Hagen Neidhardt 
email: hagen.neidhardt@wias-berlin.de
  
Artur Stephan 
email: stephan@math.hu-berlin.de
  
Valentin A Zagrebnov Dedicated 
  
Haim Brezis 
  
Louis Nirenberg 
  
V A Zagrebnov 
email: valentin.zagrebnov@univ-amu.fr
  
  
  
  
Operator-norm convergence of the Trotter product formula on Hilbert and Banach spaces: a short survey

We give a review of results on the operator-norm convergence of the Trotter product formula on Hilbert and Banach spaces, which is focused on the problem of its convergence rates. Some recent results concerning evolution semigroups are presented in details.

Introduction

Recall that the product formula e -τC = lim n→∞ e -τA/n e -τB/n n , τ ≥ 0, (

was established by S. Lie (in 1875) for matrices where C := A + B. The proof of formula (1.1) can be carried over easily to bounded operators on Banach spaces. Moreover, a straightforward computation shows that the convergence rate is O(1/n), i.e. sup τ∈[0,T ] e -τA/n e -τB/ne -τC/n = O(1/n).

(1.2) H. Trotter [START_REF] Trotter | On the product of semi-groups of operators[END_REF] has extended this result to unbounded operators A and B on Banach spaces, but in the strong operator topology. He proved that if A and B are generators of contractions semigroups on a separable Banach space such that the algebraic sum A + B is a densely defined closable operator and the closure C = A + B is a generator of a contraction semigroup, then e -τC = s-lim n→∞ e -τA/n e -τB/n n , (

uniformly in τ ∈ [0, T ] for any T > 0. Formula (1.3) is often called the Trotter or the Lie-Trotter product formula. It was a long-time belief that this formula is valid only in the strong operator topology. But in nineties it was discovered that under certain quite standard assumptions the strong convergence of the Trotter product formula can be improved to the operator-norm convergence. In the following we give a review of these results.

The paper is organised as follows. In Section 2.1 we give an overview on operator-norm convergence of the Trotter product formula if the generators A and B are non-negative self-adjoint operators. Section 2.2 summarises the case when one of the generator is only a maximal accretive operator. Section 2.3 is devoted to the evolution case, which arises in the theory of the abstract non-autonomous Cauchy problem. These results are commented in Section 2. [START_REF] Cachia | Zagrebnov Operator-norm convergence of the Trotter product formula for sectorial generators[END_REF].

Section 3 is concerned with the operator-norm convergence of the Trotter product formula on the Banach spaces. Section 3.1 presents the results under the assumption that one of generators is for holomorphic semigroup. Section 3.2 considers again the evolution case but on Banach spaces. The relation between evolution semigroups and propagators is explained in Section 3.3. We comment the results in Section 3. [START_REF] Cachia | Zagrebnov Operator-norm convergence of the Trotter product formula for sectorial generators[END_REF].

In Section 4 we collect some examples and counterexamples. They show what is expectable and what is not and even surprising.

We use below the following notations and definitions.

1. We use a definition of the semigroup generator C (1.3), which differs from the standard one by a minus, as it is in the book [START_REF] Kato | Perturbation theory for linear operators[END_REF]. 2. Furthermore, we widely use the so-called Landau symbols:

g(n) = O( f (n)) ⇐⇒ lim sup n→∞ g(n) f (n) < ∞ , g(n) = o( f (n)) ⇐⇒ lim sup n→∞ g(n) f (n) = 0 , g(n) = Θ ( f (n)) ⇐⇒ 0 < lim inf n→∞ g(n) f (n) ≤ lim sup n→∞ g(n) f (n) < ∞ , g(n) = ω( f (n)) ⇐⇒ lim sup n→∞ g(n) f (n) = ∞ .
3. We use the notation C 0,β ([0, T ]) for the Hölder (β ∈ (0, 1)) and, respectively, for the Lipschitz (β = 1) continuous functions.

2 Trotter product formula on Hilbert spaces

Self-adjoint case

Considering the Trotter product formula on a separable Hilbert space H T. Kato has shown in [START_REF] Kato | On the Trotter-Lie product formula[END_REF][START_REF] Kato | Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups[END_REF] that for non-negative operators A and B the Trotter formula (1.3) holds in the strong operator topology if dom( √ A) ∩ dom( √ B) is dense in the Hilbert space and C = A +B is the form-sum of operators A and B.

