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Equilibrium fluctuation for an anharmonic chain with

boundary conditions in the Euler scaling limit

Stefano Olla Lu Xu

Abstract

We study the evolution in equilibrium of the fluctuations for the conserved quantities of
a chain of anharmonic oscillators in the hyperbolic space-time scaling. Boundary conditions
are determined by applying a constant tension at one side, while the position of the other
side is kept fixed. The Hamiltonian dynamics is perturbed by random terms conservative
of such quantities. We prove that these fluctuations evolve macroscopically following the
linearized Euler equations with the corresponding boundary conditions, even in some time
scales larger than the hyperbolic one.

1 Introduction

The deduction of Euler equations for a compressible gas from the microscopic dynamics under
a space-time scaling limit is one of the main problems in statistical mechanics [11]. With a
generic assumption of local equilibrium, Euler equations can be formally obtained in the limit,
but a mathematical proof starting from deterministic Hamiltonian dynamics is still an open
problem. The eventual appearance of shock waves complicates further the task, and in this
case, it is expected the convergence to weak entropic solutions of Euler equations.

Some mathematical results have been obtained by perturbing the Hamiltonian dynamics by
random terms that conserve energy and momentum, in such way that the dynamics has enough
ergodicity to generate some form of local equilibrium (cf. [14, 2]). These results are obtained
by relative entropy techniques and restricted to the smooth regime of the Euler equations. The
noise introduced in these works are essentially random collisions between close particles and
acts only on the velocities. Under such random perturbations, the only conserved quantities
are those that evolve macroscopically with the Euler equations. Actually, random dynamics
and local equilibrium are only tools to obtain the separation of scales between microscopic
and macroscopic modes necessary in order to close the Euler equations. In the deterministic
dynamics of harmonic oscillators with random masses (not ergodic), Anderson localization
provides such separation of scales [1].

In this article we study the evolution of the fluctuations of the conserved quantities. When
the system is in equilibrium at certain averaged values of the conserved quantities, these have
Gaussian macroscopic fluctuations. The aim is to prove that these fluctuations, in the macro-
scopic space-time scaling limit, evolve deterministically following the linearized Euler equations.
It turns out that this is more difficult than proving the hydrodynamic limit, as it requires the
control of the space-time variance of the currents of the conserved quantities. More precisely it
demands to prove that the currents are equivalent (in the norm introduced by the space-time
variance) to linear functions of the conserved quantities. This step is usually called Boltzmann-
Gibbs principle (cf. [3, 9]). This is the main part of the proof, and it forces us to consider
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elliptic type of stochastic perturbations, i.e., noise terms that act also on the positions, not
only on the velocities, still maintaining the same conserved quantities.

The system we consider is N+1 coupled anharmonic oscillators, similar to the one considered
in [2]. For i = 0, . . . , N , the momenta (or velocity, since we set the masses equal to 1) of the
particle i is denoted by pi ∈ R, while qi ∈ R denotes its position. Particle 0 is attached to some
fixed point, thus p0 = 0, q0 = 0. Meanwhile, particle N is pulled (or pushed) by a force τ ∈ R,
which is constant in time.

Each pair of consecutive particles (i−1, i) is connected by a (nonlinear) spring with potential
V (qi− qi−1). We need to assume certain assumptions for the potential energy V : R→ R. The
energy of the system is then given by

HN (p,q) =

N∑
i=1

[
p2
i

2
+ V

(
qi − qi−1

)]
.

Therefore, the inter-particle distances {ri = qi − qi−1; 1 ≤ i ≤ N} are the essentially relevant
variables. Notice that here ri can also assume negative values. Let ei = p2

i /2 + V (ri) be the
energy assigned to i-th particle, then HN =

∑
ei. The corresponding Hamiltonian dynamics

locally conserved the sums of pi, ri and ei. By adding proper stochastic perturbations on the
deterministic dynamics, we can make them the only conserved quantities.

Let wi = (pi, ri, ei) be the vector of conserved quantities. The hydrodynamic limit is given
by the convergence, for any continuous G on [0, 1],

1

N

N∑
i=1

wi(Nt)G

(
i

N

)
−→
N→∞

∫ 1

0

w(t, x)G(x)dx,

where w = (p, r, e) solves the compressible Euler equations

∂tw = ∂xF (w), F (w) =
(
τ (r, u), p, τ (r, u)p

)
, u = e− p2/2, (1.1)

with boundary conditions given by

p(0, t) = 0, τ (r(1, t), u(1, t)) = τ,

where τ (r, e) is the tension function defined in (2.4) later. In the smooth regime of (1.1), this
is proven by relative entropy techniques in [2].

We consider here the system in equilibrium, starting with the Gibbs measure

N∏
i=1

exp {λ · (ri, ei)− G (λ)} dpi dri, (1.2)

for given λ = (βτ,−β) ∈ R× R−, where G is the Gibbs potential given by

G (λ) = ln

(∫
R

exp{−βV (r) + βτr}dr
)

+
1

2
ln

(
2π

β

)
. (1.3)
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Denote by Eλ,N the expectation with respect to the measure in (1.2). Correspondingly, there
are equilibrium values w̄ = Eλ,N [wi] for the conserved quantities. The empirical distribution
of the fluctuations of the conserved quantities is defined by

1√
N

N∑
i=1

(
wi(Nt)− w̄

)
δ

(
x− i

N

)
.

Formally, it is expected to converge to the solution w̃ of the linearized system

∂tw̃ = F ′(w̄)∂xw̃, (1.4)

where F ′(w̄) is the Jacobian matrix of F computed at w̄, with boundary conditions

p̃(t, 0) = 0, τr r̃(t, 1) + τeẽ(t, 1) = 0, (1.5)

and a proper Gaussian stationary initial distribution. Notice that the limit fluctuation fields
w̃ are only random distributions on [0, 1], so the equations (1.4) with the boundary conditions
(1.5) should be intended in the weak sense, as defined in Section 3.

While the non-equilibrium hydrodynamic limit can be proven by adding a simple exchange
of pi with pi+1 at random independent times (cf. [2]), in order to prove (1.4) we need to add, for
each bond (i, i+1), a stochastic perturbation that exchanges (pi, pi+1, ri, ri+1) in such way that
ri+ ri+1, pi+pi+1, ei+ ei+1 are conserved. The corresponding microcanonical surface is a one-
dimensional circle, where we add a Wiener process. This stochastic perturbation corresponds
to adding a symmetric second order differential operator SN defined by (2.2) that is elliptic on
the corresponding microcanonical surfaces. The main part of the article is the proof of a lower
bound of order N−2 on the spectral gap of SN that is independent of the values of the conserved
quantities. This is an important ingredient for proving the Boltzmann-Gibbs linearization for
the dynamics.

The hyperbolic scale describes the time for the system to reach its mechanical equilibrium.
Beyond that, it takes more time to reach the thermal equilibrium. Generally speaking, superdif-
fusion of energy is conjectured for one-dimensional Hamiltonian system conserving momentum,
see [16], and proven rigorously for harmonic chains with conservative noise in [8]. In Theorem
3.2 we prove for our anharmonic system that the equilibrium fluctuations on the three conserved
quantities continue to evolve deterministically according to the linearized Euler equations up
to a time scale Nat with a ∈ [1, 6/5). According to [16], superdiffusive effects should appear
for some a ≥ 3/2.

We believe that such macroscopic behavior of the equilibrium fluctuations should be valid
also for the deterministic (non-linear) dynamics, but even the case with a stochastic pertur-
bation acting only on the velocities remains an open problem. In the diffusive scaling with
stochastic perturbations acting only on velocities but conserving neither momentum nor en-
ergy, equilibrium fluctuations for the density has been proven in [13], while if noise conserve
only energy the convergence of the fluctuations have been proven in [12].

Another important open problem concerns the evolution of fluctuations out of equilibrium.
For system with one conserved quantity, like the asymmetric simple exclusion, in the context
of the hyperbolic scaling this has been proven in [15].

2 The microscopic model

In this section we define the microscopic dynamics rigorously. Let V be a twice differentiable
function on R with quadratic growth:

inf
r∈R

V ′′(r) > 0, sup
r∈R

V ′′(r) <∞. (2.1)
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Observe that (2.1) assures that V (r) acquires its minimum at some unique point r0 ∈ R. By
replacing V with V∗ = V (·+ r0)− V (r0), we can assume without loss of generality that V ≥ 0,
V (0) = 0 and V ′(0) = 0.

For N ≥ 1, let ΩN = R2N be the configuration space. Its elements are denoted by

η = (p, r); p = (p1, . . . , pN ), r = (r1, . . . , rN ).

Fix τ ∈ R, p0 = 0, and define first-order differential operators Xi on ΩN as

Xi = (pi − pi−1)
∂

∂ri
+
(
V ′(ri+1)− V ′(ri)

) ∂
∂pi

, for 1 ≤ i ≤ N − 1,

XN = (pN − pN−1)
∂

∂rN
+
(
τ − V ′(rN )

) ∂

∂pN
.

In addition, define Yi,i+1 for 1 ≤ i ≤ N − 1 as

Yi,i+1 = (pi+1 − pi)
(

∂

∂ri+1
− ∂

∂ri

)
−
(
V ′(ri+1)− V ′(ri)

)( ∂

∂pi+1
− ∂

∂pi

)
.

