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PARI-MUTUEL PROBABILITIES AS AN UNCERTAINTY

MODEL

IGNACIO MONTES, ENRIQUE MIRANDA, AND SEBASTIEN DESTERCKE

Abstract. The pari-mutuel model is a betting scheme that has its origins in
horse racing, and that has been applied in a number of contexts, mostly eco-
nomics. In this paper, we consider the set of probability measures compatible
with a pari-mutuel model, characterize its extreme points, and investigate the
properties of the associated lower and upper probabilities. We show that the
pari-mutuel model can be embedded within the theory of probability intervals,
and prove necessary and su�cient conditions for it to be a belief function or a
minitive measure. In addition, we also investigate the combination of di�erent
pari-mutuel models and their de�nition on product spaces.

Keywords: Pari-mutuel bets, credal sets, probability intervals, belief func-
tions, information fusion.

1. Introduction

The pari-mutuel model (PMM) is a betting scheme originated in horse racing,
and since then has often been employed in economics. If we consider a gambler
betting on a event A and let P0(A) be the fair price for a bet that returns 1 if
A happens, the gambler's gain is IA − P0(A), while the house (a bookmaker, an
insurance, . . . ) gains P0(A) − IA, with IA the indicator function of event A. In
order to assure a positive gain expectation, the house may increase the price of the
bet by 1+ δ, transforming its gain into (1+ δ)P0(A)− IA. This coe�cient δ is then
interpreted as some kind of taxation or commission coming from the house. We
refer to [21, 26, 28] for some works on this model and to [11] for a critical study in
the context of life insurance.

Beyond its use in economic problems, the pari-mutuel model has also been ad-
vocated as interesting within imprecise probability theory [32]. In this context, the
discounted value (1+δ)P0(A) can be interpreted as an upper bound of some proba-
bility, and one can consider the associated setM(P0, δ) of dominated probabilities.
This induces a neighbourhood around an initial estimate P0 that may be considered
too precise. Such a probability set (or its associated expectation bounds) can then
be used in di�erent contexts, such as classi�cation [29, 30] or risk analysis [20].

While working with sets of probabilities may be more realistic in a number of
situations where the information is imprecise or ambiguous [2, 10, 12], its use also
increases computational complexity, and the elicitation of the imprecise probability
model is not always immediate. Because of this, it is interesting to consider models
that can cope with scarce information while remaining simple of use. In this paper,
we study the pari-mutuel model and investigate to which extent it satis�es these
requirements.

In these respect, while some theoretically oriented studies for this model already
exist [20, 32], many of its more numerical or practical aspects remain unstudied.
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Rectifying this issue is the task we set forth in this paper, where we explore practical
aspects of the PMM as an imprecise probability model de�ned on a �nite space.
After recalling some preliminaries in Section 2, we study the following aspects of
the PMM:

• The extreme points of the set of probability measures associated with a
pari-mutuel model; in particular, we provide in Section 3 bounds on the
number of such points, and characterize in which cases these bounds are
attained. Also, we analyze their structure and we show how to compute
them.

• Next in Section 4 we study the relationship between the PMM and other
imprecise probability models. Although it is immediate to show that a
PMM is always 2-monotone (and in particular coherent in the sense of
Walley [32]), here we show that the PMM can be regarded as a particular
instance of probability intervals. In addition, we also determine in which
cases a PMM is equivalent to a belief and a plausibility function, and under
which conditions it produces a minitive measure.

• Finally, in Section 5 we tackle the problem of combining multiple PMMs,
either de�ned on the same space, in which case the typical task is to merge
these models into a single one, or on di�erent spaces, in which case the aim
is usually to build a joint model in the product space.

The paper concludes with some additional discussion in Section 6.

2. Preliminary concepts

We devote this section to the introduction of basic notions about imprecise prob-
abilities and the PMM.

2.1. Imprecise probabilities. The theory of imprecise probabilities [32] is an
alternative to probability theory that is useful when the information about the
experiment under study does not allow us to elicit a unique probability.

Given a universe X , a lower probability on P(X ) is a functional P : P(X )→ R,
where P (A) can be understood as a lower bound for the unknown value of the
probability of A. Any lower probability de�nes, by means of conjugacy, an upper
probability P : P(X ) → R by means of the formula P (A) = 1− P (Ac). Following
the previous interpretation, P (A) can be interpreted as the upper bound of the
unknown probability of A.

Any lower probability P , and its conjugate upper probability P , de�nes a con-
vex and closed set of probabilities, usually called credal set, that contains all the
probabilities compatible with the information given by P (and P ):

M(P ) = {P probability | P (A) ≥ P (A) ∀A ⊆ X}.
In this paper we are interested in a particular type of lower (and conjugate upper)
probabilities, those satisfying the consistency requirement of coherence:

P (A) = min{P (A) | P ∈M(P )} ∀A ⊆ X .
In other words, coherence means that P (resp., P ) is the lower (resp., upper)
envelope of its credal set.

For coherent lower (and upper) probabilities the following properties are satis�ed
(see [32, Section 2.7.4]):

Consistency of P and P : P (A) ≤ P (A) for every A.
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Monotonicity: P (A) ≤ P (B) and P (A) ≤ P (B) for every A ⊆ B.
Sub-additivity of P : P (A ∪B) ≤ P (A) + P (B) for every A,B.
Super-additivity of P : P (A ∪B) ≥ P (A) + P (B) for every A,B.

Since M(P ) is a closed and convex set of probabilities, it is characterized by its
extreme points: a probability P ∈M(P ) is an extreme point if P = αP1+(1−α)P2

for α ∈ (0, 1), P1, P2 ∈M(P ) implies P1 = P2 = P .

2.2. Pari-Mutuel Model. In this paper we shall assume that our possibility space
X is �nite: X = {x1, . . . , xn}. Consider a precise probability measure P0 de�ned
on P(X ). We shall assume throughout that for every i = 1, . . . , n, P0({xi}) > 0;
our results can be extended straightforwardly to the general case1.

De�nition 1. Let P0 be a probability measure on P(X ), and take δ > 0. The pari-
mutuel model (PMM) induced by P0, δ, denoted by (P0, δ), is given by the following
lower and upper probabilities:

P (A) = max{(1+ δ)P0(A)− δ, 0} and P (A) = min{(1+ δ)P0(A), 1} ∀A ⊆ X . (1)

Note that the assumption of P0({xi}) > 0 ∀i = 1, . . . , n implies that P (A) ≥
P0(A) > 0 for every A ⊆ X . Moreover, Eq. (1) implies that the functionals P , P
are conjugate, meaning that P (A) = 1− P (Ac) ∀A ⊆ X .

It is also important to remark that in some works based on the PMM, the
following de�nition is considered:

P (A) = (1 + δ)P0(A)− δ and P (A) = (1 + δ)P0(A) ∀A ⊆ X . (2)

However, as discussed by Walley [32, Sec. 2.9.3], for large values of δ this may
produce lower and upper probabilities that are not coherent: speci�cally, if P0(A) >
1

1+δ we obtain P (A) > 1 and P (Ac) < 0, and as a consequence P , P are not the
upper and lower envelopes of the set of probability measures they bound. Since in
this paper we are investigating the properties of a PMM from the point of view of
imprecise probabilities, we have decided to follow Walley's suggestion and to work
with the de�nition given by Eq. (1).

Remark 1. In order to understand the meaning of the parameter δ in a PMM,
note that [32, Sec. 2.9.3] P (A)− P (A) ≤ δ for every A ⊆ X , and that

P (A)− P (A) = δ ⇐⇒ (1 + δ)P0(A)− δ = P (A) and P (A) = (1 + δ)P0(A)

⇐⇒ 1

1 + δ
≥ P0(A) ≥

δ

1 + δ
.

In particular, P (A)−P (A) = δ whenever 0 < P (A) < P (A) < 1. Therefore, δ may
be understood in terms of the imprecision in the de�nition of P (A). �

In this paper, we are going to study some properties of the PMM as an imprecise
probability model [2]. Other works in this direction were carried out in [20, 32]. In
particular, in [20] the authors studied the connection between the PMM and risk
measures, the problem of updating a PMM and its extension to lower and upper
expectation functionals, in the sense of Walley.

1Simply consider that if P0({x}) = 0, then (1+δ)P0({x}) = 0 as well; thus, if P0(A) = 0 we also

obtain P (A) = 0, and this allows to make a one-to-one correspondence between the elements of
M(P0, δ) and those in M(P ′0, δ), where P

′
0 is the restriction of P0 to X ′ := {x ∈ X : P0({x}) > 0}.
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We begin by noting that, since the lower probability of a PMM can be obtained
as a convex transformation of a probability measure, it follows [8] that P is 2-
monotone, meaning that

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B)

for every A,B ⊆ X . Since the functionals P , P in Eq. (1) are conjugate, it follows
that P is 2-alternating:

P (A ∪B) + P (A ∩B) ≤ P (A) + P (B) ∀A,B ⊆ X .

As a consequence [32], P , P are coherent lower and upper probabilities, that is, they
are respectively the lower and upper envelopes of the credal set associated with the
PMM, given by

M(P0, δ) = {P probability | P (A) ≤ P (A) ≤ P (A) ∀A ⊆ X}. (3)

Since the coherence of a PMM implies that it is uniquely determined by its (closed
and convex) associated credal set, it becomes interesting to determine the extreme
points of the setM(P0, δ) given by Eq. (3); this is particularly relevant if we want to
use the PMM in some applied contexts, such as credal networks [1, 6]. This is what
we set out to do in the following section. Later on we shall study the connection
of PMM with probability intervals and belief functions, as well as how to combine
two di�erent PMMs.

3. Extreme points induced by a PMM

In this section we are going to study the set ext(M(P0, δ)) of extreme points of
the credal setM(P0, δ) associated with a PMM.

