
HAL Id: hal-01971052
https://hal.science/hal-01971052

Submitted on 6 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Elitist-Flower Pollination based Strategy for
Constructing Sequence and Sequence-less t-way Test

Suite
Abdullah B Nasser, Kamal Z Zamli, Abdul Rahman, Bestoun Bestoun S.

Ahmed Ahmed

To cite this version:
Abdullah B Nasser, Kamal Z Zamli, Abdul Rahman, Bestoun Bestoun S. Ahmed Ahmed. An Elitist-
Flower Pollination based Strategy for Constructing Sequence and Sequence-less t-way Test Suite.
International Journal of Bio-Inspired Computation, 2018. �hal-01971052�

https://hal.science/hal-01971052
https://hal.archives-ouvertes.fr

Copyright © 201x Inderscience Enterprises Ltd.

An Elitist-Flower Pollination based Strategy for Constructing Sequence
and Sequence-less t-way Test Suite

1Abdullah B. Nasser, 1Kamal Z. Zamli, 1Abdul Rahman Al-Sewari and
2Bestoun S. Ahmed
1Faculty of Computer Systems and Software Engineering,
Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia

2Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University, Karlovo n’am, 13, 121 35, Praha 2, Czech Republic

Abstract: In line with the upcoming of a new field called Search Based Software Engineering (SBSE), many newly developed t-way
strategies adopting meta-heuristic algorithms can be seen in the literature for constructing interaction test suite (such as Simulated
Annealing (SA), Genetic Algorithm (GA), Ant Colony Optimization Algorithm (ACO), Particle Swarm Optimization (PSO),
Harmony Search (HS) and Cuckoo Search (CS)). Although useful, most of the aforementioned t-way strategies have assumed
sequence-less interactions amongst input parameters. In the case of reactive system, such an assumption is invalid as some parameter
operations (or events) occur in sequence and hence, creating a possibility of bugs triggered by the order (or sequence) of input
parameters. If t-way strategies are to be adopted in such a system, there is also a need to support test data generation based on sequence
of interactions. In line with such a need, this paper presents a unified strategy based on the new meta-heuristic algorithm, called the
Elitist Flower Pollination Algorithm (eFPA), for sequence and sequence-less coverage. Experimental results demonstrate the proposed
strategy gives sufficiently competitive results as compared with existing works.

Keywords: t-way Testing; Flower Pollination Algorithm; Event Sequence Testing; Combinatorial Problem; Meta-Heuristics;
Optimization Problem.

1 Introduction

Recently, a new field of Software Engineering, termed
Search based Software Engineering (SBSE) has been coined
leveraging on the application of meta-heuristics algorithms
for solving optimization problem within software
engineering applications (Harman et al., 2009). In the field of
interaction testing, many meta-heuristics algorithms have
been adopted as the basis of the t-way strategy
implementation (where t indicates the interaction strength).
Sampling of the test cases from a large set of combinatorial
values based on the specified t-wise interaction, many
existing works have been developed in the literature
including Simulated Annealing (SA) (Stardom, 2001),
Genetic Algorithm (GA) (Shiba et al., 2004; Stardom, 2001),
Ant Colony Algorithm (ACA) (Shiba et al., 2004), Particle
Swarm Optimization (Ahmed et al., 2012) , Harmony Search
(HS) (Alsewari & Zamli, 2012) and Cuckoo Search (CS)
(Ahmed et al., 2015) respectively.

At a glance, the adoption of the aforementioned meta-
heuristic based strategies appears to be sufficiently effective

for obtaining good quality solution as reported in many
benchmarking experiments related to t-way testing (Ahmed
et al., 2012; Alsewari & Zamli, 2012). Nonetheless, a closer
look suggests two subtle limitations.

Firstly, existing meta-heuristic based strategies assume
“sequence-less” interactions between input parameters.
However, this assumption is not always true. In the real
world, many systems show sequence dependencies, hence,
their faults may not be exposed if the sequences of inputs are
not considered. For these reasons, the adoption of meta-
heuristic algorithm as the basis for t-way strategy for both
sequence and sequence-less t-way testing is seen as a useful
endeavour.

