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A C-DAG task model for scheduling complex

real-time tasks on heterogeneous platforms:

preemption matters

Houssam-Eddine Zahaf, Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, Giuseppe Lipari

Abstract— Recent commercial hardware platforms for em-
bedded real-time systems feature heterogeneous processing units
and computing accelerators on the same System-on-Chip. When
designing complex real-time application for such architectures,
the designer needs to make a number of difficult choices: on
which processor should a certain task be implemented? Should
a component be implemented in parallel or sequentially? These
choices may have a great impact on feasibility, as the difference
in the processor internal architectures impact on the tasks’
execution time and preemption cost.

To help the designer explore the wide space of design choices
and tune the scheduling parameters, in this paper we propose
a novel real-time application model, called C-DAG, specifically
conceived for heterogeneous platforms. A C-DAG allows to
specify alternative implementations of the same component of an
application for different processing engines to be selected off-line,
as well as conditional branches to model if-then-else statements
to be selected at run-time.

We also propose a schedulability analysis for the C-DAG model
and a heuristic allocation algorithm so that all deadlines are
respected. Our analysis takes into account the cost of preempting
a task, which can be non-negligible on certain processors. We
demonstrate the effectiveness of our approach on a large set
of synthetic experiments by comparing with state of the art
algorithms in the literature.

Index Terms—Real-Time, Conditional, DAG, Parallel Program-
ming, Heterogeneous ISA

I. INTRODUCTION

Modern cyber-physical embedded systems demand are in-

creasingly complex and demand powerful computational hard-

ware platforms. A recent trend in hardware architecture design

is to combine high performance multi-core CPU hosts with

a number of application-specific accelerators (e.g. Graphic

Processing Units – GPUs, Deep Learning Accelerators –

DLAs, or FPGAs for programmable hardware) in order to

support complex real-time applications with machine learning

and image processing software modules.

Such application specific processors are defined by different

levels of programmability and a different Instruction Set

Architecture (ISA) compared to the more traditional SoCs.

NVIDIA Volta GPU architecture for instance1, couples a fairly

traditional GPU architecture (hundreds of small SIMD process-

ing units called CUDA cores, grouped in computing clusters

called Streaming Multiprocessors) with hardware pipelines

specifically designed for tensor processing (Tensor Cores),

hence designed for matrix multiply and accumulate operations

1NVIDIA GV100 White Paper http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

that are typical of neural network arithmetics. The integrated

version of the NVIDIA Volta architecture is embedded within

the NVIDIA Xavier SoC, which can now be found in the

NVIDIA Jetson AGX board and in the NVIDIA Pegasus board:

in such embedded platforms, tensor processing can also be

operated in specifically designed compute engines such as

the DLA (Deep Learning Accelerator2); moreover, another

application specific engine is the PVA (Programmable Vision

Accelerator), that is specifically designed for solving signal

processing algorithms such as stereo disparity and optical flow.

In such platforms, the main and novel challenge in analyzing

the timing behavior of a real-time application is represented

by the drastic differences at the level of ISAs, preemption

capabilities, memory hierarchies and inter-connections for

these collections of computing engines.

When programming these platforms, the software designer

is confronted with several design choices: on which processor

engine should a task be implemented? Should a certain sub-

system be implemented in parallel or sequentially? These

choices could impact on the timing behavior of the application

and on the resource utilization. The analysis is complicated by

the fact that, on certain processors, the overhead induced by

preempting a lower priority task can be large: for example, the

overhead of preempting a graphical task executing on certain

GPU architectures is in the same order of magnitude of the

worst-case execution time of the task. As we will see in Section

VI-C, such overhead depends on the computing engine and on

the type of task.

a) Contributions.: To help the designer explore the de-

sign space, in Section II we present a novel model of real-

time task called C-DAG (Conditional-Directed Acyclic Graph).

Thanks to the graph structure, the C-DAG model allows to

specify parallelism of real-time sub-tasks. The designer can

use special alternative nodes in the graph to model alternative

implementations of the same functionality on different com-

puting engines to be selected off-line, and conditional nodes

in the graph to model if-then-else branches to be selected at

run-time. Alternative nodes are used to leverage the diversity

of computing accelerators within our target platform.

Then, in Section III we present a schedulability analysis that

will be used in Section IV by a set of allocation heuristics to

map tasks on computing platforms and to assign scheduling

parameters. In particular, we present a novel technique to

2Hardware specifications for the DLA available at http://nvdla.org/

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://nvdla.org/


reduce the pessimism due to high preemption costs in the

analysis (Section III-F).

After discussing related work in Section V, our methodol-

ogy is evaluated in Section VI by comparing it with start of

the art algorithms trough a set of synthetic experiments.

II. SYSTEM MODEL

A. Architecture model

A heterogeneous architecture is modeled as a set of execu-

tion engines Arch = {e1, e2, . . . , em}. An execution engine is

characterized by 1) its execution capabilities, (i.e. its Instruc-

tion Set Architecture), specified by the engine’s tag, and 2)

its scheduling policy. An engine’s tag tag(ei) indicates the

ability of a processor to execute a dedicated tasks.

As an example, a Xavier based platform such as the NVIDIA

pegasus, can be modeled using a total of 16 engines for a total

of five different engine tags: 8 CPUs, 2 dGPUs, 2 iGPUs, 2
DLAs and 2 PVAs.

Tags express the heterogeneity of modern processor archi-

tecture: an engine tagged by dGPU (discrete GPU) or iGPU
(integrated GPU) is designed to efficiently run generic GPU

kernels, whereas engines with DLA tags are designed to run

deep learning inference tasks.

