progressively decreased as following: 455→ 415→ 390→ 365→ 355, the transition
took place only around Rec ≈ 355. This critical Reynolds number is calculated using the
pure fluid viscosity. The effective Reynolds number based on the suspension viscosity
is lower if additional viscous dissipation introduced by the rigid particles is accounted



Modulation of turbulence regeneration cycle by finite-size particles 7

for, due to an increase of the flow viscosity νeff = νη(Φ,Re), with η(Φ,Re) > 1. There
are some possibilities to predict η(Φ, 0) from Eiler’s fit (Stickel & Powell 2005) and the
correction at finite Reynolds number η(Φ,Re) at low concentrations (see for example
Subramanian et al. (2011)). The simulations with FCM give access to the increase of
the suspension viscosity induced by the particles through the second order term of the
multipole expansion also called Stresslet (for the definition, see Wang et al. 2017). This
leads to a critical Reynolds number of the suspension flow Rec,s ≈ 312 for Φ = 5% which
is very close to the value of single-phase flow Rec C . The main conclusion of this test is
that in a Couette flow with moderate particle concentration, the particles act mainly as
a source of energy dissipation in the flow, and that they do not change significantly the
transition threshold if the suspension viscosity was taken into account in the Reynolds
number definition.

In pressure-driven flow, the initial flow configuration was selected at Reb = 2300.
Particles were randomly seeded at concentration 1% or 5%. A small concentration of
finite-size particles is enough to decrease the transition threshold (see Matas et al. 2003;
Loisel et al. 2013; Yu et al. 2013; Lashgari et al. 2015), keeping in mind that at low to
moderate concentration, the threshold decreases when the concentration is increased, in
contrast to Couette flow. Figure 2(b) shows the temporal evolution of Cf after particles
were seeded and the Reynolds number was decreased from 2300 to 2000. For Φ = 1%, the
flow is fully laminar at Reb = 2000. However for Φ = 5%, a stable two-sided turbulent
flow is sustained at Reb = 2000 while Jiménez & Moin (1991) observed that in the
miniunit turbulent flow exists only near one wall in a single-phase flow, even at higher
Reynolds number (Reb = 2667). Decreasing Reb from 2300 to 1700 and then to 1500, the
flow becomes laminar at Rec = 1500 (which corresponds to Rec,s = 1315 based on Eiler’s
fit whereas Rec,s = 1150 based on 5(c)). A significant drop of the transition threshold
(Rec P ∼ 2200 for single-phase flow) is observed although the effective viscosity has
increased.

Influence of particles on the flow stability

As will be further discussed in §4.1, particles tend to accumulate in the large scale
vortex regions in Couette flow and in low-speed streak regions in channel flow. In order
to understand how particles enhance or reduce the flow stability from their preferential
spatial distribution, we carried out some simulations with specific flow configurations.

The first test was done in Couette flow and it was inspired from the study of Hamilton
et al. (1995). When the streamwise velocity perturbations were removed, while the
linear streamwise velocity profile and streamwise vortices were maintained from a
fully turbulent simulation, the authors observed that the flow evolved again to the
fully turbulent regime. In a similar way, we considered for the initial configuration, a
snapshot from steady single-phase turbulent Couette flow simulation at Reb = 500 while
the large-scale x-independent streak is maximum (from M(0, β) defined in (4.1)). We
removed the streaks, and abruptly decreased the Reynolds number to 455 and 430 in
two separate simulations.

The temporal evolution of R.M.S velocity fluctuations shown in figures 3(a, c, e)
as well as the mean velocity profile (not shown here) suggest that despite the initial
destabilization, the flow recovers its fully turbulent features after 200 time units. Figure
3(g) shows the contours of velocity magnitude for single-phase flow, the left one is
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Figure 3. Particle effect on flow stability. Left panel : Couette flow starting from a fully turbulent
regime. The turbulent state is stable under single-phase condition, even when the streamwise
velocity perturbations are suppressed, the flow recovers its fully turbulent nature. Adding
particles damp the velocity fluctuations and make the flow laminar. Reb = 430, single-phase
flow removes u′; Reb = 430, Φ = 5% and Ly/d = 10; Reb = 455, single-phase flow
removes u′; Reb = 455, Φ = 10% and Ly/d = 20. Right panel : channel flow starting with a

flow distribution according to (3.1) where an artifical streak is initially imposed. The single-phase
flow tends towards the laminar state at Reb = 2600 which is above the laminar-turbulent
transition. Adding small number of particles in the flow triggers the transition to turbulence.

single-phase flow; Φ = 0.5% and Ly/d = 16; Φ = 0.75% and Ly/d = 16;
Φ = 0.5% and Ly/d = 20.

taken at t = 0 after removing u′ and its evolution after 500 time units can be seen
in the right figure. The flow field plotted after nearly 5 regeneration cycles cannot be
distinguished from the initial fully turbulent flow. Therefore the streamwise vortices,
that were initially maintained, were strong enough to generate streaks through the
lift-up effect and resumed the regeneration cycle.
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The main effect of the presence of particles in the Couette flow is stabilizing in nature.
When we added small particles (Ly/d = 20) at Φ = 10% and decreased the Reynolds
number down to 455, without removing the streamwise velocity perturbations, the flow
became laminar. Adding larger particles (Ly/d = 10) at Φ = 5% and decreasing the
Reynolds number to 430, the flow velocity fluctuations were significantly damped, and
the flow became laminar after staying quasi-turbulent for around 6 regeneration cycles.
These observations suggest that the particles were mainly enhancing dissipation in the
flow.