Naturally the problem arises whether Kato's result can be extended to the operator-norm convergence. A first attempt in this direction was undertaken by Rogava [START_REF] Dzh | Error bounds for Trotter-type formulas for self-adjoint operators[END_REF]. He claimed that if A and B are non-negative self-adjoint operators such that dom(A) ⊆ dom(B) and the operator-sum:

C = A + B, is self-adjoint, then (e -τA/n e -τB/n ) n -e -τC = O(ln(n)/ √ n), n → ∞, (2.4) 
holds. In [START_REF] Neidhardt | On error estimates for the Trotter-Kato product formula[END_REF] it was shown that if one substitutes in above conditions the selfadjointness of the operator-sum by the A-smallness of B with a relative bound less then one, then (2.4) is true with the rate of convergence improved to

(e -τA/n e -τB/n ) n -e -τC = O(ln(n)/n), n → ∞.
The problem in its original formulation was finally solved in [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF]. There it was shown that the best possible in this general setup rate (1.2) holds if the operator sum: C = A + B, is already a self-adjoint operator. Obviously, Rogava's result, as well as many other results (including [START_REF] Neidhardt | On error estimates for the Trotter-Kato product formula[END_REF]), when the operator sum of generators is self-adjoint, follow from [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF] .

A new direction comes due to results for the fractional-power conditions. In [START_REF] Neidhardt | Fractional powers of self-adjoint operators and Trotter-Kato product formula[END_REF], with elucidation in [START_REF] Ichinose | Trotter-Kato product formula and fractional powers of self-adjoint generators[END_REF], it was proven that assuming

dom(C α ) ⊆ dom(A α ) ∩ dom(B α ), α ∈ (1/2, 1), C = A +B, (2.5) and dom(A 1/2 ) ⊆ dom(B 1/2 ) (2.6) one obtains that sup τ∈[0,T ] (e -τA/n e -τB/n ) n -e -τC = O(n -(2α-1) ).
Notice that formally α = 1 yields the rate obtained in [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF].

We remark also that the results of [START_REF] Ichinose | Trotter-Kato product formula and fractional powers of self-adjoint generators[END_REF][START_REF] Neidhardt | Fractional powers of self-adjoint operators and Trotter-Kato product formula[END_REF] do not cover the case α = 1/2. Although, it turns out that in this case the Trotter product formula converges on the operator norm: sup

τ∈[0,T ] (e -τA/n e -τB/n ) n -e -τC = o(1) , if √ B is relatively compact with respect to √ A, i.e. √ B(I + A) -1/2 is compact, see [16].

Nonself-adjoint case

Another direction was related with attempts to extend the the Trotter, and the Trotter-Kato, product formulae to the case of nonself-adjoint sectorial generators [START_REF] Cachia | Operator-norm approximation of semigroups by quasisectorial contractions[END_REF]. Let A be a non-negative self-adjoint operator and let B be a maximal accretive (ℜe(B f , f ) ≥ 0 for f ∈ dom(B)) operator, such that dom(A) ⊆ dom(B) and dom(A) ⊆ dom(B * ).

If B is A-small with a relative bound less than one, then the rate estimate (2.4) holds, for generator C, which is the well-defined maximal accretive operator-sum: C = A + B, see [START_REF] Cachia | Accretive perturbations and error estimates for the Trotter product formula[END_REF].

In [START_REF] Neidhardt | Comments on the Trotter product formula error-bound estimates for nonself-adjoint semigroups[END_REF] this result was generalised as follows. Let A be a non-negative self-adjoint operator and let B be a maximal accretive operator such that dom(A) ⊆ dom(B) and B is A-small with relative bound less than one. If the condition

dom((C * ) α ) ⊆ dom(A α ) ∩ dom((B * ) α ), C = A + B ,
is satisfied for some α ∈ (0, 1], then the norm-convergent Trotter product formula:

sup τ∈[0,T ] (e -τA/n e -τB/n ) n -e -τC = O(ln(n)/n α ) , holds as n → ∞.
In fact, more results are known about the operator-norm Trotter product formula convergence for nonself-adjoint semigroups, but without the rate estimates, see [START_REF] Cachia | Zagrebnov Operator-norm convergence of the Trotter product formula for sectorial generators[END_REF].

Evolution case

At the first glance a very different result about a Trotter-type product formula was obtained in [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF]. The authors consider instead of the self-adjoint operator B a family {B(t)} t∈[0,T ] of self-adjoint operators on the separable Hilbert space H such that the condition dom

(A α ) ⊆ dom(B(t)), t ∈ [0, T ], (2.7) 
is satisfied for some α ∈ [0, 1) for A, which is a non-negative self-adjoint operator.