Since the lower probability of a PMM is 2-monotone, the extreme points of
M(P0, δ) are associated with permutations of X [4], in the following manner: if
Sn denotes the permutations of {1, . . . , n}, then for every σ ∈ Sn we consider the
probability measure Pσ given by

Pσ({xσ(1)}) = P ({xσ(1)}),
Pσ({xσ(k)}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)}) ∀k = 2, . . . , n. (4)

Then, the extreme points of M(P0, δ) are the probability measures Pσ de�ned as
above: ext(M(P0, δ)) = {Pσ : σ ∈ Sn}. As a consequence, the number of extreme
points of M(P0, δ) is bounded above by n!, the number of permutations of a n-
element space. In this section, we are going to study if this upper bound can be
lowered for the credal sets associated with a PMM. Some results, for the particular
case where P0 is the uniform probability distribution, can be found in [29, Sect. 5.2]
and [30, Sect. 4.2] 2.

3.1. Maximal number of extreme points. We begin by establishing two pre-
liminary but helpful properties of the PMM. As a coherent upper probability, P is
sub-additive, but it is not necessarily additive. Our next result establishes additiv-
ity under some conditions.

2Although in [30] the authors de�ne a PMM by means Eq. (2) instead of Eq. (1), both these
de�nitions give rise to the same credal set, and therefore our results about the extreme points are
also applicable in their context.
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Lemma 1. Let P be the upper probability induced by a PMM (P0, δ) by means of
Eq. (1). If P (A) < 1, then

P (A) =
∑
x∈A

P ({x}). (5)

Proof. By Eq. (1), P (A) < 1 implies that P (A) = (1 + δ)P0(A). Furthermore,
monotonicity of P implies that P ({x}) ≤ P (A) < 1 for every x ∈ A, and therefore
P ({x}) = (1 + δ)P ({x}). Hence:

P (A) = (1 + δ)P0(A) = (1 + δ)
∑
x∈A

P0({x}) =
∑
x∈A

P ({x}). �

We deduce that if P (A ∪B) < 1 and A ∩B = ∅, then

P (A ∪B) =
∑

x∈A∪B
P ({x}) =

∑
x∈A

P ({x}) +
∑
x∈B

P ({x}) = P (A) + P (B).

This lemma allows us to give an alternative expression for the setM(P0, δ).

Corollary 1. LetM(P0, δ) denote the credal set associated with a PMM (P0, δ) by
means of Eq. (3). Then, a probability measure P belongs toM(P0, δ) if and only if

P ({x}) ≤ (1 + δ)P0({x}) ∀x ∈ X . (6)

Proof. To see that the condition is necessary, note that every element P ofM(P0, δ)
satis�es:

P ({x}) ≤ P ({x}) = min{(1 + δ)P0({x}), 1} ≤ (1 + δ)P0({x}).

To see that Eq. (6) implies that P (A) ≤ P (A) for every A, we must consider two
cases. On the one hand, if P (A) = 1, then trivially P (A) ≤ P (A). On the other
hand, if P (A) < 1, then from Lemma 1 :

P (A) =
∑
x∈A

P ({x}) =
∑
x∈A

(1 + δ)P0({x}) ≥
∑
x∈A

P ({x}) = P (A),

where the inequality follows from Eq. (6). We conclude that P (A) ≤ P (A) for every
A ⊆ X , and therefore P ∈M(P0, δ). �

Corollary 1 tells us that the setM(P0, δ) is entirely speci�ed by upper bounds
over the singletons of X . Using the additivity property (5) from Lemma 1, we can
prove the second preliminary result, which gives the form of the extreme points of
M(P0, δ) in terms of P and P .

Lemma 2. Let P0 be a probability on X , δ > 0 and P , P be given by Eq. (1). The
extreme point Pσ associated with the permutation σ by Eq. (4) is given by:

P ({xσ(i)}) = P ({xi}) ∀i = σ(1), . . . , σ(j − 1),

P ({xσ(j)}) = P ({xσ(j), . . . , xσ(n)}),
P ({xσ(j+1)}) = . . . = P ({xσ(n)}) = 0,

where j ∈ {1, . . . , n} satis�es P ({xσ(1), . . . , xσ(j−1)}) < P ({xσ(1), . . . , xσ(j)}) = 1.
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Proof. By Lemma 1 and Eq. (4), the extreme point associated with σ is given by:

P ({xσ(1)}) = P ({xσ(1)}).
P ({xσ(2)}) = P ({xσ(1), xσ(2)})− P ({xσ(1)}) = P ({xσ(2)}).

. . .

P ({xσ(j−1)}) = P ({xσ(1), . . . , xσ(j−1)})− P ({xσ(1), . . . , xσ(j−2)}) = P ({xσ(j−1)}).
P ({xσ(j)}) = P ({xσ(1), . . . , xσ(j)})− P ({xσ(1), . . . , xσ(j−1)})

= 1− P ({xσ(1), . . . , xσ(j−1)}) = P ({xσ(j), . . . , xσ(n)}),

where the last equality follows by the conjugacy of P and P ; therefore, Pσ({xσ(k)}) =
0 for k = j + 1, . . . , n. �

The above result is illustrated in the following example:

Example 1. Let X = {x1, x2, x3, x4}, P0 the uniform probability distribution and
δ = 0.5. If we consider the permutation σ = (1, 2, 3, 4), we obtain the extreme point
Pσ given by:

Pσ({x1}) = P ({x1}) = 1.5 · 0.25 = 0.375.
Pσ({x2}) = P ({x2}) = 1.5 · 0.25 = 0.375.
Pσ({x3}) = P ({x3, x4}) = 1.5 · 0.5− 0.5 = 0.25.
Pσ({x4}) = 0.

In fact, it can be proven that the extreme points ofM(P0, δ) are given by

P ({xi}) = P ({xi}) = 0.375,
P ({xj}) = P ({xj}) = 0.375,
P ({xk}) = P ({xk, xl}) = 0.25,
P ({xl}) = 0,

for every possible combination of i, j, k, l in {1, 2, 3, 4}. �

Lemma 2 simpli�es the computation of the extreme points of the credal set of a
PMM. In this respect, we begin by determining the number of extreme points in a
speci�c case:

Proposition 1. Let P0 denote the uniform distribution on {x1, . . . , xn} and con-
sider δ > 0.

(1) If n is even and δ ∈
(
n−2
n+2 , 1

)
, thenM(P0, δ) has

(
n
n
2

)
n

2
di�erent extreme

points.

(2) If n is odd and δ ∈
(
n−1
n+1 ,

n+1
n−1

)
, thenM(P0, δ) has

(
n
n+1
2

)
n+ 1

2
di�erent

extreme points.

Proof. Let us prove the �rst statement; the proof of the second is analogous.

For δ ∈
(
n−2
n+2 , 1

)
, given A with |A| = n

2 it holds that

P (A) = min{(1 + δ)P (A), 1} = min
{
(1 + δ)

1

2
, 1
}
< 1,

because δ < 1, while given A with |A| = n
2 + 1 :

P (A) = min{(1 + δ)P (A), 1} = min
{
(1 + δ)

n+ 2

2n
, 1
}
= 1,
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because δ > n−2
n+2 . Thus, all the sets with cardinality n

2 or less have an upper
probability lower than 1, and all the sets with cardinality greater than n

2 have
upper probability 1. Moreover, taking a permutation σ and its induced extreme
point Pσ, since (1 + δ)n+2

2n > 1, we deduce that Pσ({xσ(n2 +1)}) 6= Pσ({xσ(n2 )}).
As a consequence, for every two permutations σ1, σ2, it holds that Pσ1

= Pσ2
if

and only if σ1(
n
2 + 1) = σ2(

n
2 + 1), and {σ1(1), . . . , σ1(n2 )} = {σ2(1), . . . , σ2(

n
2 )}.

There are

(
n
n
2

)
di�erent ways of selecting the �rst n

2 elements, and for any of

them there are n
2 di�erent extreme points (as many as possibilities for choosing

the element in the n
2 + 1-th position). Therefore, M(P0, δ) has

n

2

(
n
n
2

)
di�erent

extreme points. �

A similar result can be found in [29, Prop. 1 (2)], where the number of ex-
treme points is written in terms of a parameter s: s

(
n
s

)
. Furthermore, taking [29,

Prop. 1 (2)] and Lemma 1 into account, it can be seen that the extreme points of
M(P0, δ) when P0 is the uniform probability measure are given by:

PE({x}) =


1+δ
n if x ∈ E\{x∗},

1−δ
2 if x = x∗,

0 otherwise,

where E = {x∗, xi1 , . . . , xin/2} is every set of n2 + 1 elements, if n is even, and:

PO({x}) =


1+δ
n if x ∈ O\{x∗},

1− (n−1)(1+δ)
2n if x = x∗,

0 otherwise,

where O = {x∗, xi1 , . . . , xi(n−1)/2
} is every set of n−12 + 1 elements, if n is odd.

Next we show that the case depicted in Proposition 1 corresponds to the maximal
number of extreme points associated with a PMM:

Proposition 2. Consider a PMM (P0, δ) on X . The maximal number of extreme
points ofM(P0, δ) is:

(1)
n

2

(
n
n
2

)
, if n is even.

(2)
n+ 1

2

(
n
n+1
2

)
, if n is odd.

Proof. Consider the case of n even; the proof for n odd is similar.
Given a permutation σ, denote j = min{i = 1, . . . , n | P ({σ(1), . . . , σ(i)}) = 1}.

Then, the same extreme point Pσ is generated by (j−1)! ·(n−j)! permutations: all
those with {σ′(1), . . . , σ′(j− 1)} = {σ(1), . . . , σ(j− 1)} and {σ′(j+1), . . . , σ(n)} =
{σ′(j + 1), . . . , σ′(n)}.

