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Abstract

In this paper, we propose a new digital image watermarking algorithm where the resistance against attacks is studied using error
correcting codes. Using the well known Lattice QIM in the spatial domain, we propose to use a different kind of error correcting
codes called rank metric codes. These codes are already well used in cryptography and communications for network coding but not
used yet in the context of watermarking.

In this article, we show how this metric permits to correct errors with a specific structure and is adapted to specific image
attacks when combined with a watermarking technique. In particular, we describe a rank metric code family called Gabidulin codes
analogous to the well known Reed-Solomon codes. If one considers a rank code over a finite field extension, then any codeword
has a matrix representation. One can decode the original message if the matrix rank of the detected codeword is small enough.

We propose a study to validate the concept of rank metric in watermarking applications. First, we introduce a theoretically
invariant method to luminance additive constant change. After combining the Lattice QIM method and rank metric codes, we add
a multi-detection strategy on the damaged images with controlled luminance distortions. Then, using a block-based watermarking
approach, we show how the proposed association can also be robust to an image distortion we called content erasure or copy-paste.
The proposed approach completes other watermarking strategies against attacks with random errors such as JPEG compression.

Keywords: Watermarking, error correcting codes, rank metric, luminance modification, content erasure, copy-paste.

1. Introduction

Image watermarking is an important area of research. An
example of motivation is the strong need to protect online mul-
timedia contents. To ensure copyright and intellectual property
over massive online distribution, we need efficient protection to
control the distribution, stop manipulations and duplications by
pirates or unaware normal users.

To be efficient, a watermark needs to be imperceptible, needs
to embed high capacity payloads and has be to robust [[1]] against
the most common image processings (malicious or not) while
ensuring a secure transmission of the payload [2].

A well-known and powerful tool to enchance the robust-
ness of a watermark is the use of error-correcting codes which
permit to correct errors induced by a given attack. To embed
a message, it is first encoded into a codeword that is used as
the watermarking payload. For detection, an estimation of the
original codeword is computed and then decoded by the same
correcting code to recover the original message.
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Now, depending on the embedding strategy and the error
structure induced by an image modification (also called an at-
tack or a distortion), the type of codes used to encode the pay-
load can be more or less efficient. For instance, if the error
induced on the watermark is random (e.g. JPEG compression),
the best results are obtained with binary codes, like BCH codes
for instance (in the case of small lengths).

For other attacks, it may happen that the error comes in
packet. In that case, it is better to use more structured codes
over a larger alphabet (say GF(2™)), like Reed-Solomon codes
where decoding is done by packets [3]].

One does not decode error independently on each bit, but
on packet of m bits, so that an error on each bit of the packet
or only one error on one bit of the packet is corrected the same
way. Therefore, based on the attack, i.e. based on the error type,
we can choose an adapted error correcting code. This point of
view on the error type is rather well known and led to numerous
industrial applications of these Hamming codes.

In this paper, we consider a new type of metric called rank
metric which will allow us to be robust against attacks that are
not handled by Hamming codes. Error correcting codes using
this metric are already often used in network coding [4] and
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cryptography [5]. They permit to correct errors with a specific
structure. If one considers a code over GF(2™) of length m,
each coordinate of a codeword over GF(2™) is encoded by m
bits, and since the code has length m, any codeword can be
seen as a m X m matrix. Now, it is possible to correct errors for
m X m error matrix of low rank.

For instance, consider an attack on the image which flips
every bit of the payload (or codeword). If one consider the
usual Hamming metric, it is not possible to correct this error
since all bits are false. Meanwhile, in terms of rank metric, the
associated error matrix has rank 1 (because it is filled with ones
only) and hence, the received modified matrix can be decoded
and the original message retrieved.

In this paper, we propose to use this original concept of rank
metric with Lartice QIM watermarking strategy to obtain new
robustness properties against a new family of attacks.

Our contribution: we introduce the concept of particular
error structure and how rank metric codes (section [2)) can be
useful for watermarking. Then, we propose a watermarking
process which combines rank codes with Lattice QIM method
to deal with structured errors produced by luminance modifica-
tions and copy-paste modifications. In the case of both attacks,
conventional Hamming codes are not as efficient as rank metric
codes.

We explain why such structure exists and provide an en-
hanced Lattice QIM detector. Tt is based on a LQIM multi-
detection strategy on attacked images with controlled luminance
distortions. Theoretically, we obtain error free detections against
luminance modifications. Finally, we propose a block-based
watermarking scheme to resist content erasure/copy-paste at-
tack.