Then the operator sum 

C(t) = A + B(t)
∂ t u(t) = -C(t)u(t), t ∈ [0, T ] , (2.8) 
corresponding to the non-autonomous Cauchy problem with initial condition u 0 = u(0) for t = 0. It turns out that equation (2.8) admits a propagator {U(t, s)} (t,s)∈ ∆ , ∆ = {(t, s) ∈ [0, T ] × [0, T ] : 0 ≤ s ≤ t ≤ T }, which solves this problem. We remind that a family {U(t, s)} (t,s)∈∆ of bounded operators is called a propagator if the operator-valued function U(•, •) : ∆ -→ B(H) is strongly continuous and verifies the conditions:

U(t,t) = I for t ∈ [0, T ],
(2.9)

U(t, s) = U(t, r)U(r, s) for t, r, s ∈ [0, T ] with s ≤ r ≤ t . (2.10)
Let {t j } N j=0 be a partition of the closed interval [0,t]:

0 = t 0 < t 1 < . . . < t N-1 < t N = t, t j = τ j, τ = t/N , for any 0 < t ≤ T . Further, let Q j (t, s; n) = e -t-s n A e -t-s n B(s+ j t-s n ) , j = 0, 1, . . . , n , (2.11) 
and

E(t, s; n) := Q n-1 (t, s; n)Q n-2 (t, s; n) × • • • × Q 1 (t, s; n)Q 0 (t, s; n) := (n-1)← ∏ j=0 Q j (t, s ; n) , (2.12) 
where the symbol ∏ n← j=1 means that the product is increasingly ordered in j from the right to the left. If in addition to assumption (2.7), the condition

A -α (B(t) -B(s))A -α ≤ L 1 |t -s|, t, s ∈ [0, T ], L 1 > 0, ( 2.13) 
is satisfied, then in [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF] it was proved that the propagator {U(t, s)} (t,s)∈ ∆ , which solves the Cauchy problem (2.8), admits the approximation

sup t∈[0,T ] U(t, 0) -E n (t, 0; n) = O(ln(n)/n) as n → ∞. (2.14)
Scrutinising the proof in [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF] one finds that in fact the claim (2.14) can be slightly generalised to any interval ∆ sup

(t,s)∈ ∆ U(t, s) -E n (t, s; n) = O(ln(n)/n) as n → ∞. (2.15)
At the first glance, it seems that the result (2.15) is quite far from the Trotter product formula. However, this is not the case. To show this we follow the evolution semigroup approach to evolution equations developed in [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF][START_REF] Neidhardt | Linear non-autonomous Cauchy problems and evolution semigroups[END_REF]. Let us introduce the Hilbert space L 2 ([0, T ], H) and consider on this space the semigroup

(U (τ) f )(t) := U(t,t -τ)χ [0,T ] (t -τ) f (t -τ), f ∈ L 2 ([0, T ], H), (2.16) t ∈ [0, T ]. It turns out that {U (τ)} τ∈R + is a C 0 -semigroup on the Hilbert space of the H-valued trajectories L 2 ([0, T ], H)
. By K we denote its generator, then U (τ) = e -τK , τ ≥ 0.

Let us introduce two multiplication operators

(A f )(t) = A f (t), f ∈ dom(A ), dom(A ) := f ∈ L 2 ([0, T ], H) : f (t) ∈ dom(A) for a.e. t ∈ [0, T ] A f (t) ∈ L 2 ([0, T ], H) , (2.17) 
and

(B f )(t) = B(t) f (t), f ∈ dom(B), dom(B) := f ∈ L 2 ([0, T ], H) : f (t) ∈ dom(B(t)) for a.e. t ∈ [0, T ] B(t) f (t) ∈ L 2 ([0, T ], H) . (2.18)
Note that both operators are well-defined and self-adjoint in L 2 ([0, T ], H). Moreover, condition (2.7) yields: dom(A ) ⊆ dom(B).

By D 0 we define in L 2 ([0, T ], H) the generator of the right-shift semigroup e -τD 0 given by (e

-τD 0 f )(t) = χ [0,T ] (t -τ) f (t -τ), f ∈ L 2 ([0, T ], H).
Notice that the operator D 0 is defined by

(D 0 f )(t) = ∂ ∂t f (t), f ∈ dom(D 0 ) := { f ∈ W 2,2 ([0, T ], H) : f (0) = 0}.
Collecting these definitions we introduce the operator 

( K f ) = D 0 f + A f + B f , f ∈ dom( K ) := dom(D 0 ) ∩ dom(A ) ∩ dom(B). ( 2 
(K 0 f )(t) = D 0 f + A f , f ∈ dom(K 0 ) := dom(D 0 ) ∩ dom(A ).
Then operator K 0 is a generator of the C 0 -semigroup, which has the form

(e -τK 0 f )(t) = e -τA χ t∈[0,T ] (t -τ) f (t -τ), f ∈ L 2 ([0, T ], H).
Note that we obviously get that

K = K 0 + B = K 0 + B.
For the pair {K 0 , B} one obtains the following result. 

(e -τK 0 /n e -τB/n ) n -e -τK = O(ln(n)/n) for n → ∞ , (2.20 
)

and sup τ≥0 (e -τB/n e -τK 0 /n ) n -e -τK = O(ln(n)/n) for n → ∞ . (2.