This value is lower bounded by

(j − 1)! · (n− j)! ≥
(n
2
− 1
)
! ·
(n
2

)
!

and thus, the number of di�erent extreme points ofM(P0, δ) is bounded above by

n!(
n
2 − 1

)
! ·
(
n
2

)
!
=
n

2

(
n
n
2

)
.
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Furthermore, by Proposition 1 this maximum is attained. �

Note that the maximal number of extreme points for n odd can equivalently be
expressed by

(n+1
n+1
2

)
n+1
4 . As we shall see, the above formula of the maximal number

of extreme points of the credal set of a PMM is related to that of probability
intervals [27]. This is no coincidence: it is due to the connection between both
models we shall establish in Section 4.1.

3.2. A bound on the number of extreme points for an arbitrary PMM.

In this section, we shall establish a simple formula that provides an upper bound on
the number of extreme points associated with a PMM. Let (P0, δ) be a pari-mutuel
model, and de�ne

L = {A ⊆ X | P (A) = 1}. (7)

This is a �lter of subsets of X , and as a consequence also a poset with respect to
set inclusion.

Example 2. Consider a four-element space X = {x1, x2, x3, x4} with probabilities
0.1, 0.1, 0.3 and 0.5, respectively, and let δ = 0.3. The poset (L,⊆) is given by

L = {X , {x2, x3, x4}, {x1, x3, x4}, {x3, x4}}

and pictured, with the whole subset lattice, in Figure 1. �

∅

{x1} {x2} {x3} {x4}

{x1, x2} {x1, x3} {x1, x4} {x2, x3} {x2, x4} {x3,x4}

{x1, x2, x3} {x1, x2, x4} {x1,x3,x4} {x2,x3,x4}

X

Figure 1. Set inclusion lattice and �lter L (in bold) from Example 2.

We can use this �lter to bound the number of extreme points of a PMM:



PARI-MUTUEL PROBABILITIES AS AN UNCERTAINTY MODEL 9

Proposition 3. Consider a PMM (P0, δ), and let L be given by Eq. (7). Then, the
number of extreme points ofM(P0, δ) is bounded above by:

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ . (8)

Proof. For every A ∈ L, de�ne:

MA = {P ∈ ext(M(P0, δ)) | P (A) = 1, P ({x}) > 0 ∀x ∈ A}.

Let us prove that ext(M(P0, δ)) = ∪A∈LMA. On the one hand, it is obvious that
MA ⊆ ext(M(P0, δ)) for every A ∈ L, and therefore ext(M(P0, δ)) ⊇ ∪A∈LMA.
Conversely, given P ∈ ext(M(P0, δ)), if we de�ne A∗ = {x ∈ X : P ({x}) > 0}, it
holds that P (A∗) = 1, and P ∈MA∗ .

Now, if P ∈ MA ∩ MB for two di�erent A,B ∈ L, then P (A) = P (B) =
1 and P ({x}) > 0 for every x ∈ A ∪ B. Therefore, if there exists x ∈ A\B,
P (B ∪{x}) = P (B)+P ({x}) > 1, a contradiction. Therefore, A = B. This means
that {MA : A ∈ L} is a partition of ext(M(P0, δ)), whence

|ext(M(P0, δ))| =
∑
A∈L
|MA|.

We prove next that |MA| ≤
∣∣∣⋂B⊆A,B∈LB∣∣∣. We consider two cases:

Case 1: Assume that
⋂
B⊆A,B∈LB = A. This means that every B ⊂ A

satis�es P (B) < 1, as no strict subset of A is in L. From Lemma 2, for
every P ∈MA there exists xP ∈ A such that:

P ({x}) =


P ({xP } ∪Ac) if x = xP .

P ({x}) if x ∈ A\{xP }.
0 if x ∈ Ac.

(9)

Therefore, |MA| is at most equal to the cardinality of A, so:

|MA| ≤ |A| =

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ .
Case 2: Assume now that B∗ =

⋂
B⊆A,B∈LB ⊂ A. Again, from Lemma 2

we know that for every P ∈ MA exists xP ∈ A such that Eq. (9) holds.
Let us see that xP should belong to B∗. By contradiction, assume that
xP ∈ A\B∗. This implies that there exists B ∈ L with B ⊂ A such that
xP /∈ B. In particular, we can take B = A\{xP }. Then, the probability P
satis�es:

P (B) =
∑
x∈B

P ({x}) ≥ P (B) = 1,

where the inequality follows from the super-additivity of the coherent upper
probability P . Thus, P (B) = 1, and as a consequence P ({xP }) = 0, a
contradiction with P ∈MA.
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We conclude that xP ∈ B∗. Therefore, the cardinality ofMA is at most
the number of elements in B∗. Equivalently:

|MA| ≤ |B∗| =

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ . �

Example 3. Consider again Example 2. Using Prop. 3, the maximal number of
extreme points ofM(P0, δ) is bounded by (8). Let us compute this value; for every
A ∈ L, it holds: ∣∣∣∣∣∣

⋂
B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x3, x4}∣∣∣ = 2.

Therefore, the number of extreme points ofM(P0, δ) is bounded by:

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x3, x4}∣∣∣+∣∣∣{x3, x4}∣∣∣+∣∣∣{x3, x4}∣∣∣+∣∣∣{x3, x4}∣∣∣ = 2+2+2+2 = 8.

In fact, in this case this formula provides not only an upper bound but the exact
number of extreme points, since

M{x3,x4} = {(0, 0, 0.39, 0.61), (0, 0, 0.35, 0.65)}.
M{x1,x3,x4} = {(0.13, 0, 0.39, 0.48), (0.13, 0, 0.22, 0.65)}.
M{x2,x3,x4} = {(0, 0.13, 0.39, 0.48), (0, 0.13, 0.22, 0.65)}.

MX = {(0.13, 0.13, 0.39, 0.35), (0.13, 0.13, 0.09, 0.65)}.�

Let us also show that the bound given in Proposition 3 is not always tight.

Example 4. Consider X = {x1, x2, x3}, the uniform distribution P0 on X and
δ = 0.5. It holds that:

L = {{x1, x2}, {x1, x3}, {x2, x3},X}.

Using the previous result, the number of extreme points is bounded above by

∑
A∈L

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ =
∣∣∣{x1, x2}∣∣∣+ ∣∣∣{x1, x3}∣∣∣+ ∣∣∣{x2, x3}∣∣∣+ ∣∣∣∅∣∣∣ = 2 + 2 + 2 + 0 = 6.

However, the extreme points are:

M{x1,x2} = {(0.5, 0.5, 0)}, M{x1,x3} = {(0.5, 0, 0.5)}, M{x2,x3} = {(0, 0.5, 0.5)}.

Thus, there are only 3 extreme points, half of the upper bound given in the propo-
sition. �

Note that A ∈ L if and only if P0(A) ≥ 1
1+δ . We can characterize the tightness

of the bound given in Eq. (8) by means of the strict inequality in this expression.

Proposition 4. Consider a PMM (P0, δ), and let L be given by Eq. (7). The num-
ber of extreme points of M(P0, δ) coincides with the bound determined by Eq. (8)
if and only if P0(A) >

1
1+δ for every A ∈ L.
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Proof. From the proof of Proposition 3, the bound given by Eq. (8) is tight if and
only if, for every set A ∈ L,

|MA| =

∣∣∣∣∣∣
⋂

B⊆A,B∈L

B

∣∣∣∣∣∣ . (10)

Consider then A ∈ L, and assume that |A| > 1 (the case of |A| = 1 is trivial). Let
B∗ =

⋂
B⊆A,B∈LB ⊆ A; then the proof of Proposition 3 shows that the elements of

MA are given by Eq. (9), for xP ∈ B∗. Thus, Eq. (10) holds only if these extreme
points are di�erent for every z ∈ B∗. This holds if and only if P ({z}∪Ac) 6= P ({z})
for every z ∈ B∗, because in that case P ({xP }) 6= P ({xP }) for every P ∈ MA. If
|B∗| = 1, then trivially |MA| = 1 = |B∗|. On the other hand, if |B∗| > 1, the fact
that {z}, A\{z} /∈ L implies that P ({z}) < 1 and P ({z}∪Ac) = 1−P (A\{z}) > 0.
Applying Eq. (1), we have

P ({z} ∪Ac) = (1 + δ)P0({z} ∪Ac)− δ
and

P ({z}) = (1 + δ)P0({z}).
Thus, P ({z} ∪Ac) 6= P ({z}) if and only if (1+ δ)P0(A

c)− δ 6= 0. By conjugacy,
P (Ac) = 1−P (A) = 0, whence (1+δ)P0(A

c)−δ ≤ 0. Then, P ({z}∪Ac) 6= P ({z})
is equivalent to P0(A

c) < δ
1+δ , or, in other words, to P0(A) >

1
1+δ . �

Indeed, we can see that in Example 4 it holds that P0(A) = 2
3 = 1

1+δ for

A = {x1, x2} ∈ L, meaning that the bound in Eq. (8) is not tight.

4. Connection with other imprecise probability models

In this section, we study the connection between the PMM and other relevant
imprecise probability models. In particular, we show that PMMs in a �nite setting
are particular instances of probability intervals, and study the conditions for a
PMM to induce a belief function and a minitive lower probability, respectively.