2. Rank metric codes

In this section, we introduce rank metric codes definitions,
properties and their applications in practice. Considering ex-
isting approaches, these codes allows us to propose a comple-
mentary watermarking strategy against particular attacks such
as content erasure or copy-paste attack.

2.1. Linear codes

We consider a linear code C of length n over the alphabet
GF(g™). Codewords from C are row vectors from the vector
space GF(g™)" usually denoted by c¢. Every components of ¢
can be written as a vector of GF(g)™. Then, it is possible to
write every component of ¢ by a column vector and represent
the codeword x as a matrix of GF(q)xn-

Now, let us consider 8 = (84, ..., 8,) a basis of GF(g™) over
GF(g) and a codeword x = (x, ..., X,) € GF(¢™)". The matrix
representation of x denoted by Mat(x) = (x;;); ; (or denoted by
X when there is not ambiguity) is defined as :

X11 oo Xin

Xml -+ Xpm

such thatforall1 < j<n:

m
xj = Z XiiBi
P

This matrix representation allows to define a new metric
over GF(g™)" using the matrix rank.

2.2. Rank distance

Let x = (x1,...,x,) € GF(¢™)". The rank weight of x is
written w,(x) and is equal to :

wr(x) = rk(X) ey

with rk(X) the matrix rank of X (the number of independent
matrix rows or columns).

Lety = (y1,...,yn) € GF(¢g™)". The rank distance from x
to y, noted d,(x, y) is equal to :

dr(x,y) = rk(X = Y) @

Of course, one can check that d, has the distance properties.
Compared to Hamming distance dj,, we have the following prop-
erty :

Wr(x) < wi(x) 3)

with x a codeword and wy,(x) the Hamming weight of x :
wi(x) = [{(@, j) | xij # O} “

with x;; the matrix components of Mat(x).
We also deduce that :

dr(x,y) < dp(x,y) &)

with dj(x, y) the Hamming distance between x and y :

dp(x,y) = wa(x = y) (6)

Briefly, this property is true because the number of non zero
linearly independent matrix rows or columns (the rank) is al-
ways lower than the number of base field symbol differences
(Hamming weight). In other words, as the rank of a vector is
independant of the basis, the rank metric is less precise than the
Hamming metric as two vectors with different Hamming dis-
tance could have the same rank.

2.3. Minimal distance

Rank metric codes were first studied by Delsarte [6] in 1978.
Many properties of Hamming codes are adapted to rank metric
codes. A linear code C defined of the finite field GF(¢™) can be
seen as a subspace of GF(g™)" but also as a metric space when
equipped with the rank distance.

Moreover, C is a linear code if C is a vector subspace of
GF(g™". Code linearity is an interesting property because it



is easier to manipulate codewords for example and allows eas-
ier decoding. As in Hamming codes, we define the minimal
distance d,,;, of a rank code such that :

dmin = min dr(x’ Y) (7)
x#y € C
and with code linearity property, we have :
dpin = Mmin wy(x) (3
xeC*

If a linear rank code C has length n, dimension k and mini-
mal distance d, we denote it by its parameters [n, k, d], or [n, k],
if we don’t need to know the minimal distance of the code.

2.4. Decoding Gabidulin codes

Decoding bounds for rank codes (Singleton and Gilbert-
Varshanov bounds) are similar to Hamming codes decoding
bounds. They are very useful to design decoding algorithms.
Unlike classical Hamming codes, only few families of codes
with easy rank metric decoding algorithms are known.

Gabidulin codes [[7] is one code family among them and has
parameters [n, k,n — k + 1], over GF(q"). They are called Max-
imum Rank Distance codes (MRD) because they can decode
errors with rank at most :

n—k
t{ - J ©)

They can be seen as an analogous family in rank metric of
the well-known Reed-Solomon codes family which are Max-
imum Distance Separable (MDS). Many algorithms to decode
Gabidulin codes has been proposed in the literature such as [}
9.

Reed-Solomon code decoding algorithm can be generalized
for Gabidulin codes. Using the Welch-Berlekamp algorithm on
linear polynomials, one can decode faster with quadratic com-
plexity.

2.5. Rank metric codes in practice

In practice, we use Gabidulin codes in an extension GF(qg™)
of GF(2), and one associates a binary vector of length m to any
coordinate of the codeword, so that a codeword ¢ can be seen
as a m X m binary matrix.