21)

Proof. A straightforward computation shows that for f ∈ L 2 ([0, T ], H) one gets

((e -τK 0 /n e -τB/n ) n f )(t) = E(t,t -τ ; n)χ [0,T ] (t -τ) f (t -τ),
where E(t, s ; n) is given by (2.12). Taking into account (2.16) we obtain

((e -τK 0 /n e -τB/n ) n f )(t) -(e -τK f )(t) = (E(t,t -τ ; n) -U(t,t -τ))χ [0,T ] (t -τ) f (t -τ) ,
which yields the estimate

((e -τK 0 /n e -τB/n ) n f )(t) -(e -τK f )(t) ≤ χ [0,T ] (t -τ) E(t,t -τ ; n) -U(t,t -τ) f (t -τ) .
Hence, this implies

sup τ≥0 (e -τK 0 /n e -τB/n ) n f -e -τK f 2 ≤ sup τ≥0 T 0 χ [0,T ] (t -τ) E(t,t -τ ; n) -U(t,t -τ) 2 f (t -τ) 2 dt ≤ T 0 sup (t,s)∈ ∆ E(t, s ; n) -U(t, s) 2 f (r) 2 dr.
Using (2.15) we immediately obtain (2.20). Similarly (2.21) follows from [START_REF] Ichinose | Error estimate in operator norm of exponential product formulas for propagators of parabolic evolution equations[END_REF]. ✷

Comments

Section 2.1

The operator-norm convergence rate O(1/n) of [START_REF] Ichinose | Note on the paper: "The norm convergence of the Trotter-Kato product formula with error bound[END_REF] for pairs of non-negative selfadjoint operators is sharp and ultimate optimal due to observations in [START_REF] Tamura | A remark on operator-norm convergence of Trotter-Kato product formula[END_REF]. The same remark concerns the sharpness and optimality of the rate O(1/n 2α-1 ) obtained first in [START_REF] Neidhardt | Fractional powers of self-adjoint operators and Trotter-Kato product formula[END_REF] under assumption (2.5) together with the A α -smallness of B α with relative bound less then one. Then the same ultimate sharp rate was proven in [START_REF] Ichinose | Trotter-Kato product formula and fractional powers of self-adjoint generators[END_REF], when the smallness condition is relaxed to the mild subordination (2.6). It is an open problem whether the assumption (2.6) is really necessary.

Section 2.2

It is unclear whether the convergence rates O(ln(n)/n) and O(ln(n)/n α ) are sharp. One expects convergence rates identical to that in Section 2.1.

Section 2.3

The approach used here was developed in [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF][START_REF] Neidhardt | On abstract linear evolution equations[END_REF][START_REF] Neidhardt | On abstract linear evolution equations[END_REF][START_REF] Neidhardt | On linear evolution equations. III: Hyperbolic case[END_REF][START_REF] Neidhardt | Linear non-autonomous Cauchy problems and evolution semigroups[END_REF][START_REF] Nickel | On evolution semigroups and nonautonomous Cauchy problems[END_REF]. The idea is to transform a time-dependent evolution problem to a time-independent problem, see also the next section.

Let us add some remarks. One easily checks that the operator K 0 is not selfadjoint whereas the operator B is self-adjoint. However, K 0 is maximal accretive. This is in some sense in contrast to Section 2.2, where the pair {A, B} consists of a self-adjoint operator A and an maximal accretive operator B such that dom(A) ⊆ dom(B) and dom(A) ⊆ dom(B * ). In the evolution case the conditions dom(K 0 ) ⊆ dom(B) and dom(K * 0 ) ⊆ dom(B) are satisfied but in the reversed order with respect to Section 2.2. However, the convergence rate O(ln(n)/n) is not affected by this.

The proof of the estimate (2.14) and (2.15) are very involved. Naturally the problem arises whether one can give a direct proof the estimate (2.14) avoiding those propagator estimates. [START_REF] Cachia | Operator-norm approximation of semigroups by quasisectorial contractions[END_REF] Trotter product formula on Banach spaces

Holomorphic case

There are only few generalisations of the results of Section 2 to Banach spaces. The main obstacle for that is the fact that the concept of self-adjointness is missing in the Banach spaces. One of solution is to relax the self-adjointness replacing the non-negative self-adjoint generator A by a generator of the holomorphic semigroup. The following result was proved in [START_REF] Cachia | Operator-norm convergence of the Trotter product formula for holomorphic semigroups[END_REF]. (e -τB/n e -τA/n ) ne -τC = O((ln(n)) 2 /n), and sup

τ∈[0,T ] (e -τA/n e -τB/n ) n -e -τC = O((ln(n)) 2 /n),
for any T > 0.

