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Lindemann's Rule Applied to the Melting of Crystals and Ultra-Stable Glasses

The ratio of the mean square amplitude root of thermal vibrations and the interatomic distance is a universal constant  ls at the melting temperature T m . The classical Gibbs free energy change completed by a volume energy saving  ls (or  lg )×H m that governs the liquid to solid and liquid to ultrastable glass transformations leads to a universal constant equal to  ls (or  lg ), H m being the crystal melting enthalpy. The minimum values 0.217 of  ls and 0.103 of  ls are used to predict ultra-stable glass formation in pure metallic liquid elements at a universal reduced temperature  g = (T g T m )/T m = 0.6223.

1-Introduction

The dependence of the liquid supercooling temperature on the superheating rate shows the existence of long-lived metastable nuclei surviving above the melting temperature T m [1]. The classical Gibbs free energy change cannot predict the presence of such entities without introducing a complementary negative contribution v×p varying with  2 = (T-T m ) 2 /T 2 m , v being the nucleus volume and p a complementary Laplace pressure [2,3]. Crystallisation and melting are initiated by the formation of solid or liquid growth nuclei accompanied by a volume change that is expected to obey to Lindemann's rule [4]. Lindemann's description shows that the ratio of the mean square amplitude root of thermal vibrations and the interatomic distance is a universal constant ls at the melting temperature T m .

The critical complement v×p associated with crystallisation at T = T m has been determined for many pure liquid elements and glass-forming melts as being equal to v× ls0 ×H m /V m with ls0 being a numerical critical fraction of the melting heat H m . The coefficient  ls0 = 0.217 is the same for many liquid elements [2], while it is much larger than 1 and smaller than 2 in many glass-forming melts, as shown for 84 examples Tables 2 and3 in [5]. The objective of this study is to relate  ls0 to the Lindemann ratio ls .

The ultra-stable glass state is described as a thermodynamic equilibrium between crystal and liquid states, which would be attained by supercluster formation and their percolation after a very long annealing time at the Kauzmann temperature T K [5], or by quenching the melt from above T m and annealing it at the formation temperature T sg of this phase [6]. The optimum formation temperature T sg leading to the higher density is always equal to the Kauzmann temperature of strong glasses, and very often to that of fragile glasses. The enthalpy that is recovered at the glass transition temperature T g is equal to ( ls0 - gs0 )×H m in strong glasses and to 1.5×( ls0 - gs0 )×H m in fragile glasses with  gs0 being the critical fraction of melting heat leading to crystallisation of a virtual glass at T m . This description agrees, in principle, with the Cite as arXiv : 1511.07984 [cond-mat.mtrl-sci] or DOI : 10.1016/j.cplett.2016.03.043 scheme of a random first-order phase transition hidden below T g occurring at the Kauzmann temperature T K viewed as the true glass transition at equilibrium [7][8][START_REF] Angell | [END_REF].

Various microscopic models prove the existence of a phase transition at T g [START_REF] Souletie | [END_REF][11][12][13][14][15][16]. Liquid-glass transformation is treated as a percolation-type phase transition with the formation of dynamic fractal structures near the percolation threshold. We do not examine the problem of percolation of liquid entities, because the total volume change of all of them, depending on their nucleation rate and their atom number n, is limited by the effective volume change available at the glass transition. A criterion analogous to the Lindeman criterion of melting was proposed by Sanditov for the softening transition from the glass equilibrium to the liquid state [17]. We are also able to determine Lindemann's constant from our model and show whether it agrees with this model of glass melting.

The universal constant  ls  obtained for pure metallic elements at their melting temperatures T m is used to build a model for their vitrification. The Gibbs free energy change below T g cannot include any variation of structural relaxation enthalpy, because  ls cannot be lower than this minimum value.

2-The application of Lindemann's rule

The Gibbs free energy change for the formation of a condensed supercluster giving rise by growth to a crystal from a liquid droplet of radius R is defined by Eq. (1):
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where H m is the melting heat, V m the molar volume, (T-T m )/T m the reduced temperature,  nm the fraction of the melting enthalpy associated with a spherical supercluster of radius R containing n atoms, k B the Boltzmann constant, S m the melting entropy and ln(K ls )  90 ± 2 in metallic liquid elements [2,18].