After an attack on the watermark, the codeword ¢ is mod-
ified with error e, which also is a m X m binary matrix. To
evaluate if the rank metric is better than the classical Hamming
metric, we compare the embedded watermark (a codeword c)
with the modified watermark (y = ¢ + e). Suppose m = 4. Let ¢
be a codeword and y = ¢ + e a modified codeword such that :

1 01 0 101 0
L[t 1ol jrooo0
1t oo 1”71 0 o0 1
110 1 1110

Then, the error matrix is:

0
1
0

oS O OO
- o O O
—_ O = O

0

The error matrix e has rank 2, hence, if the code can correct
up to 2 rank errors, then it is possible to decode y into ¢. In
terms of Hamming metric, if we had started from a length 16
binary code, it would correspond to an error of weight 4.

In that particular case, it is possible to find both Hamming
or rank metric codes which can decode this type of errors, for
reasonable dimensions k. Suppose we now have an error matrix
such that:

- o O O

1 1
1 1
0 0
0 1

—— =

The Hamming weight of e is 9 and the rank of e is 4. We
see that it is not possible to decode with both metrics with this
error matrix. In fact, rank metric is more interesting when the
error has a particular structure such as:

1
1
1

S OO

e =

O = = =
O = =

0 0

With Hamming metric, there are still 9 errors out of 16 bits
transmitted, no binary code of length 16 is able to decode prop-
erly while with the rank metric, the rank of e is only 1. We can
easily decode with such error (for instance, with a Gabidulin
code of parameters [4, 2, 3]).

Of course, such a structured error does not happen neces-
sarily often, especially in the case of binary flipping. Unlike
classical Hamming codes, rank metric codes are very efficient
when dealing with this error structure. In this contribution, we
use LQIM method to take advantage of the lattice construction
and capture the error structure. In the next section, we briefly
describe this method used in combination with rank codes.

3. Lattice QIM (LQIM)

The vector quantization method called Lattice Quantization
Index Modulation (LQIM) was introduced by B. Chen and Gre-
gory W. Wornell ([10} [L1]]).

In our work, we use two cosets to embed binary information
using the lattice AZ" of dimension L and a quantizer Q,, defined
such that :

A A
Ag = -7+ AZE A, = 7 + AZF
; (10)

y= e m) = [S]a+ iy,

with x a host sample, y the quantized sample and a bitm = 0, 1.

Figure [I] illustrates an example of the quantization space.
For any circle or cross (say a quantized vector y), the diamond
delimited by the dotted lines will be denoted by “quantization
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Figure 1: Representation of the quantization space of dimension L = 2. +
symbols are the result of quantization carrying bit 1 (coset A1) and o symbols
are associated with bit O (coset Ag).

cell”. To embed information in x, one can quantize x to the
nearest quantization cell center y.

For detection, we compute which coset is closer to the re-
ceived vector z:

m = arg min diSt(Z, Am):
mef0,1}

(11)

dist(z, A) = min ||z - yll»
YEA

Vector z is transformed into y which is the quantization cell
center where z is located. Quantization is an interesting concept
when dealing with an image processing that applies the same
distortion everywhere on an image.

Since the quantization space of LQIM method is divided
into equally-sized cells, the lattice structure preserves the po-
tentially particular form of errors (with respect to rank codes)
at the detection step. Hence, these codes’ properties would al-
low the receiver to recover the embedded message. However,
the amount of embbedable information is reduced. Given an er-
ror correcting code of ratio k/n combined with LQIM method
of dimension L, the maximum payload r is :

khw
r=-—- (12)
with (h, w) the image size. In practice, these parameters are
chosen such that image quality is satisfying.

In the next section, we study a particular image process-
ing called luminance additive constant change. The error type
produced by this attack are partially structured and very well
handled by rank metric codes. A partial research is presented
in the conference ICASSP 2018 (see [12]).

4. Study of the luminance modification

4.1. Attack definition

A luminance modification is parametrized by a parameter
B € R. A modified image by this attack darkens the original
image if 8§ < 0 and lightens the original image otherwise as
shown in figure [2] with pixel values in [0,...,255]. If |8] is
small, it is difficult to see the difference between the original
and the modified images.

Let y a host vector sample of an image J and z the corre-
sponding modified sample, the luminance modification is given
by the formula :

z=y+BXu (13)

withu = (1,...,1) € RE. In fact, every pixel values of 7 suffer
the same distortion.

(@) =-60

(e)p=40

(dp=20

Figure 2: Image examples modified by a luminance attack. They are either very
dark (pixel values close to 0 ), either very bright (pixel values close to 255).