For any γ > 0, the generator LN is given by

LN = AN + γSN , AN =

N∑
i=1

Xi, SN =
1

2

N−1∑
i=1

Y2
i,i+1. (2.2)

The Liouville operator AN generates the Hamiltonian system introduced in Section 1, while
each Yi,i+1 generates a continuous stochastic perturbation on (pi, pi+1, ri, ri+1), preserving the
amounts of pi + pi+1, ri + ri+1 and ei + ei+1. This choice of noises assures that pi, ri and ei
are the only locally conserved quantities.

Denote by πλ,N the Gibbs measure in (1.2). The class of bounded, smooth functions on ΩN
forms a core of AN and SN in L2(πλ,N ), and for such f and g,

Eλ,N
[
(ANf)g

]
= −Eλ,N

[
f(ANg)

]
, Eλ,N

[
(SNf)g

]
= Eλ,N

[
f(SNg)

]
.

In particular, πλ,N is stationary with respect to LN . Moreover,

Eλ,N
[
f(−LNf)

]
= γEλ,N

[
f(−SNf)

]
=
γ

2

N∑
i=1

Eλ,N
[
(Yi,i+1f)2

]
.

Recall that w̄ = Eλ,N [wi]. We have w̄ = (0, r̄(λ), ē(λ)), where

(r̄(λ), ē(λ)) =

(
1

β

∂

∂τ
,
τ

β

∂

∂τ
− ∂

∂β

)
G .

where G (λ) is defined in (1.3). It is also worth noticing that the tension in equilibrium is
Eλ,N [V ′(ri)] = τ . Furthermore, the covariance matrix Σ = Σ(λ) of wi under πλ,N is given by

Σ = Eλ,N
[
(wi − w̄)⊗ (wi − w̄)

]
=

 β−1 0 0

0
0

G ′′(λ)

 , (2.3)

where G ′′(λ) is the Hessian matrix of G with respect to λ.
The thermodynamic entropy S is defined as the Legendre transform of G :

S (r, e) = − sup
λ∈R×R−

{
λ · (r, e)− G (λ)

}
, ∀r ∈ R, e ≥ 0.
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Then β and τ can be expressed by functions of r̄ and ē as

β(r, e) = ∂eS , τ (r, e) = −∂rS
∂eS

. (2.4)

For convenience, take λ = (βτ ,−β) to be the convex conjugate variables of (r, e):

λ(r, e) = −∇S (r, e), (r̄(λ), ē(λ)) = ∇G (λ). (2.5)

Since λ(r̄(λ), ē(λ)) ≡ λ, we have the relation

G ′′(λ)S ′′(r̄(λ), ē(λ)) = G ′′(λ(r, e))S ′′(r, e) = I2×2. (2.6)

Furthermore, the definition of τ shows that

∂τ

∂r
+ τ

∂τ

∂e
=

1

β

(
− ∂

2S

(∂r)2
+

1

β

∂β

∂r

∂S

∂r

)
− 1

β2

∂S

∂r

(
−∂

2S

∂r∂e
+

1

β

∂β

∂e

∂S

∂r

)
= − 1

β3

(
β2 ∂

2S

(∂r)2
− β

∂2S

∂r∂e

∂S

∂r
− β

∂2S

∂r∂e

∂S

∂r
+
∂2S

∂e2

[
∂S

∂r

]2
)

=
1

β3

(
∂S

∂e
,−∂S

∂r

)
· (−S )′′

(
∂S

∂e
,−∂S

∂r

)
.

By (2.1), β > 0 and S is strictly concave. Hence, we conclude that

∂τ

∂r
+ τ

∂τ

∂e
> 0. (2.7)

For each N ≥ 1, denote by {ηt ∈ ΩN ; t ≥ 0} the Markov process generated by NLN .
Observe that ηt = (p(t), r(t)) can be equivalently expressed by the solution to the following
system of stochastic differential equations:

dp1(t) = N∇V ′(r1)dt+ dJp1 ,

dpi(t) = N∇V ′(ri)dt−∇∗dJpi , for 2 ≤ i ≤ N − 1,

dpN (t) = N [τ − V ′(rN )] dt− dJpN−1,

dr1(t) = Np1dt+ dJr1 ,

dri(t) = N∇pi−1dt−∇∗dJri , for 2 ≤ i ≤ N − 1,

drN (t) = N∇pN−1dt− dJrN−1,

(2.8)

where for any sequence {fi}, ∇fi = fi+1 − fi, ∇∗fi = fi−1 − fi,

dJpi =
γN

2

[
V ′′(ri+1) + V ′′(ri)

]
∇pidt+

√
γN
(
∇V ′(ri)

)
dBit,

dJri = γN∇V ′(ri)dt−
√
γN(∇pi)dBit,

and {Bi; i ≥ 1} is an infinite system of independent, standard Brownian motions. Let Pλ,N be
the probability measure on the path space C([0,∞),ΩN ) induced by (2.8) and initial condition
πλ,N . The corresponding expectation is denoted by Eλ,N .

We are interested in the evolution of the fluctuations of the balanced quantities of {ηt} in
macroscopic time. For a smooth function H : [0, 1] → R3, define the empirical distribution of
conserved quantities fluctuation field on H as

YN (t,H) =
1√
N

N∑
i=1

H

(
i

N

)
·
(
wi(ηt)− w̄

)
, ∀t ≥ 0. (2.9)
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Notice that we consider in (2.9) the hyperbolic scaling, where the space and time variables are
rescaled by the same order of N .

Let H be the space of all functions f = (f1, f2, f3) on [0, 1], where each fi is square
integrable. Define the scalar product and norm on H by

〈f, g〉 =

∫ 1

0

f(x) · g(x)dx, ‖f‖2 =

∫ 1

0

|f(x)|2dx.

Then, H becomes a Hilbert space. Note that the definition in (2.9) satisfies that:

Eλ,N
[
Y 2
N (t,H)

]
≤ |Tr Σ(λ)| · 1

N

N∑
i=1

∣∣∣∣H ( i

N

)∣∣∣∣2 .
Thus, one can easily extend the definition of YN (t,H) to all H ∈H . For all N ≥ 1, t ≥ 0 and
H ∈H , YN (t,H) ∈ L2(ΩN ;πλ,N ).

3 Euler system with boundary conditions

In this section we state the precise definition of the solution to (1.4), (1.5) with proper random
distribution-valued initial condition. The equation (1.4) can be written explicitly as

∂tp̃ = τr∂xr̃ + τe∂xẽ, ∂tr̃ = ∂xp̃, ∂tẽ = τ∂xp̃,

where (τr, τe) are constants given by

τr(λ) =
∂

∂r
τ
(
r̄(λ), ē(λ)

)
, τe(λ) =

∂

∂e
τ
(
r̄(λ), ē(λ)

)
. (3.1)

Observe that by formally applying the linear transformation

τ̃ = τr r̃ + τeẽ, S̃ = β−1(ẽ− τ r̃),

we have the new coordinates (p̃, τ̃ , S̃) satisfy that

∂tp̃ = ∂xτ̃ , ∂tτ̃ = c2∂xp̃, ∂tS̃ = 0, (3.2)

where the constant c > 0 is the speed of sound given by

c2 = τr + ττe > 0,

cf. (2.7) and [16, (3.10)]. This transformation also decouples the boundary conditions:

p̃(t, 0) = 0, τ̃(t, 1) = 0. (3.3)

It turns to be clear that (p̃, τ̃) are two coupled sound modes with mixed boundaries, while S̃
is independent of (p̃, τ̃) and does not evolve in time. Suppose that the initial data is smooth
and satisfies the boundary conditions, one can easily obtain the smooth solution w̃ = w̃(t, x)
to (1.4), (1.5) by applying the inverse transformation.

Since w̃(0) is a random Gaussian distribution on [0, 1], to present the idea above rigorously
we have to consider the weak solution. Define a subspace C (λ) of H by

C (λ) =
{
g = (g1, g2, g3)

∣∣ gi ∈ C1([0, 1]), g1(0) = 0, τrg2(1) + τeg3(1) = 0
}
.

Define the first-order differential operator L on C (λ) by

L = B

(
d

dx

)
, where B = F ′(w̄) =

0 τr τe
1 0 0
τ 0 0

 .
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Observe that B has three real eigenvalues {0,±c}, thus generates a hyperbolic system. With
some abuse of notations, denote the closure of L on H still by L. For i = 1, 2, let {µi,n;n ≥ 0}
be two Fourier bases of L2([0, 1]) given by

µ1,n(x) =
√

2 sin(θnx), µ2,n(x) =
√

2 cos(θnx), θn =
(2n+ 1)π

2
. (3.4)

Notice that µ1,n(0) = µ2,n(1) = 0. For k ≥ 1, define the Sobolev spaces

Hk =

{
f = (f1, f2)

∣∣∣∣ 2∑
i=1

∞∑
n=0

θ2k
n

(∫ 1

0

fi(x)µi,n(x)dx

)2

<∞

}
.

