
1

1 ALLOCATION AND ANALYSIS

In this work, we consider partitioned scheduling. Each en-
gine has its own scheduler and a separate ready-queue. Sub-
tasks are allocated (partitioned) onto the available engines
so that the system is schedulable. Partitioned scheduling
allows to use the well-known single processor schedulability
tests which make the analysis simpler and allows to reduce
the overhead due to thread migration compared to global
scheduling. The analysis presented here is modular, so en-
gines may have different scheduling policies. In this paper,
we restrict to preemptive-EDF.

Let assume n task specifications to be allocated onto m

engines. Only concrete graphs can be allocated to engines.
However, we often use allocating task specification to express
the whole process of allocating one of its concrete digraphs.

1.1 Alternative patterns

Definition 1. Concrete task τ is schedulable if and only if all
its sub-tasks at arrival j finish their execution within the time
interval [aij , aij + D(i)], ∀j ∈ N where aij is the jth instance
arrival time.

Definition 2. Task specification τi is schedulable, if :

∃τid ∈ Ωi, τidis schedulable (1)

According to 2, it is sufficient to find one concrete task τd
among all the concrete tasks of task specification τ, so it can
be feasibly allocated. Thus, it is necessary to generate and
test the allocation of all concrete tasks a given task specifica-
tion. Algorithm shows how concrete tasks are generated.

Algorithm 1 generate concrete task

1: input: τ Task
2: alta node = select one alternative node()
3: if (alta node == ∅) then
4: gr list=explode node to graphs()
5: for (τ ∈ gr list) do
6: concrete task generation(task);
7: end for
8: else
9: add to conc list(τ,Ω)

10: end if

Algorithm 1 takes as input one task specification, and
selects one of its alternative nodes. Further, it explodes the
nodes to several copies of the same graph by excluding
all other alternative possibilites and calls back the same
algorithm. The recursivity ends when a task specification
does not contain any alternative control nodes, (becomes a
concrete task).

Definition 3. Let τd′ , τd′′ be two concrete tasks of specification
task τ

The order relation > is defined as:

τd′ > τd′′ ⇒
∑

v∈τ
d′

C(v) ≥
∑

v∈τ
d′′

C(v) (2)

The order relation > allows to sort concrete task ac-
cording to their total execution time, thus allows prefering
concrete tasks with less overhead. Further we will define

Algorithm 2 generate task separation

1: input: τ : Task ⊲ specification or concrete
2: for (tag ∈ tags) do
3: for v ∈ V) do
4: if (v.Tag == tag) then
5: add to current separation(v)
6: else
7: add to current separation(∅)
8: end if
9: end for

10: end for

relation order >> to compare two concrete tasks based on
the available engine number.

Order relations >, >> will be used later later in Section
1.6 to select the concrete task to allocate for a given task
specification when several concrete tasks can feasibility be
allocated.

1.2 Graph separation

One concrete task may contain sub-tasks with different tags.
Two sub-tasks with different tags are allocated onto different
cores. We recall that in this paper we consider partitioned
scheduling, analysis of each engine is independant. Hence,
we need to separe vertices with the same tag before proceed-
ing to its allocation. We call this operation separation.

Definition 4. Let τd = (V,E) denote a concrete task. The set

S(τd) = {τ tag
1

d1
, τ

tag2

d2
, · · · , τ tag

S

dS
} is a separation of concrete

task τd if and only if:

• Every separation τ
tags

ds
is an isomorphe graph regarding

τd
• The number of tags of each separation is equal to one

• The union of the same vertex in all separations is equal to
the original vertex. Thus, each vertex is either empty or is
equal to the original vertex.

Each concrete task generates at least as separations as
tags in the target architecture. Algorithm 2 shows how the
minimum number of task separations is generated. The
algorithm acts as a filter on each tag. The vertices having
a different tag regarding the current one are set to empty.
An empty vertex is a vertex having an execution time that
equals C(∅) = 0, otherwise the vertex is added to the current
task separation.

v
CPU
1 v

CPU
2

F

v
CPU
8

F

∅ ∅

(a) CPU separation

∅ ∅

F

∅

F

v
DLA
6 ∅

(b) DLA separa-
tion

∅ ∅

F

∅

F

∅ v
dGPU
7

(c) dGPU separa-
tion

Fig. 1: minimal set of sepecification for concrete task at
Figure

2

Figure 1 shows the generated task separations using
Algorithm 2. As the concrete task has three tags, three
task separations are generated. The first one contains only
vertices having CPU tag, respectivly the second the DLA
and the thrid one the GPU. Each of the task separations will
be allocated on one or multiple engines having the same tag.

Definition 5. Let τd′ , τd′′ be two concrete tasks of specification
task τ. Let t l denote the list of ordered tag in an non-decreasing
order of number of cores.