The test on flow stability for the channel flow configuration has been done using an
artificial finite-amplitude low-speed streak that was supplemented to a mean flow profile
corresponding to wall-bounded turbulence. We used the same base flow as Schoppa &
Hussain (2002) who studied the streak transient growth mechanism in a two-dimensional
streak configuration. The base flow is:

u(y, z) = U0(y) + (∆u/2)cos(βsz)g(y) (3.1)

in the streamwise direction, and v = w = 0 in the wall-normal and spanwise directions.
U0(y) is the mean velocity and g(y) is an amplitude function which satisfies the no-slip
condition at y = 0 and localizes the streak velocity defect at a single wall. A ‘single-
sided’ turbulent mean velocity profile is imposed, analogous to that observed in minimal
channel turbulence (Jiménez & Moin 1991), with a parabolic profile Ulam in the laminar
top half of the channel, and a turbulent Reichardt profile Uturb, that respects the near-
wall turbulence statistics, in the bottom half:

U0(y) =


Ulam = Uc[1− ((y/h)− 1)2], ym 6 y 6 2h
Uturb = u∗[2.5ln(1 + 0.4y/δ) + 7.8(1− e(−y/11δ) − y

11δ e
(−y/3δ))],

0 6 y < ym

(3.2)

The friction velocity u∗ =
√

τw/ρ and viscous length scale δ = ν/u∗ are
calculated using a wall shear stress estimated from Dean’s empirical correlation
(Cf ≡ 2τw/ρu

2 = 0.073Re−0.25b ) in a fully turbulent channel flow. For a given flow rate

Q, this leads the friction velocity to be u∗ = Q
√

0.0365(Q/ν)−0.25/(2h). The two profiles
Uturb and Ulam are matched at a wall normal distance ym in the turbulent half, with
ym and Uc determined so that the mean flow velocity and vorticity are continuous at
the matching point, i.e. Ulam(ym) = Uturb(ym) and dUlam/dy |y=ym= dUturb/dy |y=ym .
Consequently, at Re = Q/ν = 2600, ym = 0.918h and Uc = 1.2Q/(2h).

The function g(y) ∼ y · e−ηy2 is accounting for streak velocity defect, it has been
normalized to unity with η specified such that the streak velocity defect ∆u and normal
vorticity Ωy |max= βs∆u/2 exhibit a plateau in the range y+ = 10− 30, consistent with
the observed lifted streaks and ωy,rms statistics. Note that the amplitude function g(y)
in (3.1) determines the strength of the local streak upper bound u(y) shear layer (e.g.
local maxim of ∂u/∂y) residing on the crest of the lifted streak. Instability growth rates
for the dominant sinuous modes are found to be relatively insensitive to the strength of
this shear layer and hence to the amplitude function g(y). The value η = 20 was used
similarly to Schoppa & Hussain (2002). The streak spanwise wavenumber βs in (3.1) is
chosen as 2π/β+

s = 100, corresponding to the well-accepted average spanwise spacing of
adjacent low-speed streaks observed in many experimental and numerical studies.
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Figure 4. Flow vorticity induced by a layer of particles seeded in the plane y/d = 0.8 (near the
wall) in the same flow configuration as 3(h). The total volume concentration is Φ = 0.5%, and
the size ratio Ly/d = 16 is used. The snapshots are taken at three time instants t = 0.2, 2.7 and
29.5 (scaled by h/Ubulk) which correspond to t+ = 2, 27 and 295 (scaled by ν/u2

τ).

Figure 3(h)-left shows the velocity magnitude contours of the flow according to (3.1).
Schoppa & Hussain (2002) found that this single-phase flow is stable and the energy
of the artifical streaky perturbation will vanish in time due to viscous dissipation. A
spanwise perturbation, following a sinuous profile in the flow direction, is necessary to
trigger the growth in time of the perturbation. In the absence of such spanwise initial
coherent motion, figures 3(b, d, f) confirm that the perturbation (3.1) is damped over
time when the Reynolds number is equal to 2600 (above the transition threshold).

Unlike the Couette flow test, the particles in this particular channel flow were not
seeded throughout the entire domain. Of course this would lead the flow to undergo
the transition to turbulence. Instead, we seeded a small number of particles only in
the low-speed artificial streak region (u(y, z)/Ubulk 6 1.5) keeping the flow Reynolds
number Reb = 2600. Two different local concentrations (particles-to-streak volume) were
considered (Φ = 0.5 and 0.75% for the case of Ly/d = 16 and Φ = 0.5% for the case
of Ly/d = 20). In all cases, the particle presence triggered the transition to turbulence
(this can be evidenced by the level of the R.M.S velocity signals), and the particles were
found after ∼ 100 time units spread all over the simulation domain. The figure 3(h)-right
shows the contours of velocity magnitude for suspension flow in the case of Ly/d = 16
with Φ = 0 .75 % after 250 time units. We can observe a quasi fully-turbulent state at
Reb = 2600 (instead of the one-side wall turbulence observed in single-phase flow noted
by Jiménez & Moin (1991)).

The influence of the particles on the transition is also illustrated in figure 4 showing
the temporal evolution of the streamwise vorticity generated by the particles. The initial
condition is equivalent to figure 3(h), except that 60 particles were initially seeded in a
plane parallel to the wall (instead of being located in the artificial streak). At the first
instants (figure 4(a)), streamwise vorticity is generated around finite-size particles due
to the secondary flows occurring at finite Rep. As time goes on and particles move,
this streamwise vorticity is stretched in the streamwise direction as in figure 4(b).
Furthermore, these structures are tilted due to the mean shear through the streamwise
vorticity generation term−(∂w/∂x)(∂u/∂y) (explained in §5) which is large near the wall.
They further interact with each other to form larger scale streamwise vortical structures
as shown in figure 4(c). Clearly the generated vortical structures are comparable to
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Figure 5. (a) and (b) Particle distribution in the cross-section (y−z plane) of Couette C500−5
and pressure-driven P2600 − 5 flows respectively. The concentration contours are averaged in
the streamwise direction, over 80 time units. The corresponding concentration profiles, averaged
over 500 time units, are also shown for C500−5, C500−10 in (a), and P2600−1,

P2600− 5 in (b).

the near wall vorticity layers induced by large scale vortices, which are the essential
ingredients of the regeneration cycle for channel flow.