Then dom(L) = {(g1, τrg2 + τeg3) ∈ H1}. To identify the adjoint L∗ of L, notice that for any
g ∈ C (λ) and h ∈H ,

〈Lg, h〉 =

∫ 1

0

g′1(h2 + τh3) + (τrg
′
2 + τeg

′
3)h1dx.

Therefore, dom(L∗) = {(h1, h2 + τh3) ∈ H1}. In particular,

C∗(τ) =
{
h = (h1, h2, h3)

∣∣ hi ∈ C1([0, 1]), h1(0) = 0, h2(1) + τh3(1) = 0
}

is a core of L∗ and L∗h = −BTh′ for h ∈ C∗(τ). Notice that C∗(τ) depends only on τ , while
C (λ) depends on both β and τ .

Now we can state the definition of (1.4) and (1.5) precisely. Let {w̃(t) = w̃(t, ·); t ≥ 0} be
a stochastic process with values on H ′, such that for every h ∈ C∗(τ),

w̃(t, h)− w̃(0, h) =

∫ t

0

w̃(s, L∗h)ds, ∀t > 0, (3.5)

and w̃(0) is a Gaussian variable such that for all h, g ∈H ,

E[w̃(0, h)] = 0, E[w̃(0, h)w̃(0, g)] = 〈h,Σg〉, (3.6)

where Σ is the covariance matrix defined in (2.3).
To see the existence and uniqueness of w̃(t), let ũ = ũ(t) be the solution to the weak form

of (3.2): for f = (f1, f2, f3), fi ∈ C1([0, 1]), f1(0) = f2(1) = 0,

ũ(t, f)− ũ(t, f) +

∫ t

0

ũ
(
s,AT f ′

)
ds = 0, A =

 0 1 0
c2 0 0
0 0 0

 , (3.7)

and ũ(0) is a centered Gaussian variable with covariance

E
[
(ũ(0, f))2

]
= 〈f,Qf〉, Q = diag

(
β−1, β−1c2, β−2∂2

βG
)
.

The solution ũ(t) uniquely exists in the space H−1 defined as

H−k =

{
ũ

∣∣∣∣ 2∑
i=1

∞∑
n=0

{
θ−2k
n ũ2(µi,n) + κ−2k

n ũ2(νi,n)
}
<∞

}
,

where µ1,n = (µ1,n, 0, 0), µ2,n = (0, µ2,n, 0), and

ν1,n(x) =
√

2
(
0, 0, sin(κnx)

)
, ν2,n(x) =

√
2
(
0, 0, cos(κnx)

)
, κn = 2nπ. (3.8)
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Moreover, the distribution of ũ(t) is stationary. For h ∈ C∗(τ), define

w̃(t, h) = ũ(t, R−1h), R = R(λ) =

1 0 0
0 τr −β−1τ
0 τe β−1

 . (3.9)

Observing that ATR−1 = R−1BT , and f1(0) = f2(1) = 0 for f ∈ R−1[C∗(τ)],

w̃(t, h)− w̃(0, h) = −
∫ t

0

ũ(s,ATR−1h′)ds = −
∫ t

0

w̃(s,BTh′)ds,

and (3.5) is fulfilled. On the other hand, from (2.5) and (3.1),(
τr
τe

)
=

1

β

(
∂2
rS

∂r∂eS

) ∣∣∣∣
(r̄,ē)

+
τ

β

(
∂r∂eS
∂2
eS

) ∣∣∣∣
(r̄,ē)

.

Combining this with (2.6), one obtains that

G ′′(λ)

(
τr
τe

)
=

(
β−1

β−1τ

)
.

By this and some direct calculations,

RTΣR = diag
(
β−1, β−1c2, β−2∂2

βG
)

= Q,

therefore (3.6) also holds. In consequence, for k ≥ 1, the solution w̃(t) of (3.5) exists uniquely
in the space H−k(λ) defined as

H−k(λ) =

{
w̃

∣∣∣∣ ‖w̃‖2−k =

2∑
i=1

∞∑
n=0

{
θ−2k
n w̃2

(
Rµi,n

)
+ κ−2kw̃2

(
Rνi,n

)}
<∞

}
,

where µi,n and νi,n are three-dimensional Fourier bases given in (3.4) and (3.8). Moreover, al-
most all sample paths of {w̃(t); t ≥ 0} are continuous, and the Gaussian distribution determined
by (3.6) is stationary for w̃(t).

For T > 0 and k > 5/2, denote by QN the distribution of {YN (t); t ∈ [0, T ] on the path
space C([0, T ],H−k(λ)) induced by Pλ,N . Denote by Q the distribution of {w̃(t); t ∈ [0, T ]}
defined above. Our first result is stated as below.

Theorem 3.1. Assume (2.1), then the sequence of probability measures {QN} converges weakly,
as N →∞, to the probability measure Q.

Indeed, by the tightness of {QN} in Section 7, we can pick an arbitrary limit point of QN .
Denote it by Q and let {Y (t)} be a process subject to Q. From classical central limit theorem,
the distribution of Y (0) satisfies (3.6). By virtue of the uniqueness of the solution, to prove
Theorem 3.1 it suffices to verify (3.5), or equivalently, for any h ∈ C∗(τ),∣∣YN (t,H(t, ·))− YN (0, h)

∣∣→ 0

in probability, where H(t, x) solves the backward Euler system:

∂tH(t, x) + L∗H(t, x) = 0, H(0, x) = h(x). (3.10)

Notice that H(t, ·) ∈ C∗(τ) for all t ≥ 0. With some additional assumptions, we can prove a
stronger result saying that the macroscopic fluctuation evolves with the linearized system for
time scales beyond hyperbolic.
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Theorem 3.2. Assume (2.1). There exists some universal δ > 0, such that if

sup
r∈R

V ′′(r) < (1 + δ) inf
r∈R

V ′′(r), (3.11)

then for any α < 1/5, h ∈ C∗(τ), T > 0 and ε > 0,

lim
N→∞

Pλ,N
{
∃ t ∈ [0, T ],

∣∣YN(Nαt,H(Nαt)
)
− YN (0, h)

∣∣ > ε
}

= 0, (3.12)

where H(t) = H(t, x) solves the backward equation (3.10).

Remark 3.3. Theorem 3.2 shows that the fluctuation of thermodynamic entropy S̃ keeps sta-
tionary for any time scales Nat with a < 6/5. It is expected that S̃ would evolve under some
superdiffusive scaling a < 2 following a fractional heat equation.

Remark 3.4. Instead of the boundary conditions introduced in Section 1, one can also apply
the periodic boundary condition (p0, q0) = (pN , qN ). Under this setting, the dynamics is in
equilibrium under the Gibbs measures is given by

πNβ,p̄,τ =

N∏
i=1

exp
{
λ̃ · wi − G̃ (λ̃)

}
dpi dri,

for given λ̃ = (βp̄, βτ,−β) ∈ R2 × R−, where p̄ ∈ R denotes the momenta in equilibrium. For
(p, r) ∈ R2 and e ≥ p2/2 + V (r), we can define the internal energy U = e − p2/2, then the
thermodynamic entropy and tension function are still given by S (r, U) and τ (r, U).

Start the dynamics from some equilibrium state πNβ,p̄,τ . For a bounded smooth function

H : T→ R3, the equilibrium fluctuation field is given by

YN (t,H) =
1√
N

∑
i∈TN

H

(
i

N

)
·

pi(Nt)− p̄ri(Nt)− r̄
ei(Nt)− ē

 .

By similar argument used to prove Theorem 3.1, one can show that YN (t,H)→ w̃(t,H). Here
w̃(t, ·) solves the following linearized Euler system on torus:

∂tw̃(t, x) =

 −p̄τu τr τu
1 0 0

τ − p̄2τu p̄τr p̄τu

 ∂xw̃(t, x),

where the linear coefficients are given by

(τr, τu) = (∂r, ∂u) τ

(
r̄, ē− p̄2

2

)
.

Similar to (3.2), we have p̃ and τ̃ = −p̄τup̃ + τr r̃ + τuẽ forms a system of two coupled wave
equations with common sound speed c = τr + ττu, while S̃ = β−1(ẽ− p̄p̃− τ τ̃) does not evolve
in time.

4 Equilibrium fluctuation

In this section, let H(t, x) be a bounded and smooth function on [0,∞)× [0, 1]. For any T > 0,
we define two norms |H|T and ‖H‖T of H as below:

|H|T = sup
[0,T ]×[0,1]

|H(t, x)|,

9



‖H‖2T = sup
t∈[0,T ]

‖H(t)‖2 = sup
t∈[0,T ]

∫ 1

0

H2(t, x)dx.

For YN (t,H(t, ·)), the following decomposition holds Pλ,N almost surely:

YN (t,H(t))− YN (0, H(0))−
∫ t

0

YN (s, ∂sH(s))ds

= IN,1(t,H) + γIN,2(t,H) +
√
γMN (t,H), ∀t > 0,

(4.1)

where IN,1 and IN,2 are integrals given by

IN,1(t,H) = N

∫ t

0

AN [YN (s,H(s))]ds, IN,2(t,H) = N

∫ t

0

SN [YN (s,H(s))]ds,

and MN is a martingale with quadratic variation given by

〈MN 〉(t,H) = N

∫ t

0

{
SN [Y 2

N (s,H(s))]− 2YN (s,H(s))SN [YN (s,H(s))]
}
ds.