Evolution case

Similarly of Section 2.3 let us consider a generator A of a holomorphic semigroup on the separable Banach space X and a family of {B(t)} t∈[0,T ] of generators of holomorphic semigroups on X. We make the following assumptions:

Assumption 3.3 (A1)
The operator A is a generator of a holomorphic contraction semigroup on X such that 0 ∈ ρ(A). (A2) Let {B(t)} t∈[0,T ] be a family of closed operators such that for a.e. t ∈ [0, T ] and some α ∈ (0, 1) the condition dom(A α ) ⊂ dom(B(t)) is satisfied such that

C α := ess sup t∈[0,T ] B(t)A -α B(X) < ∞ .
(A3) Let {B(t)} t∈[0,T ] be a family of generators of contraction semigroups in X such that the function [0, T ] ∋ t → (B(t) + ξ ) -1 x ∈ X is strongly measurable for any x ∈ X and any ξ > b > 0.

(A4) We assume that dom(A * ) ⊂ dom(B(t) * ) and

C * 1 := ess sup t∈[0,T ] B(t) * (A * ) -1 B(X * ) < ∞,
where A * and B(t) * denote operators which are adjoint of A and B(t), respectively. (A5) There exists β ∈ (α, 1) and a constant L β > 0 such that for a.e. t, s ∈ [0, T ] one has the estimate:

A -1 (B(t) -B(s))A -α ≤ L β |t -s| β .
(A6) There exists a constant L 1 > 0 such that for a.e. t, s ∈ [0, T ] one has the estimate:

A -α (B(t) -B(s))A -α ≤ L 1 |t -s| .
The assumption 0 ∈ ρ(A) in (A1) is made for simplicity. We note that assumption (A3) is similar to (2.7). Assumption (A4) is automatically satisfied for self-adjoint operators. Assumption (A5) is a modification of (2.13) while assumption (A6) coincides with (2.13).

With the family {C(t)} t∈[0,T ] , C(t) = A + B(t), one associates the evolution equation (2.8). It turns out that under the assumptions (A1) and (A2) the family {C(t)} t∈[0,T ] consists of generators of contraction semigroups.

In accordance with Section 2.3 we consider the Banach space L p ([0, T ], X) for some fixed p ∈ [0, 1) and introduce the multiplication operators A and B, cf. (2.17) and (2.18). Under the assumptions (A1)-(A3) the operators A and B are generators of contraction semigroups such that dom(A ) ⊆ dom(B), in particular, A is a generator of holomorphic semigroup. Similarly, one can introduce the multiplication operator C induced by the family {C(t)} t∈[0,T ] which is also a generator of a holomorphic semigroup. Notice that C = A + B and dom(C ) = dom(A ).

Let D 0 the generator of the right-shift semigroup on L p ([0, T ], X), i.e.

(e -τD 0 f

)(t) = f (t -τ)χ [0,T ] (t -τ) f (t -τ), f ∈ L p ([0, T ], X),
cf. (2.19). We consider the operator

K f = D 0 f + A f + B f , f ∈ dom( K ) = dom(D 0 ) ∩ dom(A ) ∩ dom(B),
cf. (2.19). Assuming (A1)-(A3) it was shown in [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF] that the operator K is closable and its closure K is the generator of a semigroup. Furthermore, we set

K 0 f = D 0 f + A f , f ∈ dom( K 0 ) = dom(D 0 ) ∩ dom(A ),
In contrast to the Hilbert space the operator K 0 is not necessary a generator of a semigroup. However, the operator K 0 closable and its closure K 0 is a generator. Notice that K coincides with the algebraic sum of K 0 and B, i.e K = K 0 + B.

In [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF] the following theorem was proved. when n → ∞.

Assuming instead of assumption (A5) the assumption (A6) the result slightly modifies, see [START_REF] Neidhardt | On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations[END_REF].

Theorem 3.5 ([14, Theorem 5.4]) Let the assumptions (A1)-(A4) be satisfied for some α ∈ (1/2, 1). If (A6) is valid, then for n → ∞ one gets the asymptotic:

sup τ≥0 (e -τB/n e -τK 0 /n ) n -e -τK = O(1/n 1-α ).
(3.25)

Convergence rates for propagators

The proof of both theorems does not use propagator approximations of type (2.14) or (2.15). However, Theorem 3.4 and 3.5 can be used to prove propagator approximations. To this end one has to introduce the notion of a evolution semigroup.