4. Modulation of the turbulent flow energy

In this section, we show that particles modulate the flow energy in a channel more
strongly than in a Couette flow. The statistics are formed in physical and Fourier spaces
in order to study the regeneration cycle. In physical space, profiles are obtained by
averaging the data over the two homogeneous (streamwise and spanwise) directions. As
for the spectral analysis, it is performed either close to the wall or across the whole
gap between the walls. In addition, a modal analysis of the flow fluctuating energy is
considered, and will be shortly introduced here. The Fourier decomposition of the energy,
as introduced by Hamilton et al. (1995) over two periodic directions, streamwise and
spanwise, is written as follows:

M(kx = mα, kz = nβ) ≡ {
∫ Y2

Y1

[|û′|2(mα, y, nβ)+|v̂′|2(mα, y, nβ)+|ŵ′|2(mα, y, nβ)]dy}1/2

(4.1)
where Y1 and Y2 stand for the integration bounds in wall-normal direction. (α, β)

are the fundamental wavenumbers in streamwise and spanwise directions defined as
(2π/Lx, 2π/Lz), and m and n are integers. The intensity of any turbulent strucrure can
be represented by one mode (mα,nβ).

Since flow modulation is partly related to particle spacial distribution, the latter will
be first discussed.

4.1. Particle dispersion

Figures 5(a, b) show the average particle distribution over the cross-section plane.
The contours of concentration are averaged over 80 time units (h/Ubulk) whereas the
wall-normal concentration profiles were averaged over 500 time units. The maximum
concentration is located in the core region of the Couette flow, whereas two peaks can be
observed near the walls of the channel flow. The average concentration profiles are the
result of a balance between the lift force on the finite-size particles, the hydrodynamic
repulsion from the wall and the shear-induced turbulent diffusion. To be more specific, in
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Figure 6. (a) and (b) show particle distribution in a plane parallel to the wall (x− z plane) in
Couette C500− 5 and pressure-driven P2600− 5 flows respectively. The concentration contours
taken at y/Ly = 0.2 are averaged over 80 time units. The isolines show u′/Ubulk in x− z plane,
where dashed lines stand for negative and solid line positive values, the interval being 0.04 in (a)
and 0.03 in (b). The spanwise variation of the fluid (black) and particle (dashed blue) fluctuation
velocity u′/Ubulk averaged in streamwise direction is also plotted on the right side of (a) and
(b), separately. (c) and (d) are the streamwise velocity profiles of fluid phase (black line),
particle phase (blue dashed line) and slip (red dashed dotted line) velocities (defined as the fluid
velocity subtracted by the particulate phase velocity). The cross symbols indicate the velocity
profile for the single phase flow.

laminar plane Couette flow (linear flow), a finite-size neutrally buoyant particle exhibits
a (rotational and translational) slip with respect to the local flow field. The pressure is
larger on the side of the particle closer to the wall, and thereby the particle is pushed
away from the wall (Ho & Leal 1974). When the velocity profile is not linear (quadratic
for Poiseuille flow), the particle is experiencing an inertia-induced lift force (Asmolov
1999), resulting from its perturbation (as a rigid body) to the quadratic velocity profile
(see a review paper from Matas et al. (2004)). This force is oriented toward the wall.
This is known as the Segré-Silberberg or pinch-off effect. The particle is also experiencing
a hydrodynamic viscous repulsion when it is very close to the wall. The balance between
these two opposite forces leads to equilibrium positions (in laminar channel flow) that
depends on the particle Reynolds number, and yields segregation of a suspension in
channel flow (see Matas et al. 2004; Loisel et al. 2015).

The instantaneous spatial distribution of particles is shown together with the stream-
wise velocity fluctuation contours in the x − z plane (figures 6(a, b)). These figures
show a strong correlation between the particle spatial distribution and the flow coherent
structures. In Couette flow, particles are pulled away from walls by turbulent ejection
and towards the wall by the sweep events. On average, they are more present in the
sweep and core regions in Couette flow. In channel flow, the particles are accumulated
in the ejection region, near the wall. This can be understood as follows: the inertial lift
force drives the particles to be preferentially located near the walls, where high and low
speed flow regions are encountered. Sweeps are regions of spanwise divergence near the
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Figure 7. Velocity rms of single and two phase flows in different quadrants. (a − c) are from
Couette flow. (d− f) are from channel flow. The line style denotes the quadrant, Q1,
Q2, Q3, Q4. The symbol refers to the flow concentration: open circle for single-phase
flow and filled circle for φ = 5%. (a, d), (b, e) and (c, f) show −u′v′, u′u′ and v′v′, respectively.

wall which drives the particles to leave the high speed (sweep) region towards low speed
(ejection) region. When a particle is dragged away from the wall by an ejection event,
there is an opposite hydrodynamic contribution that reduces this effect. Lubrication force
acting on a particle moving away from a flat wall is attractive to the wall (and decreases
as the particle is far from the wall). The resulting particle migration should depend on
the particle size and the distance from the wall. Thus the outward wall-normal flow in
the ejection region is most probably inefficient to pull the neutrally buoyant particles,
leading to particle accumulation in that region.