As the first step to prove Theorem 3.2, the next lemma guarantees that the last two terms in
(4.1) vanish uniformly in macroscopic time for equilibrium dynamics.

Lemma 4.1. There exists a constant C = C(λ, V ), such that

Eλ,N

[
sup
t∈[0,T ]

γ
∣∣IN,2(t,H)

∣∣2 + sup
t∈[0,T ]

∣∣MN (t,H)
∣∣2] ≤ CT

N
‖∂xH‖2T .

The proof of Lemma 4.1 is standard and we postpone it to the end of this section. To
identify the boundary conditions needed for H, noting that p0 = 0, and

NAN [YN (t,H(t))]

=
√
N

N−1∑
i=1

H

(
t,
i

N

)
· (JA,i − JA,i−1) +

√
NH(t, 1) ·

 τ − V (rN )
pN − pN−1

pNτ − pN−1V
′(rN )


=

1√
N

N−1∑
i=1

∇N,iH(t) · (−JA,i(ηt))

−
√
N

[
H1

(
t,

1

N

)(
V ′(r1(t))− τ

)
−
(
H2(t, 1) + τH3(t, 1)

)
pN (t)

]
,

where JA,i is the centered instantaneous currents of AN :

JA,i =
(
V ′(ri+1)− τ, pi, piV ′(ri+1)

)T
,

and ∇N,i is the discrete derivative operator:

∇N,iH = N

[
H

(
i+ 1

N

)
−H

(
i

N

)]
.

Thus, we can drop the right boundary if H(t) ∈ C∗(τ) for all t:

IN,1(t,H) = − 1√
N

∫ t

0

N−1∑
i=0

∇N,iH(s) · JA,i(ηs)ds. (4.2)

The next lemma shows that IN,1 can be linearized as N →∞.
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Lemma 4.2. Assume (2.1), (3.11), and H(t) ∈ C∗(τ) for t ∈ [0, T ], then

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(t,H)−
∫ t

0

YN (s, L∗H(s))ds

∣∣∣∣2
]
≤ C

(
T

N
1
5

+
T 2

N
2
5

)
(4.3)

holds with some constant C. Furthermore,

C ≤ C(λ, γ, V )|||H|||2T , where |||H|||T = |∂xH|T + |∂2
xH|T + ‖∂xH‖T .

Remark 4.3. The bound (4.3) in Lemma 4.2 is proven under the assumption (3.11). Without
assuming (3.11) we have only that, for every fixed T > 0,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(t,H)−
∫ t

0

YN (s, L∗H(s))ds

∣∣∣∣2
]
≤ oN (1)|||H|||2T . (4.4)

This is clear from Remark 5.2 below. The bound (4.4) is enough for proving Theorem 3.1, while
(4.3) is necessary in order to prove (3.12).

Lemma 4.2 follows from the Boltzmann-Gibbs principle, proven in Section 5. Here we first
give the proof of Theorem 3.2.

Proof of Theorem 3.2. Let H(t, x) be the solution of (3.10). From (4.1) and Lemma 4.1,

Pλ,N
{
∃ t ∈ [0, T ],

∣∣∣∣YN (Nαt,H(Nαt))− YN (0, H0)

−
∫ Nαt

0

YN (s, ∂sH(s))ds− IN,1(Nαt,H)

∣∣∣∣ > ε

}
→ 0

for any ε > 0. Recall that H(t, ·) ∈ C∗(τ) and an elementary estimate:∣∣∂`xH(t, x)
∣∣ ≤ sup

{∣∣∂`yH(s, y)
∣∣; 0 ≤ s < c−1, 0 ≤ y ≤ 1

}
for any t ≥ 0 and x ∈ [0, 1]. Therefore, by Lemma 4.2, for any α < 1/5,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(Nαt,H)−
∫ Nαt

0

YN (s, L∗H(s))ds

∣∣∣∣2
]
→ 0.

Theorem 3.2 then follows from (3.10).

For Theorem 3.1, since tightness is shown in Section 7, we only need to take α = 0 in the
proof above, and apply Remark 4.3 instead of Lemma 4.2 in the last step.

We now proceed to the proof of Lemma 4.1. Denote by 〈·, ·〉λ,N the scalar product of two
functions f , g ∈ L2(πλ,N ). We make use of a well-known estimate on the space-time variance
of a stationary Markov process. For f(s, ·) ∈ L2(πλ,N ),

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

f(s, ηs)ds

∣∣∣∣2
]
≤ 14

∫ T

0

‖f(t)‖2−1,Ndt, (4.5)

where ‖f‖−1,N is defined for all f on ΩN by

‖f‖2−1,N = sup
h

{
2〈f, h〉λ,N − γN〈h,−SNh〉λ,N

}
,

with the superior taken over all bounded smooth functions h on ΩN . A proof of (4.5) can be
found in [10, Sec. 2.5].
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Proof of Lemma 4.1. To begin with, note that

NSN [YN (t,H(t))] =

√
N

2

N−1∑
i=1

[
H

(
t,
i

N

)
· Y2

i,i+1[wi] +H

(
t,
i+ 1

N

)
· Y2

i,i+1[wi+1]

]

= − 1√
N

N−1∑
i=1

∇N,iH(t) · JS,i(ηt),

where JS,i is the instantaneous current corresponding to SN :

JS,i =
1

2
Y2
i,i+1[wi] = −1

2
Y2
i,i+1[wi+1].

By applying (4.5) on IN,2(t,H), one obtains that

Eλ,N

[
sup
t∈[0,T ]

∣∣IN,2(t,H)
∣∣2]

≤ 14

N

∫ T

0

sup
h

{
2

N−1∑
i=1

〈
∇N,iH(t) · JS,i, h

〉
λ,N
− γN

〈
h,−SNh

〉
λ,N

}
dt.

By Cauchy-Schwarz inequality, with mi = Yi,i+1[wi] for i = 1 to N − 1,∣∣∣∑〈
∇N,iH(t) · JS,i, h

〉
λ,N

∣∣∣2 =
1

4

∣∣∣∑〈
∇N,iH(t) ·mi,Yi,i+1h

〉
λ,N

∣∣∣2
≤ 1

4

N−1∑
i=1

|∇N,iH(t)|2Eλ,N
[
m2
i

]N−1∑
i=1

Eλ,N
[
(Yi,i+1h)2

]
≤ C1N‖∂xH(t)‖2〈h,−SNh〉λ,N .

Substituting this and optimizing h, we obtain that

Eλ,N

[
sup
t∈[0,T ]

∣∣IN,2(t,H)
∣∣2] ≤ 14C1

γN

∫ T

0

‖∂xH‖2dt ≤
C2T

γN
‖∂xH‖2T .

On the other hand, recall that mi = Yi,i+1[wi] and

SN
[
Y 2
N (s,H(s))

]
− 2YN (s,H(s))SN

[
YN (s,H(s))

]
=

1

N3

N−1∑
i=1

[
∇N,iH(s) ·mi(ηs)

]2
.

Therefore, by Doob’s maximal inequality,

Eλ,N

[
sup
t∈[0,T ]

∣∣MN (t,H)
∣∣2] ≤ 4Eλ,N

[
〈MN 〉(T,H)

]
≤ 4

N2

∫ T

0

N−1∑
i=1

Eλ,N
[
(∇N,iH(t) ·mi)

2
]
dt

≤ C3

N

∫ T

0

‖∂xH‖2dt ≤
C4T

N
‖∂xH‖2T .

Since the constants depend only on λ and V , Lemma 4.1 follows.
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5 Boltzmann-Gibbs principle

This section devotes to the proof of Lemma 4.2. In this section, we denote by {ιi; 0 ≤ i ≤ N}
the shift operator semigroup on ΩN , which is given by

(ιiη)j =

{
(pi+j , ri+j), 1 ≤ j ≤ N − i,
(0, 0), N − i < j ≤ N,

for all η ∈ ΩN and 0 ≤ i ≤ N . For function F on ΩN , define ιiF = F ◦ ιi. If F is supported by
{ηj , 1 ≤ j ≤ m} for some m ≤ N , then

Eλ,N [ιiF ] = Eλ,N [F ], ∀0 ≤ i ≤ N −m.

First notice that ∇N,iH in (4.2) can be replaced by ∂xH. The difference is

Eα,λ,N

[
sup
t∈[0,T ]

∣∣∣∣IN,1(t,H)− 1√
N

∫ t

0

N−1∑
i=1

∂xH

(
s,

i

N

)
· JA,i(ηs)ds

∣∣∣∣2
]

≤ T

N

∫ T

0

Eλ,N

[(∑[
∇N,iH(t)− ∂xH

(
t,
i

N

)]
· JA,i

)2
]
dt.

Since Eλ,N [JA,i ⊗ JA,j ] = 0 for i 6= j, it is bounded from above by

T

N
Eλ,N

[
|JA,i|2

] ∫ T

0

N−1∑
i=1

∣∣∣∣∇N,iH(t)−H ′
(
t,
i

N

)∣∣∣∣2 dt ≤ CT 2|∂2
xH|2T

N2
.