4.2. Binary error rates analysis and error structure

Results were made using the Corel image database where
1000 images where randomly chosen for our tests among the
10000 images available. Since watermark invisibility is very
important, we used a quality measure called Document to Wa-
termark Ratio (DWR) defined as a signal to noise ratio such as

O'Ih
DWR(I, I,,) = 10log,) ———
(o

(14)
Ly I

with I, the host image, I,, the watermarked image and o7 the
variance of image /. In all our experiments, a DWR of 35db
produce an invisible watermark. Moreover, we also chose to
add Peak Signal to Noise Ratio (PSNR) and Structural SIMilar-
ity (SSIM) quality measures to improve comparability with oth-
ers contributions. If SSIM measures are close to 1 between host
and watermarked images, then the quantization noise can be
considered as very weak, i.e. the watermark is invisible enough
to maintain a good image quality.

Embedded messages are randomly generated binary sequences

of 49 bits with L = 6 and A = 28 so that we obtain the desired



DWR in the spatial domain. For every measures, maintaining a
DWR of at least 35db always gives PSNR = 48.2db SSIM = 1.
In figure[3] we illustrated examples of marked images. High
values of embedding rate (ER) and quantization step A produce
a low image quality (DWR decreases) and, is, hence, more vis-
ible to the human eye. We can see a salt and pepper noise be-
cause coefficients are randomly chosen for the embedding.

(a) 16, 37.77db, 54.24db,(b) 28, 33.73db, 42.0db, <(c) 38, 31.03db, 46.17db,<
<0.01 0.01 0.01

(d) 16, 29.95db, 46.82db,(e) 28, 25.0db, 41.5db,(f) 38, 21.78db, 39.02db,
0.02 0.02 0.02

(g) 16, 27.75db, 43.31db,(h) 28, 22.64db, 38.28db,(i) 38, 19.79db, 36.42db,
0.03 0.03 0.03

Figure 3: Image examples marked with different embedding parameters (A,
DWR, PSNR, ER). For A = 38, we have SSIM = 0.99.

The first experiment shows the average binary error rates
(BERs) between the original codeword and the estimated one
in function of B (figure @) over the 1000 test images.

We can see that the red curve looks like a square waveform
(the curve periodically alternates between 0 and 1) and we can
distinguish three cases: BER = 0,0.5, 1. In the first case, there
is no error at detection at regular intervals (such as 8 € [22, 34]).
Then, the third case is similar to the first case; BER = 1 also
happens at regular intervals (such as 8 € [8,20[). This curve
clearly shows the existence of a partially structured error form.

This third case represents situations when every bits of the
payload are flipped at the same time because there is 100% er-
rors. In other words, every quantized vectors have suffered from
the same distortion (equation [I3). In the second case (BER
= 0.5), detected payloads are random sequences.

When S increases, z saturates (pixel values are moved closer
to 0if 8 < 0 or close to 255 if 8 > 0). From a geometrical point
of view (in 2D for figure[3)), every z travel from one quantization
cell to another flipping the embedded bit at every quantization
cell change.

For 8 < 6, the LQIM detector is in the first state (illustrated
in subfigure [5a). Then, we have a transitional state for 8 = 7

0.8

0.6

0.4

Bit Error Rate (BER)

0.2

Figure 4: Binary error rate of LQIM method in function of 8. This curve is
similar when £ is negative.

(subfigure [5b)). Detected vectors z are located at the boundaries
of quantization cells and the detector has a probability of 0.5 to
guess which side of the boundary z is located.

Finally, every z crossed their cell boundary in the third state
and the detected binary payload is entirely reversed with 8§ <
B < 20 (subfigure[5c). At last (subfigure [5d), every z has trav-
eled through another transitional state to another quantization
cell and allow the detector to correctly retrieve the embedded
payload.

« 7 P A
A A
o« o« x o x
A A

(a) Before binary inversion (b) Cell transition
(BER = 0) (BER = 0.5)

s
S

s
s

(c) Binary inversion
(BER = 1)

(d) Second binary inversion
(BER = 0)

Figure 5: Representation of the quantization space of dimension L = 2 and the
three cases related to a luminance modification.

For every B, the decoding step is described for three cases
(BER = 0, 0.5, 1). Even though, only few values of 8 lead to the
second case, it is possible to use a rank metric code to remove
the partially structured errors. In the next subsection, we show
how the LQIM method combined with a rank code can remove
the majority of errors.