Definition 3.6 A generator K in L p ([0, T ], X), p ∈ [1, ∞), is called a evolution generator if (i) dom(K ) ⊂ C([0, T ], X) and M(φ )dom(K ) ⊂ dom(K ) for φ ∈ W 1,∞ ([0, T ]), (ii) K M(φ ) f -M(φ )K f = M( φ ) f for f ∈ dom(K ) and φ ∈ W 1,∞ ([0, T ])
, where φ = ∂ t φ , (iii) the domain dom(K ) has a dense cross-section, i.e. for each t ∈ (0, T ] the set

[dom(K )] t := {x ∈ X : ∃ f ∈ dom(K ) such that x ∈ f (t)}, is dense in X. By M(φ ), L ∞ ([0, T ]), the bounded operator (M(φ ) f )(t) = φ (t) f (t), f ∈ L p ([0, T ], X). is meant.
One can check that the operator K defined as the closure of K is an evolution generator, cf. [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF]Theorem 1.2]. Evolution generators a directly related to propagators. For this purpose one has slightly weaken the notion of a propagator defined in Section 2.3. Definition 3.7 Let {U(t, s)} (t,s)∈∆ , ∆ = {(t, s) ∈ (0, T ] × (0, T ] : s ≤ t ≤ T }, be a strongly continuous family of bounded operators on X. If the conditions U(t,t) = I for t ∈ (0, T ] ,

(3.26)

U(t, r)U(r, s) = U(t, s) for t, r, s ∈ (0, T ] with s ≤ r ≤ t , (3.27) U B(X) := sup (t,s)∈∆ U(t, s) < ∞ (3.28)
are satisfied, then {U(t, s)} (t,s)∈∆ is called a propagator.

Comparing with Section 2.3 we note that ∆ slightly differs from ∆ . Indeed, ∆ ⊆ ∆ but ∆ = ∆ . Restricting (2.9) and (2.10) to (0, T ] we get (3.26) and (3.27), respectively. Condition (3.28) is necessary because the set ∆ is not closed.

It is known that there is an one-to-one correspondence between the set of all evolution generators on L p ([0, T ], X) and the set of all propagators in the sense of Definition 3.7 established by

(e -τK f )(t) = U(t,t -τ)χ [0,T ] (t -τ) f (t -τ), f ∈ L p ([0, T ], X),
cf. [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF]Theorem 3.3] or [START_REF] Neidhardt | On abstract linear evolution equations[END_REF]Theorem 4.12].

Let K 0 be the generator of an evolution semigroup {U 0 (τ)} τ≥0 and let B be a multiplication operator induced by a measurable family {B(t)} t∈[0,T ] of generators of contraction semigroups. Note that in this case the multiplication operator B is a generator of a contraction semigroup (e -τ B f )(t) = e -τ B(t) f (t), on the Banach space L p ([0, T ], X). Since {U 0 (τ)} τ≥0 is an evolution semigroup, then there is a propagator {U 0 (t, s)} (t,s)∈∆ such that the representation

(U 0 (τ) f )(t) = U 0 (t,t -τ)χ [0,T ] (t -τ) f (t -τ), f ∈ L p ([0, T ], X),
is valid for a.e. t ∈ [0, T ] and τ ≥ 0. Then we define

Q j (t, s; n) := U 0 (s + j (t-s) n , s + ( j -1) (t-s) n )e -(t-s) n B s+( j-1) (t-s) n
where j ∈ {1, 2, . . . , n}, n ∈ N, (t, s) ∈ ∆ , and we set

V n (t, s) := n ← ∏ j=1 Q j (t, s; n), n ∈ N, (t, s) ∈ ∆ ,
where the product is increasingly ordered in j from the right to the left. Then a straightforward computation shows that the representation

e -τK 0 /n e -τB/n n f (t) = V n (t,t -τ)χ [0,T ] (t -τ) f (t -τ) , f ∈ L p ([0, T ], X), holds for each τ ≥ 0 and a.e. t ∈ [0, T ]. Similarly we can introduce G j (t, s; n) = e -t-s n B(s+ j t-s n ) U 0 (s + j t-s n , s + ( j -1) t-s n ) where j ∈ {1, 2, . . . , n}, n ∈ N, (t, s) ∈ ∆ . Let U n (t, s) := n ← ∏ j=1 G j (t, s; n), n ∈ N, (t, s) ∈ ∆ ,
where the product is again increasingly ordered in j from the right to the left. We verify that Theorems 3.4 and 3.5 are proved in [START_REF] Neidhardt | Convergence rate estimates for Trotter product approximations of solution operators for non-autonomous Cauchy problems[END_REF] and [START_REF] Neidhardt | On convergence rate estimates for approximations of solution operators for linear non-autonomous evolution equations[END_REF] under the assumption that the pair {K 0 , B} is Trotter-stable. The convergence rates (3.24) and (3.25) differ significantly from the convergence rate O(ln(n)/n) of Proposition 2.1. It is an open problem whether the convergences rates (3.24) and (3.25) can be improved to O(ln(n)/n). One has to mention that the convergence (3.25) coincides with that one of (3.23) despite the fact that K 0 is not a generator of a holomorphic semigroup. Indeed, the generator K 0 is not holomorphic since e -τK 0 = 0 for τ ≥ T .

e -τB/n e -τK 0 /n n f (t) = U n (t,t -τ)χ [0,T ] (t -τ) f (t -τ) , f ∈ L p ([0, T ], X),

Section 3.3

It is a bit surprising that the operator-norm convergence of the Trotter product formula for the pairs: generator of evolution semigroup and multiplication operator, is equivalent to the operator-norm convergence of a certain approximation of the corresponding propagator, see Proposition 3.8. In particular, this yields that two convergences: (2.15) and (2.20), are equivalent.