Clearly the order is better than what is needed for Lemma 4.2.
Now we want to replace the local random field JA,i with its linear approximation. The

corresponding error is

Φ = JA,0 −B(λ)
(
w0 − w̄(λ)

)
=

V ′(r1)− τrr0 − τee0

0
p0V

′(r1)− p0τ

 .

Lemma 4.2 follows from the following Boltzmann-Gibbs principle.

Proposition 5.1. Assume (2.1) and (3.11), then

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−1∑
i=1

∂xH

(
s,

i

N

)
· ιiΦ(ηs)ds

∣∣∣∣2
]
≤ C

(
T

N
1
5

+
T 2

N
2
5

)
for all bounded smooth H = H(t, x) on [0, T ]× [0, 1].

Boltzmann-Gibbs principle, firstly established for zero range jump process (see [3]), aims
at determining the space-time fluctuation of a local function by its linear approximation on
the conserved fields. To show this proposition, we need a spectral gap bound of SN , which is
the main difficult point, as well as the equivalence of canonical and microcanonical ensembles.
They are established in Section 6 and Section 8, respectively.

Proof. The first step is to take some 1 ≤ K � N , and define

ΦK =
1

K

K∑
i=1

ιiΦ.
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Observe that ΦK is supported by {ηj ; 1 ≤ j ≤ K + 1}, and

N−1∑
i=1

ai(t) · ιiΦ = F1(t) + F2(t) +

N−K∑
i=1

ai(t) · ιi−1ΦK ,

where we write ai(t) = ∂xH(t, i/N) for short, and F1, F2 are given by

F1(t) =
1

K

(
K−1∑
i=1

+

N−1∑
i=N−K+1

)
(K − i)ai(t) · ιiΦ,

F2(t) =
1

K

 K∑
i=1

k∑
j=1

+

N−K−1∑
i=K+1

i∑
j=i+1−K

+

N−1∑
i=N−K

N−K∑
j=i+1−K

 (ai(t)− aj(t)) · ιiΦ.

Since Eλ,N [ιiΦ⊗ ιjΦ] = 0 for i 6= j, we have for each t ∈ [0, T ],

Eλ,N
[
F 2

1 (t) + F 2
2 (t)

]
≤
(
C1 +

C2

N

)
K
(
|∂xH|2T + |∂2

xH|2T
)
,

with constants C1 and C2 depending on λ and V . Hence,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

F1(s, ηs) + F2(s, ηs)ds

∣∣∣∣2
]
≤ C3T

2K

N

(
|∂xH|2T + |∂2

xH|2T
)
. (5.1)

For the second step, define ϕK = ΦK − 〈ΦK〉, where

〈ΦK〉 = Eλ,N

[
Φ

∣∣∣∣ w1 + w1 + . . .+ wK+1

K + 1

]
.

Due to the equivalence of ensembles in Proposition 8.3, the square variance of 〈ΦK〉 with respect
to πλ,N is of order K−2. Therefore,

Eλ,N
[
|ϕK |2

]
= Eλ,N

[
|ΦK |2

]
− Eλ,N [|〈ΦK〉|2

]
≤ C4K

−1.

By applying the estimate (4.5), we obtain that

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−K∑
i=1

ai(s) · ιi−1ϕK(ηs)ds

∣∣∣∣2
]

≤ 14

N

∫ T

0

sup
h

{
2

N−K∑
i=1

〈
ai(t) · ιi−1ϕK , h

〉
λ,N
− γN〈h,−SNh〉λ,N

}
dt,

(5.2)

where the superior is taken over all bounded smooth functions on ΩN . As ϕK is supported by
{ηi; 1 ≤ i ≤ K + 1}, by the spectral gap in Proposition 6.1,

−SKGα,K = a · ϕK , a ∈ R3

can be solved by some function Ga,K satisfying that〈
Ga,K ,−SK+1Ga,K

〉
λ,N
≤ C(K + 1)2Eλ,N

[
(a · ϕK)2

]
≤ C5K|a|2.

With these notations, for i = 1, . . . , N −K and a ∈ R3,

〈
a · ιi−1ϕK , h

〉
λ,N

=
1

2

K∑
j=1

〈
Yi+j−1,i+j

[
ιi−1Ga,K

]
,Yi+j−1,i+jh

〉
λ,N

.
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Hence, by Cauchy-Schwarz inequality,∣∣∣∣∣
N−K∑
i=1

〈
ai(t) · ιi−1ϕK , h

〉
λ,N

∣∣∣∣∣
2

≤ 1

4

N−K∑
i=1

K∑
j=1

Eλ,N
[
(Yi+j−1,i+jh)2

]N−K∑
i=1

K∑
j=1

Eλ,N
[
(Yj,j+1Gai(t),K)2

]
≤ K〈h,−SNh〉λ,N

N−K∑
i=1

〈
Gai(t),K ,−SK+1Gai(t),K

〉
λ,N

≤ C5K
2〈h,−SNh〉λ,N

N−K∑
i=1

|ai(t)|2 ≤ C6K
2N‖∂xH(t)‖2〈h,−SNh〉λ,N .

Substituting this into (5.2) and optimizing in h,

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−K∑
i=1

ai(s) · ιi−1ϕK(ηs)ds

∣∣∣∣2
]
≤ C7TK

2

γN
‖∂xH‖2T . (5.3)

Finally, since Eλ,N [ιi〈ΦK〉 ⊗ ιj〈ΦK〉] = 0 for |i − j| > K, by utilizing the equivalence of
ensembles in Proposition 8.3 again, we obtain that

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣ 1√
N

∫ t

0

N−K∑
i=1

ai(s) · ιi−1〈ΦK〉(ηs)ds
∣∣∣∣2
]
≤ C8T

2

K
‖∂xH‖2T . (5.4)

In conclusion, by summing up (5.1), (5.3), (5.4), and taking K = N2/5, we get the estimate
in Proposition 5.1, with the constant satisfying that

C ≤ C(λ, γ, V )
(
‖∂xH‖2T + |∂xH|2T + |∂2

xH|2T
)
.

This completes the proof of the proposition.

Remark 5.2. If only (2.1) is assumed, we can apply Remark 6.6 instead of Proposition 6.1 in
the proof of (5.3). By doing this, we can prove Proposition 5.1 for any fixed T > 0, with a
weaker upper bound oN (1)|||H|||2T .

6 Spectral gap

In this section, we state and prove the spectral gap estimate for the dynamics without boundary
condition. The main result, Proposition 6.1, plays a central role in the proof of Proposition 5.1.

We use the following notations in this section. Recall (2.1) and denote

δ− = inf
r∈R

V ′′(r), δ+ = sup
r∈R

V ′′(r).

For K ≥ 2 and w ∈ R3, the microcanonical manifold Ωw,K is defined as

Ωw,K =

{
(pk, rk), 1 ≤ k ≤ K

∣∣∣∣∣ 1

K

K∑
k=1

wk = w

}
.

In view of (2.1), Ωw,K is a compact and connected manifold if and only if w = (p, r, e), e ≥
p2/2 + V (r). The Gibbs measure πλ,K induces the uniform measure on Ωw,K , which is called
the microcanonical measure, and is denoted by

πw,K = πλ,K [ · | Ωw,K ] .
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Notice that the definition of πw,K does not depend on the choice of λ. We denote by Ew,K the
expectation with respect to πw,K . For each pair (i, j) such that 1 ≤ i < j ≤ K, let Fi,j be the
σ-algebra over Ωw,K given by

Fi,j = σ({(pk, rk); 1 ≤ k ≤ K, k 6= i, j}).

Proposition 6.1. Suppose that the potential V satisfies (2.1). There exists a universal constant
δ > 0, such that if V fulfills furthermore (3.11), then

Ew,K
[
(f − Ew,K [f ])2

]
≤ CK

K−1∑
k=1

Ew,K
[
(Xk,k+1f)2

]
(6.1)

for all (w,K) and bounded smooth function f , and CK ≤ CK2.

The proof of Proposition 6.1 is divided into Lemma 6.2, 6.3 and 6.4 below.

Lemma 6.2. Assume (2.1), then there exists constant C, such that

Ew,2
[
(f − Ew,2[f ])2

]
≤ CEw,2

[
(X1,2f)2

]
for all w and bounded smooth function f on (p1, r1, p2, r2).

Lemma 6.3. Assume (2.1), then there exists constant C, such that

∑
1≤i<j≤K

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]
≤ CK3

K−1∑
k=1

Ew,K
[
(f − Ew,K [f |Fk,k+1])2

]
for all K ≥ 3, w and bounded smooth function f .

Lemma 6.4. Assume (2.1) and (3.11), then

Ew,K
[
(f − Ew,K [f ])2

]
≤ C ′K

∑
1≤i<j≤K

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]

(6.2)

for all K ≥ 3, w and bounded smooth function f , and C ′K ≤ C ′K−1.

Indeed, for each k = 1, . . . ,K − 1, Lemma 6.2 yields that

Ew,K
[
(f − Ew,K [f |Fk,k+1])2|Fi,i+1

]
≤ CEw,K

[
(Xi,i+1f)2|Fi,i+1

]
.

Then, Proposition 6.1 turns to be the direct consequence of this, Lemma 6.3 and Lemma 6.4.
We now prove these lemmas in turn.