4.1. Probability intervals. Given X = {x1, . . . , xn}, a probability interval [7, 27]
on P(X) is a lower probability de�ned on the singletons and their complements. A
probability interval can thus be represented by a n-tuple of intervals:

I = {[li, ui] : i = 1, . . . , n}, (11)

where it is assumed that li ≤ ui and [li, ui] means that the unknown or imprecisely
speci�ed probability of xi belongs to the interval [li, ui]. A probability interval
determines a credal set by:

M(I) = {P probability | li ≤ P ({xi}) ≤ ui, i = 1, . . . , n}, (12)

and the lower and upper envelopes of M(I) determine coherent lower and upper
probabilities by:

l(A) = inf
P∈M(I)

P (A) and u(A) = sup
P∈M(I)

P (A) ∀A ⊆ X . (13)

The probability interval I is called proper when its associated credal set M(I) is
non-empty. This holds when:

n∑
i=1

li ≤ 1 ≤
n∑
i=1

ui. (14)
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Furthermore, a probability interval I is called reachable (i.e., coherent in Walley's
terminology [32]) whenever the functionals l, u determined by Eq. (13) determine
the intervals from Eq. (11) when restricted to singletons, i.e., when l({xi}) = li and
u({xi}) = ui for all i = 1, . . . , n. This is equivalent to the following inequalities:∑

j 6=i

lj + ui ≤ 1 and
∑
j 6=i

uj + li ≥ 1 ∀i = 1, . . . , n. (15)

When I is a reachable probability interval, l(A) and u(A) can be computed by:

l(A) = max

∑
xi∈A

li, 1−
∑
xi /∈A

ui

 and u(A) = min

∑
xi∈A

ui, 1−
∑
xi /∈A

li

 ,

for every A ⊆ X . For a detailed study on probability intervals, we refer to [7]. See
also [3, 13, 24, 25] for other relevant works on this topic.

Our next result shows that the PMM is a particular case of a reachable proba-
bility interval.

Theorem 1. Consider a PMM (P0, δ), and de�ne the probability interval I =
{[li, ui] : i = 1, . . . , n} by:

li = P ({xi}) and ui = P ({xi}),

where P , P are given by Eq. (1). Then, if we denote by M(I) the credal set asso-
ciated with I by means of Eq. (12), it holds that:

(1) The probability interval I = {[li, ui] : i = 1, . . . , n} is reachable.
(2) M(I) = M(P0, δ), or equivalently, P (A) = l(A) and P (A) = u(A) for

every A ⊆ X .

Proof. First of all, let us see that I = {[li, ui] : i = 1, . . . , n} satis�es Eq. (15):∑
j 6=i

lj + ui =
∑
j 6=i

P ({xj}) + P ({xi}) ≤ P ({xi}c) + P ({xi}) = 1;

∑
j 6=i

uj + li =
∑
j 6=i

P ({xj}) + P ({xi}) ≥ P ({xi}c) + P ({xi}) = 1,

taking into account that P is super-additive and P is sub-additive.
Let us now see that P (A) = l(A) for every A ⊆ X . On the one hand, assume

that P (A) = 0, whence P (Ac) = 1. Then P ({x}) = 0 for every x ∈ A, and therefore
l({x}) = 0 for every x ∈ A. By de�nition:

l(A) = max
{∑
x∈A

l({x}), 1−
∑
x/∈A

u({x})
}

= 1−
∑
x/∈A

u({x}) = 1−
∑
x/∈A

P ({x}) ≤ 1− P (Ac) = 0.

On the other hand, if P (A) = (1 + δ)P0(A)− δ > 0, then

l(A) = max
{∑
x∈A

l({x}), 1−
∑
x/∈A

u({x})
}
= max

{∑
x∈A

P ({x}), 1−
∑
x/∈A

P ({x})
}

= max
{∑
x∈A

P ({x}), 1− P (Ac)
}
= max

{∑
x∈A

P ({x}), P (A)
}
= P (A),
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where the third and �fth equalities follow form Lemma 1 and the supper-additivity
of P , respectively.

By conjugacy of P , P and l, u, we can simply see that P (A) = u(A) for every A:

P (A) = 1− P (Ac) = 1− l(Ac) = u(A).

Therefore, l = P and u = P . �

Thus, the PMM is a particular case of probability interval. On the other hand,
the latter model is more general, in the sense that not every reachable probability
interval can also be expressed in terms of a PMM:

Example 5. Consider the four-element space X = {x1, x2, x3, x4} and the proba-
bility interval I = {[li, ui] : i = 1, . . . , 4} given by:

x1 x2 x3 x4
li 0.2 0.1 0.3 0.2
ui 0.4 0.2 0.5 0.4

which can be shown to be reachable using Eq. (15).
To see that I is not representable by a PMM (P0, δ), note that by Remark 1, given

a PMM every set A such that 0 < P (A) < P (A) < 1 satis�es that P (A)−P (A) = δ.
However, in this example we obtain:

0 < l({x1}) = l1 = 0.2 < 0.4 = u1 = u({x1}) < 1 and

0 < l({x2}) = l2 = 0.1 < 0.2 = u2 = u({x2}) < 1,

while

u({x1})− l({x1}) = 0.2 and u({x2})− l({x2}) = 0.1;

thus, the di�erence is not constant, and therefore l, u cannot be represented by means
of a PMM. �

In particular, we deduce from Corollary 1 that a PMM will be a probability
interval where one only speci�es the upper probability bounds on the singletons
(the lower bounds following then from (13), for instance). Thus, any property
satis�ed by probability intervals is also satis�ed for the PMMs. Interestingly, the
maximal number of extreme points for the credal set of a PMM, established in
Theorem 2, coincides with the maximal number of extreme points for a probability
interval, given in [27] 3.

4.2. Belief functions. As we mentioned in Section 2, the lower probability of a
PMM is 2-monotone. In this section we consider a stronger notion that extends 2-
monotonicity, called completely monotonicity. A lower probability P is completely
monotone if that for every p ∈ N and every sets A1, . . . , Ap ⊆ X ,

P (∪pi=1Ai) ≥
∑

J⊆{1,...,n}

(−1)|J|−1P (∩i∈JAi). (16)

A lower probability satisfying the property of completely monotonicity is also called
a belief function. Its conjugate upper probability is called a plausibility function.

3Note that there is a misprint when reporting this number in [7].
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Belief functions [23] are determined by their Möbius inverse m : P(X ) → [0, 1],
that is a mass function on the subsets of X , by means of the formula

P (A) =
∑
B⊆A

m(B).

The sets A ⊆ X such that m(A) > 0 are called the focal elements of P . A lower
probability satisfying Eq. (16) for every p ≤ k is called k-monotone.

Conversely, the Möbius inverse m of a lower probability P is determined by the
formula

m(B) =
∑
A⊆B

(−1)|B\A|P (A), (17)

and P is a belief function if and only if the function m given by Eq. (17) satis�es
m(A) ≥ 0 for every A ⊆ X .

In [3, Thm.3 1], a su�cient condition for a probability interval to be a completely
monotone model was established; see also [7, Sect. 6] and [15]. In this section,
we shall establish necessary and su�cient conditions for the particular types of
probability intervals associated with PMMs. In doing so, we shall show that the
su�cient condition in [3] is not necessary.

We start with a simple result which shall imply that the PMM is not 3-monotone
in general.

Proposition 5. Let P be lower probability associated with a PMM (P0, δ), with
|X | ≥ 3. If there are di�erent xi, xj , xk such that P ({xi}), P ({xj}), P ({xk}) > 0,
then P is not 3-monotone.

Proof. Take A1 = {xi, xj}, A2 = {xi, xk} and A3 = {xj , xk}. The monotonicity of
P implies that P (A1), P (A2), P (A3) > 0. On the one hand,

P (A1 ∪A2 ∪A3) = P ({xi, xj , xk}) = (1 + δ)P0({xi, xj , xk})− δ,

while

P (A1)+P (A2)+P (A3)−
(
P (A1∩A2)+P (A1∩A3)+P (A2∩A3)

)
+P (A1∩A2∩A3)

is equal to

P ({xi, xj}) + P ({xi, xk}) + P ({xj , xk})−
(
P ({xi}) + P ({xj}) + P ({xk})

)
+ P (∅)

= (1 + δ)
[
P0({xi, xj}) + P0({xi, xk}) + P0({xj , xk})
− P0({xi})− P0({xj})− P0({xk})

]
= (1 + δ)P0({xi, xj , xk}).

Now, if we compare both expressions, we obtain

(1 + δ)P0({xi, xj , xk})− δ − (1 + δ)P0({xi, xj , xk}) = −δ < 0,

and therefore P is not 3-monotone. �

To see that the hypotheses of this proposition may be satis�ed, let P0 be the
uniform distribution on {x1, x2, x3} and take δ = 1

3 : then it follows from Eq. (1)

that P ({x1}) = P ({x2}) = P ({x3}) = 1
9 .
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In the remainder of this section we are going to establish necessary and su�cient
conditions for the lower probability of a PMM to be completely monotone. For this
aim we de�ne the non-vacuity index of a PMM as

k = min{|A| : P (A) > 0}. (18)

Now we give su�cient conditions to ensure completely monotonicity in terms of
this index. Our �rst two results are quite simple and they correspond to the cases
of k = n or k = n− 1.

Proposition 6. Let (P0, δ) be a PMM, P be the lower probability it induces by
Eq. (1) and let k be its non-vacuity index, given by Eq.(18). If k = n, then P is a
belief function whose only focal set is X with mass 1.

Proof. If k = n, this means that P (X ) = 1 and P (A) = 0 for every A ⊂ X . This
is the belief function associated with the basic probability assignment m given by
m(A) = 0 for every A ⊂ X and m(X ) = P (X ) = 1. �

In this case, by conjugacy, we obtain that for every non-empty A ⊂ X , P (A) =
1 − P (Ac) = 1. This situation arises when P0(A) < 1 and δ ≥ P0(A)

P0(Ac)
for every

A ⊂ X . It corresponds to the so-called vacuous model.
Next we consider the case of k = n− 1.