4.2.1. Rank metric codes application

As a second experiment, we used a rank metric code of pa-
rameters [7,3, 5] (corrects at most errors of rank 2) and mea-
sured Image Error Rates (IERs) and embedded a codeword as
the watermark payload. IERs are the ratio of images where the
message was not decoded by the rank metric, i.e., the error rank

rk(e) = 2.
1 -
i —— LQIM BER
? ——LQIM IER RM

08 ‘

0.6

0.4

02 ‘

0 "

0 10 20 30 40 50 60
Luminance additive constant 8

Figure 6: Red curve : Binary error rate of LQIM method in function of 8. This
curve is similar when S is negative. Blue curve : Image error rate of LQIM
method combined with a rank metric code in function of 8. Each point of the
blue curve represents the ratio of images where the error rank Rank(e) > 2
(failed decoding).

In figure[6] this code is very efficient because IERs are 0 for
every 8 except at four values. When z makes the transition from
one cell to another, LQIM detector estimates BER = 0.5 (which
means we have errors with full rank).

On the other hand, a similar parameters Hamming code is
[47,23, 11] and corrects at most 5 binary errors over 47 bits. In
that case, the IER curve obtained with this code is identical to
the red BER curve because either we have no binary error either
every bits of the payload is flipped, i.e., the Hamming metric is
inefficient against this attack.

In practice, the detector cannot guess 8 and the probability
to find B such that errors are not structured for rank metric codes
depends on A : a small value means a higher probability to
detect with errors.

Moreover, the red curve in figure E] does not look like a
square waveform (the curve brutally alternates periodically be-
tween 0 and 1) for some images due to the random nature of the
pixel values they contain. Some BER values might be slightly
under 1 or slightly above 0.

It sometimes happens that luminance distortions are strong
enough to completely erase the embedded information (pixel
values range between 0 and 255). We show some image ex-
amples where this decoding problem occurs in figure 0] In our
experiments, we chose § > 0 which explains why those at-
tacked images look very bright. With 8 < 0, the same decoding
problem happens with very dark images.

For a start, this justify the use of a rank metric code of pa-
rameters (7,3, 5) correcting at most errors of rank 2 to correct
more errors. Theoretically, a code correcting errors of rank at
most 1 is enough. In the context of a luminance image pro-
cessing, these codes provide almost perfect error correction. In

the next subsection, we introduce a multi-decoding strategy on
images with controlled luminance distortions in order to ignore
failed decoding cases when BER = 0.5.

4.2.2. Enhanced LQIM rank metric detector

The luminance channel is parametrized by the additive con-
stant 8. Suppose a watermarked image is damaged by this chan-
nel. At decoding, we have the modified versions z = y + .
Equation [T3] shows how to improve the detector performances
by adding a controlled luminance modifications. Periodically,
one can notice that we cannot properly detect for 8 = V2A/4
with k € Z. This case represents transition states traveling from
one quantization cell to another, i.e., vectors z are located at the
boundaries of quantization cells.

——z+2
z+4

0.8
0.6

0.4

UL LN,

0 10 20 30 40 50 60

Figure 7: Image error rates of LQIM method combined with a rank metric code
in function of B with controlled distortions using § = 0,2, 4 to shift error rates
curves from one to another (spike shift). Quantization step A = 28.

Let §; < \/EA/4, 0; € N,1 < i < n. Then, from ﬁgure we
deduce the following property: there is a unique i such that the
corrupted image with z + ¢; cannot be well detected with LQIM
rank metric detector and for every j # i, corrupted image with
z+0; is correctly detected with LQIM rank metric detector. By
modifying z with §;, we guarantee to have the majority of z +J;
perfectly detected.

A majority vote strategy on the decoding of multiple at-
tacked image can get rid of the spikes at the only cost of time
decoding. Taking n = 3 suffices to have good results with this
decoding strategy. We have d = \/§A/4, 01 =0,0, =d/3 and
03 = 2d/3. In the experiments, d ~ 6 and we used ; = 0,
02 =2 and ¢ = 4 and they represent modified versions of trans-
mitted z.

Then, we extract 3 estimations of the original payload. Us-
ing the proposed property, two out of the three payloads are
correct given fixed 8. In figure [8] error rates are O for almost
every 8. For example, with 55 < 8 < 60, we have non-zero
error rates (quick variations with visible spikes). Again, the
previously described problem on the random nature of images
can be observed ([9) since those error rates are computed from
image error rates of figure

As a summary, we proposed a strategy to improve the LQIM
detector combined with a rank metric code against a particular
attack we denoted by luminance modifications. Cases where
BER = 0.5 can be avoided by taking an average estimation of



Error rates with A = 28 (DWR = 35db, PSNR = 48.2db)

—— LQIM IER
—— LQIM BER

Error rates with A = 8 (DWR = 48db, PSNR = 60.86db)

—— LQIM [ER
——LQIM BER

04 04

0 10 20 30 40 50 60
Luminance parameter §

Figure 8: Red and blue curves respectively represents BER and IER of LQIM
embedding with enhanced LQIM rank metric detector in function of 8. Exper-
iments with two different A are showed.