Proof of Lemma 6.2. For (p1, r1, p2, r2) ∈ R4, define

p = p(p1, p2) =
p1 + p2

2
, r = r(r1, r2) =

r1 + r2

2
,

and the internal energy E = E(p1, r1, p2, r2) ≥ 0 given by

E =
e1 + e2

2
− p2

2
− V (r) =

(p1 − p2)2

8
+
V (r1) + V (r2)

2
− V

(
r1 + r2

2

)
.

Furthermore, let θ ∈ [0, 2π) satisfy that
√
E cos θ =

√
2(p1 − p2)/4 and

√
E sin θ = sgn(r1 − r2)

√
V (r1) + V (r2)

2
− V

(
r1 + r2

2

)
.
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The Jacobian determinant of the bijection (p1, r1, p2, r2)→ (p, r, E, θ) is

J(p, r, E, θ) =
√

2 ·
√
V (r1) + V (r2)− 2V (r)

|V ′(r1)− V ′(r2)|
.

Recall that 0 < δ− ≤ V ′′(r) ≤ δ+ <∞, we have

0 <

√
δ−√

2δ+
≤ J(p, r, E, θ) ≤

√
δ+√

2δ−
. (6.3)

For a bounded smooth function f = f(p1, r1, p2, r2), define f∗(p, r, E, θ) = f(p1, r1, p2, r2), and

let 〈f∗〉 =
∫ 2π

0
f∗(p, r, E, θ)dθ. By simple calculations,

Ew,2
[
(f − 〈f∗〉)2

]
=

∫ 2π

0
[f∗(p, r, E, θ)− 〈f∗〉]2J(p, r, E, θ)dθ∫ 2π

0
J(p, r, E, θ)dθ

.

On the other hand, since X1,2f = J−1∂θf∗, we have

Ew,2
[
(X1,2f)2

]
=

∫ 2π

0
[∂θf∗(p, r, E, θ)]

2J−1(p, r, E, θ)dθ∫ 2π

0
J(p, r, E, θ)dθ

.

Applying Poincaré inequality and (6.3), we obtain that

Ew,2
[
(f − Ew,2[f ])2

]
≤ Ew,2

[
(f − 〈f∗〉)2

]
≤ Cδ+

2δ2
−
Ew,2

[
(X1,2f)2

]
holds with some universal constant C <∞.

Proof of Lemma 6.3. We prove this lemma along the standard idea. Here are some notations
used only in this proof. For 1 ≤ k ≤ K, write xk = (pk, rk) and x = (x1, . . . , xK). Recall the
bijection defined in the proof of the Lemma 6.2. For simplicity we write

(pi,j , ri,j , E(i, j), θi,j) = (p, r, E, θ)(xi, xj), ∀i < j.

For θ ∈ [0, 2π), denote the Jacobian determinant by

Jx,i,j(θ) = J
(
pi,j , ri,j , E(i, j), θ

)
.

For i < j, θ ∈ [0, 2π] and x = (x1, . . . , xK), define a vector ρθi,jx by

(ρθi,jx)k =


g1(pi,j , ri,j , E(i, j), θ), k = i;

g2(pi,j , ri,j , E(i, j), θ), k = j;

xk, k 6= i, j,

where (g1, g2) denotes the inverse map of (x1, x2) → (p, r, E, θ). Observe that ρθi,jx = x when
θ = θi,j , and for every smooth function f ,

Ew,K [f |Fi,j ] =
1

Jxi+xj

∫ 2π

0

f(ρθi,jx)Jx,i,j(θ)dθ,

where Jxi+xj =
∫ 1

0
Jx,i,j(θ)dθ. On the other hand, let τi,jx be the vector given by

(τi,jx)i = xj , (τi,jx)j = xi, (τi,jx)k = xk, ∀k 6= i, j.
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Moreover for 1 ≤ i < j ≤ K, we inductively define that

σi,i = σ̃i,i = id, σi,j = τj−1,j ◦ σi,j−1, σ̃i,j = σ̃i,j−1 ◦ τj−1,j .

Observe that for any i < j and θ ∈ [0, 2π), ρθi,j ≡ σ̃i,j−1 ◦ ρθj−1,j ◦ σi,j−1.
For a smooth function f , by Cauchy-Schwarz inequality,

(f − Ew,K [f |Fi,j ])
2 ≤ 1

Jxi+xj

∫ 2π

0

[
f(ρθi,jx)− f(x)

]2
Jx,i,j(θ)dθ.

The right-hand side is bounded from above by 3(f1 + f2 + f3), where

f1 =
1

Jxi+xj

∫ 2π

0

[f(σi,j−1x)− f(x)]
2
Jx,i,j(θ)dθ,

f2 =
1

Jxi+xj

∫ 2π

0

[
f(ρθj−1,j ◦ σi,j−1x)− f(σi,j−1x)

]2
Jx,i,j(θ)dθ,

f3 =
1

Jxi+xj

∫ 2π

0

[
f(σ̃i,j−1 ◦ ρθj−1,j ◦ σi,j−1x)− f(ρθj−1,j ◦ σi,j−1x)

]2
Jx,i,j(θ)dθ.

For f1, noticing that f1 = (f(σi,j−1x)− f(x))2, hence

Ew,K [f1] ≤ K
j−2∑
k=i

Ew,K
[
(f ◦ σi,k+1 − f ◦ σi,k)2

]
= K

j−2∑
k=i

Ew,K
[
(f ◦ τk,k+1 − f)2

]
.

Since Ew,K [f ◦ τk,k+1|Fk,k+1] = Ew,K [f |Fk,k+1], by the estimate above and Cauchy-Schwarz
inequality, we obtain that

Ew,K [f1] ≤ 4K

j−2∑
k=i

Ew,K
[
(f − Ew,K [f |Fk,k+1])2

]
.

For f2, by applying the change of variable y = σi,j−1x, we obtain that

Ew,K [f2] = Ew,K

[
1

Jyj−1+yj

∫ 2π

0

[
f(ρθj−1,jy)− f(y)

]2
Jy,i,j(θ)dθ

]
.

Therefore, we can calculate this term as

Ew,K [f2] = 2Ew,K [f2]− 2Ew,K [fEw,K [f |Fj−1,j ]]

= 2Ew,K
[
(f − Ew,K [f |Fj−1,j ])

2
]
.

For f3, the same change of variable yields that

Ew,K [f3] = Ew,K
[
Ew,K [(f ◦ σ̃i,j−1 − f)2 | Fj−1,j ]

]
= Ew,K

[
(f ◦ σ̃i,j−1 − f)2

]
.

Since σ̃k,j−1 = τk,k+1 ◦ σ̃k+1,j−1, by repeating the calculation in f1,

Ew,K [f3] ≤ 4K

j−2∑
k=i

Ew,K
[
(f − Ew,K [f |Fk,k+1])2

]
.

Hence, with some universal constant C <∞ we have

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]
≤ CK

j−1∑
k=i

Ew,K
[
(f ◦ τk,k+1 − f)2

]
.

Lemma 6.3 follows by summing up this estimate with i and j.
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To show Lemma 6.4, we need the following pre-estimate.

Lemma 6.5. Assume (2.1), then (6.2) holds with constants C ′K satisfying

C ′K ≤
C ′

K

(
δ+
δ−

)3(K−1)

.

Remark 6.6. In view of Lemma 6.5, the spectral gap in (6.1) also holds without the assumption
(3.11). In this case, the constants CK satisfies that

CK ≤ CK2

(
δ+
δ−

)3(K−1)

.

We first prove Lemma 6.4 from Lemma 6.5. The proof of Lemma 6.5 is put in the end of
this section. Consider the bounded operator

LKf =
1

K

∑
1≤i<j≤K

(Ew,K [f |Fi,j ]− f) , f ∈ L2(Ωw,K , πw,K).

Let λw,K be the spectral gap of LK on L2(Ωw,K , πw,K):

λw,K , inf
{
〈f,−LKf〉πw,K | Ew,K [f ] = 0, Ew,K [f2] = 1

}
,

and let λK = inf{λw,K ;w ∈ R2 × R+}. Then (6.2) is equivalent to

inf{λK ;K ≥ 3} > 0.

We prove it through an induction argument, firstly established for k = 3 in [5].

Lemma 6.7. If kλk ≥ 1 holds for some k ≥ 3, then for all K ≥ k,

λK ≥ (kλk − 1)

(
1

k − 2
− 2

K(k − 2)

)
+

1

K
.

By Lemma 6.5, for some fixed k which is large enough,

kλk >
k

C ′

(
δ−
δ+

)3k−3

≥ k

C ′
1

(1 + δ)3k−3
≥ 1,

provide that δ+ ≤ (1 + δ)δ− with some δ small enough. Then with Lemma 6.7 we can show
that the sequence {λK ;K ≥ 3} is uniformly bounded from below.

Proof. We make use of the equivalent characterization of λw,K that

λw,K = inf

{ 〈LKf,LKf〉πw,K
〈f,−LKf〉πw,K

∣∣∣ 〈f,−LKf〉πw,K 6= 0

}
.