Trivially, a deep learning task can be compiled to run on

any engine, including CPUs and GPUs, however its worst-case

execution time will be lower when running on DLAs. In this

paper, we allow the designer to compile the same task on

different alternative engines with different tradeoffs in terms

of performance and resource utilization, so to widen the space

of possible solutions. As we will see in the next section, the C-

DAG model supports alternative implementations of the same

code. During the off-line analysis phase, only one of these

alternative versions will be chosen depending on the overall

schedulability of the system.

Engines are further characterized by a scheduling policy

(e.g. Fixed Priority or Earliest Deadline First), which can be

preemptive or non-preemptive. In our model we allow different

engines to support different scheduling policies: as we show

in Section III, in our methodology the schedulability analysis

of each engine can be performed independently of the others.

However, to simplify the presentation, in this paper we focus

only on preemptive EDF for all the considered engines.

B. The C-DAG task model

1) Specification tasks: A specification task is a Directed

Acyclic Graph (DAG), characterized by a tuple τ =
{T,D,V,A,Γ, E}, where: T is the period (minimum interar-

rival time); D is the relative deadline; V is a set of graph nodes

that represent sub-tasks; A is a set of alternative nodes; and

Γ is a set of conditional nodes. The set of all the nodes is

denoted by N = V ∪ A ∪ Γ. The set E is the set of edges of

the graph E : N ×N .

A sub-task v ∈ V is the basic computation unit. It represents

a block of code to be executed by one of the engines of the

architecture. A sub-task is characterized by:

• A tag tag(v) represent the ISA of the sub-task code. A

sub-task can only be allocate onto an engine with the

same tag;

• A worst-case execution time C(v) when executing the

sub-task on the corresponding engine processor.

A conditional node γ ∈ Γ represents alternative paths in the

graph due to non-deterministic on-line conditions (e.g. if-then-

else conditions). At run-time, only one of the outgoing edges

of γ is executed, but it is not possible to know in advance

which one.

An alternative node a ∈ A represents alternative imple-

mentations of parts of the graph/task, as introduced in the

previous section. During the configuration phase (which is

detailed in Section IV-A) our methodology selects one between

many possible alternative implementations of the program by

selecting only one of the outgoing edges of a and removing

(part of) the paths starting from the other edges. This can

be useful when modeling sub-tasks than can be executed

on different engines with different execution costs. In our

model, the choice of where the sub-task should be executed

is performed off-line by our proposed scheduling analysis and

allocation strategy.

An edge e(ni, nj) ∈ E models a precedence constraint (and

related communication) between node ni and node nj , where

ni and nj can be sub-tasks, alternative nodes or conditional

nodes.

The set of immediate predecessors of a node nj , denoted

by pred(nj), is the set of all nodes ni such that there exists an

edge (ni, nj). The set of predecessors of a node nj is the set

of all nodes for which there exist a path toward nj . If a node

has no predecessor, it is a source node of the graph. In our

model we allow a graph to have several source nodes. In the

same way we can define the set of immediate successors of

node nj , denoted by succ(nj), as the set of all nodes nk such

that there exists an edge (nj , nk), and the set of successors of

nj as the set of nodes for which there is a path from nj . If a

node has no successors, it is a sink node of the graph, and we

allow a graph to have several sink nodes.

Conditional nodes and alternative nodes always have at least

2 outgoing edges, so they cannot be sinks. To simplify the

reasoning, we also assume that they always have at least one

predecessor node, so they cannot be sources.

2) Concrete tasks: A concrete task τ = {T,D,V,Γ, E} is

an instance of a specification task where all alternatives have

been removed by making implementation choices during the

analysis.Before explaining how to obtain a concrete task from

a specification task, we present an example.

Example 1. Consider the task specification described in

Figure 1a. Each sub-task node is labeled by the sub-task id and

engine tag. Alternative nodes are denoted by square boxes and

conditional nodes are denoted by diamond boxes. The black

boxes denote corresponding junction nodes for alternatives

and conditional, they are used to improve the readability of



the figure but they are not part of the task specification3.
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Fig. 1: Task specification and concrete tasks

Sub-tasks vCPU1 and vCPU2 are the sources (entry points)

of the DAG. vCPU1 , vCPU2 are marked by the CPU tag and

can run cuncurrently: during the off-line analysis they may

be allocated on the same or onto different engines. Sub-task

vDLA
4 has an outgoing edge to vdGPU5 , thus sub-task vdCPU5 can

not start its execution before sub-task vDLA
4 has finished its

execution. Sub-tasks vCPU1 and vCPU2 have each one outgoing

edge to the alternative node A. Thus, τ can execute either:

1) by following vdGPU3 and then vDLA
4 ,vdGPU5 and finishing

its instance on vCPU8 ;

2) or by following the conditional node F and select,

according to an undetermined condition evaluated on-

line, either to execute vDLA
6 or vdGPU7 , and finishing its

instance on vCPU8 .

The two patterns are alternative ways to execute the same

functionalities at different costs.

Figure 1b represents one of the concrete tasks of τi. During

the analysis, alternative execution (vdGPU
3 , vDLA

4 , vdGPU
5 ) has

been dropped.

We consider a sporadic task model, therefore parameter

T represents the minimum inter-arrival times between two

instances of the same concrete task. When an instance of a

task is activated at time t, all source sub-tasks are simultane-

ously activated. All subsequent sub-tasks are activated upon

completion of their predecessors, and sink sub-tasks must all

complete no later than time t + D. We assume constrained

deadline tasks, that is D ≤ T.