Proposition 7. Let (P0, δ) be a PMM, P be the lower probability it induces by
Eq. (1) and let k be its lower index, given by Eq.(18). If k = n− 1 and

n∑
i=1

P (X\{xi}) ≤ 1,

then P is a belief function.

Proof. By Eq. (17), we know that m(A) = 0 for every A such that |A| < n − 1.
Now, for every i = 1, . . . , n, m(X\{xi}) = P (X\{xi}). Moreover,

m(X ) = P (X )−
n∑
i=1

P (X\{xi}) = 1−
n∑
i=1

P (X\{xi}) ≥ 0,

because by hypothesis
∑n
i=1 P (X\{xi}) ≤ 1. Therefore, m(A) ≥ 0 for every A,

and as a consequence P is a belief function. �

Finally, we give two su�cient conditions for P to be a belief function when its
non-vacuity index k is smaller than n− 1.

Proposition 8. Let (P0, δ) be PMM and P be the lower probability it induces by
Eq. (1). Assume there exists B such that P (A) > 0 if and only if B ⊆ A, and
assume that the non-vacuity index k = |B| satis�es k < n− 1. Then, P is a belief
function whose focal sets are B and B ∪ {x}, for x /∈ B, with respective masses:

m(B) = P (B) = (1 + δ)P0(B)− δ and m(B ∪ {x}) = (1 + δ)P0({x}).

Proof. First of all, use Eq. (17) to compute m(B) and m(B ∪ {x}) for x /∈ B:
m(B) = P (B) = (1 + δ)P0(B)− δ > 0.

m(B ∪ {x}) = P (B ∪ {x})− P (B) = (1 + δ)P0(B ∪ {x})− δ − (1 + δ)P0(B) + δ

= (1 + δ)P0({x}) > 0.
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Let us prove that m(A) = 0 for every set di�erent from B, B ∪ {x}. First of all,
if B 6⊆ A, it follows from Eq. (17) that m(A) = 0. Take now A′ ⊆ Bc such that
|A′| = j > 1, and let us see that m(A′ ∪B) = 0.

m(A′ ∪B) =
∑

C⊆A′∪B

(−1)|A
′∪B\C|P (C) =

∑
C′⊆A′

(−1)|B|+|A
′\C′|P (C ′ ∪B)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C|=i

(−1)j−iP (C ′ ∪B).

Let us compute the value of the last term for every �xed i ∈ {0, . . . , j}. We start
with the case i = 0:

∑
C′⊆A′,|C′|=0

(−1)jP (C ′ ∪B) = (−1)jP (B) = (−1)j ((1 + δ)P0(B)− δ) , (19)

where the �rst equality follows because the only set C ′ ⊆ A′ with cardinality 0 is
the empty set.

Consider now i = 1, . . . , j:

∑
C′⊆A′,|C′|=i

(−1)j−iP (C ′ ∪B) =
∑

C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B ∪ C ′)− δ)

=
∑

C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B)− δ) +
∑

C′⊆A′,|C′|=i

(−1)j−i(1 + δ)P0(C
′)

= (−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) +

∑
C′⊆A′,|C′|=i

(−1)j−i(1 + δ)P0(C
′). (20)

In the last equality we have taken into account that in the �rst sum, the term
(−1)j−i((1 + δ)P0(B)− δ) does not depend on the sets C ′, so we sum this element
as many times as sets C ′ of cardinality i are included in A′, that is, the binomial
coe�cient

(
j
i

)
.

With respect to the second term, every element x ∈ A′ can be included in
(
j−1
i−1
)

di�erent sets C ′ ⊆ A′ of cardinality i. Therefore, Eq. (20) becomes:

(−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) + (−1)j−i(1 + δ)

(
j − 1

i− 1

) ∑
x∈A′

P0({x})

= (−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) + (−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′). (21)
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Using Eqs. (19) and (21) we obtain the value of m(A′ ∪B). It holds that:

(−1)|B|m(A′ ∪B) =

j∑
i=0

∑
C′⊆A′,|C′|=i

P (C ′ ∪B)

= (−1)j ((1 + δ)P0(B)− δ) +
j∑
i=1

(
(−1)j−i

(
j

i

)
((1 + δ)P0(B)− δ)

+ (−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′)
)

=

j∑
i=0

(−1)j−i
(
j

i

)
((1 + δ)P0(B)− δ) +

j∑
i=1

(−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′)

= ((1 + δ)P0(B)− δ)
j∑
i=0

(−1)j−i
(
j

i

)
+ P0(A

′)(1 + δ)

j∑
i=1

(−1)j−i
(
j − 1

i− 1

)

= ((1 + δ)P0(B)− δ)
j∑
i=0

(−1)j−i
(
j

i

)
+ P0(A

′)(1 + δ)

j−1∑
i=0

(−1)j−i−1
(
j − 1

i

)
= 0,

where the last equality follows from the well known property of binomial coe�cients:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk, (22)

by taking y = 1, x = −1, k = i, n = j and y = 1, x = −1, k = i, n = j − 1,
respectively.

We conclude that m(A) ≥ 0 for every A, whence P is a belief function; its focal
sets are B and B ∪ {x} for every x /∈ B. �

Proposition 9. Let (P0, δ) be PMM and P be the lower probability it induces by
Eq. (1). Assume there is B such that P (A) > 0 if and only if B ⊂ A and that

δ = P0(B)
1−P0(B) , and assume that the non-vacuity index k = |B|+1 satis�es k < n−1.

Then, P is a belief function whose focal sets are B ∪ {x} for every x /∈ B with
masses:

m(B ∪ {x}) = P0({x})
1− P0(B)

.

Proof. First of all, let us compute m(B) and m(B ∪ {x}) for x /∈ B:

m(B) = P (B) = (1 + δ)P0(B)− δ = 0.

m(B ∪ {x}) = P (B ∪ {x})− P (B) = (1 + δ)P0(B ∪ {x})− δ = (1 + δ)P0({x})

= P0({x})
(
1 +

P0(B)

1− P0(B)

)
= P0({x})

1− P0(B) + P0(B)

1− P0(B)

=
P0({x})
1− P0(B)

.
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Note that:

∑
x/∈B

m(B ∪ {x}) =
∑
x/∈B

P0({x})
1− P0(B)

=
1

1− P0(B)

∑
x/∈B

P0({x})

=
P0(B

c)

1− P0(B)
=

1− P0(B)

1− P0(B)
= 1.

Let us see that m(A) = 0 for every set di�erent from B, B ∪ {x}. First of all,
if B 6⊆ A, it follows from Eq. (17) that m(B) = 0. Take now A′ ⊆ Bc with
|A′| = j > 1, and let us see that m(A ∪B) = 0.

m(A′ ∪B) =
∑

C⊆A′∪B

(−1)|A
′∪B\C|P (C) =

∑
C′⊆A′

(−1)|B|+|A\C
′|P (C ′ ∪B)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP (C ′ ∪B).

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B ∪ C ′)− δ)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−i ((1 + δ)P0(B)− δ)

+ (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP0(C
′)(1 + δ)

= (−1)|B|
j∑
i=0

∑
C′⊆A′,|C′|=i

(−1)j−iP0(C
′)(1 + δ),

where last equality follows because we already know that (1+ δ)P0(B)− δ = 0. Let
us now analyze last expression for every i = 0, . . . , j. First of all, for i = 0, it holds
that: ∑

C′⊆A,|C′|=0

(−1)jP0(C
′)(1 + δ) = P0(∅)(1 + δ) = 0.

For every i = 1, . . . , j, we proceed as in the previous proof. Every x ∈ A′ can be
included in exactly

(
j−1
i−1
)
di�erent sets C ′ ⊆ A′ of cardinality i, whence

∑
C′⊆A′,|C′|=i

(−1)j−iP0(C
′)(1 + δ) = (−1)j−i(1 + δ)

(
j − 1

i− 1

) ∑
x∈A′

P0({x})

= (−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′).
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We deduce that:

m(A′ ∪B) = (−1)|B|
j∑
i=1

(−1)j−i(1 + δ)

(
j − 1

i− 1

)
P0(A

′)

= (−1)|B|(1 + δ)P0(A
′)

j∑
i=1

(−1)j−i
(
j − 1

i− 1

)

= (−1)|B|(1 + δ)P0(A
′)

j−1∑
i=0

(−1)j−i−1
(
j − 1

i

)
= 0,

where the last inequality follows again from the property of binomial coe�cients
described in Eq. (22) using y = −1, x = 1, k = i, n = j − 1.

We conclude that m(A) ≥ 0 for every set A, whence P is a belief function. In
addition, we have proven that the focal sets are B ∪ {x} for every x /∈ B. �

We have established four su�cient conditions for the lower probability associated
with a pari-mutuel model to be completely monotone. Next we show that these
conditions are also necessary.

Theorem 2. Consider a PMM (P0, δ), and let P be its associated lower probability.
P is a belief function if and only if one of the following conditions is satis�ed:

(B1) k = n.
(B2) k = n− 1 and

∑n
i=1 P (X\{xi}) ≤ 1.

(B3) k < n − 1, there exists a unique B with |B| = k and P (B) > 0, and
P (A) > 0 if and only if B ⊆ A.

(B4) k < n− 1, there exists a unique B with |B| = k − 1 and δ = P0(B)
1−P0(B) , and

P (A) > 0 if and only if B ⊂ A.

Proof. Su�ciency of these four conditions has been proven in Propositions 6�9.
Conversely, let us see that if P is a belief function, one of the conditions must be
satis�ed.

First of all, if k = n, then P (A) = 0 for every A ⊂ X and P (X ) = 1. Therefore,
m(X ) = 1 and m(A) = 0 for every A ⊂ X , and as a consequence we are in case
(B1).