Secondly, as the effectiveness of any meta-heuristic based
strategy is largely dependent on their control parameter
settings, it is desirable to adopt algorithm with small number
of control parameters. Existing work on meta-heuristic based
t-way strategies demand extensive tuning of its main control
parameters before optimal solutions can be obtained. For
example, Simulated Annealing is overly sensitive on the

2 Nasser et al.

initial and final temperature as well as its temperature
reduction function. Genetic Algorithm requires substantial
tuning for population size, mutation and cross over rate. The
same issue also appears in the case of Particle Swarm
Optimization (Ahmed et al., 2012) which relies on population
size, inertia weight, social and cognitive parameters as
parameters. Similarly, Harmony Search (Geem, 2009)
requires tuning of harmony size, harmony memory
consideration rate, and pitch adjustment. In many cases,
improper tuning for all of these control parameters
undesirably increases computational efforts as well as yields
sub-optimal solution.

2 Background
2.1 Theoretical Background

Covering Array (CA) is often adopted as a mathematical
object to describe and formulate the problems related to t-
way testing (Burr & Young, 1998; Yilmaz et al., 2006). In
general, any system under test (SUT) consists of different
components, which interact with each other, called
parameters with their associated values, and a number of
events. Throughout this paper, the symbols v, p, t, and e are
used to refer to number of parameters, associated levels,
interaction strength and number of events respectively. When
the number of values (v) is equal for all the parameters (p),
then the covering array is represented as uniform Covering
Array, CA(N; t, vp). For example, a covering array of CA(6;
2, 24) consists of 6 rows of test cases generated from 4
column (or parameters) with 2 values each. When the number
of parameters are not equal (i.e. each parameters has different
number of values), the covering array representation takes the
Mixed Coverage Array notation of MCA(N;	t,	v1	p1		v2	p2		v3	
p3vj	pj). For example, MCA (12; 3, 23 31) represents a test
suite consisting an array of 12 rows of test cases, 4 columns
of parameters with three parameters having 2 values and one
parameter having 3 values. A sequence covering array of e
events with t interaction strength is represented as SCA(N; t,
e). For example, SCA(8; 3, 6), represents a test suite
consisting an array with 8 rows of test cases generated from
4 events for interaction strength equals to 3.

2.2 Problem Definition Model

To illustrate the t-way testing problem, consider the online
ticket booking system for AirAsia airline in Figure 1. This
system is used for four types of bookings: Flight, Hotel,
Flight + Hotel, or Car. To simplify the example, we consider
only flight booking system. Flight booking system uses
different components, such as Journey type, Origin location,
Destination location, Number of passenger, Number of
Kid/Infant, Depart date, and Return date.

The system consists of seven parameters, each parameter has
its associated configurations or values (i.e. the parameter-
values of Journey type are Return, One way, or Multi-city,
the values of origin location are 9 origins, the values of
destination location are 9 destinations, …, and so on). To

describe the consecutive sequence of events, the term event
is used to set the parameter-values of one parameter or more.
For instance, the event "Select origin location" is invoked to
set value for Origin Location parameter. Further examples of
events include selecting a Depart Date, Destination
Location, Return Date, and clicking a Search button.

Figure 1: Air Asia Ticket Booking Website

Table 1: Air Asia Ticketing System Options

Journey
Type

Origin
Location

Destination
Location

Passenger

Kid

Depart
Date

Return
Date

One way Malaysia Malaysia 0 0 1 1

Return Indonesia Indonesia 1 1

Multi-city Thailand Thailand 2 2

 Singapore Singapore 3 3

 Philippine
s

Philippine
s 4 4

 Vietnam Vietnam 5 5

 Cambodia Cambodia 6 6

 Laos Laos 7 7

 China China 8 8

 9 9

Table 2: List of Events

Event Return Date

e1 Selecting an origin Location

e2 Selecting a Depart Date

e3 Selecting a Destination Location

e4 Selecting a Return Date

e5 Selecting number of Passenger

e6 Selecting number of Kids

e7 Selecting Currency

e8 Clicking a Search button

The system can be summarized as seven parameters; one
parameter with three values, two parameters with nine values,
two parameters with 1 value, two parameters with 10 values
(as shown in Table 1), and eight events (as shown in Table
2). In this example, exhaustive testing requires 24,300 test
cases (i.e. 3×9×9×10×10×1×1) for testing input parameters,
and 40,320 test cases (i.e. 8!=40,320) for testing sequence
events, which is hardly feasible in practice. In this case, we

 An Elitist-Flower Pollination based Strategy for Constructing Sequence and Sequence-less t-way Test Suite 3

consider the following t-way strategies to systematically
minimize the tests:

A) Sequence-less t-way strategy generates the test suite that
covers every t combination of parameter-value at least once
irrespective of the parameter order. Considering our running
example, the test cases are reduced to 105 test cases from
24,300 tests exhaustively if we consider t=2.