The thermal variation of  nm is given by Eq. (2):
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where  nm0 obeys Eq. (3) for n > 147,  nm0 =  ls0 being the critical value, n c the critical atom number given by Eq. (4):
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where S m is the melting entropy of crystals and  ls the critical enthalpy saving coefficient, given as a function of the reduced temperature by Eq. ( 5) [2]:
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Eq. ( 1) is written as a function of the atom number n instead of the supercluster radius, with N A being the Avogadro number 5:
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The entropy of fusion given by -(dG nls /dT) p is equal to n×S m /N A because d nls /dT is equal to zero for  = 0, and then the surface energy is constant during the solid-liquid transformation. The melting heat of supercluster surface atoms is not weakened. Superclusters are viewed as superatoms. The free electrons in a superatom occupy orbitals that are defined by the entire group of atoms of the supercluster, rather than by each individual atom separately [19,20]. We consider that the melting heat is proportional to the number n of atoms forming a superatom. These equations have been successfully applied to the crystallisation of pure metallic undercooled liquids. Such nuclei containing magic atom numbers govern the undercooling rate [3].

Lindenmann's rule predicts that the supercluster radius R is increased by the root of the mean square amplitude of atom vibrations when it is melted. An increase R of the radius R is applied to the surface energy given by Eq. (1). Eq. ( 7) is obtained assuming that the surface energy does not vary during the transformation from solid to liquid:
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The coefficient  nm0 is always larger than its critical value  ls0 at T m when n < n c . Then, the corresponding Lindemann ratio is larger than its critical value. For the weakest values of  ls0 , we have  ls0  2×R/R.

The critical enthalpy saving associated with the Laplace pressure change accompanying a supercluster condensation having the critical radius for crystal growth is given below T g by Eq. ( 8):
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The enthalpy change at T g transforms Eq. ( 2) into Eq. ( 8). The indices ls and gs are related to the undercooled liquid crystallisation and to the glass crystallisation, respectively. The numerical coefficient  ls0 in Eq. ( 2) above T g becomes weaker below T g and is transformed into  gs0 while the temperature T 0m deduced from  0m = (T 0m -T m )/T m is reduced and is equal to T 0g in  0g . These enthalpy saving coefficients  ls  and  gs are equal to zero at T ≤ T 0m and T ≤ T 0g and to  ls0 and  gs0 respectively at the crystal melting temperature T m . The enthalpy change, with the index lg, is associated with the ultra-stable glassto-liquid transformation and is equal to the difference between Eqs. ( 2) and ( 8) given by Eq. ( 9) [5,6]:
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The endothermic latent heat  irr recovered at T g during the transition from ultra-stable glass state to liquid is the maximum value ( ls0 - gs0 )×H m of  lg at T m . It is enhanced by the enthalpy available between the temperature where  lg () in Eq. ( 9) is equal to zero and T g which is equal to 0.5× ( ls0 - gs0 )×H m for fragile glasses and to zero for strong glasses. The Gibbs free energy change is given at T g by Eq. ( 10) before the transformation of the ultra-stable glass into a liquid state 5:
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Eq. ( 7) can be applied to the melting of ultra-stable glasses replacing  nm0 by the critical coefficient  ls0 for crystal melting, by  irr = ( ls0 - gs0 ) for devitrification of ultra-stable strong glasses and by  irr = 1.5×( ls0 - gs0 ) for devitrification of fragile glasses [6]. These last coefficients define the fraction  irr of H m associated with the endothermic latent heat accompanying these transformations at T g . A softening transition occurs at T g and the Lindemann constant  lg of the liquid-glass transformation depends on the difference of Lindemann's constants  ls and  gs of two liquid states of the same substance above and below T g . Eqs. (11) and (12) are respectively followed by strong and fragile glass-forming melts:
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3-Typical values of the Lindemann constant for crystal and ultrastable glass melting