Secondly, if k = n−1, this means that P (A) = 0 for every A such that |A| < n−1.
Furthermore, m(X\{x}) = P (X\{x}). Since the sum of all the masses must be 1,

1 =
∑
A⊆X

m(A) =
∑
x∈X

m(X\{x}) +m(X ),

whence
∑
x∈X m(X\{x}) ≤ 1, so we are in case (B2).

In order to simplify the notation in the remainder of the proof, we shall assume
without loss of generality that the elements in X are ordered so that

P0({x1}) ≥ P0({x2}) ≥ . . . ≥ P0({xn}), (23)

and denote pi = P0({xi}) for every i = 1, . . . , n.
Assume that k < n − 1 and that there is only one set B of cardinality k with

P (B) > 0. From Eq. (23), B = {x1, . . . , xk}. By de�nition of P , we obtain that:

• m(B) = P (B) = (1 + δ)(p1 + · · ·+ pk)− δ.
• ∀j = k + 1, . . . , n, m(B ∪ {xj}) = P (B ∪ {xj})− P (B) = (1 + δ)pj .
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As a consequence,

m(B)+

n∑
j=k+1

m(B∪{xj}) = (1+δ)(p1+· · ·+pk)−δ+
n∑

j=k+1

(1+δ)pj = (1+δ)−δ = 1.

Since m(A) ≥ 0 because P is a belief function, we deduce that the only focal
elements of P are the sets B,B ∪ {xj}, j = k + 1, . . . , n. As a consequence, we are
in case (B3).

Finally, consider that k < n − 1 and there are two di�erent sets A1, A2 of
cardinality k such that P (A1), P (A2) > 0. By Eq. (23), we can assume that A1 =
{x1, . . . , xk−1, xk} and A2 = {x1, . . . , xk−1, xk+1}.

Denote C = {x1, . . . , xk+2} = A1∪A2∪{xk+2}. Since P is a belief function and
using Eq. (17),

0 ≤ m(C\{xi}) = P (C\{xi})−
∑

j 6=i∈{1,...,k+2}

P (C\{xi, xj}) ∀i = 1, . . . , k−1. (24)

On the other hand, we also have that

0 ≤ m(C) =P (C)−
k+2∑
i=1

P (C \ {xi}) +
∑

i6=j∈{1,...,k+2}

P (C\{xi, xj})

=P (C)− P (C \ {xk+2})− P (C \ {xk+1})− P (C \ {xk})
+ P ({x1, . . . , xk−1, xk}) + P ({x1, . . . , xk−1, xk+1})

−
k−1∑
i=1

P (C\{xi}) +
∑
I

P (C\{xi, xj}),

where I = {(i, j) : i < j, i, j ∈ {1, . . . , k + 2}}\{(k + 1, k + 2), (k, k + 2)}.
Applying the de�nition of P , this is equal to

− (1 + δ)pk+2 −
k−1∑
i=1

P (C\{xi}) +
∑
I

P (C \ {xi, xj})

= −(1 + δ)pk+2 −
k−1∑
i=1

P (C \ {xi})−∑
j 6=i

P (C \ {xi, xj})

+ P (C \ {xk, xk+1})

≤ −(1 + δ)pk+2 + P (C \ {xk, xk+1}),

where the inequality follows from Eq. (24).
From this we deduce that P (C \ {xk, xk+1}) > 0, whence

0 ≤ −(1 + δ)pk+2 + P (C \ {xk, xk+1}) = (1 + δ)(p1 + · · ·+ pk−1)− δ.

Since on the other hand P ({x1, . . . , xk−1}) = 0 implies that (1−δ)(p1+· · ·+pk−1)−
δ ≤ 0, we conclude that (1− δ)(p1 + · · ·+ pk−1)− δ = 0, or, in other words,

δ =
p1 + · · ·+ pk−1

1− p1 − · · · − pk−1
. (25)

Now, for every i = k, . . . , n, we have that

0 ≤ m({x1, . . . , xk−1, xi}) = P ({x1, . . . , xk−1, xi})
= (1 + δ)(p1 + · · ·+ pk−1 + pi)− δ = (1 + δ)pi,
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and as a consequence

n∑
i=k

m({x1, . . . , xk−1, xi}) =
n∑
i=k

(1 + δ)pi =

n∑
i=k

pi + δ

n∑
i=k

pi =

n∑
i=k

pi +

k−1∑
j=1

pj = 1,

taking into account the value of δ from Eq. (25). From this we deduce that the
only focal elements of P are the sets {x1, . . . , xk−1, xi} for i = k, . . . , n, and as a
consequence we are in case (B4). �

We have already mentioned that in [3, Thm. 1], a su�cient condition for a
probability interval to induce a completely monotone function is given. Since from
Theorem 1 any PMM is in particular a probability interval, we now investigate the
connection between [3, Thm. 1] and the characterization we have established in
Theorem 2.

Theorem 3. [3, Thm. 1] Consider a universe X = {x1, . . . , xn} with n ≥ 3, and
consider the probability interval I = {[li, ui] : i = 1, . . . , n}. Denote by l and u the
lower and upper probabilities induced from I by using Eq. (13). If∣∣∣∣∣∣

{
i : ui +

∑
j 6=i

lj < 1
}∣∣∣∣∣∣ ≤ 2 (26)

then l and u are a belief and a plausibility function.

Let us now show that this su�cient condition is not necessary in our framework.
First of all, note that if we are in case (B1), the probability interval associated with
a PMM trivially satis�es Eq. (26) because li = P ({xi}) = 0 and ui = P ({xi}) = 1
for every i = 1, . . . , n. In the other three cases, we are going to see that the su�cient
condition is not necessary.

Example 6. Consider the four-element universe X = {x1, x2, x3, x4} and the ini-
tial probability P0 =(0.1,0.1,0.2,0.6). In the next table we summarize the values of
P , P for δ = 1 and δ = 1.5:

δ = 1 δ = 1.5
A P (A) P (A) m(A) P (A) P (A) m(A)

{x1} 0 0.2 0 0 0.25 0
{x2} 0 0.2 0 0 0.25 0
{x3} 0 0.4 0 0 0.5 0
{x4} 0.2 1 0.2 0 1 0

{x1, x2} 0 0.4 0 0 0.5 0
{x1, x3} 0 0.6 0 0 0.75 0
{x1, x4} 0.4 1 0.2 0.25 1 0.25
{x2, x3} 0 0.6 0 0 0.75 0
{x2, x4} 0.4 1 0.2 0.25 1 0.25
{x3, x4} 0.6 1 0.4 0.5 1 0.5

{x1, x2, x3} 0 0.8 0 0 1 0
{x1, x2, x4} 0.6 1 0 0.5 1 0
{x1, x3, x4} 0.8 1 0 0.75 1 0
{x2, x3, x4} 0.8 1 0 0.75 1 0

X 1 1 0 1 1 0
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We can see that for δ = 1, we are in case (B3) and for δ = 1.5 we are in case (B4) of
Theorem 2, so P is a belief function. However, in none of these cases the probability
interval associated with the PMM satis�es Eq. (26), as |{i : ui +

∑
j 6=i lj < 1}| = 3

in both cases.
On the other hand, take n = 3, the initial probability P0 = (0.2, 0.4, 0.4) and

δ = 1. We are in case (B2) of Theorem 2, so P is a belief function; its focal
sets are {x1, x2}, {x1, x3} and {x2, x3} with masses 0.2, 0.2 and 0.6, respectively.
However, Eq. (26) is not satis�ed, because every xi satis�es 0 = li < ui < 1, and
therefore |{i : ui +

∑
j 6=i lj < 1}| = 3. �

Therefore, the su�cient condition in terms of probability intervals given in The-
orem 3 is only necessary for the PMM in the very particular case of (B1). On the
other hand, Example 6 also shows that conditions (B2), (B3), (B4) may indeed be
ful�lled by a PMM; to see that (B1) may also be satis�ed, it su�ces to consider
P0 =

(
1
3 ,

1
3 ,

1
3

)
and δ > 2, taking into account the comments after Proposition 6.

4.3. Minitive functions. One particular family of belief functions is that of mini-
tive functions. A function P : P(X ) → [0, 1] is called minitive if P (A ∩ B) =
min{P (A), P (B)} for every A,B ⊆ X . Any minitive function is in particular a
belief function, and it corresponds to the particular case of nested focal elements.
This means that they can be totally ordered by means of set inclusion.

Taking Theorem 2 into account, we can characterize the PMMs that induce a
minitive function.

Corollary 2. Let (P0, δ) be PMM and P be the lower probability it induces by
Eq. (1). P is a minitive function if and only if one of the following conditions is
satis�ed:

(B1) k = n.
(B2*) k = n− 1 and there exists only one x ∈ X such that m(X\{x}) > 0.

Proof. First of all, if condition (B1) is satis�ed, from Theorem 2 we know that P is
a belief function whose only focal set is X . Therefore, P is in particular minitive.

If (B2*) is satis�ed, in particular condition (B2) is satis�ed in Theorem 2, so
P is a belief function with only two focal sets: X and X\{x}, which are nested.
Therefore P is not only a belief function but also minitive.

Let us now see that if P is minitive, no other situation is possible. Since any
minitive function is a belief function, from Theorem 2 they must satisfy one of (B1),
(B2), (B3) or (B4). If (B3) or (B4) are satis�ed, this means that there is a set B
with cardinality smaller than n − 1 such that B ∪ {x} is focal for every x /∈ B.
Therefore, there are x1, x2 ∈ Bc (x1 6= x2) such that B ∪ {x1} and B ∪ {x2} are
focal. But these two sets are not nested, and therefore P is not a minitive function.