B) Sequence t-way strategy generates the sequences of
events such that every combination of events is covered at
least one time with respect to the order. Sequence-based t-
way test suite is a set of permutation of m events such that
every permutation of . events occurs at least one time. For
instance, the sequence of e1, e2, e3, e4 and e5 is covered the
3-way sequences of [e1, e2, e3], [e1,e2,e4], [e1,e2,e5],
[e1,e3,e4], [e1,e3,e5], [e1,e4,e5], [e2,e3,e4], [e2,e3,e5],
[e2,e4,e5] and [e3,e4,e5]. Here, the combinations (e1, e2) and
(e2, e1) are not equivalent. In our running example, using 3-
way for generating sequence test suite require only 10 test
cases out of 40,320 test candidates.

This paper draws upon these similarities to design a unified
t-way strategy for sequence and sequence-less t-way test
generation. To the best of our knowledge, this work is the
first attempt to address the problem of generating both
sequence and sequence-less t-way test suite within the same
strategy implementation.

3 Related Works

This section provides an overview on the existing works for
generating a t-way test suite. The literature review of existing
works will be grouped into two parts. The first part consists
of detailed review of t-way test suite generation
strategies. The second part of the literature review provides
an overview sequence based t-way test suite generation
strategies.

3.1 T-way Test Suite Generation Strategies

Considering the scope of this paper is on the application of
SBSE for t-way test suite generation, our review gives
specific focus on the strategies that adopt meta-heuristic
algorithms (i.e. search based strategies).

Generally, most of search-based strategies start by generating
the search space, which represents all t-way interaction
elements. Then, the strategy applies one of the search
algorithms to find the test case with highest fitness score.
Finally, the covered interactions elements are removed from
the search space. This process is repeated until all interaction
elements are covered. Otherwise, search process is repeated
again.

Hill Climbing (HC) is the most basic search algorithm for
constructing t-way test suite (Cohen, 2004). HC is a single-
solution based local search algorithm with low computational
complexity (and parameter free), however, it is often prone
to getting stuck in local minima. Unlike HC, LAHC is a
population based algorithm making late decision on the best

solution as a way to avoid local minima. Complementing HC
and LAHC, Tabu Search (TS) has also been successfully
adopted for 2-way testing (Stardom, 2001). Unlike HC, TS
allows movement to poor solution, when the current solution
is not improving. TS maintains a short-term memory (i.e.
Tabu list) of recent solutions that have been visited in the
search space to prevent regeneration. TS exhaustively
explores the neighbourhood of each potential solution, rather
than random as in HC. SA is a similar algorithm to HC but
allows the algorithm to move to poor solution, with a
decreasing acceptance probability.

GA (Shiba et al., 2004; Stardom, 2001; Sthamer, 1995) and
ACO (Shiba et al., 2004) are considered early works in
adopting population-based algorithms for constructing t-way
test suite. GA starts finding the optional solution from many
positions, and then each solution of the population is
subjected to repeated cycles of processes (i.e. selection,
crossover, and mutation) in order to mimics natural selection
of biological evolution. ACO mimics the behaviour of
colonies of ants for finding food paths. The main advantage
of GA over HC, TS and SA is that GA is not usually get stuck
into local optima .Both of GA and ACO include some
expensive computations such as crossover and mutation
operations in GA and ant search process in ACO(Harman &
Jones, 2001)

In recent work, PSO has also been adopted a t-way strategy
(Ahmed et al., 2012). PSO relies on a population of particles
called a swarm. PSO mimics the swarm behaviour of bird and
fish swarm in searching food. Similar to PSO, HS (Alsewari
& Zamli, 2012) has also been adopted for t-way test suite
generation. Using HS, the t-way generation process follows
the analogy of the improvisation process by a skilled
musician. To explore the search spaces in an efficient
manner, HS uses a probabilistic-gradient to select current
solution neighbour for optimal solutions. CS is a population
based algorithm inspired from brood parasitic behaviour of
cuckoos. CS has been implemented for t-way test suite
generation in (Ahmed et al., 2015). CS provides optimal
balance between local intensification and global
diversification as well as provides the capability to explore
all the search space efficiently through the use of Lévy flights
(Yang et al., 2014) . Similar to GA, CS uses elitism
mechanism to ensure that only solutions with higher fitness
can proceed to next generation of iteration. Owing its
effectiveness to enhance the solution, we have also opted to
adopt elitism for our proposed eFPA strategy.