The Lindemann constant of pure liquid elements

The energy saving coefficient  ls0 was determined in 2007 as being constant and equal to 0.217 for about 30 pure metallic liquid elements [2]. None explanation was given. Applying Eq. ( 7),  ls0 corresponds to a Lindemann constant equal to 0.103, which is in good agreement with other determinations [21][START_REF] Weinberg | Gravitation and Cosmology[END_REF][START_REF] Ubbelohde | Melting and Crystal Structure[END_REF]. Then, the enthalpy saving coefficient cannot be smaller than 0.217. This property is used to propose, in Section 4, that a new family of ultra-stable glasses composed of all pure liquid elements exists.

The Lindemann constant of ultra-stable fragile glasses at T g

The endothermic enthalpy coefficients of ultra-stable glasses have been determined for many fragile glassforming melts. They are equal to 1.5×( ls0 - gs0 ) and known for 49 non-metallic and 23 metallic glassforming melts. The coefficients  ls0 and  gs0 are listed in Tables 2 and3 in [5]. The corresponding Lindemann constants  lg given by Eqs. ( 7) and ( 12) are plotted versus the reduced glass transition temperature  g in Figure 1. The values calculated by Sanditov vary between 0.11-0.14 [17]. Our results cover these values.

Figure 1:

The Lindemann constant  lg is calculated with Eqs. (7) and (12). The coefficient  nls0 in Eq. ( 7) has been replaced by  irr = 1.5×( ls0 - gs0 ). The  lg of bulk metallic and non-metallic glasses are equal for the same reduced value of T g .

The Lindemann constant of fragile glass-forming melts at their melting temperature T m

The enthalpy saving coefficient  ls0 is used to calculate  ls at the melting temperature of glass-forming melts. Many  ls follow a linear law as a function of  g in Figure 2:  ls = 0.307× g +0.735 because of the existence of a scaling law for a large fraction of glass-forming melts [5]. The points outside the straight line correspond to those having a latent heat at T =T g .

 Figure 2:

The Lindemann constant  ls calculated with Eq. ( 7) at the melting temperature T m of glassforming melts, plotted as a function of the reduced glass transition temperature  g . All points on the straight line follow the scaling law  ls0 - gs0 =0.5× g. The other glasses have a small exothermic latent heat during cooling. The value of ls depends on this enthalpy excess coefficient.

These values of  ls are about 6 times larger than the minimum value and increase with  g . The vibration amplitude attains 66% of the characteristic interatomic distance for the largest ratio T g /T m . We know from Inoue's work that alloys having the highest T g /T m have three features in their alloy components, i.e. multicomponent systems, significant atomic size ratios above 12% and negative heats of mixing [START_REF] Inoue | [END_REF]25]. These high values of ls could be due to a strong coupling of pairs of different atoms in the liquid, which does not exist in pure liquid elements.

The Lindemann constant of strong glass-forming melts at T g

The endothermic enthalpy coefficient of a strong ultra-stable glass at T g is equal to ( ls0 - gs0 ), while the specific heat jump at T g is equal to 2×S m ×( ls0 - gs0 )/ g . The Lindemann constant  lg is then proportional to the specific heat jump. This jump is known to be much smaller than that of a fragile glass. It is important to verify whether these glasses obey Eq. ( 7), and the values of  lg can be smaller than the minimum value. Nine strong glasses have been studied and some values of ( ls0 - gs0 ) are reported in Table 1 in [5]. Five of them (CaAl 2 Si 2 O 8 , As 2 Te 3.13 , CaMgSi 2 O 6 , Zr 46.75 Ti 8.25 Cu 7.5 Ni 10 Be 27.5 , Au 77 Ge 13.6 Si 9.4 ) have 0.099 < lg < 0.13; and four of them (SiO 2 , BeF 2 , NaAlSi 3 O 8 , GeO 2 ) have 0.029< lg < 0.085. The endothermic latent heat at T g corresponds to a softening transition and the  lg of the glass state is the difference of Lindemann's constants of two liquid states of the same substance, above and below T g as shown by Eq. ( 11). Sanditov's proposal is verified.