The profiles of the fluid, particle and slip velocity (fluid velocity minus particulate
phase velocity) are shown in figures 6(c, d). Also, the spanwise variation of the slip
velocity is shown in this figure. The velocity of the particulate phase is always smaller
than the local fluid velocity in both Couette and pressure-driven flow configurations
(on average particles are lagging the flow), especially near the walls, in both flow
configurations.

4.2. Quadrant analysis of velocity rms

The coherent structures are the major contributions to the Reynolds shear stress.
They play an essential role in the active motion of wall turbulence. According to
the quadrant analysis, the flow fluctuations can be divided into Q1(u′ > 0, v′ > 0),
Q2(u′ < 0, v′ > 0), Q3(u′ < 0, v′ < 0) and Q4(u′ > 0, v′ < 0). Q2 and Q4 correspond to
the ejection and sweep events respectively, Q1 and Q3 contain the outward and inward
interactions respectively (see a recent review on quadrant analysis by Wallace (2016)).
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(a)

(b) (c)

Figure 8. As sketched in (a), the velocity rms of single and two phase flows in Q2 and Q4 are

split into contributions near the particle surface (u′
p1u

′
p1 within a < r < 1.5a using dot-dashed

lines and u′
p2u

′
p2 within 1.5a < r < 2a using dashed lines), and far from the particle surface

(u′
fu

′
f within r > 2a using solid lines). The profiles in (b) and (c) are from Couette and channel

flow respectively. Here the circle corresponds to the ejection and the plus to the sweep events.

We give details on the impact of particles on the different Reynolds stress components,
by considering separately the different contributions according to the quadrant analysis.

The rms velocity profiles are displayed in figure 7, according to the quadrant analysis,
both for single-phase and suspension flow at Φ = 5%. The Reynolds stress components
are not significantly influenced when particles are present in Couette flow at 5% (figures
7(a-c)). However in channel flow, profiles of the Reynolds shear stress (figure 7(d))
reveal that the particles enhance significantly the shear stress in the sweep (Q4) part
of the logarithmic region, where Q2 and Q4 events are dominant. The streamwise
Reynolds stress is decreased by the particles, especially in the ejection regions, whereas
the wall-normal Reynolds stress is increased in both sweep and ejection regions. The
peak of the profiles are also closer to the wall.

These turbulent stress modifications suggest a more isotropic turbulence in a channel
flow compared to a single-phase flow (in agreement with previous numerical results
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obtained using the total profiles of the Reynolds stress components (see Loisel et al.
2013; Shao et al. 2012; Picano et al. 2015; Yu et al. 2016; Fornari et al. 2016), the
transfer between different directions being promoted by the Reynolds shear stress.
A particular attention is drawn here to the reduction of streamwise Reynolds stress
component. Fornari et al. (2016) related this observation to the fluid squeezed between
the layer of particles near the wall and the wall itself. Shao et al. (2012) associated this
with the weakening intensity of the large-scale streamwise vortices which phenomena is
not observed in Fourier space as shown later in figure 10(d) and figures 9(e, f). In an
attempt to understand why the streamwise Reynolds stress is decreased, we calculated
the velocity fluctuations in the fluid far from and close to the particles separately, as
sketched in figure 8(a). u′fu

′
f is averaged within the fluid region located at r > 2a

relatively to each particle center. u′p1u
′
p1 and u′p2u

′
p2 is averaged in the neighborhood

of the particles a < r < 1.5a and 1.5a < r < 2a, respectively. The profiles of u′fu
′
f ,

u′p1u
′
p1 and u′p2u

′
p2 are plotted in different quadrants in figures 8(b,c). The profiles in

figure 6 indicate only the intensity of the events, and not their contribution to the
total suspension flow fluctuations. Thereby they do not give an indication on the flow
modulation by the particles, but they allow describing the particle behavior compared
to that of the fluid. In the sweep region, the velocity fluctuations near the particles and
far from the particles (r¿2a) are almost the same. In the ejection region, the difference
in the velocity fluctuations depends on the flow configuration. On the one hand in
Couette flow, the particle velocity fluctuations are well below the fluid fluctuations. This
should not have an a significant impact on the overall suspension since particles are
rarely located in that region. On the other hand in pressure-driven flow, the particles
are preferentially accumulated in the ejection region, where their velocity fluctuations
are stronger than that of the fluid.

4.3. Energy spectra

The average streamwise energy spectrum EΦuu is plotted in figures 9(a, d) as a function
of both streamwise and spanwise wavelengths, for both suspension and single-phase
flows. One advantage of FCM is that particles are represented in the fluid equations by
smooth Gaussian envelope forcing, making this method well suited for spatial Fourier
analysis of mixture flow.

Figures 9(a, d) display the energy spectra in both flow configurations and for both
streamwise and spanwise wavenumbers averaged over the whole domain. Particles
strengthen the energy of the flow structures at intermediate scales especially in the
streamwise direction of the channel flow. Moreover, particles hardly affect the energy
of the large scale structures of wavelength 3h < λx < 5.7h in Couette flow whereas
particles increase the energy contained in h < λx < 3.1h for channel flow. Note that the
energy of fluctuations at small scales in two-dimensions (λx < dp and λz < dp) might be
over-estimated by the numerical method. However, the energy contained in these scales
obtained from two-dimensional modal analysis, is 10−7% (resp. 10−4%) of the energy of
the largest scales in Couette (resp. channel) flow, and therefore the errors introduced
from small scales on the analysis of energy spectra can be neglected.