(b) 5371 jpg, 8 = 58

(c) 6211.jpg, B = 57

Figure 9: Examples of marked/attacked images pairs where decoding failed
after a luminance attack.

multiple codewords where the luminance parameter was mod-
ified on purpose. With this enhanced detector, it is possible
to use smaller quantization steps for more invisible watermark
(see figure[§]with A = 8).

Indeed, the correction ability of rank metric codes elimi-
nates all errors except at some particular 8 values. Using the
proposed property, we can shift curves i.e. IER spikes and com-
pute the majority vote of payloads.

Compared to other approaches against luminance image pro-
cessing (such as embedding in the low frequency coefficients
in the DCT domain), we innovate with a theoretically perfect
resistance with weak quantization noise at the cost of some ca-
pacity (code rate k/n).

Results are very interesting for luminance because of the
error structure but less interesting for others attacks (such as
JPEG compression and additive white gaussian noise) where
the error type is not structured until we can imagine a particular

design. In the next section, we focus on the content erasure at-
tack and how the use of rank metric codes can be useful against
this image processing.

5. A watermarking framework robust to copy-paste modi-
fications

5.1. Literature

In this section, we study an image distortion we can call
content erasure, image slicing or copy-paste and is very close
to image cropping. After a brief description of the literature on
this last attack, we explain our approach based on rank metric
codes. As described in [13]], one of the oldest contributions on
image cropping are from Swanson et al. [14]]. They proposed a
robust watermarking method which a LSB embedding on DCT
coefficients to embed a watermark. Copy-paste can also be as-
sociated with collage attack (variation of the Holliman-Memon
counterfeiting attack [13]) studied in the context of digital im-
age authentication by Fridrich et al. [16].

Moreover, this image processing has more often been stud-
ied in the context of image authentication and tamper detection.

Later, others contributions were proposed such as [17]. The
authors proposed a self-embedding mechanism that allows the
recovery of cropped out, replaced and tampered image portions.
Their method consists in embedding a compressed version of
the host image into itself with LSB method on DCT coefficients.
They can achieve a recovery of about 50% JPEG compression
quality by quantizing the two least significant bits.

More recently, inspired by the mathematics of Sudoku [18]
[19]], research has been done such as [20, 21} 22]] to solve image
cropping and collage attack problems. Their embedding strat-
egy using Sudoku follows the same principle of self-embedding
previsously described except the authors use a resizing func-
tion to reduce the watermark size. A host image is divided into
N X N cells identified by numbers (1,...,N). A new image is
generated with each cell using a Sudoku grid solution and then
downsized for LSB embedding in DCT coefficients.

However, those contributions mostly talk about image au-
thentication and tamper detection as fragile watermarking meth-
ods. The idea of this data hiding paradigm is to embed a pat-
tern such that analyzing it would tell if the host content could,
whether or not, be considered as modified, tampered, authentic,
etc. Compared to robust watermarking, goals are different since
the embedded content is related to the host image and must be
retrieved without errors (copyright protection for example).

The image cropping is a more complicated problem than
copy-paste because of the difference of images sizes. At the
detection step, one must synchronize the watermark before at-
tempting to retrieve it. Kutter [23]], in 1999, proposes a solution
that involves the embedding of several watermarks in an image
and was used by every contributions of the literature presented
above.

5.2. Description of the proposed method and discussions

In general, it is rather difficult to design a method resistent
to this type of attacks. Fundamentally, every proposed work is
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Figure 10: Rank metric codeword embedding strategy into an image decom-
posed in blocks. Each bit b; ; is associated to one block.

based on information redundancy. Hence, every locally embed-
ded information must rely on other regions of the image con-
taining information in order to decode the embedded codeword
without errors.

The only way to retrieve the initial message without errors is
to spread the embedding everywhere on the image. If aregion is
erased and is small enough then the watermark can be correctly
retrieved.

In the literature, most approaches are very close to using
a repetition code. For example, a simple strategy to embed a
watermark resistant to image cropping is to repeat it several
times in the image.

Figure 11: Attacked images with same error rank.