Similarly, if (B2) holds, then
∑n
i=1 P (X\{xi}) ≤ 1 and the focal sets are X and

X\{xi} for every i = 1, . . . , n. Therefore, since the focal sets must be nested, there
can only be one x ∈ X such that P (X\{x}) > 0, so (B2*) must be satis�ed. �

4.4. Extreme points of completely monotone PMM. Our previous results
allow us to compute the maximum number of extreme points for the credal set
associated with a completely monotone PMM:

Proposition 10. Let (P0, δ) be a completely monotone PMM, and consider its
associated credal setM(P0, δ). Then the number of extreme points ofM(P0, δ) is:
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(a) n when (P0, δ) satis�es condition (B1) in Theorem 2.
(b) At most

(
n
2

)
when (P0, δ) satis�es condition (B2).

(c) At most k2n−k when (P0, δ) satis�es condition (B3).
(d) At most (k − 1)2n−k+1 − (k − 2) when (P0, δ) satis�es condition (B4).

Proof. (a) If we are in case (B1), thenM(P0, δ) is the set of all probability mea-
sures. This set has n di�erent extreme points: the degenerate probability
measures.

(b) If we are in case (B2), we deduce from Proposition 7 that the focal elements
of the belief function P are sets of the type {xi}c for every i = 1, . . . , n
together with X . Therefore, given a permutation σ, the extreme point Pσ
it induces by Eq. (4) assigns positive mass to at most xσ(1) and xσ(2). Since

there are at most
(
n
2

)
di�erent pairs, we have at most

(
n
2

)
di�erent extreme

points.
(c) If we are in case (B3), we deduce from Proposition 8 that the focal elements

of the belief function P are the sets B,B ∪ {x} for every x /∈ B. Thus,
given a permutation σ, if i is the smallest index in {1, . . . , n} such that
xσ(i) ∈ B, then the associated extreme point Pσ gives positive mass to the
elements xσ(1), . . . , xσ(i). Moreover, for every other permutation σ′ such
that σ(i) = σ′(i), {σ(1), . . . , σ(i − 1)} = {σ′(1), . . . , σ′(i − 1)}, it follows
that Pσ = Pσ′ . Thus, the number of di�erent extreme points results from
combining the element of B that comes �rst (and there are k possibilities
for that) with the groups of 0, 1, 2, ..., n− k elements of Bc, for which there
are (

n− k
0

)
+

(
n− k
1

)
+ · · ·+

(
n− k
n− k

)
= 2n−k.

Thus, we have k2n−k di�erent extreme points.
(d) Finally, if we are in case (B4), we deduce from Proposition 9 that the focal

elements of the belief function P are the sets B ∪ {x} for every x /∈ B for
some given B. If B = ∅ (k=1), we obtain that the focal elements are the
singletons, and then P is a probability measure, meaning that there is only
one extreme point. Assume next that k > 1. Then, given a permutation σ,
if i is the smallest index in {1, . . . , n} such that xσ(i) ∈ B, then the associ-
ated extreme point Pσ gives positive mass to the elements xσ(1), . . . , xσ(i),
when i < n− k + 2, and to xσ(1), . . . , xσ(i−1), when i = n− k + 2 (that is,
when all the n− k + 1 elements of Bc go �rst).

When i < n−k+2, for every other permutation σ′ such that σ′(i) = σ(i)
and {σ′(1), . . . , σ′(i − 1)} = {σ(1), . . . , σ(i − 1)} it holds that Pσ′ = Pσ.
On the other hand, if i = n + k + 2, every other permutation σ′ with
{σ′(1), . . . , σ′(i − 1)} = {σ(1), . . . , σ(i − 1)} satis�es Pσ′ = Pσ. Thus, the
number of extreme points is

(k − 1)

(
n− k + 1

0

)
+ (k − 1)

(
n− k + 1

1

)
+ · · ·+ (k − 1)

(
n− k + 1

n− k

)
+

(
n− k + 1

n− k + 1

)
= (k − 1)2n−k+1 − (k − 2). �

Thus, the maximum number of extreme points ofM(P0, δ) is 2
n−1 when n ≥ 3,

and it corresponds to k = 1, 2 in case (B3), and to k = 2 in case (B4). This number
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is signi�cantly lower than the bound we have established in Theorem 2 for general
PMM, and also that for the number of extreme points for the credal set of a belief
function, known to be n!.

The number of extreme points is even lower for PMM inducing a minitive func-
tion: taking into account Corollary 2, we are either in case (B1), and then we have
n di�erent extreme points, or in case (B2*), where there two focal elements X \{x}
and X . In this second case there are two possibilities:

• If xσ(1) 6= x, then Pσ({xσ(1)}) = 1, Pσ({xσ(i)}) = 0 ∀i = 2, . . . , n. This
determines n− 1 di�erent extreme points.

• If xσ(1) = x, then Pσ({xσ(1)}) = m(X ), Pσ({xσ(2)}) = 1 − m(X ) and
Pσ({xσ(i)}) = 0 ∀i = 3, . . . , n. This determines n − 1 di�erent extreme
points.

Thus, the maximum number of extreme points of a minitive PMM is 2(n − 1),
much lower that the maximum number of extreme points of the credal set associated
with a minitive function, known to be 2n−1 [16].

5. Combining multiple PMMs

In this section, we study what happens when we consider multiple PMMs, �rst
characterizing our uncertainty of a common variable (they could be two precise
assessments provided by experts with di�erent types of expertise), and then char-
acterizing our uncertainty over multiple variables (they could be two assessments
coming from the same expert about di�erent variables). For simplicity, we focus
on binary cases where either two sources communicate their uncertainty or two
variables are concerned. Most of the conclusions extend straightforwardly to the
multivariate case.

5.1. Information fusion of PMMs. When two sets M(P 1
0 , δ1) and M(P 2

0 , δ2)
are provided to describe our uncertainty over X , one often needs to combine them
into a single model [9]. Three classical ways to achieve such a combination are
to consider the conjunction (intersection), the disjunction (union) or the average
(convex mixture) of the models. Using the commutativity and (quasi-)associativity
of these operators, extensions to an arbitrary number of sources is straightforward.

Before starting our study of such models, recall that from Corollary 1M(P0, δ)
is the set of probability measures satisfying the constraints in Eq. (6): every prob-
ability P ∈ M(P0, δ) must satisfy (1 + δ)P0({x}) ≥ P ({x}) ∀x ∈ X . As already
indicated in Section 4, this corresponds to a probability interval where only upper
bounds are provided (since the lower bounds can be derived from them).
Conjunction. Let us denote by

M(P∩0 , δ
∩) :=M(P 1

0 , δ1) ∩M(P 2
0 , δ2)

the probability set obtained by conjunctively combiningM(P 1
0 , δ1) andM(P 2

0 , δ2).

Proposition 11. The setM(P∩0 , δ
∩) is non-empty if and only if∑

x∈X
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1. (27)
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In that case, it is induced by the PMM (P∩0 , δ
∩) such that

δ∩ =

(∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1 (28)

P∩0 ({x}) =
min

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∩

. (29)

Proof. Given the two sets of constraints given by Eq. (6) applied to (P 1
0 , δ1) and

(P 2
0 , δ2), their intersection is the set of probability measures satisfying

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
≥ P ({x}) ∀x ∈ X .

This corresponds to a speci�c probability interval where

li = 0, ui = min
{
(1 + δ1)P

1
0 ({xi}), (1 + δ2)P

2
0 ({xi}), 1

}
∀i;

by Eq. (14), the associated credal set is non-empty if and only if∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
≥ 1.

Assume now that this intersection is non-empty, and let us prove that in that
case it can be induced by the PMM (P δ0 , δ

∩). Taking into account Corollary 1, if
M(I) =M(P∩0 , δ

∩), then for every probability measure P it should hold that

P ({xi}) ≤ ui ⇐⇒ P ({xi}) ≤ (1 + δ∩)P∩0 ({xi}) ∀xi ∈ X . (30)

If we make ui = (1 + δ∩)P∩0 ({xi}) and take into account that∑
x∈X

(1 + δ∩)P∩0 ({x}) =
∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
= 1 + δ∩,

we obtain that Eq. (30) is satis�ed for the values of P∩0 and δ∩ given in Eqs. (28) and
(29), and that moreover with those de�nitions P∩0 ({x}) ∈ [0, 1] for every x ∈ X . �

In the particular case where P 1
0 = P 2

0 , Eq. (27) is always satis�ed because:∑
x∈X

min
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x}), 1

}
=
∑
x∈X

min
{
(1 + min{δ1, δ2})P0({x}), 1

}
≥
∑
x∈X

P0({x}) = 1,

and the values of δ∩ and P∩0 given in Eqs. (28) and (29) become:

δ∩ = min{δ1, δ2} and P∩0 = P0.

Indeed, if P 1
0 = P 2

0 and δ1 ≤ δ2, we haveM(P 1
0 , δ1) ⊆M(P 2

0 , δ2), henceM(P 1
0 , δ1)∩

M(P 2
0 , δ2) =M(P 1

0 , δ1). In the more general case, Proposition 11 provides us with
a simple procedure to verify the non-emptiness of M(P∩0 , δ

∩), as well as e�cient
formulae to compute the conjunction of two (or more) PMMs.

Example 7. Consider the space X = {x1, x2, x3} and the two following models

P 1
0 = (0.3, 0.3, 0.4), δ1 = 0.3,

P 2
0 = (0.4, 0.3, 0.3), δ2 = 0.3,

that are such thatM(P 1
0 , δ1) ∩M(P 2

0 , δ2) 6= ∅. Their conjunction is given by

P∩0 = (1/3, 1/3, 1/3), δ∩ = 0.17.
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The result is illustrated on Figure 2, where the initial two PMMs are in light gray,
and the resulting conjunction is in dark gray. �

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P∩0

M(P1
0 , δ1) ∩M(P2

0 , δ2)

Figure 2. Example of conjunction.