The energy spectra in the streamwise direction are plotted as a function of the
wall-normal position in figures 9(b, c, e, f). It is interesting to note in figures 9(b, c) that
the most energetic large scale motion in Couette flow is found in the range 20 < y+ < 40
which corresponds to the buffer layer region. The extent of the most energetic eddies is
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Figure 9. Top panels: Couette flow; Bottom panels: channel flow. (a) and (d) show the
one-dimensional streamwise and spanwise wavenumber energy spectra of the streamwise velocity
Euu averaged in the wall-normal direction. In (a) C500−0; C500−5; C500−10. In
(d) P2600−0; P2600−5; P2600−10. Contour figures show the two-dimensional
contours of the energy spectra. (b) and (e): single-phase flow with C500− 0 and P2600− 0. (c)
and (f): two-phase flow with C500− 5 and P2600− 5.

slightly shrinked towards the Couette center by the particle presence.

In channel flow the most energetic flow structures (h < λx < 3h) are located at
10 < y+ < 50 as shown in figures 9(e, f). Contrary to Couette flow, finite-size particles
in channel flow enhance the strength of moderate streamwise vortices in comparison
with single-phase flow. The energy of these streamwise vortical structures subsequently
increases the flow velocity gradient near the wall as will be shown in figure 10. The
energy modulation near the walls (y+ < 20) is due to the interaction of the particles
with the streaks rather than their interaction with the large scale vortices. Two indirect
evidences may support this conclusion. First, particles in Couette flow do not generate
significant modulation near the walls (y+ < 20) in figure 9(c) when particles are in
large scale vortices. Second, in channel flow we also observe the generation of vortical
energetic structures when particles are seeded in the bottom wall only with artificial
streaks (as shown in figure 4(c)).

5. Modification of the regeneration cycle by particles

The period of the regeneration cycle can be identified from the low frequency evolution
of the friction coefficient signal or Reynolds shear stress. First the effect of the particles
on the intermittency of the flow will be characterized by considering the fluctuation in
time of the friction coefficient and Reynolds shear stress. Second their impact on the
successive sub-processes of the regeneration cycle will be qualitatively detailed in the
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Figure 10. Simultaneous temporal evolution of the friction coefficient Cf and the near wall
streamwise vorticity, in Couette flow ((a) and (b)), and channel flow ((c) and (d)). (a) and (c)
plot the summation of the amplitude square of x-independent vortices (m = 0) in different
spanwise wavenumbers (1 6 n 6 Nz/2) and integrated in the near wall region (y+ < 15). (b)
and (d) show x-independent vortices (m = 0) in the near wall region (y+ < 15) as a function
of spanwise wavelength (2Lz/Nz 6 λz 6 Lz). The line style indicates single-phase (solid) and
two-phase (dashed line) flows. In (a) and (b): C500 − 0; C500 − 5, in (c) and (d):

P2600− 0; P2600− 5.

following sub-sections, considering (I) the lift-up mechanism yielding streak formation,
(II) the modal analysis of flow velocity fluctuations for its indication on the correlation
between the x-dependent (m > 0 and n > 0) and x-independent (m = 0 and n > 0)
streaks and (III) the vorticity stretching and vortex regeneration.

5.1. Wall friction coefficient and streamwise vorticity

The friction coefficient is a dimensionless measure of the wall shear stress. The
temporal evolution of the friction coefficient is displayed in figure 10. For Couette
flow, the average friction coefficient and temporal fluctuations are slightly increased by
the presence of particles, whereas for channel flow the increase of the average friction
coefficient is more significant, and the fluctuation amplitude is slightly reduced. The
increase of friction coefficient cannot be exclusively related to the increase of the
suspension effective viscosity. Indeed the ratio of the time averaged friction coefficient
of the suspension to single-phase flow is around 1.4, whereas the viscosity increase due
to the particle presence is around 1.14. Recent work from Costa et al. (2016) provided
a theoretical prediction of the total suspension drag. Predicted Reτ is 103 based on
suspension viscosity where Reτ is 109 based on DNS in table 1.

Jiménez & Moin (1991) have explicitly shown that the maximum (in time) of the
wall shear stress is synchronous with the maximum near-wall vorticity (0 < y+ < 10).
Using 2D numerical simulations (neglecting the variation in the streamwise direction),
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Orlandi & Jiménez (1994) showed that the transport of fluid from longitudinal vortices
to the high and low speed streaks is the origin of the higher wall friction in turbulent
layers, especially in the sweep region where high-speed fluid is transported towards the
wall. Therefore large scale streamwise vortical structures control the near-wall velocity
gradient. Figures 10(a, c) show simultaneously the evolution of wall friction coefficient and

the summation over all the spanwise wavenumbers for x-independent vorticity ˆ|ω|
2

x,wall ≡∑Nz/2
n=1

∫ y+=15

0
ˆ|ω|

2

x(0, nβ)dy, where the mode (0, nβ) with n 6= 0 corresponds to an

x-independent structure. The cross correlation between Cf and ˆ|ω|
2

x,wall is calculated
following (5.1), where the prime denotes the temporal fluctuation of a quantity and the
overline indicates the average over time.