We now present a procedure to generate a concrete task τ

from a specification task τ , when all alternatives have been

chosen. The procedure starts by initializing V = ∅, Γ = ∅.

First, all the source sub-tasks of τ are added to V. Then, for

every immediate successor node nj of a node ni ∈ {V ∪ Γ}:

if nj is a sub-task node (a conditional node), it is added to V
(to Γ, respectively); if it is an alternative node, we consider

the selected immediate successor nk of nj and we add it to V

3In fact, it is not always possible to insert junction nodes for an arbitrary
specification.

or to Γ, respectively. The procedure is iterated until all nodes

of τ have been visited. The set of edges E ⊆ E is updated

accordingly.

We denote by Ω(τ) the set of all concrete tasks of a

specification task τ . Ω(τ) is generated by simply enumerating

all possible alternatives.

III. SCHEDULING ANALYSIS

In this work, we consider partitioned scheduling. Each

engine has its own scheduler and a separate ready-queue. Sub-

tasks are allocated (partitioned) onto the available engines so

that the system is schedulable. Partitioned scheduling allows

to use well-known single processor schedulability tests which

make the analysis simpler and allow us to reduce the overhead

due to thread migration compared to global scheduling. The

analysis presented here is modular, so engines may have

different scheduling policies. In this paper, we restrict to

preemptive-EDF.

A. Alternative patterns

Given a specification task τ , we have to select one of the

possible concrete tasks before proceeding to the allocation and

scheduling of the sub-tasks on the computing engine. Since the

number of combinations can be very large, in this paper we

propose an heuristic algorithm based on a greedy strategy (see

Section IV). In particular, we explore the set of concrete tasks

in a certain order. The order relation ≻ sorts concrete tasks

according to their total execution time.

Definition 1. Let τ′, τ′′ be two concrete tasks of specification

task τ

The partial order relation ≻ is defined as:

τ′ ≻ τ′′ =⇒ C(τ ′) ≥ C(τ ′′) (1)

In the next section, we will define a second order relation-

ship ≫ that sorts concrete tasks based on their engine tags.

B. Tagged Tasks

One concrete task may contain sub-tasks with different

tags which will be allocated on different engines. Before

proceeding to allocation, we need to select only sub-tasks

pertaining to a given tag. We call this operation task filtering.

We start by defining an empty sub-task as a sub-task with

null computation time.

Definition 2 (Tagged task). Let τ = {T,D,V,Γ, E} be a

concrete task. Task τ (tagi) is a tagged task of τ iff

• τ(tagi) = {T,D,Vi,Γi, Ei} is isomorphic to τ , that is

the graph has the same structure, the same number of

nodes of the same type, and the same edges between

corresponding nodes;

• let v ∈ V be a sub-task of τ , and let v′ ∈ Vi be the

corresponding sub-task of τ (tagi) in the isomorphism. If

tag(v) = tagi, then C(v′) = C(v), else C(v′) = 0;

• Γi = Γ.



We denote with S(τ ) = {τ(tag1), . . . τ(tagK)} the set of all

possible tagged tasks of τ .

Each concrete task generates as many tagged tasks as there

are tags in the target architecture.
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Fig. 2: Tagged tasks for the concrete task of Figure

Figure 2 shows the three tagged tasks for the concrete task

in Figure 1b. The first one contains only sub-tasks having CPU

tag, the second contains only DLA sub-tasks, and the third one

refers to GPU sub-tasks. Every tagged task will be allocated

on one or more engines having the corresponding tag.

Definition 3 (≫ order relationship). Assume the architecture

supports K different tags. Let n(tag) denote the number of

computing engines labeled with tag. Assume that tags are

ordered by increasing n(tag), that is n(tagi) < n(tagj) =⇒
i < j.

Let τ′, τ′′ be two concrete tasks of specification task τ,

and let S(τ ′) = {τ ′(tag1), . . . , τ
′(tagK)} and S(τ ′′) =

{τ ′′(tag1), . . . , τ
′′(tagK)} be the respective tagged tasks.

The order relation τ′ ≫ τd
′′ is defined as follows:

τ′ ≫ τd
′′ =⇒

∃ 0 ≤ i ≤ K

{

C(τ ′(tagj)) = C(τ ′′(tagj)) ∀j < i

C(τ ′(tagi)) < C(τ ′′(tagi))

Relationship ≫ gives priority to concrete tasks that allocate

less load on scarce resources: if there are few execution

engines with a certain tag, and there is a large number of sub-

tasks requiring allocation on that specific engine, the relation

order prefers alternative patterns with lower workload for those

engines.

C. Deadlines and offsets assignment

Meeting timing constraints of a concrete task depends on the

allocation of the sub-tasks onto the different execution engines.

As these sub-tasks communicate through shared buffers, they

are forced to respect the execution order dictated by the

precedence constraints imposed by the graph structure.

To reduce the complexity of dealing with precedence con-

straints directly, we impose intermediate offsets and deadlines

on each sub-task. In this way, precedence constraints are

respected automatically if every sub-task is activated after its

offset and it completes no later than its deadline.

Many authors have proposed techniques to assign interme-

diate deadlines and offsets to task graphs. In this paper we use

techniques similar to those proposed in [1] and [2].

Most of the deadline assignment techniques are based on

the computation of the execution time of the critical path. A

path Px = {v1, v2, · · · , vl} is a sequence of sub-tasks of task

τ such that:

∀vl, vl+1 ∈ Px, ∃e(vl, vl+1) ∈ E.