The order relation >> is defined as:

τd′ >> τd′′ ⇒
∑

v∈τd′(t l(0))

C(v) >
∑

v∈τd′′t l(0)

C(v) (3)

1.3 Artifial deadlines and offsets

The respect of a real-time task constraints depends on
the task allocation which is defined as the problem of
allocating sub-tasks onto different engines. As these sub-
tasks share buffers, they are forced to respect an execution
order. Analyzing the behavior of dependant sub-tasks is
complex. To reduce allocation complexity, lot of works have
proposed to insert artificial offsets and deadlines to sub-
tasks so they can be analyzed separately with respect to their
initial execution order. We use similar techniques because
the analysis is more complex in the presence of highly
heterogeneous engines such as those we are interested in.
Deadline assignement techniques are applied to concrete
tasks because applying it to task specification may enforce
some sub-task to have tight deadline because the critical
path of a concrete path is shorter or equal to the critical path
of its task specification.

Most of the deadline assignment techniques are based
on the computation of the execution time of the critical path.
A path Px = {v1, v2, · · · , vl} is a sequence of sub-tasks of
task τ such that :

∀(vl, vl+1) ∈ Px, ∃e(vl, vl+1) ∈ E

.

Definition 6. Let Px denote the path x of task τ and Π denotes
the set of all paths of task τ.

The critical path P of task τ is define as:

P = Px ∈ Π,max
x

{
∑

v∈Px

C(v)} (4)

Informally, the critical path is defined as the path having
the highest execution time. Let assume P = {v1, v2, · · · , vl}
denote the critical path of concrete task τd. We define slack
time SP of task τd as the following:

S(P) = D(τd)−
∑

v∈P

C(v) (5)

Further, to assign artificial deadline, S(P) is distributed
on different vertices as following:

D(v) = C(v) + calculate share(v,P) (6)

The calculate share function computes the slack for every
single vertex. This slack can be shared according to two
heuristics:

• Fair distribution: assigns vertex slack as the ratio of
the original slack s(P) by the number of vertices in
the path (|P|) (Equation ((7)))

calculate share(v,P) =
S(P)

|P|
(7)

• Proportional distribution: assigns single slack ac-
cording to the contribution of the vertex execution
time in the path length, the the share is computed as
in Equation (8).

calculate share(v,P) =
C(v)

C(P)
· S(P) (8)

Recurrently, other paths are evaluated according to an
non-decreasing order of their vertice execution time. Al-
ready assigned deadlines are not assigned again and their
respective slack is substracted from the original slack of each
path Px ∈ Π.

Further offsets of each vertex are computed as:

O(v) =

{

0, preds(v) = ∅

max{O(vpr) + C(vpr)}, pr ∈ preds(v) Otherwise
(9)

Definition 7. Vertex v ∈ Vτ is feasible, if each arrival j finishes
its execution within the interval bounded by its arrival time
a(v) = j · T(τ) + O(v) and its deadline a(v) + D(v).

Theorem 1. A concrete task (resp. task separation) is feasible, if
all vertices within the task are feasible.

Proof. It is easy to proof that exit-sub tasks have an absolute
deadline not greater than the task absolute deadline, thus
if exit sub-tasks are feasible (by assumption), thus task is
feasible.

According to Theorem 1, the analysis of every sub-task
can be done independently from each other, if they all
respect their arrival time and deadlines.

Theorem 2. Let τd be a concrete digraph and S(τd) be the set of
its task separations.

If ∀τds
∈ S(τd) is feasible, τ is feasible

Proof. First, we would like to recall that vertices having an
empty vertex as predecessor are forced to take its deadline
and offset into account in their deadline/offset computation
(as shown in Section 1.3.

If all task separation are feasible, it means that even with
their blocking time due to an empty vertex, the exit nodes
finish before the concrete task relative deadline D(i). Thus,
the original concrete task is feasible.

1.4 Allocation of task specifications

1.5 Single core analyis

1.6 Schedulability analysis and on-line conditional

graphs

3

Algorithm 3 Full algorithm

1: for τi ∈ T do
2: Ωi=generate concrete task(τi)
3: for (τid ∈ Ωi) do
4: assign deadlines offset(conc list)
5: S(τid)=generate task separation(Ωi)
6: if (thenfeasible sequential(S(τid)))
7: add to feasible list(f list)
8: end if
9: end for

10: if (|f list| > 0) then
11: sort(f list) ⊲ Sort f list using to “>” or “>>”
12: Allocate f list(0) to selected engines
13: else
14: sort(Ωi) ⊲ sort according to order relations
15: (τid′ , τid′′) = paralleliz concrete(Ωi(0))
16: if (thenτid′ 6= 0)

17: allocate

toselectedcores else

18:19: return FAIL
20: end if
21:

	Allocation and analysis
	Alternative patterns
	Graph separation
	Artifial deadlines and offsets
	Allocation of task specifications
	Single core analyis
	Schedulability analysis and on-line conditional graphs