We propose a different approach to handle the copy-paste
attack with the help of rank metric codes. An image to be
marked is decomposed in n? blocks with 7 the rank metric code
length (block decomposition is illustrated in figure [I0). Then,
every binary symbol of a rank codeword is embedded into a
block using the LQIM method. For each block, the associated
binary symbol is embedded using L = 2 coefficients. We obtain
an image which looks like a matrix rank codeword. Hence, dis-
tortions produced by the studied attack are directly reproduced
on the error matrix e.

For instance, a square region (of size /) of a marked image is
erased. Then, affected blocks are directly represented as errors
in e. Now, consider a row or a column of width / sliced out.
In matrix e, rows or columns with bit 1 appear. As we saw
in subsection 2.3} e has a particular structure perfectly handled

by rank metric codes. Indeed, we have rk(e) = r’ with r’ the
number of blocks (on the width) affected by the content erasure
operation.

Both previously described examples have the same error
rank. In the second case, distortion is maximized compared
to the first case with the square erased region. As an illustra-
tion, we give in figure[TT]an example of attacked images which
corresponding error matrix has the same rank.

Another interesting fact about rank metric is : select two
rows made of blocks and swap them, even though the image
is modified, the associated error rank is 0. Then swap two
columns made of blocks, the error rank remains constant. These
two operations can be repeated undefinitely without increasing
the error rank while having a highly damaged image. The only
condition to take advantage of the mathematical properties of
the matrix rank is to crop entire blocks only. In this paper, this
fact is not experimentally studied because of not being realistic
enough although this swapping property is theoretically curious
when looking at the damaged image.

In the next subsection, we describe and analyze our robust-
ness experimental results against the content erasure attack.

5.3. Robustness experiments and analysis

In our study, we distinguish two types of content erasure :
the first type gathers fully columns/rows sliced regions (subfig-
ure [12a) and the second gathers rectangle erased regions (sub-
figure [I2b) even though the error ranks are the same. For the
same error rank, distortions are maximized with the first type
compared to the second type.

For our test measures, we consider the first type of content
erasure for practical reasons. With the second type, the average
error ranks are exactly the same, except the maximum size of
attacked regions is smaller.

Distortions are computed using the percentage of distorted
regions denoted by cr. For the first type, we can define cr such

that :
_ 100!

h
with [ the number of pixel columns and % the image height. In

our experiments, we consider content erasures where the left
part of the image is sliced out of / columns.

cr (15)

We randomly chose 1000 images from the Corel image database

with image sizes of 300 x 400 or 400 x 300 and compute the
averages of binary error rates, image error rates and error ranks.
We chose different Gabidulin codes to measure the robustness
of the proposed method against content erasure.

First of all, the proposed method show some robustness to
content erasure distortions by construction. In figure[T4] we can
see that binary error rates and error ranks are linearly increasing
as cr increases for every n.

When the average error rank (+1.6) is greater than the max-
imum number of allowed errors, we can see that IERs imme-
diately change their values from O to 1. It is then not possible
to recover the payload. The maximum value of cr allowing an
error free decoding is denoted cryy.
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cr' =7.5%

cr’' =6.75%

Figure 13: Worst case example of attacked images where the error rank is too
high (>) for a small percentage of erased region (noted cr’).

This first observation experimentally shows the applicabil-
ity of rank metric codes in watermarking against content era-
sure. Of course, there are worst case scenarios. The underly-
ing concept of the proposed method is to take advantage of the
mathematical properties of the matrix rank. Hence, it is easy
to make an example of attacked image where decoding is not
possible (see figure[13).

If we discuss parameters in detail, when code rates k/n are
decreasing, the correction power ¢ increases which allows us to
get higher values or cry,,;, i.e., the watermark is more robust.
Secondly, when £ is fixed and n increases, the correction power
is higher.

However, one must carefully evaluate the image quality which
drastically decreases. Indeed, a higher value of n implies n”

Evolution of error ranks in function of cr

—— 1ER [23,8,7]
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Figure 14: Error rates and ranks in function of the erased region percentage cr.

blocks with smaller size are created at the embedding and more
pixel values are modified. In addition, the lower £ is, the lower
is the available information capacity.

Compared to BCH codes, rank metric codes are more effi-
cient than BCH codes against the first distortion type. Indeed,
we can see that cr,,,, values achieved by rank metric codes cor-
respond to higher binary error rates than correction rate given
by code rate corresponding BCH codes. For instance, with
(n,k) = (23,8) and cryue = 37%, we have a BER = 0.12
which higher than the corresponding BCH codes correction ra-
tio ¢’ /n’ = 0.09 (see table|15|for other examples).