Sharpness

Example

Let us consider a "solvable" example. We study bounded perturbations of the evolution generator D 0 . To do this aim we consider X = C and we denote by ]). Then, q induces a bounded multiplication operator Q in the Banach space L 2 ([0, 1]):

L 2 ([0, 1]) the Hilbert space L 2 ([0, T ], C). For t ∈ [0, 1], let q : t → q(t) ∈ L ∞ ([0, 1 
(Q f )(t) = q(t) f (t), f ∈ L 2 ([0, 1]).
For simplicity we assume that q ≥ 0. Then Q generates on L p ([0, 1]) a contraction semigroup {e -τQ } τ≥0 . Since generator Q is bounded, the closed operator K := D 0 + Q, with domain dom(K ) = dom(D 0 ), is generator of a semigroup on L p ([0, 1]). From [START_REF] Trotter | On the product of semi-groups of operators[END_REF] one gets immediately s-lim n→∞ e -τD 0 /n e -τQ/n n = e -τ(D 0 +Q) uniformly in τ ∈ [0, T ] for any T > 0. One easily checks that K is an evolution generator. A straightforward computation shows that e -τ(D 0 +Q) f (t) = e -t t-τ q(y)dy χ [0,1] (t -τ) f (t -τ)

which yields that the propagator corresponding to K is given by U(t, s) = e -t s q(y)dy , (t, s) ∈ ∆ .

A simple computation shows that

e -τD 0 /n e -τQ/n n f (t) =: V n (t,t -τ)χ [0,T ] (t -τ) f (t -τ) .
Then by straightforward calculations one finds that

V n (t, s) = e -t-s n ∑ n-1 k=0 q(s+k t-s n ) , (t, s) ∈ ∆ . Proposition 4.1 ([13, Proposition 3.1]) Let q ∈ L ∞ ([0, T ]) be non-negative. Then sup τ≥0 e -τ(D 0 +Q) -e -τD 0 /n e -τQ/n n B(L p ([0,1])) = Θ ess sup (t,s)∈∆ t s q(y)dy - t -s n n-1 ∑ k=0 q(s + k t-s n )
as n → ∞, where Θ is the Landau symbol defined in the introduction.

Note that by Proposition 3.8 the operator-norm convergence rate of the Trotter product formula for the pair {D 0 , Q} coincides with the convergence rate of the integral Darboux-Riemann sum approximation of the Lebesgue integral.

Results

Below we give a series of examples which show the dependence of the convergence rate on the smoothness of the function q ∈ L ∞ ([0, T ]). First we consider the Hölder and Lipschitz continuous cases. 

∈ C 0,β ([0, T ]), β ∈ (0, 1], is non-negative, then for n → ∞ one gets sup τ≥0 e -τ(D 0 +Q) -e -τD 0 /n e -τQ/n n = O(1/n β ) .
Now a natural question that one may to ask is: what happens, when q is simply continuous? We comment that for a general continuous q one can say nothing about the Trotter product formula convergence rate. Indeed, as it follows from the next theorem the convergence to zero in (4.30) may be arbitrary slow. = ω(δ n ) , as n → ∞, where ω is the Landau symbol defined in the Introduction.

Our final comment concerns the case when q is only measurable. Then it can happen that the Trotter product formula for that pair {D 0 , Q} does not converge in the operator-norm topology: We note that Theorem 4.5 does not exclude the convergence of the Trotter product formula for the pair {D 0 , Q} in the strong operator topology.

Comments

Section 4.1

Our example can be considered as a kind of solvable model. It fits into the evolution cases considered in Sections 2.3 and 3.2. Indeed, one has to set X = C, p = 2, L p ([0, T ], X) = L 2 ([0, T ]), A = I and B(t) = q(t) and B = Q. One easily checks that (e -τ/nK 0 e -τB/n ) n = e -τ (e -τ/nD 0 e -τQ/n ) n which shows that the convergence rate of (e -τ/nD 0 e -τQ/n ) n coincides with that one (e -τ/nK 0 e -τB/n ) n . One easily checks that the choice A = I, B(t) = q(t), q(t) ≥ 0, guarantees the assumptions (A1)-(A4) If q ∈ C 0,β ([0, T ]), then the assumption (A5) is satisfied. If Q is Lipschitz continuous, i.e. q ∈ C 0,1 ([0, T ]), then the assumption (A6) is valid. Section 4.2 Theorem 4.2 shows that for β ∈ (0, 1) the convergence rate is O(1/n β ), which is better than the convergence rates O(1/n β -α ) and O(1/n 1-α ) in Theorems 3.4 and 3.5. Hence, they are not sharp. Theorems 4.3 and 4.4 demonstrate that the convergence rate can be arbitrary slow if the smoothness of Q is weaker and weaker.