Let P denote the set of all possible paths of task τ . The

critical path Pcrit(τ ) ∈ P is defined as the path with the

largest cumulative execution time of the sub-tasks.

We define the slack Sl(P,D) along path P as:

Sl(P,D) = D−
∑

v∈P

C(v)

The assignment algorithm starts by assigning an interme-

diate relative deadline to every sub-task along a path by

distributing the path’s slack as follows:

D(v) = C(v) + calculate share(v, P )

The calculate share function computes the slack for sub-

task v along the path. This slack can be shared according to

two alternative heuristics:

• Fair distribution: assigns slack as the ratio of the

original slack by the number of sub-tasks along the path:

calculate share(v, P ) =
Sl(P,D)

|P |
(2)

• Proportional distribution: assigns slack according to the

contribution of the sub-task execution time in the path:

calculate share(v, P ) =
C(v)

C(P )
· Sl(P,D) (3)

Once the relative deadlines of the sub-tasks along the critical

path have been assigned, we can select the next path in order of

decreasing cumulative execution time, and assign the deadlines

to the remaining sub-task by appropriately subtracting the

already assigned deadlines. The complete procedure has been

described in [2], and due to space constraints we do not report

it here.

Let O(v) be the offset of a subtask with respect of the

arrival time of the task’s instance. The sum of the offset and

of the intermediate relative deadline of a subtask is called

local deadline O(v) + D(v), and it is the deadline relative to

the arrival of the task’s instance.

The offset of a subtask is set equal to 0 if the subtask has

no predecessors; otherwise, it can be computed recursively as

the maximum between the local deadlines of the predecessor

sub-tasks.

Figure 3 illustrates the relationship between the activation

times, the intermediate offsets, relative deadlines and local

deadlines of the sub-tasks of the concrete task of Figure 1b. We

assume that v1, v2, v8 have been allocated on the same CPU

whereas v6 and v7 each on a different engine. The activation

time is the absolute time of the arrival of the sub-task instance.
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The activation time of a source sub-task corresponds to the

activation time of the task graph. The offset is the interval

between the activation of the task graph and the activation of

the sub-task. The local deadline is the interval between the

task graph activation and the sub-task absolute deadline.

Definition 4. Sub-task v ∈ Vτ is feasible if for each task

instance arrived at aj , sub-task v executes within the interval

bounded by its arrival time a(v) = aj+O(v) and its absolute

deadline a(v) + D(v).

Lemma 1. A concrete task (resp. tagged task) is feasible if

all its sub-tasks are feasible.

Proof. By the definition, the local deadline of the sink sub-

tasks is equal to the deadline of the task D. Moreover, the

offset of a sub-task is never before the local deadline of a

preceding sub-task. Therefore 1) the precedence constraints

are respected and 2) if sink sub-tasks are feasible then the

concrete task (tagged task, respectively) is feasible.

D. Single engine analysis

In this section, we assume that sub-tasks have been already

been assigned offsets and deadlines, and they have been

allocated on the platform’s engines, and we present the schedu-

lability analysis to test if all tasks respect their deadlines when

scheduled by the Earliest Deadline First (EDF) algorithm.

Theorem 1. Let T a set of task graphs allocated onto a single-

core engine. Task set T is schedulable by EDF if and only if:

∑

τ∈T

dbf(τ, t) ≤ t, ∀t ≤ t∗ (4)

The dbf is the demand bound function [3] for a task graph

τ in interval t. The demand bound function is computed as the

worst-case cumulative execution time of all jobs (instances of

sub-tasks) having their arrival time and deadline within any

interval of time of length t. For a task graph, the dbf can be

computed as follows:

dbf(τ, t) = max
v∈τ

∑

v′∈τ

⌊

t− Õ(v′)− D(v′) + T(τ)

T(τ)

⌋

C(v′)

(5)

where4:

Õ(v′) = (O(v′)− O(v)) mod T(τ)

In our model, a task graph may contain conditional

nodes, which model alternative paths that are selected non-

deterministically at run-time. To compute the dbf for a tagged

task that contains conditional nodes, we must first enumerate

all possible conditional graphs by using the same procedure as

the one used for generating concrete tasks from specification

tasks. Hence, the dbf of a tagged task in interval t can be

computed as the largest dbf among all the possible conditional

graphs.

E. Anticipating the activation of sub-tasks

Given an instance of sub-task v with arrival at a(v) and

local deadline at D(v), at run-time it may happen that all

instances of the preceding sub-tasks have already completed

their execution before a(v). In this case, we activate the sub-

task as soon as the preceding sub-tasks have finished with the

same local deadline D(v).

Lemma 2. Consider a feasible set of sub-tasks allocated on a

set of engines and scheduled by EDF. If a sub-task is activated

as soon as all predecessor sub-tasks have finished, with the

same local deadline, the set remains schedulable.

Proof. Descends directly from the sustainability property of

EDF [4]. In fact, by anticipating the activation of the sub-

task without modifying its local deadline, the sub-task will

be scheduled with a longer relative deadline, and the demand

bound function will not increase.

From an implementation point of view, this technique avoids

the need to set-up activation timers for intermediate tasks;

moreover, it allows us to reduce the pessimism of the analysis

in the presence of high preemption costs, as we will see in

the next section.