Nevertheless, rank metric codes is less efficient than BCH
codes when dealing against the second type because the maxi-
mum binary error rate obtained with cr,,,, is lower than the cor-
rection rate ' /n’ associated to an equivalent BCH code. Plus,
BCH codes are designed to handle random errors and hence, are
robust against any type of content erasure distortions as long as
the binary error rate is smaller than ¢’ /n’.

Yet we are convinced rank metric codes remains a better
choice in terms of error correcting codes especially for the case



Gabidulin BCH
[n, k,t] \ Clmax \ BER at cryy, | [0, K, 1] \ t/n
16,5,5 41% 0.11 255,87,26 0.10
16,8,4 42% 0.1 255,131,18 0.07
16,11,2 41% 0.04 255,171,11 0.04
23,8,7 37% 0.12 511,175,46 0.09
23,12,5 36% 0.10 511,250,31 0.06
23,15,4 39% 0.07 511,340,20 0.04
32,10,11 | 35% 0.13 1023,348,87 | 0.09
32,16,8 35% 0.10 1023,513,57 | 0.06
32,21,5 35% 0.07 1023,688,36 | 0.04

Figure 15: Error correcting code parameters. Each row are approximatively
equivalent parameters between BCH and Gabidulin codes in terms of code
length and dimension. n,k,t are respectively the code length, dimension and
maximum error rank allowed. We have the same for BCH parameters n’, k', ¢’
(generated with SageMath).

of Gabidulin codes which are MRD. Even though BCH codes
are optimal for random errors, they have parameter constraints
because one may only choose the code length n such that n =
2m—1.

In this section, we have demonstrated that rank metric codes
can be used to be resistant to content erasures by construction.
Combined with the LQIM method on a block-based watermark-
ing strategy in the spatial domain, we showed that the pro-
posed method can be robust to several types of distortions un-
der some parameters constraints and tradeoffs. Moreover, these
new codes achieve slightly better robustness performances than
BCH codes in some cases.

As explained in the last paragraph of section ] rank codes
are efficient against a particular error structure. The same con-
clusion is drawn from the previous section when adding the
block decomposition against the second attack we proposed to
study.

Some attacks have a random error structure which makes
rank codes inefficient. For example, robustness results obtained
by studying of JPEG compression and additive white gaussian
noise showed that using these codes did not improve the wa-
termark robustness at all. In this case, we have to use classical
codes. However, a further investigation on the construction of
these attacks may allow one to find an embedding to capture a
good error structure for rank codes.

6. Conclusion

In this article, we introduced the concept of error structure.
When errors have a random structure, usual Hamming codes
such as BCH codes are well suited. However, it is no longer
the case when the structure is particular. Then, we introduced
a new type of error correcting codes for digital image water-
marking which uses the rank distance instead of the usual Ham-
ming distance. Gabidulin codes are one family of rank codes
we chose to combine with the classical LQIM method. Rank
metric offer many advantages due to the mathematical proper-
ties of the matrix rank such as invariances to binary flipping and
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columns/rows swapping. Moreover, if an error matrix e asso-
ciated to a rank metric codeword has a particular form, rk(e) is
low.

First, we studied its robustness against luminance modifi-
cations. The application of rank codes provided good results
but some errors still remain (denoted as spikes). Using a multi-
decoding strategy, we enhanced the LQIM detector to obtain
theoretical invariance against luminance modifications. To our
knowledge, rank metric codes are optimal against this attack
whereas classical Hamming codes are completely inefficient.

As a second study, we added to the previous method a block
decomposition of the image instead of embedding information
at random pixel locations. The image is divided into blocks
where each block is associated to one bit of information. This
embedding strategy takes advantage of the rank metric structure
when dealing against various content erasure/slicing/copy-paste
situations.

After studying the robustness of the proposed method, we
showed that using Gabidulin codes allows us to handle errors
more efficiently than BCH codes when distortions are maxi-
mized for a minimum error rank.

We are convinced these codes have a great potential in dig-
ital watermarking. The use of the rank metric is original and
allows one to be robust against some image processings that
are not handled by usual Hamming codes.

Even though combining a watermarking method with an er-
ror correcting code is not a new concept, there are new per-
spectives for rank metric. Theoretically, one has to study the
error structure produced by the noisy channel in order to add
robustness to the embedding. Nevertheless, we believe that the
embedding method (and also the synchronization step) must be
taken into account as we saw with the choice of LQIM method
for the luminance attack and the block decomposition. A work
perspective is to study other embedding techniques such as trel-
lis coded quantization watermarking. Lastly, we also consider
studying syndrome coding (already used in steganography) with
rank metric.
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