In this proof we denote by B the set of all pairs b = (i, j) such that 1 ≤ i < j ≤ K, and write
Dbf = Ew,K [f |Fi,j ]− f for all b ∈ B, then

〈LKf,LKf〉πw,K =
1

K2

∑
b,b′∈B

〈Dbf,Db′f〉πw,K ,

〈f,−LKf〉πw,K =
1

K

∑
b∈B

〈Dbf,Dbf〉πw,K .
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We write b ∼ b′ if two pairs b and b′ have at least one common point. We also consider all the
k-particle subsets Tk ⊆ {1, . . . ,K}. Notice that if b ∼ b′ but b 6= b′, there are

(
K−3
k−3

)
different

Tk’s containing both b and b′. Hence,(
n− 3

k − 3

) ∑
b,b′∈B
b6=b′,b∼b′

〈Dbf,Db′f〉πw,K =
∑
Tk

∑
b,b′⊆Tk
b6=b′,b∼b′

〈Dbf,Db′f〉πw,K .

If b 6∼ b′, there are
(
K−4
k−4

)
different Tk’s contain both b and b′, while for the case b = b′ it is(

K−2
k−2

)
. Therefore, the right-hand side of the equation above equals to

∑
Tk

∑
b,b′⊆Tk

〈Dbf,Db′f〉πw,K −
(
K − 4

k − 4

)∑
b 6∼b′
〈Dbf,Db′f〉πw,K −

(
K − 2

k − 2

)∑
b∈B

〈Dbf,Dbf〉πw,K .

The definition of λk yields that

1

k

∑
b,b′⊆Tk

〈Dbf,Db′f〉πw,K ≥ λk
∑
b⊆Tk

〈Dbf,Dbf〉πw,K .

And for b 6∼ b′, 〈Dbf,Db′f〉πw,K = Ew,K
[
(Db′Dbf)2

]
≥ 0. Therefore,

∑
b,b′∈B
b6=b′,b∼b′

〈Dbf,Db′f〉πw,K ≥
(kλk − 1)(K − 2)

k − 2

∑
b∈B

〈Dbf,Dbf〉πw,K .

By the condition kλk > 1, the right-hand side is positive. In conclusion,

〈LKf,LKf〉πw,K ≥
1

K2

∑
b∈B

〈Dbf,Dbf〉πw,K +
1

K2

∑
b6=b′,b∼b′

〈Dbf,Dbf〉πw,K

≥ 1

K2

[
(kλk − 1)(K − 2)

k − 2
+ 1

]∑
b∈B

〈Dbf,Dbf〉πw,K

=

[
(kλk − 1)

(
1

k − 2
− 2

K(k − 2)

)
+

1

K

]
〈f,−LKf〉πw,K .

Notice that this estimate is independent of the choice of w.

Finally, to complete the proof of Proposition 6.1, we are left to show Lemma 6.5. To do
this, we make use of the spectral gap bound of Kac walk. For a ∈ R2 and R > |a|2, consider
the (2K − 3)-dimensional sphere

SK(a,R) =

{
x1, . . . , xK ∈ R2

∣∣∣∣ 1

K

K∑
k=1

xk = a,
1

K

K∑
k=1

|xk|2 = R

}
.

Denote by µK(a,R) the uniform measure on SK(a,R). With a little abuse of notations, let
Fi,j = σ{xk; k 6= i, j} for 1 ≤ i < j ≤ K.

Lemma 6.8. There exists a constant C such that

EµK(a,R)

[
(f − EµK(a,R)[f ])2

]
≤ C

K

∑
1≤i<j≤n

EµK(a,R)

[
(f − EµK(a,R)[f |Fi,j ])

2
]

for all (a,R,K) and bounded smooth function f .
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Lemma 6.8 can be proved by the arguments in [6] and [7]. We here prove Lemma 6.4 by
applying a perturbation on the spectral gap in Lemma 6.8.

Proof. To begin with, from (2.1) we know that for r 6= r′ and K ≥ 1,√
2(K + 1)√

K
c− ≤

|V ′(r)− V ′(r′)|√
V (r) +KV (r′)− (K + 1)V

(
r+Kr′

K+1

) ≤ √2(K + 1)√
K

c+, (6.4)

where c− = δ−/
√
δ+ and c+ = δ+/

√
δ−. For each K ≥ 3, we construct a bijection τK : ΩK →

ΩK , satisfying the following two conditions.

(i) For w = (p, r, e), a = (p, r) and R = 2e− 2V (r) + r2, τK(SK(a,R)) = Ωw,K ;

(ii) The Jacobian matrix τ ′K of τK satisfies that cK−1
− ≤ |det(τ ′K)| ≤ cK−1

+ .

Indeed, given a bounded, measurable, positive function g on Ωw,K , by (i) we know that τKg :=
g ◦ τK defines a function on SK(a,R), and (ii) yields that

c
−(K−1)
0 EµK(a,R)[τKg] ≤ Ew,K [g] ≤ cK−1

0 EµK(a,R)[τKg],

where c0 = c+/c−. For bounded and smooth function f , we can apply the estimate above to
g = (f − EµK(a,R)[τKf ])2 to obtain

Ew,K
[
(f − Ew,K [f ])2

]
≤ Ew,K [g] ≤ cK−1

0 EµK(a,R)[τKg].

On the other hand, take hi,j = (f − Ew,K [f |Fi,j ])
2 and similarly,

EµK(a,R)

[
(τKf − EµK(a,R)[τKf |Fi,j ])

2
]
≤ EµK(a,R)[τKhi,j ] ≤ cK−1

0 Ew,K [hi,j ].

Substituting τKf for f in Lemma 6.8, we get

Ew,K
[
(f − Ew,K [f ])2

]
≤ cK−1

0 EµK(a,R)

[
(τKf − EµK(a,R)[τKf ])2

]
≤ CcK−1

0

K

∑
i<j

EµK(a,R)

[
(τKf − EµK(a,R)[τKf |Fi,j ])

2
]

≤ Cc
2(K−1)
0

K

∑
i<j

Ew,K
[
(f − Ew,K [f |Fi,j ])

2
]
.

Since c0 = (δ+/δ−)3/2, Lemma 6.5 then follows.
Now fix K ≥ 3 and we construct the map τK . Write xk = (pk, rk) and define

αk =
1

k

k∑
i=1

ri, ∀1 ≤ k ≤ K.

Consider two maps ζ, ζ∗ : RK → RK . The first map ζ is given by

ζ(r1, . . . , rK) = (r′1, . . . , r
′
K),

such that r′K = αK , and for 1 ≤ k ≤ K − 1,

(r′k)2 =
2k

k + 1

(
V (rk+1) + kV (αk)− (k + 1)V (αk+1)

)
,

where the sign of r′k is chosen in accordance with rk − αK . Meanwhile, ζ∗ is given by

ζ∗(r
′
1, . . . , r

′
K) = (r′′1 , . . . , r

′′
K),
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such that

r′′k =


r′K −

∑K−1
i=1

r′i
i , for k = 1,

r′K + r′k−1 −
∑K−1
i=k

r′i
i , for 2 ≤ k ≤ K − 1,

r′K + r′K−1, for k = K.

Denote by J and J∗ the Jacobian matrixes of ζ and ζ∗, respectively. To compute J , noticing
that ∂rir

′
k = ∂rkr

′
k for all i ≤ k, and ∂rir

′
k = 0 for all i > k, we have

J =



∂r′1
∂r1

∂r′1
∂r2

0 . . . 0
∂r′2
∂r2

∂r′2
∂r2

∂r′2
∂r3

. . . 0
...

...
...

...
∂r′K−1

∂rK−1

∂r′K−1

∂rK−1

∂r′K−1

∂rK−1
. . .

∂r′K−1

∂rK
∂r′K
∂rK

∂r′K
∂rK

∂r′K
∂rK

. . .
∂r′K
∂rK


.

Hence, its determinant reads

|det(J)| =
∣∣∣∣∂r′K∂rK

∣∣∣∣ · K−1∏
k=1

∣∣∣∣∂r′k∂rk
− ∂r′k
∂rk+1

∣∣∣∣ .
Since ∂rKr

′
K = 1/K and for k = 1, . . . ,K − 1 we have

∂r′k
∂ri

=

{
k

(k+1)r′k
[V ′(αk)− V ′(αk+1)], if 1 ≤ i ≤ k,

k
(k+1)r′k

[V ′(rk+1)− V ′(αk+1)], if i = k + 1.

In consequence, |det(J)| equals to

1

K

K−1∏
k=1

√
k√

2(k + 1)

|V ′(rk+1)− V ′(αk)|√
V (rk+1 + kV (αk)− (k + 1)V (αk+1))

.

Applying the estimate in (6.4) to obtain that

cK−1
−
K
≤ |det(J)| ≤

cK−1
+

K
.

Meanwhile it is easy to calculate that |det(J∗)| = K. Therefore, define

τK : (p1, . . . , pK , r1, . . . , rK) 7→ (p1, . . . , pK , (ζ∗ ◦ ζ)−1(r1, . . . , rK)),

then |det(τ ′K)| satisfies (ii). On the other hand, by the definition of ζ,

K∑
k=1

rk = Kr′K ,

K∑
k=1

V (rk) = KV (r′K) +

K−1∑
k=1

k + 1

k

(r′k)2

2
.