F. Preemption-aware analysis

In recent GPUs, preempting an executing task can be a

costly operation (see Section VI-C). In particular, the cost of

preemption may significantly vary depending on the preempted

task and the engine. For example, preempting a graphical ker-

nel induces a larger cost compared to preempting a computing

CUDA kernel. Therefore, we need to account for the cost of

preemption in the analysis.

We start by observing that, in the case of EDF scheduling,

a job of a sub-task vi can preempt a job of sub-task vj at

most once, and only if its relative deadline deadline is shorter:

D(vi) < D(vj).
A simple (although pessimistic) approach is to always

consider the worst-case preemption cost as part of the worst-

case computation time of the preempting task. Let pc(vj)
denote the cost of preempting sub-task vj .

4We remind that the remainder of a/b is by definition a positive number r
such that a = kb+ r.



Lemma 3. Let V = {v1, v2, · · · , vK} be a set of sub-tasks to

be scheduled by EDF on a single engine.

Consider Vpc = {v′1, v
′
2, · · · , v

′
K}, where v′i has the same

parameters as vi, except for the wcet that is computed as

C(v′i) = C(vi) + pci and pci = max{pc(v)|v ∈ V ∧D(v) >
D(vi)}.

If Vpc is schedulable by EDF when considering a null

preemption cost, then V is schedulable when considering the

cost of preemption.

Proof. The Lemma directly follows from the simple obser-

vation that the cost of preemption can never exceed pci for

sub-task vi.

Lemma 3 is safe but pessimistic. We can further improve the

analysis by observing that a sub-task cannot preempt another

sub-task belonging to the same task graph (we remind the

reader that we assume constrained deadline tasks). Further-

more, it may be impossible for two consecutive sub-task of a

task graph to both preempt the same sub-task as demonstrated

by Theorem 2.

Definition 5 (Maximal sequential subset). Let V be a set of

sub-tasks allocated on a single engine, and let τ be a tagged

task such that Vτ ⊆ V.

A maximal sequential subset VM is a maximal subset of Vτ

such that none of the sub-tasks in VM has a null predecessor.

Further, we denote by vM ∈ VM the sub-task with the shorter

local deadline in VM .

We observe that, since all the sub-tasks in VM are allocated

on the same engine and since they do not have any predecessor

sub-task allocated on a different engine (no empty predeces-

sor), they can be activated as soon as the predecessor sub-tasks

have finished.

Now, suppose v1, v2 ∈ VM and that v1 is an immediate

predecessor of v2. If v1 preempts a sub-task vj , and D(v2) ≤
D(vj), then vj can be executed only after v2 has finished. This

means that the cost of preempting vj can be accounted to only

one between v1 and v2. We assign this preemption cost to the

sub-task vM with the shorter local deadline among all sub-

tasks of VM , whereas the others do not pay any preemption

cost. The preemption cost of any other sub-task in V ′ is set

equal to 0. For all sub-tasks that have a null predecessor, we

compute a preemption cost as in Lemma 3.

Finally, for any tagged task graph τ , the preemption cost of

one of its sub-tasks vi ∈ Vτ can be computed as follows:

• If vi = vM , or if vi has a null predecessor, then

pci = max{pc(v)|v ∈ V \ Vτ ∧D(v) > D(vs)}; (6)

• otherwise,

pci = 0 (7)

Theorem 2. Let V = {v1, v2, · · · , vK} be a set of sub-tasks

scheduled by to EDF. Consider Vpc = {v′1, v
′
2, · · · , v

′
K} where

v′i has the same parameters as vi, except for the wcet that is

computed as C(v′i) = C(vi) + pci, and pci is computed as

in Equation (6) or (7). If Vpc is schedulable by EDF when

considering a null preemption cost, then V is schedulable when

considering the cost of preemption.

Proof. We report here a proof sketch.

Consider any non-source sub-task vi ∈ VM : it is activated as

soon as the preceding sub-tasks have finished executing their

corresponding instances. Then, if one of the preceding task of

vi preempted a task vj , the preemption cost has already been

accounted in the worst-case execution time of the preceding

task; as discussed above vj can only resume execution after

vi has completed. Thus, no further preemption cost need to be

accounted.

If instead none of the preceding sub-task of vi has pre-

empted vj , then vj cannot start executing before vi completes

because its deadline is not smaller than D(vi), hence no

preemption will occur.

In any case, no cost of preemption needs to be accounted

for to vi.

IV. ALLOCATION

A. Allocation of task specifications

The goal of our methodology is to allocate a set of task

specifications into a set of engines, by selecting alternative im-

plementations, so that all tasks complete before their deadlines.

From a operational point of view, is is equivalent to finding

a feasible solution to a complex Integer Linear Programming

problem. In facts, given the large number of combinations (due

to alternative nodes, condition-control nodes, and allocation

decisions), an ILP formulation of this problem fails to produce

feasible solutions in an acceptable short time. Therefore, in

this section we propose a set of greedy heuristics to quickly

explore the space of solutions.

Algorithm 1 describes the basic methodology of our ap-

proach. The algorithm can be customised with four parame-

ters: oder is the sorting order of the concrete task sets (see

Sections III-A and III-B); parameter slack concerns the way

the slack is distributed when assigning intermediate deadlines

and offsets (see Section III-C); parameter alloc can be best-fit

(BF) or worst-fit (WF); parameter omit concerns the strategy

to eliminate sub-tasks when possible (see Section IV-C).

