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Abstract—In the vine-growing industry, the regular
acquisition of image data throughout the vine-growing
season is of great interest for accurate plot monitor-
ing and grape yield prediction. In this context SAR
backscattering data, which can be acquired at any time
without being affected by clouds or night-time, seems
particularly suitable, especially as their spatial resolu-
tion has significantly increased over the past few years.
In this paper, we investigate the ability of X-band very
high resolution (1 meter) SAR backscattering signal
to characterize vine-plots. For that purpose, we used
a multi-temporal dataset in order to study three vine-
related factors : vine variety, ranks orientation and vine
vigour. In our case, we want to monitor a known area
for which vine variety and ranks orientation are well
defined. As a consequence, we decided to focus on the
most useful factor for vine-growers, i.e. vine vigour. The
methodology used is a whole sensitivity analysis over a
vine vigour classification and regularization process by
using only the amplitude of the SAR backscattering.

I. Introduction
In agricultural and forestry sciences, remote sensing is

a major asset for the monitoring and global management
of wide plots. It is involved in many applications, from
land occupation to the inspection of declared areas, the
evaluation of productivity - estimating various agronomic
factors such as vigour and ground type - or the study of
the impact of climatic events, such as drought, flood and
frost, on crops.

For vineyard monitoring in particular, optical remote
sensing has been widely used. Delenne et al. [7] and
Rabatel et al. [18] have computed a very efficient method
to detect, delineate and characterize vine plots using Fast
Fourier Transform (FFT). Homayouni et al. [13] use a
spatial/spectral method to compute vegetation abundance
maps, which comes down to abundance-weighted vigour
indexes allowing accurate vigour mapping. Chanussot et
al. [6] exploit the periodic structure of vineyard to identify
dead or missing trees using FFT, Radon Transform and
morphological operators. Some classification applications
also exist. Senturk et al. [21] use a hierarchical clustering
approach based on self-organizing neural networks, in
which they integrate both spectral and textural (Gabor
features) bands to distinguish vine plots from other crop
classes. On the other hand, Lacar et al. [15] proposed a
Maximum Likelihood approach to discriminate two vine
varieties (Cabernet Sauvignon and Shiraz). Finally, a few
studies have been conducted on the characterization of
vineyard factors such as Leaf Area Index (LAI) or canopy
shape [12], [24].

However, when the weather is cloudy or during night-
time, multispectral or hyperspectral space-borne data can-
not be acquired. This can be a problem when regular data
acquisition are required, for instance in a vine-growing
context. In this particular situation, the interest of Syn-
thetic Aperture Radar (SAR) sensors grows significantly
since their waves propagate through cloud layers with a
very small attenuation. Despite that, their potential is not
used in daily-based operational processing in the agricul-
tural field, mainly because of both the complexity of SAR
image interpretation (regarding speckle and acquisition
geometry) and the low spatial resolution making difficult
the observation of small objects such as vine. A few studies
try to highlight the relation between the LAI of cereal
plots and polarimetric parameters [8], [11]. As for Shang
et al. [22], they analyzed the complementarity between
SAR and optical data, coming up with the fact that SAR
signal informs on crop structures (size, shape, orientation)
and to canopy dielectric properties, whereas optical signal
answer to plant biochemical structure and biomass level.
Thanks to the most recent very high resolution (VHR)
SAR sensors, the texture information become visible (at
least for several applications) and treatable. For forestry
applications, Champion et al. [5] managed to find a good
correlation between several Haralick’s features (energy and
entropy) and forest plot stand age classes.
For vineyard monitoring, publications taking advantage

of SAR imagery are even rarer. In [20], Schiavon et al.
have addressed the potential of L-band and C-band SAR
backscattering for the classification of harvested areas us-
ing E-SAR data (2m resolution). Their results are hinting
at a sensitivity of L-band backscattering to grape biomass
per unit area but they add that a number of disturbing
effects were detrimental to their accuracy. Burini et al. [4]
combine optical and SAR L-band data to retrieve bio-
physical factors such as LAI but they explicitly say that
LAI is uncorrelated to the radar backscattering signal
alone at these frequencies. In [1], Baghdadi et al. use
that L- and P-band SAR data acquired in winter, which
proved to be not suitable to characterize vine age and rank
direction. All these studies focus on low frequency radar
sensors (P, L and C) with medium resolutions. Del Frate
et al. [10] use SAR X-band VHR data to successfully char-
acterize vine vigour but SAR data is processed together
with optical data, which can be impossible to get by night
or if the weather is cloudy.
Nowaday, the most performant SAR sensors such as