R =
(Cf )′ · ( ˆ|ω|

2

x,wall)
′

(Cf )rms · ( ˆ|ω|
2

x,wall)rms

(5.1)

The cross-correlation gives R = 0.51, 0.49, 0.63 , 0.68 for the respective flow
configurations C500− 0, C500− 5, P2600− 0, P2600− 5. Clearly, there is a correlation
in time between the instantaneous wall friction coefficient and the near-wall streamwise

vorticity in all cases. The spectra of near-wall streamwise vorticity ˆ|ω|
2

x,wall are shown
in figures 10(b, d) for both single-phase and suspension flows. The ratio of the vorticity
at small scales (λz/Ly < 0.2) to the largest scale streamwise vortices is much smaller in
Couette flow than in channel flow (the ratios are O(0.01) and O(0.1) respectively). In
two-phase flows, turbulence becomes more isotropic, because particles inject energy in
small scales, which is transferred back to intermediate scales. This is for example the
case in the work of Elghobashi & Truesdell (1993), even though the origin of momentum
transfer is not the same; there is slip between the phases in their work, whereas in our
work the interactions are mainly due to the particle finite-size. The streamwise vorticity
is enhanced at low spanwise wavelengths (λz/Ly < 0.2 which corresponds to λz/dp < 4)
in both configurations. The enhancement is of one order of magnitude in Couette flow,
and of two orders of magnitude in channel flow.

5.2. Reynolds shear stress

From the investigation of total energy input and dissipation rate, Kawahara & Kida
(2001) evidenced the temporal evolution of spatial structures, in a cyclic sequence
consistent with the regeneration cycle proposed by Hamilton et al. (1995). A strong
ejection event is followed by a gradual decrease of intensity over a certain period of time.
The maximum (in time) of the Reynolds stress occurs when the dissipation rate is large
along the periodic orbit. The quasi-periodicity of the turbulent events can be represented
by the spatial-temporal evolution of the Reynolds stress −u′v′(y, t) across the Couette
gap or channel height, as shown in figure 11. Note that the period of turbulent events
is of O(100) time units in both flows. It characterizes the time needed for the velocity
fluctuations to become uncorrelated in time. The particle Stokes number which can be
based on this time scale is very small compared to the one related to the shear.

For Couette flow, the maximum of the Reynolds stress is located in the center of the
gap. The two walls share one buffer layer and a couple of central large scale vortices,
with a strong coupling between the streaks near both walls. The low-speed streak near
one wall ejects fluid to the other wall acting there as a high-speed streak. It is revealed
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Figure 11. Spatiotemporal evolution of the Reynolds shear stress (−u′v′/U2
bulk) averaged in the

homogeneous directions (streamwise and spanwise) in (a − d), its average within 5 < y+ < 30
is shown in (e, f). Left panel is for Couette flow and right panel is for channel flow. (a) and (b)
correspond to single-phase flows whereas (c) and (d) correspond to two-phase flows. In (e),
C500− 0 and C500− 5; In (f), P2600− 0 and P2600− 5.

by figures 11(a, c, e) that neutrally buoyant particles have a negligible effect on both
the intensity and intermittency of the Reynolds stress in Couette flow configuration
(Wang et al. 2017). The channel flow contains log-law region and the central region
is ruled by the velocity-defect law. Figure 11(b) shows that the strongest shear stress
bursts are located close to the channel walls, and that the frequency of these bursts is
of the same order of magnitude as in Couette flow. In the presence of neutrally buoyant
particles, the intensity of the Reynolds shear stress is enhanced as shown in figure 11(d),
and the frequency of these events is decreased as shown in figure 11(f). The increase of
Reynolds shear stress is closely correlated with the sweep events as indicated in figure
7(d), making the friction coefficient and Reynolds shear stress fluctuations synchronous.

5.3. Streak formation: the lift-up mechanism

The streaks form on both sides of a vortex. Low-speed fluid is lifted-up away from the
wall by the vortex into a region of higher-speed fluid, producing a low-speed streak, while
on the other side of the vortex, high-speed fluid is pushed towards the wall, creating a
high-speed streak. Ellingsen & Palm (1975) have shown, using a linear stability analysis
that the x-independent streamwise perturbations grow linearly in time as −v(du/dy)t
(the so-called lift-up effect), making any shear flow u(y) unstable to x-independent
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Figure 12. Spatiotemporal evolution of the lift-up term (−vdu/dy) scaled by U2
bulk/h. The

green isoline of the Reynolds shear stress (−u′v′/U2
bulk) are added on the top of these figures,

the interval in (a) and (c) is 0.003, and the interval in (b) and (d) is 0.005. Left panel is for
Couette flow and right panel for channel flow. (a) and (b) stand for single-phase flows. (c) and
(d) stand for two-phase flows. Its average within 5 < y+ < 30 is shown in (e, f). (e),
C500− 0 and C500− 5; (f), P2600− 0 and P2600− 5.

(transverse) perturbations. Consequently in shear flows, the main linear mechanism
for transient disturbance growth is the lift-up effect that produces high and low speed
streaks in the streamwise velocity. Bech et al. (1995) stated that the inner shear layer
is formed through the lift-up of low-speed streaks from the viscous sublayer, then the
shear layers are coupled to an instantaneous velocity profile with inflectional character
and they have been observed to become unstable and break up into chaotic motion, so
called ‘bursting’. The lift-up effect or advection was identified as a robust mechanism
for generation of the streaky motions both in transitional and turbulent flows (Ellingsen
& Palm 1975; Hamilton et al. 1995; Del Álamo & Jimenez 2006).

Klinkenberg et al. (2013) have shown that small pointwise inertial particles do affect
the transition to turbulence not by altering the lift-up effect but rather by modifying the
dynamics of the oblique waves necessary for the streaks regeneration and breakdown.
In order to show whether finite-size particles modify the lift-up term, the contours of
−vdu/dy are displayed in figure 12 together with the isolines of the Reynolds shear stress
(from figure 11). The lift-up term is important near the walls in both flow configurations.
For Couette flow, the contours shown in figures 11(a, c) are not significantly modified
by the presence of the particles. Based on figures 11(a, c) which plot the averaged value
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Figure 13. Modal decomposition as in (4.1): is mode M(0, β); is mode M(α, 0). (a)
Couette flow in the whole domain, (b) Channel flow in the whole domain, (c) and (d) stand for
channel flow in the upper half domain and bottom half domain. In (a), black is C500 − 0 and
red is C500− 5. In (b), (c) and (d), black circle is P2600− 0 and red disc is P2600− 5.

within 5 < y+ < 30, we can oberve that the strongest effects are nearly the same with
or without particles whereas the weakest effects are enhanced by the particles. However
in channel flow within the buffer layer (5 < y+ < 30), the particles not only enhance
the lift-up significantly, but also let it act continuously (lift up effect is less frequent in
suspension flow as shown in figure 11(f)).