At each step, the algorithm tries to allocate one single task

specification (for loop at line 3). For each task, it first generates

all concrete tasks (line 4), and sorts them according to one

relationship order (≻ or ≫). Then, for each concrete task, if

first assigns the intermediate deadlines and offsets according to

the methodology described in Section III-C (line 9), using one

between the fair or the proportional slack distributions. Then,

it separates the concrete tasks into tagged tasks according to

the corresponding tags (line 10).

Then, the algorithm tries to allocate every tagged task

onto single engines having the corresponding tag (line 14)

(this procedure is described below in Algorithm 2). If a

feasible allocation is found, the allocation is generated, and

the algorithm goes to the next specification task (lines 15-

16). If no feasible sequential allocation can be found, the next

concrete task is tested.



Algorithm 1 Allocation algorithm

1: input : T : set of task specifications

2: parameters : order (≻ or ≫), slack (fair or proportional),

3: alloc (BF or WF), omit (parallel or random)

4: output : SUCCESS or FAIL

5: for τ ∈ T do

6: Ω = generate concrete task(τ)

7: sort(Ω, order)
8: for (τ ∈ Ω) do

9: assign deadlines offsets(τ, slack)

10: S(τ) = filter tagged task(τ)

11: end for

12: allocated = false

13: for (τ ∈ Ω) do

14: if (feasible sequential(S(τ), alloc)) then

15: allocated = true; assign sub-tasks to engines

16: break;

17: end if

18: end for

19: if (not allocated) then

20: for (τ ∈ Ω) do

21: (τ′, τ′′) = parallelize(τ, alloc, omit)

22: if (τ′ 6= ∅) then

23: allocate τ′ to selected engines

24: add back τ′′ to T
25: allocated = true

26: break

27: end if

28: end for

29: if (not allocated) then return FAIL

30: end if

31: end for

32: return SUCCESS

The algorithm gives priority to single-engine allocations

because they reduce preemption cost, as discussed in Sec-

tion III-F. In particular, by allocating an entire tagged task

onto a single engine, we reduce the number of null sub-task

to the minum necessary, and so we can assign the cost of

preemption to fewer sub-tasks.

If none of the concrete tasks of a specification task can be

allocated (line 17), this means that one of the tagged tasks

could not be allocated on a single engine. Therefore, the

algorithms tries to break some of the tagged tasks of a concrete

task into parallel tasks to be executed on different engines of

the same type. This is performed by procedure parallelize,

which will be described in Section IV-C. In particular, one

part of the concrete task will be allocated, while the second

part will be put back in the list of not-yet-allocated task graphs

(line 24).

If also this process is unable to find a feasible concrete task,

the analysis fails (line 29).

B. Sequential allocation

Algorithm 2 tries to allocate a concrete task on a minimal

number of engines. It takes as input a set of tagged tasks.

For each tagged task, it selects the corresponding engines,

and sorts them according to the alloc parameter, that is in

decreasing order of utilization in the case of Best-Fit, or in

increasing order of utilization in case of Worst-Fit. Then, it

tests the feasibility of allocating the tagged task on each engine

in turn. If the allocation is successful, the next tagged task is

tested, otherwise the algorithm tries the next engine. If the

tagged task cannot be allocated on any engine, the algorithm

fails. If all tagged tasks have been allocated, the corresponding

allocation is returned.

Algorithm 2 feasible sequential

1: input: S(τ): set of tagged tasks, alloc

2: output: feasibility: SUCCESS or FAIL

3: for (τ(tag) ∈ S(τ)) do

4: engine list=select engine(tag)

5: sort engines(engine list, alloc)

6: f = false

7: nfeas = 0

8: for (e ∈ engine list) do

9: f = dbf test(τ ∪ Te)

10: if (f ) then

11: save allocation(τ, e)

12: nfeas ++

13: break

14: end if

15: end for

16: if (not f ) then return FAIL;

17: end for

18: if (nfeas = |S(τ)|) then

19: return SUCCESS, saved allocations

20: end if

C. Parallel allocation

When the sequential allocation fails for a given task specifi-

cation, the algorithm tries to allocate one or more of its tagged

tasks onto multiple engines having the same tag. Algorithm 3

takes as input a concrete task and two parameters, alloc for BF

or WF heuristics, and omit to select which sub-task to remove

first.

For each tagged task of the concrete task (line 5), the

algorithm selects the list of engines corresponding to the

selected tag, and sorts them according to BF or WF (line 7).

Then, it tries to test the feasibility of the tagged task on each

engine (line 9). If the test fails, it removes one sub-task from

the tagged task and adds it to list of non allocated sub-tasks

τ ′′ (line 11). We propose two heuristics:

1) Random heuristic: it selects a random sub-task and adds

it to the omitted list.

2) Parallel heuristic: to be feasible, the critical path of each

tagged task must be feasible even on a unlimited number



of engines. Thus, we are interested in sub-tasks that do

not belong to the critical path because they are the ones

causing the non-feasibility. Thus, they are omitted one

by one until finding a feasible schedule.

The feasibility test is repeated until a feasible subset of τ (tag)
is found. The omitted tasks are tried on the next engine with

the same tag (line 16). At the end of the procedure, two

concrete tasks are produced, τ ′ is the feasible part that will

be allocated, while τ ′′ will be tried again in the following

iteration of Algorithm 1.