Cosmo-Skymed or TerraSAR-X allow a spatial resolution
of 1 meter. The purpose of this study is to evaluate the

chgermai
Texte tapé à la machine
1

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine
1

chgermai
Texte tapé à la machine
1

chgermai
Texte tapé à la machine
2

chgermai
Texte tapé à la machine
3

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine
  Laboratoire IMS, Université de Bordeaux  Telespazio France, Latresne  Thales Alena Space, Toulouse

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine
1

chgermai
Texte tapé à la machine
2

chgermai
Texte tapé à la machine
3

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine

chgermai
Texte tapé à la machine



2

Figure 1. Working Area

potential of X-band VHR SAR imagery for plot and intra-
plot vineyard characterization by studying the relation
between vine vigour and SAR signal backscattering am-
plitude along with its evolution over time according to
vine phenological states. First, the ground data and images
datasets are described. Then each factor is evaluated in-
dividually over the whole studied area and finally, section
4 is dedicated to the analysis of the vineyard vigour while
the other factors are fixed.

II. Datasets and preliminary works
The studied area is located approximately thirty kilome-

ters east of Agen, in France (cf. figure 1). It is composed
of thirty-six vineyard plots with various orientations and
vine varieties, and a relatively high average slope intensity
(≈ 10◦).

A. Cosmo-Skymed images and pre-processing
For this study, we had access to optical and SAR images,

along with various ground data, all provided by Telespazio
(EarthLab project). Our main dataset is composed of four-
teen X-band Cosmo-Skymed images. In order to evaluate
the temporal evolution of SAR signal backscattering, these
images have been registered on a rolling basis on a period
covering the beginning of May 2013 (leaves appearance) to
the end of September 2013 (harvesting). Each image have
been acquired with SPOTLIGHT mode, which implies
a ground coverage of 10km × 10km, a spatial resolution
slightly lower than one meter and HH polarization. In
theory, cross-polarization (HV) is a better choice for veg-
etation monitoring [2], but choosing such a polarization
would have forced us to work with lower resolution data
(very high resolution Cosmo-Skymed data exist only with
HH or VV polarization), which wasn’t optimal regarding
the size of the plots we are working on. The incidence angle
varies between 22◦ for the closest pixels (regarding the
sensor) to 23◦ for the most distant ones. In the COSMO
SAR nomenclature, these images correspond to level 1A
standard products, i.e. complex data which haven’t been
georeferenced yet. Georeferencing is done using the NEST

software provided by the European Space Agency (ESA).
The process use a portion (corresponding to the ground
coverage of the images) of the global digital elevation
model (DEM) SRTM3 to reproject the data according to
the geodetic datum WGS84 and the projection UTM31. It
also performs a radiometric calibration (σ0) and a speckle
filtering, using a Lee filter [16]. Finally, a radiometric
correction regarding the local slope of each pixel is used,
through Matlab. Indeed, the local slope in the range
direction affects the surface area covered by a pixel, which
affects the signal value registered by the sensor. To reduce
this effect, the method proposed by Luckman et al. [17] is
applied :

C(σ0) = σ0 sin(ΘDEM ) (1)

where σ0 is the orthorectified sigma nought, C(σ0) the
corrected sigma nought and ΘDEM the local incident angle
associated to each pixel.

B. Vineyard factors characterization

The study focus on three vineyard factors : vine variety,
rank orientation and vine vigour. Since every vines in the
same vineyard belong to the same vine variety, this latter
can be considered as a plot-wise factor. Ground data con-
sists in a cadastral database (cf. figure 2a) characterizing
each plot by one variety among three : Cabernet Sauvi-
gnon, Cabernet Franc and Merlot. Vine vigour is a pixel-
wise factor consisting in a NDVI map of the area classified
in order to highlight three different levels of vigour (cf.
figure 2b). This NDVI map have been processed from a
Geo-Eye multispectral image with a spatial resolution of
half a meter, acquired at the beginning of July. The ground
data for the rank orientation factor (plot-wise) was created
using the same Geo-Eye image, on which a semi-automatic
method based on Gabor filter banks [14] was applied. This
method consists in applying a set of Gabor filters with
different orientations (from 0◦ to 179◦) to the image and
then to choose for each plot the orientation which resulted
in the highest contrast.