5.4. Streak breakdown: Modal decomposition of the fluctuating energy

The subsequent process is the instability of x-independent streaks, the so-called streak
breakdown. Hamilton et al. (1995) have shown that it is the instability of the streaks
(through a non linear process) which causes breakdown. We investigated the temporal
evolution of the energy contained in the dominant flow fluctuation modes, since it can
give evidences on the dynamics of the streak breakdown process, and on the particle
modulation of this process.

The temporal evolution of the most energetic modes is shown in figure 13. In figures
13(a, b), (4.1) is integrated between the two walls (Y1 = 0 and Y2 = Ly), whereas in
figures 13(c, d), the integration is performed in the vicinity of one single wall which
is regarded as an individual shear layer (Y1 = 0 → Y2 = Ly/2 near the bottom wall,
and Y1 = Ly/2 → Y2 = Ly near the upper wall). The quasi-periodic fluctuations of
these modes, with period ∼ 100h/Ubulk for Couette flow, are related to the regeneration
cycle. The strongest mode is M(0, β) which corresponds to x-independent streaks. As a
general trend, neutrally buoyant particles decrease the amplitude of the fluctuations of
this mode, whereas they do not have significant impact on its period, which is related to
the regeneration cycle. However in channel flow, it can be noted that both (0, β) mode
and (α, 0) mode are of the same strength and period compared between single with
two-phase flow.
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In Couette flow, one can note the relation of the intermittency of modes (0, β)
(x-independent) and (α, 0) (x-dependent), when integrated over the entire gap. The
correlation between the different modes calculated similarly to (5.1), gives R = −0.64
for single phase Couette flow (C500 − 0) and −0.59 for suspension flow (C500 − 5).
The values of R are negative showing the clear anti-corrleation between the two modes.
The peaks of M(0, β) correspond to instants at which the streaks have the least x-
dependence. As the streaks become wavy, M(0, β) decreases, while the energy of M(α, 0)
(the fundamental mode in x direction with no spanwise variation) sharply increases. The
other (α, nβ), n 6= 0 modes can hardly be distinguished. Breakdown occurs while M(0, β)
reaches a minimum. The amplitude of both mode fluctuations is slightly damped by the
particle presence as shown in figure 13(a).

For channel flow, figure 13(b) shows higher frequency fluctuations than in Couette
flow, and less correlation between (α, 0) and (0, β) modes, when integrated over the
whole domain. This is due to two coexisting shear layers (one at each wall) which are
relatively independent of each other (turbulent mixing is weak in the core region between
the two shear layers at low Reynolds number). When the modal energy is integrated over
half of the channel section shown in figures 13(c, d), one can notice a stronger correlation
between (0, β) mode and (α, 0) mode, like in Couette flow, although it is less pronounced
in channel flow. The particles do not have a strong effect on the temporal evolution
of these modes, suggesting that particles do not significantly alter the breakdown process.

5.5. Vortex regeneration: Non linear interaction and vortex stretching

During streak breakdown, a complex set of interactions re-enforces the streamwise
vortices, leading to the formation of a new set of streaks, and completing the regeneration
cycle. Hamilton et al. (1995) proposed that the vortex strengthening is due to interac-
tions among the α-modes, that grow during the streak breakdown. Schoppa & Hussain
(2002) suggested that the vortex formation is inherently three-dimensional, with a direct
stretching (inherent to streak (x, z)-waviness) of the near-wall ωx sheets, leading to the
collapse of streamwise vortices. They provided insights into the dynamics of near-wall
vortex formation through the inviscid balance of the streamwise vorticity:

∂ωx
∂t

= −u∂ωx
∂x
−v ∂ωx

∂y
− w∂ωx

∂z︸ ︷︷ ︸
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∂u
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+
∂v

∂x

∂u

∂z
− ∂w

∂x

∂u
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tilting

(5.2)

In fully developed turbulence, the greatest contribution, in magnitude, to the temporal
evolution of the vorticity ∂ωx/∂t comes from the tilting term. This is confirmed by our
simulations (not shown here). However Schoppa & Hussain (2002) have stated that this
term contributes to the thin tail of the near-wall ωx layer, and is not responsible of
the formation of x-independent streamwise vortices ((0, β) mode in miniunit). Instead,
the vortex formation is dominated by the stretching of the streamwise vorticity. The
local ωx stretching is sustained in time and is mainly responsible for the vortex collapse,
whose location coincides with the +ωx∂u/∂x peak. The streak meandering provides the
generation of ∂u/∂x. Then direct stretching of positive and negative ωx occurs in regions
where ∂u/∂x is generated across the wavy streak flanks during the streak breakdown
process. The stretching term is active only during the peaks of the cycle when local
three-dimensionality is induced after streak breakdown (see Jiménez & Moin 1991).
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Figure 14. Evidence of the particle influence on the vorticity stretching in channel flow. Left
panels are for single-phase flow P2600−0, and right panels are for suspension flow P2600−1. (a)
and (b) show the evolution in time of both the circulation and the vorticity stretching
| ωx∂u/∂x |. Both are averaged within the region 0.1 < y/Ly < 0.4 where large scale vortices
take place as seen in figure 5(b). (c− f) show the streamwise velocity fluctuations in the plane
y/Ly = 0.2, using for negative isolines and for positive isolines, with a step equal to
0.04. The contours indicate the stretching term ωx∂u/∂x. The instants corresponding to the
different snapshots are marked in figures (a) and (b). (c) and (d) correspond to a trough of the
vorticity stretching whereas (e) and (f) correspond to a peak of the vorticity stretching.