Finally, Theorem 4.5 shows that there is a bounded operator such that the Trotter product formula does not converge in the operator norm. This makes clear that Theorem 3.2 becomes false if the condition that A is a holomorphic generator is dropped. Indeed the operator D 0 which plays the role of A of Theorem 3.2 is not a generator of holomorphic semigroup.

Theorem 3 . 1 ([ 5 ,

 315 Theorem 3.6 and Corollary 3.7]) Let A be a generator of a holomorphic contraction semigroup on the separable Banach space X and let B a generator of a contraction semigroup on X. (i) If for some α ∈ (0, 1) the conditiondom(A α ) ⊆ dom(B) ,holds and dom(A * ) ⊆ dom(B * ) is satisfied, then the operator sum C = A + B is a generator of a contraction semigroup and sup τ∈[0,T ] (e -τB/n e -τA/n ) ne -τC = O(ln(n)/n 1-α ) , (3.22) for any T > 0. (ii) If for some α ∈ (0, 1) the condition dom((A α ) * ) ⊆ dom(B * ) , is satisfied and dom(A) ⊆ dom(B) is valid, then C = A + B is the generator of a contraction semigroup andsup τ∈[0,T ] (e -τA/n e -τB/n ) ne -τC = O(ln(n)/n 1-α ) ,(3.23)for any T > 0. Theorem 3.2 ([5, Theorem 3.6 and Corollary 3.7]) Let A be a generator of a holomorphic contraction semigroup on X and let B a generator of a contraction semigroup on X. If B in addition a bounded operator, then sup τ∈[0,T ]

Theorem 3 . 4 ([ 12 ,

 3412 Theorem 7.8]) Let the assumptions (A1)-(A4) be satisfied for some α ∈ (0, 1). If (A5) holds, then sup τ≥0 (e -τB/n e -τK 0 /n ) ne -τK = O(1/n β -α ),(3.24) 

Theorem 4 . 2 (

 42 [START_REF] Neidhardt | Remarks on the operator-norm convergence of the Trotter product formula[END_REF] Theorem 3.2]) If the function: q

Theorem 4 . 3 (

 43 [START_REF] Neidhardt | Remarks on the operator-norm convergence of the Trotter product formula[END_REF] Theorem 3.3]) If q : [0, 1] → C, is continuous and non-negative, then for n → ∞ e -τ(D 0 +Q)e -τD 0 /n e -τQ/n n = o(1) . (4.30)

Theorem 4 . 4 (

 44 [START_REF] Neidhardt | Remarks on the operator-norm convergence of the Trotter product formula[END_REF] Theorem 3.4]) Let δ n > 0 be a sequence with δ n → 0 as n → ∞. Then there exists a continuous function q : [0, 1] → R such that sup τ≥0 e -τ(D 0 +Q)e -τD 0 /n e -τQ/n n B(L p ([0,1]))

Theorem 4 . 5 (

 45 [START_REF] Neidhardt | Remarks on the operator-norm convergence of the Trotter product formula[END_REF] Theorem 3.5]) There is a non-negative measurable function q ∈ L ∞ ([0, 1]), such that lim inf n→∞ sup τ≥0 e -τ(D 0 +Q)e -τD 0 /n e -τQ/n n B(L p ([0,1])) > 0 .

  Proposition 2.1 Let A be a non-negative self-adjoint operator on the separable Hilbert space H and let {B(t)} t∈[0,T ] be a family of non-negative self-adjoint operators. If the assumptions (2.7) and (2.13) are satisfied, then

	sup
	τ≥0

  holds for each τ ≥ 0 and a.e. t ∈ [0, T ]. Proposition 3.8 ([13, Proposition 2.1]) Let K and K 0 be generators of evolution semigroups on the Banach space L p ([0, T ], X) for some p ∈ [1, ∞). Further, let {B(t))} t∈[0,T ] be a strongly measurable family of generators of contraction on X. ∈ ∆ , with increasingly ordered product in j from the right to the left. From Theorem 3.4 and Proposition 3.8 one immediately obtains the following theorem. It is unclear whether Theorem 3.1 is sharp. Theorem 3.1 should be valid if the contractivity of the involved semigroups is replacedTrotter-stability. A pair of generators {A, B} is called Trotter-stable if the Trotter product is uniformly bounded in n ∈ N, i.e., if sup It turns out that the pair {A, B} is Trotter-stable if and only {B, A} is Trotter-stable.
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