Algorithm 3 parallelize

1: input: τ: concrete task, alloc (BF or WF),

2: omit (parallel or random)

3: output: concrete tasks (τ ′, τ ′′)
4: τ ′ = ∅, τ ′′ = ∅
5: for (τ(tag) ∈ S(τ)) do

6: engine list=select engines(tag)

7: sort(engine list, alloc)

8: for (e ∈ engine list) do

9: f=dbf test(τ(tag) ∪ Te)

10: while (not f ) do

11: τ ′′ = τ ′′∪ remove(τ(tag), omit)

12: f=dbf test(τ(tag) ∪ TE)

13: end while

14: if (τ(tag) 6= ∅ ) then

15: τ ′ = τ ′∪ save allocation(τ(tag), e)

16: τ(tag) = τ ′′, τ ′′ = ∅
17: allocated = true

18: break

19: end if

20: end for

21: if (not allocated) return ∅, τ
22: end for

23: return τ ′, τ ′′

V. RELATED WORK

Many authors [1], [5]–[12] have proposed real-time task

models based on DAGs. However, to the best of our knowl-

edge, none of the existing models supports alternative imple-

mentations of the same functionality on different computing

engines.

Authors of [1] studied the deadline assignment problem in

distributed real-time systems. They formalize the problem and

identify the cases where deadline assignment methods have a

strong impact on system performances. They propose Fair Lax-

ity Distribution (FLD) and Unfair Laxity Distribution (ULD)

and study their impact on the schedulability. In [8], authors

analyze the schedulability of a set of DAGs using global EDF,

global rate-monotonic (RM), and federated scheduling. In [13],

the authors present a general framework of partitioning real-

time tasks onto multiple cores using resource reservations.

They propose techniques to set activation time and deadlines

of each task, and they an use ILP formulation to solve the

allocation and assignment problems. However, when applying

such approaches on large applications consisting of hundred

of sub-tasks, the analysis can be highly time consuming.

DAG fixed-priority partitioned scheduling has been pre-

sented in [10]. The authors propose methods to compute a

response time with tight bounds. They present partitioned

DAGs as a set of self-suspending tasks, and proposed an

algorithm to traverse a DAG and characterize the worst-case

scheduling scenario.

Unlike previous models, Melani et al [6] proposed to model

conditional branches in the code in a way similar to our

conditional nodes, however their model is not able to express

off-line alternative patterns. They proposed different methods

to compute an upper-bound on the response-time under global

scheduling algorithms. In [14], alternative on-line execution

patterns can be expressed using digraphs. However, the di-

graph model cannot express parallelism and only supports

sequential tasks.

In this paper we assume preemptive EDF scheduling. Typ-

ically, preemption on classical CPUs can be assumed to be

a negligible percentage of the task execution. However, this

is not always the case with GPUs processors. Depending on

the computing architecture and on the nature of the workload,

GPU tasks present different degrees of preemption granularity

and related preemption costs. Initial work on preemptive

scheduling on GPUs assumed preemption was viable at the

kernel granularity [15]. A finer granularity for computing

workloads is represented by CTA (Cooperative Thread Array)

level preemption, hence, preemption occurs at the boundaries

of group of parallel threads that execute within the same

GPU computing cluster [16], [17]. In such a scenario, the

cost of preempting an executing context on a GPU might

present significant differences as it will involve saving and

restoring contexts of variable size and/or reaching the next

viable preemption point. Overhead measurements operated in

the cited contributions calls for modeling each GPU sub-task

with a specific non-negligible preemption cost that can be in

the same order of magnitude of the execution time of the sub-

task.

VI. RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of our schedul-

ing analysis and allocation strategies. We compare against the

model cp-DAG proposed by Melani et al. [6]. Please notice

that in [6] the authors proposed an analysis for cp-DAGs

in the context of global scheduling, whereas our analysis

is based on partitioned scheduling. Therefore, we extended

the cp-DAG model to support multiple engines by adding a

randomly selected tag to each node of the graph. Moreover

we applied the same allocation heuristics of Section IV and

the same scheduling analysis of Section III to C-DAGs and to

cp-DAG.

In the following experiments, we considered the NVIDIA

Jetson AGX Xavier5. It features 8 CPU cores, and four

different kinds of accelerators: one discrete and one integrated

5 https://elinux.org/Jetson AGX Xavier

https://elinux.org/Jetson_AGX_Xavier


GPU, one DLA and one PVA. Each accelerator is treated as

a single computing resource. In this way, we can exploit task

level parallelism as opposed to allowing the parallel execution

of more than one sub-task to partitions of the accelerators (e.g:

at a given time instant, only one sub-task is allowed to execute

in all the computing clusters of a GPU).

A. Task Generation

We apply our heuristics on a large number of randomly

generated synthetic task sets.

The task set generation process takes as input an engine/tag

utilization for each tag on the platform. First, we start by

generating the utilization of the n tasks by using the UUniFast-

Discard [18] algorithm for each input utilization. Graph sub-

tasks can be executed in parallel, thus task utilization can be

greater than 1. The sum of every per-tag utilization is a fixed

number upper bounded by the number of engines per tag.

The number of nodes of every task is chosen randomly

between 10 and 30. We define a probability p that expresses the

chance to have an edge between two nodes, and we generate

the edges according to this probability. We ensure that the

graph depth is bounded by an integer d proportional to the

number of sub-tasks in the task. We also ensure that the

graph is weakly connected (i.e. the corresponding undirected

graph is connected); if necessary, we add edges between non-

connected portions of the graph. Given a sub-task node, one

of its successors is an alternative node or a conditional node

with probability of 0.7.

To avoid untractable hyper-periods, the period of every task

is generated randomly according from the list, where the

minimum is 120 and the maximum is 120, 000. For every sub-

task, we randomly select a tag. Further, for each tag, we use

algorithm UUNIFAST discard again to generate single sub-

task utilization. Thus, the sub-task utilization can never exceed

1. Further, we inflate the utilization of each sub-task by the

task period to generate the worst case execution time of every

vertex.