In our previous paper (Wang et al. 2017), we have shown that the streak waviness and
vorticity stretching are almost unchanged for Couette flow in the presence of neutrally
buoyant particles. However in channel flow, the particles have some impact. Figures
14(a-b) show the temporal evolution of the circulation as well as the vorticity stretching
term, both for single- and two-phase channel flows. The vorticity stretching (averaged
value is 0.17 (resp 0.11) for P2600− 1 (resp P2600− 0)), and the circulation (averaged
value is 0.025 (resp 0.02) for P2600 − 1 (resp P2600 − 0)), are both enhanced near
the channel walls due to the presence of particles. The cross-correlation between them
was calculated, like in (5.1), giving 0.576 for P2600 − 0 and 0.624 for P2600 − 5. This
shows that high flow circulation is synchronized with the appearance of x-dependent flow
structures. Figures 14(c-f) show instantaneous snapshots containing the contours of the
streamwise velocity fluctuations (that illustrate the streak shape), as well as the vorticity
stretching. These snapshots are taken at high vorticity stretching (high flow circulation).
They show a clear evidence that non-linear processes like streak breakdown, and thereby
vortex regeneration, take place in the suspension flow like in the single-phase flow. They
also show that the wavy streaks are smaller and more numerous in suspension flow, when
compared to the single-phase flow.

6. Concluding remarks

We have studied turbulent suspension flows in plane Couette and pressure-
driven (channel) configurations, slightly above the laminar-turbulent transition. The
fundamental difference between both flows, for weak turbulence, is due to the shear layers.
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In turbulent plane Couette flow, there is only one shear layer and a single regeneration
cycle whereas there are two shear layers and two relatively independent regeneration
cycles in turbulent channel flow (one on each wall). Dilute to moderately concentrated
suspensions of neutrally buoyant finite-size spherical particles were considered, the
particle diameter being twenty times smaller than the Couette gap or channel height.
The simulation domain was chosen to ensure a minimal set of coherent flow structures
sufficient to sustain turbulence, in both flow configurations respectively.

The effect of particles on transition was first examined. Different initial combinations
{flow + particles} were considered to support our intention to show that the difference
of the flow response in Couette and channel configurations, when particles are added,
is essentially correlated to the particle spatial distribution. In Couette flow, the streak
generation from large scale rolls is a very robust mechanism in single phase flow. For
example when the streaks were removed from fully-developed turbulence, the streaks
in single phase flow were immediately regenerated (see Hamilton et al. 1995). When
particles were added to the flow from which the streaks have been removed (weak
turbulence in Couette), the flow could hardly recover the turbulence features in time if
the particles were seeded in the large scale rolls. However, the streaks were regenerated
if the particles were seeded initially within the streaks and forced (artificially) to stay
there. On the contrary in channel flow, the artificial streak we used is known to damp
over time if the flow is particle-free (Schoppa & Hussain 2002). Whenever particles were
added in that structure (even at low overall concentration), the energy of this artificial
streak grew, leading to transition. If the particles were randomly seeded (with the same
average concentration), the flow became laminar.

In the turbulent regime, detailed temporal and spatial analysis, in physical and Fourier
spaces, were proposed. The statistics on the flows laden with particles were formed at
effective Reynolds number 40% to 50% larger than the critical effective Reynolds number
for both flows (”effective” means that the additional dissipation due to the presence
of the particles is taken into account in the suspension flow viscosity). Particles did
not modify significantly the features of plane Couette flow, whereas they had a clear
impact on channel flow. The particle spatial distribution was found to be non-uniform
over the cross-section. Particles were more present in the core of the large scale rolls
(inactive motion) in Couette flow, and in the ejection (active motion) regions in channel
flow. This finding is essentially related to wall-normal inertial lift forces (on finite-size
particles) that act in opposite directions depending on the flow configuration.

Contrary to Couette flow, the accumulation of particles in the active region of
turbulence regeneration for the channel flow configuration yielded clear modifications
of the flow statistics and dynamical response. We observed a reduction of streamwise
velocity rms and an increase of the wall-normal component. The wall shear stress was
also significantly increased because particles had reinforced the activity of larger scale
x-independent streamwise vortices near the walls.

The regeneration cycle of wall turbulence has been studied in presence of particles.
Despite the universality of wall turbulence, the Couette flow is constituted of a single
shear layer whereas channel flow has two shear layers with opposite signs, leading
to different flow response to perturbations. The three successive sub-steps of the
regeneration cycle were modified by finite-size particles, since they actively contribute to
the dynamics of the buffer layer. We observed an enhancement of the lift-up mechanism
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together with reinforced Reynolds shear stress (although the frequency of burst events
was decreased). Vorticity stretching was increased leading to smaller and more numerous
wavy streaks for pressure-driven two-phase flow. Thanks to their preferential presence
near the walls, particles triggered small scale vortices that were stretched by the shear
flow and survived even at Reynolds numbers below the transition limit of single-phase
flow. By studying two distinct turbulent flow configurations laden with neutrally buoyant
finite-size particles, we were able to show the specific response of turbulent structures
and the modulation of the fundamental mechanisms composing the regeneration cycle
of near-wall turbulence.
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