For each factor, each class and each date, the mean and
the standard deviation of C(σ0) were computed in order
to study its evolution over time, from the beginning to the
end of the season (cf. figure 3). On these charts, most of
the classes show different mean C(σ0) values. However, the
standard deviation of the distributions are too wide and
overlap too much to make the discrimination between the
classes possible, at least for a pixel-wise process. The main
issue of this method lies in the potential interdependencies
existing between the vineyard factors. For example, a
mean curve associated to a single vine vigour class is
created from a set of pixels with different rank orientations
and vine varieties, which can prevent a proper evaluation
of the influence of the vine vigour factor on the SAR
backscattering signal.
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(a) Plot 1 boundaries (b) Plot 2 boundaries

(c) Plot 1 ground truth (d) Plot 2 ground truth

Figure 4. Working plots, with high vigour areas in blue and low vigour areas in red

III. Vine vigour classification : a sensitivity
analysis

Starting from the hypothesis that the vineyard factors
studied in this paper were potentially correlated, we de-
cided to simplify the problem by studying a single factor
while fixing the two others. Among the three factors
mentioned in the previous section, we focus on the vine
vigour, considering that it is the most interesting one for
wine-growers.

A. Methodology
The following sensitivity analysis aims to evaluate the

ability of VHR X-band SAR images to quantify vine vigour
when rank orientation and vine variety (plot-wise and
easier to get as ground data) are fixed. To do so, the
plots are processed one by one instead of considering the
whole image at once. Two plots are considered in the study
(c.f. figure 4). They have been chosen over all other plots
because they present a good variability in terms of vine
vigour. The two plots differ in their vine variety and the
intensity of their slope. Plot 1 is relatively flat and plot 2
is twice as steep.

Considering their strong similarity on figure 3b, the
medium and low vigour classes have been fused in one
class. Since the vigour ground data has been computed
from a Geo-Eye image acquired at the beginning of July,
the proposed methodology is applied on a single SAR
dataset acquired the seventh of July 2013.

Finally, two pre-processing have been applied (or not)
to the data : Speckle filtering and orthorectification. In the
first case, we tested several sizes of Lee filters (from 7×7 to
19× 19) and in the second case, the classification process
is launched either on slant data or on orthorectified data.
1) Classification algorithms: The classification algo-

rithms described in this paper are all supervised, meaning
that a prior knowledge is used to build a model which
will be able to infer the class of every pixel in the image.
This prior knowledge consist in a set of learning samples,
i.e. pixels whose class is known from the ground data. In
order to reflect realistically the acquisition conditions of
the ground data, learning samples have been chosen as
connex and localized set of pixels. Two algorithms have
been compared.

The first one is the SVM (Support Vector Machine)
algorithm [3], a widely used tool which present the interest
of being efficient even if the learning samples set is small.
For an image classification problem, this algorithm aims
to compute an hyperplane or a set of hyperplanes in the
dimensional space formed by the image bands, which best
separate a finite number of classes. It is able to address
non linearly separable cases using a kernel function (in
our case, we use the RBF kernel) which map the original
data space into a higher dimensional space where the
separation is easier. However, this method is optimised for
gaussian distributions whereas SAR intensity images are
more commonly associated with Gamma distributions.
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(a) Vine variety ground truth

(b) Vine vigour ground truth

(c) Rank orientation ground truth

Figure 2. Ground truth maps

Consequently, a second classification method have been
included in the study, a maximum likelihood algorithm
associated with a Gamma law. The first step of this algo-
rithm consists in estimating for each class c the parameters
kc and θc of a Gamma distribution using the learning sam-
ples set (learning phase). Here is the probability density

(a) Vine variety : Merlot (red), Cabernet Sauvignon (purple), Caber-
net Franc (cyan)

(b) Vine vigour : High (blue), Medium (green), Low (red)

(c) Rank orientation : −60◦ to −30◦ (yellow), −30◦ to 0◦ (red), 0◦

to 30◦ (pink), 30◦ to 60◦ (cyan), 60◦ to 90◦ (green)