A cp-DAG is generated from a C-DAG by selecting one of

the possible concrete tasks at random.

B. Simulation results and discussions

We varied the baseline utilization from 0 to the number of

engines per engine tag in 16 steps. Therefore, the step size

vary from one engine tag to the other: the step size is 0.5
for CPUs, and 0.0625 for the others. For each utilization, we

generated a random number of tasks between 20 and 25.

The results are presented as follows. Each algorithm is

described using 3 letters: (i) the first letter is either B for

best fit or W for worst first allocation techniques; (ii) the

second is either O for the ≻ order relation, or R for the ≫
order relation; (iii) the third character describes the deadline

assignment heuristic, F for fair and P for proportional. The

algorithm name may also contain either option P for the

parallel allocation heuristic that eliminates parallel nodes first,

or R the random heuristic which randomly selects the sub-task
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Fig. 4: Schedulability rate VS total utilization.

to remove. For Figures 4, 5, 6, 7, we run 85 simulations per

utilization step.

Figure 4 represents the schedulability rate of each com-

bination of heuristics cited above as a function of the total

utilization. The fair deadline assignment technique presents

better schedulability rates compared to proportional deadline

assignment. In general, BF heuristic combinations outperform

WF heuristic: this can be explained by observing that BF tries

to pack the maximum number of sub-tasks into the minimum

number of engines, and this allows for more flexibility to

schedule heavy tasks on other engines.

In the figures, the cp-DAG model proposed in [6] is shown

in yellow. Since the cp-DAG has no alternative implemen-

tations, the algorithm has less flexibility in allocating the

sub-tasks, therefore by construction the results for C-DAG

dominate the corresponding results for cp-DAG. However, it is

interesting to measure the difference between the two models:

for example in Figure 4 the difference in the schedulability

rate between the two models is between 10% and 20% for

utilization rates between 6 and 14.

When the system load is low, all combinations of heuristics

allow having high schedulability rates. BRF shows better

results because it is aimed at relaxing the utilization of scarce

engines, thus avoiding the unfeasibility of certain task sets due

to a high load on a scarce engines (DLA and PVA/ GPUs).

However, when dealing with a highly loaded system, BOF

presents better schedulability rates, as it reduces the execution

overheads on all engines.

Figure 5 reports the average number of active cores (CPUs)

as a function of the total utilization. WF-based heuristics

always use the highest number of CPU cores because our

task generator outputs at least 15 CPU subtasks. Hence, the

number of tasks is larger than the available number of CPU

cores (which is 8, in our test platform). BF heuristics allows

to pack the maximum number of sub-tasks on the minimum

number of engines, thus the utilization increases quasi-linearly.

This occurs until the maximum schedulability limit is reached

(i.e. number of cores). BRF heuristic uses more CPU cores

because it preserves the scarce resources, thus it uses more
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CPU engines. As BOF privileges reducing the overall load, it

reduces the load on the CPUs compared to BRF.
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Figure 6 shows the average active utilization for CPUs.

Average utilization of BF-based heuristics is higher compared

to WF. In fact, the latter distributes the work on different

engines thus the per-core utilization is low in contrast to

BF. Again, BRF has higher utilization than BOF because

it schedules more workload on CPU cores than the other

heuristics. As the workload is equally distributed on different

CPUs, the WF heuristics may be used to reduce the CPUs

operating frequency to save dynamic energy. Regarding BF

heuristics, we see that BRF is not on the top of the average

load because it uses more cores than the others.

Figure 7 shows the average utilization of the scarce re-

sources. As you may notice, order relation ≫ based heuristics

allows to reduce the load on the scarce resources compared

to ≻. In fact, the higher is the load, the less loaded are the

scarce resources.

C. Preemption cost simulation

In all previous experiments, we applied the analysis de-

scribed in Section III-F to account for preemption costs. In par-

ticular, we applied the technique of Theorem 2, by assuming
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that the cost of preempting a sub-task is 30% of the sub-task

execution time on a GPU, 10% on DLA and PVA, and 0.02%

on the CPUs. DLA and PVA are non-preemptable engines,

however longer jobs might be split into smaller chunks and

this translates in a splitting overhead as we submit many kernel

calls as opposed of a single batch of commands.
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To highlight the importance of a proper analysis of the cost

of preemption, in Figure 8 we report the schedulability rates

obtained by BRF-P in two different cases: when considering

the analysis of Lemma 3 (where the maximum preemption cost

is charged to all preempting sub-tasks) and that of Theorem

2, where the cost is only charged to one of the sub-tasks in

the maximal sequential subset.

With the increase of of utilization, schedulability drastically

falls for the first method, while the improved analysis of

Theorem 2 keeps high schedulability rates.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the C-DAG real-time task

model, which allows to specify both off-line and on-line

alternatives, to fully exploit the heterogeneity of complex

embedded platforms. We also presented a scheduling analysis

and a set of heuristics to allocate C-DAGs on heterogeneous



computing platforms. The analysis takes into account the cost

of preemption that may be non-negligible in certain specialized

engines.

Results of our extensive synthetic simulations show that a

significant reduction in pessimism occurs with our proposed

approach. This lead to an increase in resource utilization

compared to similar approaches in the literature. As for future

work, we are considering extending our framework to account

for memory interference between the different compute en-

gines, as it is known to cause significant variations in execution

times [19], [20].
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