4-Application of Lindemann's rule to the vitrification of pure liquid elements

Recent work renews earlier findings of glass formation in pure metals of small size and thickness [26][27][28][29][30][31][32][33][34][35][36]. There is a need for a fundamental understanding of the resistance to crystallisation of these glasses [37]. The glass transition temperature T g is unknown. Our model needs in principle to know T g in order to be applied. Lindemann's rule is used to determine this temperature. The glass transition transforms  ls0 in Eq. ( 5) to  gs0 in Eq. ( 8). In pure liquid elements, Lindemann's rule shows that this change is not possible. Eq. ( 8) can be used below T g with  gs0 =  ls0 = 0.217. There is no structural relaxation enthalpy because ( ls0 - gs0 ) is equal to zero [5,6]. The liquid elements are strong with  0m = 2/3 (T 0m = T m /3) and become stronger glasses below  g . The reduced temperature  0m = 2/3 in Eq. ( 5) is changed in  0g = 1 in Eq. ( 8) as it occurs in many strong glasses because the relaxation time follows an Arrhenius law with a Vogel-Fulcher-Tammann temperature equal to zero below T g .

All glasses obey Eq. ( 13) obtained by combining Eq. ( 5) with the homogeneous nucleation temperature  = gs ()-1/3 deduced from Eq. (1) or Eq. ( 8). The minimum value -2/3 of  om (T 0m =T m /3) in Eq. ( 13) is chosen for liquid elements. It leads to  = 1 =-2/3. The reduced glass transition temperature  g = 2 is also given by Eq. ( 13) with  0g =-1 [5,6]:
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The variation of gs0 with  g is plotted in Figure 3 for  0g = 1. The value of  g corresponding to  gs0 = 0.217 is 0.6223. This could be a universal value of the reduced glass transition temperature of pure liquid elements corresponding to T g = 0.3777×T m because the condition  0g = 1 is always respected by strong glass-forming melts respecting  0m ≤2/3. The reduced temperature  0m in Eq. ( 13) is equal to 2/3 corresponding to the value T m /3 of the Vogel-Fulcher-Tammann (VFT) temperature. The predicted glass transition temperature of liquid elements is weak as compared to that of classical strong glasses represented in Fig. (2). Their VFT temperature  0m =-2/3 is still smaller than T g . A much lower value of T g has been observed in colloidal suspensions with the VFT temperature equal to T g [38]. Eq. ( 13) applied for  gs0 =0 also leads to a glass transition temperature equal to the VFT temperature T m /3 as shown in Figure (3). Even in this case, there is a link between glass transition and critical phenomena 10, 11, 38. Eq. ( 9) is transformed in Eqs. ( 14) and (15), which are universal equations describing the enthalpy change  lg below  g :
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A latent heat equal to 0.10506×H m is predicted at the glass transition temperature. These equations are represented in Figure 4 together with Eqs. ( 2) and ( 5): 5) and ( 8) are plotted versus the reduced temperature between  = 1 and 0. The enthalpy saving coefficient  lg associated with the ultra-stable glass state formation and given by Eq. ( 9) is also plotted versus . At the glass transition, an exothermic heat is produced at equilibrium and probably reported at the final temperature after quenching.

The Lindemann constant  lg at T g deduced from Eq. ( 7) is equal to 0.0512, because the latent heat is equal to 0.10506×H m .

Eq. ( 14) is nearly a straight line in Fig. (4) below =2/3 which can be approximated by a linear function of  in Eq. ( 16):
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The quenching time is so weak that the exothermic latent heat could be delivered at the end of quenching process. The  lg cannot vary with  2 at low temperatures because the entropy associated with the latent heat calculated at  g =0.6223 has to stay equal to 0.10506×H m /(1)/T m =0.278×H m /T m at temperatures lower than T m /3 with a fixed Kauzmann temperature. This condition is respected by Eq. ( 16). The enthalpy jump at room temperature (T= 300 K) is represented for several liquid metals in Figure 5. 15) is represented by a dashed line. The reduced Kauzmann temperature is  K = 0.9143.