Figure 3. Evolution of the mean C(σ0) value (with the associated
standard deviation) through time. Each curve represent a specific
class of the vineyard factor associated to the chart.

function of the Gamma distribution :

fΓ(x; k, θ) = xk−1e−
x
θ

θkΓ(k) (2)

Then the label of each pixel is inferred by using the
maximum likelihood principle :
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ĉ = argmaxc log fΓ(xp; k, θ) (3)

where p is a pixel, xp its value in the image and Γ(·) is
the Gamma function.
2) Rejection class: Even after the fusion of two vigour

classes, we remarked that the distributions associated to
the two remaining classes were very similar to each other.
In [9], Formont et al. add a rejection class in the classifica-
tion process in order to put aside the pixels for which the
label is uncertain and improve the classification results.
Such a method can be adapted to the maximum likelihood
algorithm. The uncertainty thresholds are computed as
follows (cf. figure 5). If X1 and X2 are two gamma-
distributed random variables associated respectively to
classes c1 and c2, with E(X1) < E(X2), the objective is to
determine the abscissa t1 and t2 such as α1 = P (X1 > t1)
and α2 = P (X2 < t2), with α1, α2 ∈]0, 1[ and α1 = α2. t1
and t2 are then directly estimated from the inverse cumu-
lative distribution function of the Gamma law. Finally for
p a pixel of the image, we got three possibilities :

• p < t2 =⇒ p ∈ c1
• p > t1 =⇒ p ∈ c2
• t2 < p < t1 =⇒ p ∈ cr, where cr is the rejection class

Several values have been tested for α1 and α2 : 0.025,
0.05 and 0.1.
3) Regularization algorithms: Then, three regulariza-

tion methods have been tested. The first one (MR) is
based on the mathematical morphology theory and consist
in applying successively two morphologic operators on
the classification result : an opening and a closing by
reconstruction [19]. Unlike classical opening and closing
operators, these reconstruction operators do not deform
excessively the objects in the image : either the object is
deleted if it is too small, or it is completely preserved.
The second approach is a majority voting [23] algorithm
(MV) : each pixel is labelled with the most commonly
represented class in its neighbourhood. Both methods
work with a sliding window which scans every pixel in
the image and for which several sizes have been tested
(3, 7 and 11). Finally, the last method is a markovian
approach working on the basis of a simulated annealing.
This method requires the parameters k and θ computed
in section III-A1 and is based on the ICM (Iterative
Conditional Modes) algorithm which aims to minimize an
energy composed of a data term and a regularization term.
This energy is processed for each pixel p and each label c
:

E(p, c) = − log fΓ(xp; k, θ) +
∑

v∈Vp

N(v, c) (4)

N(v, c) =
{
β, c 6= yv

−β, c = yv

(5)

where Vp is a set including the eight neighbours of p and
yv is the label associated with pixel v in the classification

Figure 5. Threshold selection for rejection class definition

map Y . The first term in (4) is a data fidelity term while
the second one is a regularization term which penalizes
non smooth regions. Then, yp is updated with the label c
which minimize E(p, c) and the whole process is repeated
until convergence (no more change).

B. Results
Table I presents the results obtained on univariate data,

without any rejection class. Concerning plot 1, we can
notice that the classification accuracy grows with the
size of the sliding windows used for speckle filtering and
regularization, but hardly exceed 70%, while for plot 2
the accuracy is very low and usually not improved by
the regularization step. The results obtained by the two
classification algorithms are rather similar, with a subtle
advantage for MLE. Note that more general univariate
models may be considered such as Fisher. However, for this
particular application, this law haven’t lead to significant
gain regarding the classification performances. In terms
of regularization, it’s the majority voting algorithm which
distinguish itself. ICM only leads to superficial improve-
ments while the morphological reconstruction algorithm
is likely to erase completely some areas when the sliding
window is too large. Finally, regularized classification
maps are more accurate when they are built from slant
data, even if the improvement is again very subtle.

Table II show the results obtained when a rejection class
is included to the problem. The integration of such a class
can eventually lead to a situation where test samples sets
do not include the same number of elements. In table I, the
accuracy measure used is the overall accuracy, which cal-
culate the global percentage of well-classified pixels. This
measure is relevant when the number of test samples is
equivalent for each class but can be misleading otherwise.
The average accuracy, which process the percentages on
each class before averaging them, is a much more pertinent
choice in this case.