Similarly, by the definition of ζ∗,

K∑
k=1

r′′k = Kr′K ,

K∑
k=1

(r′′k)2

2
=
K(r′K)2

2
+

K−1∑
k=1

k + 1

k

(r′k)2

2
,

hence (i) is also fulfilled by τK . This completes the proof.
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7 Tightness

In Section 4 we have proved the convergence of the finite-dimensional distribution of {QN}. In
order to complete the proof of Theorem 3.1, we need its tightness in C([0, T ],H−k(λ)). The
proof is standard, and we summarize it here.

It suffices to show the two statements below:

lim
M→∞

lim sup
N→∞

Pλ,N

{
sup
t∈[0,T ]

‖YN (t)‖−k ≥M

}
= 0, (7.1)

lim
δ↓0

lim sup
N→∞

Pλ,N
{
w−k(YN , δ) ≥ ε

}
= 0, ∀ε > 0, (7.2)

where w−k(YN , δ) is the modulus of continuity in C([0, T ],H−k(λ)). Recall that

‖YN‖2−k =

2∑
i=1

∞∑
n=0

{
θ−2k
n Y 2

N

(
Rµi,n

)
+ κ−2kY 2

N

(
Rνi,n

)}
,

where R is the rotation matrix in (3.9), and µi,n, νi,n are the three-dimensional Fourier bases
defined in (3.4) and (3.8).

Take f = µi,n or νi,n for some (i, n). Applying (4.1) with H(t) ≡ Rf ,

YN (t, Rf) = Y0(0, Rf) +

∫ t

0

YN (s, L∗[Rf ])ds+ εN (t, f),

and by Lemma 4.1 and Remark 4.3, εN satisfies that

Eλ,N

[
sup
t∈[0,T ]

ε2N (t, f)

]
= oN (1)

(
|f ′|2∞ + |f ′′|2∞ + ‖f ′‖2

)
.

On the other hand, it is easy to see that

Eλ,N

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

Y (s, L∗[Rf ])ds

∣∣∣∣2
]
≤ CT 2‖f ′‖2.

Observe that |f ′′i,n(x)| ≤
√

2(θn ∧ κn)2. Then, for k > 5/2, (7.1) and (7.2) can be proved by
standard arguments (cf. [9, 11.3]).

8 Equivalence of ensembles

In this section we deal with the equivalence of ensembles in a multi-dimensional framework,
which has been used in the proof of Lemma 4.2. In the main result, Proposition 8.3, we prove
a Lebowitz–Percus–Verlet type formula (cf. [4]).

The notations in this section are independent of the other part. Let Ω be a general topo-
logical space equipped with a positive measure ν. Let f = (f1, . . . , fd) be a random vector on
Ω with compact level sets. For a d-dimensional coefficient λ, define

Z(λ) = log

[∫
Ω

exp
{
λ · f(ω)

}
ν(dω)

]
.

Assume a nonempty domain D ⊆ Rd such that Z(λ) <∞ for λ ∈ D, and

(a) Z ∈ C4
b (D), Z ′′(λ) is positive-definite for λ ∈ D.
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For simplicity we denote uλ = Z ′′(λ) and Σλ = Z ′′(λ). For λ ∈ D, let νλ be the tilted probability
measure on Ω, given by the formula

νλ(dω) , exp{λ · f(ω)− Z(λ)}ν(dω).

Observe that under νλ, the average of f is uλ and the covariance matrix is Σλ. Let Φλ denote
the characteristic function of f − uλ:

Φλ(h) =

∫
Ω

exp
{
ih · (f(ω)− uλ)

}
νλ(dω), ∀h ∈ Rd.

We also assume that

(b) there exists some ε0 > 0 such that |Φλ(h)| ≤ |h|−ε0 if |h| is large enough.

Remark 8.1. In the model introduced in Section 1, Ω = R2 and ν is the Lebesgue measure on
Ω. By taking d = 3 and λ = (0, βτ,−β), Z(λ) is the Gibbs potential in (1.3), and νλ is the
corresponding marginal distribution.

Notice that Z is convex, we consider its Fenchel-Legendre transform

Z∗(u) = sup
λ∈D
{λ · u− Z(λ)}.

Let D∗ = {u ∈ Rd : Z∗(u) < ∞}. The superior is reached at a unique λ(u) ∈ D, satisfying
that u = ∇Z|λ=λ(u) and λ(u) = ∇Z∗(u). Notice that the map u 7→ λ(u) is a one-to-one
correspondence from D∗ to D, and its inverse is given by λ 7→ uλ. The Hessian matrices of Z
and Z∗ then satisfy the relation

(Z∗)′′|u=uλ = [Z ′′(λ)]−1 = Σ−1
λ .

We define the rate function Iλ(u) by

Iλ(u) = Z∗(u)− Z∗(uλ)−∇Z∗(uλ) · (u− uλ). (8.1)

Denote by Mλ the largest eigenvalue of Σλ. By the arguments above it is not hard to conclude
that for any constant M > Mλ, we have

Iλ(u) ≥ (2M)−1|u− uλ|2 (8.2)

holds if |u− uλ| is small enough.
For n ≥ 1, equip the product space Ωn with measure νnλ = ⊗jdνλ(ωj), and define

f(n)(ω1, . . . , ωn) =
1

n

n∑
j=1

f(ωj), ∀(ω1, . . . , ωn) ∈ Ωn.

In view of 8.2 we can obtain the following large deviation property.

Lemma 8.2. For any M > Mλ, there exists some δM such that

νnλ
{
|f(n) − uλ| ≥ δ

}
≤ 2d exp

(
−nMδ2

d

)
,

holds for all n ≥ 1 when |δ| < δM .
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Proof. Let Γ ⊆ Rd be the collection of vectors whose coordinates are all ±1. Notice that the
following inequality holds for all x ∈ Rd:

e|x| ≤
d∏
j=1

e|xj | ≤
d∏
j=1

(e−xj + exj ) =
∑
γ∈Γ

eγ·x.

By exponential Chebyshev’s inequality and the above estimate, for θ > 0,

νnλ
{
|f(n) − uλ| ≥ δ

}
≤
∑
γ∈Γ

e−nθδ
∫
|f(n)−uλ|≥δ

exp
{
nθγ · (f(n) − uλ)

}
dνnλ

≤
∑
γ∈Γ

exp
{
− nθu′ + nZ(λ+ θγ)− nZ(λ)

}
,

where u′ = γ · uλ + δ. To optimize this estimate, define

Iλ,γ(u′) = sup
θ>0
{θu′ − Z(λ+ θγ) + Z(λ)} = sup

θ∈R
{θu− Z(λ+ θγ) + Z(λ)}.

The last equality is due to the fact that u′ − ∂θZ(λ+ θγ)|θ=0 = δ > 0. Notice that Iλ,γ is the
rate function defined in (8.1) corresponding to the measure νλ and the function γ · f . By the
arguments which has been used to derive (8.2), one obtains that Iλ,γ(u′) ≥ Mλ|γ|−2δ2. The
estimate in Lemma 8.2 then follows directly.

For a nice measurable function G on Ωn, we consider the canonical expectation ϕn,G and
the microcanonical expectation ψn,G, respectively given by

ϕn,G(λ) , Eνnλ [G], ψn,G(u) , Eνnλ [G|f(n) = u].

By equivalence of ensembles we mean that |ϕn,G(λ) − ψn,G(uλ)| vanishes when volume grows
to infinity. To state the result, let ‖G‖λ,n be the L2 norm of G with respect to νnλ , and assume
that there is a constant Cλ <∞ such that

(c.1) ‖G‖λ,n ≤ Cλ, |ψn,G(uλ)| ≤ Cλ‖G‖λ,n;

(c.2) ψn,G is three times differentiable on D, and for all γ ∈ Rd,∣∣∇ψn,G|u=uλ

∣∣ ≤ Cλ√n‖G‖2,λ,n, ∣∣[ψ′′n,G|u=uλ ]γ
∣∣ ≤ Cλn‖G‖λ,n · |γ|;

(c.3) with a constant bλ >
√

8dMλ and a sequence cλ,n → 0 as n→∞,

sup
|u−uλ|<δn

1

3!

∑
|α|=3

∂αψn,G(u)γα ≤ Bλ,n‖G‖λ,n|γ|3, ∀γ ∈ Rd,

where δn and Bλ,n are constants given by

δn = bλ

√
log n

n
, Bλ,n =

cλ,n
log log n

√
n

log n
.

The equivalence of ensembles is stated below.

Proposition 8.3. Assume a, b and c.1-c.3 above. Then∣∣∣∣ϕn,G(λ)− ψn,G(uλ)− 1

2n
Tr
[
∇(Σ−1

λ ∇ϕn,G(λ))
]∣∣∣∣ ≤ Kn

n
‖G‖λ,n,

where the sequence {Kn} satisfies that limn→∞Kn = 0.

Proof. The proof goes exactly the same as the one-dimensional case showed in [4], based on
a local central limit theorem with an expansion of error, as well as an estimate on the large
deviation probability of f(n) in Lemma 8.2.
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Place du Maréchal De Lattre De Tassigny, 75016 Paris, France

xu@ceremade.dauphine.fr

27


	Introduction
	The microscopic model
	Euler system with boundary conditions
	Equilibrium fluctuation
	Boltzmann-Gibbs principle
	Spectral gap
	Tightness
	Equivalence of ensembles