The latent heat per mole is 0.10506×H m . The enthalpy calculated from 0 K up to 2/3 is equal to 0.12055×H m while that from 2/3 up to g is equal to 0.01549×H m .  lg has to be equal to zero below the Kauzmann temperature. The reduced Kauzmann temperature  K is then equal to 0.9143 and the frozen enthalpy from T K to T g is now equal to 0.10506×H m . The frozen entropy below T g and the exothermic latent heat occurring at T g in all vitrified liquid elements are equal to 0.278×S m , S m being the melting entropy of crystals. There is no structural relaxation enthalpy below T g and consequently no supplementary endothermic latent heat recovered at T g during warming.

The specific heat jump is equal to H m ×d lg /dT and is defined by Eq. ( 17) [5]:
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These universal values are represented in Figure 6: 

5-Conclusions

The introduction, in the classical Gibbs free energy change, of an enthalpy saving associated with formation, in pure liquid elements, of solid superclusters, reveals the applicability of Lindemann's rule and leads to the expected theoretical value of the universal constant  ls = 0.103. This new equation works because the melting heat of superclusters, acting as growth nuclei, and containing n atoms, is proportional to n, as expected in superatoms. The critical supercluster containing n c atoms melts at the temperature T m of crystals. The crystallisation could be induced by homogeneous or heterogeneous nucleation of superclusters containing magic atom numbers. Some of them survive above T m when their enthalpy saving coefficient varying as (n c /n) 1/3 is much larger than that of the critical supercluster containing n c atoms, and when the liquid superheating rate is too small.

Lindemann's rule is used to predict the glass transition temperature T g = 0.377×T m of liquid elements and universal thermodynamic properties of these glasses. These glasses are ultra-stable because they have no structural relaxation enthalpy.

Lindemann's constants  ls of glass-forming melts at T m are much higher than 0.103 when the ratio T g /T m increases. This information could be the sign of strong pairing of atoms of different nature.

The devitrification of ultra-stable glasses at T g is associated with Lindemann's constant  lg that is equal in strong glasses to the difference of Lindemann's constants  ls and gs of two liquid states of the same substance above and below T g . This finding is in agreement with Sanditov's recent work, which considers that the softening transition at T g is somewhat similar to melting.

Figure 3 :

 3 Figure 3: Eq. (13) is used to represent  gs0 as a function of the reduced glass transition temperature  g for  0g = 1. The point corresponding to the universal value 0.217 of  gs0 corresponds to  g = 0.6223. The other points belong to classical strong glasses. The lowest glass transition temperature  g =2/3 for  gs0 =0 has been observed in colloidal suspensions.
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 4 Figure 4: The critical enthalpy saving coefficients  ls and  gs associated with crystal formation given by Eqs. (5) and (8) are plotted versus the reduced temperature between  = 1 and 0. The enthalpy saving coefficient  lg associated with the ultra-stable glass state formation and given by Eq. (9) is also plotted versus . At the glass transition, an exothermic heat is produced at equilibrium and probably reported at

Figure 5 :

 5 Figure 5: The critical enthalpy saving coefficient  lg plotted versus . The reduced final temperature  = (300-T m )/T m obtained after quenching is indicated together for the following liquid elements: W (-0.918), Ta (-0.909), V (-0.862), Pd (-0.836), Ag (-0.757) and Al (-0.678). The enthalpy saving coefficient  lg calculated with Eq. (15) is represented by a dashed line. The reduced Kauzmann temperature is  K = 0.9143.
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 6 Figure 6: The universal value C p /S m of the reduced specific heat jump divided by the crystal melting entropy plotted versus  = (T-T m )/T m for many liquid elements. The glass transition temperature of liquid elements is 0.3777×T m . The specific heat jump is maximum at T= T m /3.