Disjunction. When the intersection of two credal sets is empty (they are con-
�icting), an alternative is to consider their union, that is to considerM(P 1

0 , δ1) ∪
M(P 2

0 , δ2) or its convex hull, since M(P 1
0 , δ1) ∪M(P 2

0 , δ2) will not be convex in
general.

The convex hull conv(M(P1
0, δ1)∪M(P2

0, δ2)) will not be induced by a PMM in
general, either. However, we can easily provide a best outer-approximating PMM
(P∪0 , δ

∪) using the fact that any outer-approximation of M(P 1
0 , δ1) ∪ M(P 2

0 , δ2)
must satisfy the constraint

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
≥ P ({x}) ∀x ∈ X .

Indeed, using the same arguments as in the proof of Proposition 11, we can de�ne

δ∪ =

(∑
x∈X

max
{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

})
− 1

and

P∪0 ({x}) =
max

{
(1 + δ1)P

1
0 ({x}), (1 + δ2)P

2
0 ({x})

}
1 + δ∪

so thatM(P∪0 , δ
∪) ⊇M(P 1

0 , δ1)∪M(P 2
0 , δ2). To see that this inclusion holds, note

that for every event A, we have∑
x∈A

max
{
P

1
({x}), P 2

({x})
}
≥ max

{∑
x∈A

P
1
({x}),

∑
x∈A

P
2
({x})

}

where P
1
, P

2
are the upper probabilities induced by (P 1

0 , δ1) and (P 2
0 , δ2), respec-

tively.
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Example 8. Consider the space X = {x1, x2, x3} and the two following models

P 1
0 = (0.3, 0.4, 0.3), δ1 = 0.2,

P 2
0 = (0.2, 0.2, 0.6), δ2 = 0.3,

that satisfyM(P 1
0 , δ1) ∩M(P 2

0 , δ2) = ∅. Their outer-approximation is given by

P∪0 = (0.222, 0.297, 0.481), δ∪ = 0.62.

The result is illustrated on Figure 3, where the initial two PMMs are in light gray,
and the resulting outer-approximation of the disjunction is in dark gray. �

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P∪0

M(P∪0 , δ
∪)

Figure 3. Example of approximated disjunction.

Mixture. The mixture of two PMMs, that is, the computation of

M(P ε0 , δε) := εM(P 1
0 , δ1) + (1− ε)M(P 2

0 , δ2)

for a given ε ∈ (0, 1) is straightforward when applying results [18] established for
probability intervals. In particular, the model M(P ε0 , δε) is described by the con-
straints

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x}) ≥ P ({x}) ∀x ∈ X

on a probability measure P . From this, we deduce that

1 + δε =
∑
x∈X

ε(1 + δ1)P
1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

= ε(1 + δ1)
∑
x∈X

P 1
0 ({x}) + (1− ε)(1 + δ2)

∑
x∈X

P 2
0 ({x})

= ε(1 + δ1) + (1− ε)(1 + δ2),

and

P ε0 ({x}) =
ε(1 + δ1)P

1
0 ({x}) + (1− ε)(1 + δ2)P

2
0 ({x})

1 + δε
.
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Example 9. Consider the initial models of Example 8 with ε = 0.5 to have an
arithmetic average, we obtain the model

pε0 = (0.248, 0.296, 0.456), δε = 0.25.

The result is illustrated on Figure 4, where the initial two PMMs are in light gray,
and the resulting average is in dark gray. �

p(x1)

p(x2)

p(x3)

P1
0

P2
0

P ε0

εM(P1
0 , δ1) + (1− ε)M(P2

0 , δ2)

Figure 4. Example of PMM mixture.

Other, more elaborate combinations can be derived from these basic ones (see
for instance [18, 31]). They will not be discussed in this paper.

5.2. Marginal and joint PMM. A second related problem would be the study
of PMM on product spaces, as an uncertainty model about two di�erent variables
X,Y taking respective values on X = {x1, . . . , xn} and Y = {y1, . . . , ym}. These
can arise as a combination of two marginal PMMs into a joint one, or we may
instead be interested in deriving the marginal models from a given joint PMM. We
discuss the two possibilities in this section.
From marginals to joint. Assuming we have a discounting factor δ and two
probabilities PX0 and PY0 given on X and Y, respectively, it seems reasonable to
wonder whether we should �rst:

• combine PX0 and PY0 into a joint probability PX,Y0 over X ×Y and consider

the discounted setM(PX,Y0 , δ) or;
• compute the discounted sets intoM(PX0 , δ) andM(PY0 , δ) and then com-
bine the two resulting sets into a joint setMX,Y .

Under an assumption of independence, the �rst approach has the advantage that

PX,Y0 has a unique formal de�nition corresponding to stochastic independence,
while the jointMXY will strongly depend on the chosen extension of the classical
notion of probabilistic independence, since many of them exist [5]. To facilitate the
discussion, we will only consider the set MXY resulting from the assumption of
strong independence, that corresponds to the convex hull of all stochastic products
of probabilities withinM(PX0 , δ) andM(PY0 , δ). One question that arises is what
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is the relation between the set M(PX,Y0 , δ) resulting from the �rst approach and

the setMXY resulting from the second approach. To ease the notation, let P
1
and

P
2
denote their respective upper probabilities over X × Y. An immediate remark

is that the two joint sets will not be equal in general: we have

P
1
(A×B) = (1+δ)PX0 (A)PY0 (B) ≤ (1+δ)PX0 (A)(1+δ)PY0 (A) = P

2
(A×B) (31)

whenever P
2
(A × B) < 1. The second value is obtained from the fact that under

the strong independence assumption [5], we have the factorisation property

P
2
(A×B) = P

X
(A)P

Y
(B), (32)

where P
X
, P

Y
are the marginal upper probabilities of P . Note that the inequality

in (31) is strict as soon as δ, PX0 (A) and PY0 (B) are all strictly positive. From (31),

a natural question is whetherM(PX,Y0 , δ) ⊆MXY . The next example shows that
it will not be the case in general.

Example 10. Consider the spaces X = {x1, x2} and Y = {y1, y2} with the two
probabilities PX0 , P

Y
0 given by

PX0 (x1) = 0.3, PX0 (x2) = 0.7, PY0 (y1) = 0.5, PY0 (y2) = 0.5,

and let δ = 0.1. Given the event E = {(x2, y2)}c, we obtain

P
1
(E) = 1− P 1({(x2, y2)}) = 1− 0.285 = 0.715

> P
2
(E) = 1− P 2({(x2, y2)}) = 1− 0.67 · 0.45 = 1− 0.3015 = 0.6985,

and therefore it cannot beM(PX,Y0 , δ) ⊆MXY . �

Most other independence notions (including epistemic independence and random
set independence, for instance) used within imprecise probability theory [5] also
satisfy Eq. (32), hence the inequality concerning events of the kind A×B remains
true for them. As this factorisation property is also true for lower probabilities,
Example 10 also applies to them. This may be an important issue when having to
choose whether one should �rst combine then discount, or discount then combine.
We can nevertheless notice that there is essentially one way to apply the �rst option
(using stochastic independence), and many to apply the second (as one has to choose
an adequate notion of independence).

From joint to marginals. Let us now start from a PMM (PX,Y0 , δ) on a product
space X × Y. Its associated credal set is the set of probability measures satisfying

(1 + δ)P0({xi, yj}) ≥ P ({xi, yj}) ∀(xi, yj) ∈ X × Y.

The question is then to know, if we want to marginalize all probabilities contained

inM(PX,Y0 , δ) over X or Y, what is the shape of the resulting credal setsMX and
MY ? The answer is pretty straightforward as soon as we realize that the marginal
model on X is described by the constraints

P ({xi}) =
∑
yj∈Y

P ({xi, yj}) ≤
∑
yj∈Y

(1 + δ)P0({xi, yj}) ≤ (1 + δ)P0({xi})

∀xi ∈ X , which correspond to the set M(PX0 , δ) where P
X
0 is the marginal of P0

over X . The same holds forMY .
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6. Conclusions

Our results show that the pari-mutuel model is a computationally simple model
within imprecise probability theory that at the same time keeps enough generality to
be useful in a number of practical situations. On the one hand, we have proven that
the pari-mutuel model can be embedded within the theory of probability intervals,
and as such can be used quite easily within graphical models. In this respect, it is
interesting to note that, even if not all probability intervals can be represented as
a pari-mutuel model, the tightest bound on the number of extreme points of their
associated set of probabilities is the same for both of them.

In addition, we have also determined in which cases a pari-mutuel model is equiv-
alent to a pair of conjugate belief and plausibility functions. Such a representation
is interesting because it allows for instance to use pari-mutuel models in the con-
text of random sets [19]. Belief functions and 2-monotone lower probabilities have
also been considered in some of the extensions of the expected utility paradigm
that deal with imprecise information [14, 22]. In this respect, now that we have
clari�ed the connection between the pari-mutuel model and other models within
imprecise probability theory, it would be interesting to study the preferences that
can be modelled by means of pari-mutuel probabilities. Nevertheless, we should
stress that our necessary and su�cient conditions for the pari-mutuel model to be
embedded in the theory of belief and plausibility functions, that improve upon ear-
lier results from the literature, show that the inclusion within the theory of belief
functions only holds in quite restrictive scenarios. This is even more strict if we
consider the particular case of minitive measures.

With respect to the processes of combination we have considered in Section 5, we
have shown that this model is closed under the processes of conjunction, marginal-
ization and average, while it is not under disjunction or when building a joint model
from marginal ones. Most of our observations extend directly to the case of more
than two models, due to the associativity and commutativity of the operations
involved.
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