Several conclusions can be drawn from table II. First,
the proportion of rejected pixels is each time approxi-
mately 15% higher for orthorectified data than for slant
data, which seems to confirm that the orthorectification
process reduces the differences between classes. On plot
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2, this proportion is consistently large without leading to
an accuracy improvement, while for plot 1, the rejection
proportion is more acceptable when α1 and α2 are high
enough. However, the accuracy is then nearly the same
than without rejection class.

IV. Conclusion and discussion

In this paper, we aimed to evaluate the potential of
X-band SAR VHR imagery to characterize vine vigour
by using multi-temporal data and amplitude as input of
the processing. At first we studied vine variety, ranks
orientation and vine vigour individually, comparing the
evolution of their classes from the beginning to the end of
a wine-making season. However, even though each of them
seems to have an incidence over SAR signal backscattering,
the disparity between their classes is not large enough
to discriminate them. Assuming the existence of inter-
dependencies between those three factors, we then focus
on a single factor (vine vigour) while fixing the others.
A whole sensitivity analysis have been conducted on the
wine vigour classification to determine the ability of VHR
X-band SAR imagery to characterize this factor. Several
axis have been taken into account in the analysis : clas-
sification algorithm, regularization algorithm, geometry,
speckle filtering and rejection threshold. At the end for this
particular application, the maximum likelihood method
showed slightly better results than the SVM classifier and
the most efficient regularization algorithm is the majority
voting. Furthermore, the slant geometry appears to be
better to discriminate the different classes of vigour. How-
ever, on the studied area and with the data available, the
relationship between X-band SAR signal amplitude and
vine vigour doesn’t seem to be significant enough to build
a prediction model. This assessment should nevertheless
be taken with care. Indeed the weak incidence angle of
our data may give too much influence to the ground in
the backscattering process. A steeper angle may help to
focus more on the vine canopy. On the other hand, using
cross-polarized data - known to be the best choice for plant
targets, but unfortunately unavailable with VHR Cosmo-
Skymed images - instead of co-polarized data may also
result in a more precise characterization of the vine, which
would help increasing the accuracy of the vine vigour clas-
sification process. Finally, acquisitions in interferometric
conditions, which is possible in a 4days-15days revisit time
basis with Cosmo-Skymed constellation, would allow to
compute a coherence map all along the serie acquisition.
The lost or gain of coherence between each coherence map
may eventually bring useful information to characterize
the vigour.
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Table I
Results obtained (overall accuracy in %) on the two plots for vigour classification, with slant and orthorectified data,

several classification and regularization algorithms, and several Lee filter sizes.

Orthorectified data Slant data
Plot 1 Plot 2 Plot 1 Plot 2

Lee filter size 7 × 7 19 × 19 7 × 7 19 × 19 7 × 7 19 × 19 7 × 7 19 × 19

SVM

- 62.6 68.3 49.2 45.8 60.3 66.8 53.6 54.7
MR3 64.6 68.8 49.7 45.6 64.4 70.7 56.4 66
MR11 70.8 69 38.7 46.3 48.6 71.2 51.4 51.4
MV3 65.5 69.1 48.6 45.4 65.4 69.7 55.1 57.5
MV11 70.7 70.7 49.8 45.3 72.1 73.6 56 60

MLE

- 61.6 69 53.8 49.3 60.4 68.6 51.7 51.4
ICM 63.2 69.3 54.6 49.3 62.2 69.1 52 52
MR3 61.7 69.1 55.1 49.3 62.2 69 52.7 52.5
MR11 70.1 69.9 38.7 49.6 48.6 72.4 51.4 51.7
MV3 64 69.5 55.3 49.4 63.4 72.8 52.7 52.5
MV11 70.7 71.3 57.8 49.6 71.1 74.9 51.2 51.4

Table II
Results obtained (in %) on the two plots for MLE vigour classification, with slant and orthorectified data, several

regularization algorithms (RA) and including a rejection class associated with several rejection thresholds (RT). Data
have been previously filtered by a 19 × 19 Lee filter. In each cell, the first number stands for the average accuracy and

the number between brackets for the rejection proportion.
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