Recently, (Zamli et al., 2016) proposes a new hyper-heuristic
based strategy called High Level Hyper-Heuristic (HHH).
In HHH, Tabu search algorithm serves as the master
algorithm (i.e. High level) to control other four low level
algorithms (LLH); Teaching Learning based Optimization,
Particle Swarm Optimization, Cuckoo Search Algorithm and
Global Neighbourhood Algorithm. To ensure high
performance, HHH defines a new acceptance mechanism for
the selection LLH algorithm, relies on three operations (i.e.
diversification, intensification and improvement). Further
experiments have been done in (Zamli et al., 2017b) with

4 Nasser et al.

new acceptance mechanism based on fuzzy inference system
and new LLH operations (i.e. GA’s crossover search
operator, TLBO’s learning search operator, FPA’s global
Pollination, and Jaya algorithm’s search operator).

Building from earlier approach, (Zamli et al., 2017a) develop
a new strategy, called Adaptive Teaching Learning-Based
Optimization (ALTBO). ATLBO improves the performance
of standard TLBO resulting from a good balance between
diversification and intensification through the adoption of
fuzzy inference rules.

3.2 Sequence T-way Test Suite Generation Strategies

Contrary to sequence-less t-way test suite generation
strategies, there are much little existing works that have been
published on sequence-based t-way test suite generation.
Although, sequence based strategies have a long history,
most of existing works focus on sequences derived from state
transitions, program control flow graphs , and syntax
expressions(Offutt et al., 2003). The most closed works to
this paper are combinatorial testing and applications of
covering arrays such as greedy based strategies e.g. (Chee et
al., 2013; Kuhn et al., 2012) or meta-heuristic based
strategies (e.g. BA (Zabil et al., 2012)).

Sequence of events in the CA have been considered as a
combinatorial problem first by Kuhn et al. (Kuhn et al.,
2012). In their algorithm, called t-seq, a set of n events is
numbered from 0 to n. Here, a small set of tests, which must
cover every t-sequence at least once has to be generated. In t-
seq algorithm, large number of test cases is generated, then,
each test case is scored based on the number of previously
uncovered sequences. Then, using a greedy algorithm, the
highest score test case covering the maximum number of t-
way sequence combination is chosen (Kuhn et al., 2012).

Bee Algorithm is adopted in sequence t-way test suite
generation strategy (Zabil et al., 2012). BA is a population-
based algorithm inspired from behavior of honey bee
colonies to find food. In the strategy, t-way sequence
combinations represent the food source and bees will be
employed to search for the best source of food. The
population of test case is subjected to repeated cycles of
searching to find the best test case. This searching process is
repeated till t-way sequence combinations are covered.
Mostafijur et al. proposed the Event Driven Input Sequence
Testing (EDIST-SA), by using the SA algorithm (Rahman et
al.). However, EDIST-SA is designed to support only for t=2
and t=3. Ahmad et al. develops Sequence Covering Array
Generator (SCAT) (Ahmad et al., 2016), which groups
similar quality candidates into a pool. Effectively, SCAT
delays the selection of the best candidate till the very end for
each cycle.

Chee et al. (Chee et al., 2013) exploit Upper bound (U) and
upper bound reversal (Ur) in order to select one permutation
from t-scrambling sets of permutations. Consisting of two
selections of best candidates, the first one is based on the
greedy algorithm covering the most uncovered t-sequence.
The second one also uses the greedy algorithm but adds the

reverse of the current best test case in the final test suite.
Erdem et al. (Erdem et al., 2011) adopts the concept of
Answer Set Programing (ASP), essentially a finite set of rules
based on logic programming for generating sequence t-way
test suite. In this approach, SCA is computed using answer-
set programming where search problems are encoded using
ASP, such that the solutions of a problem correspond to a set
of answer models.

4 Flower Pollination Algorithm

Flower pollination algorithm is a recently developed meta-
heuristic algorithm based on the flower pollination process.
To be specific, pollination process involves transferring
pollen grains from male part of flower to ovules borne in
female part via pollinators such as birds, butterflies, bees, and
bats. According to mechanisms of pollen transfer, pollination
can take two types: biotic and abiotic. Biotic pollination
refers to the transfer pollen via pollinators (i.e. involving
insects or other animals). Abiotic pollination, on the other
hand, does not require any pollinators to transfer pollen (i.e.
using non-animal vectors, such wind and water responsible).
Often, pollination can be accomplished by self-pollination or
cross-pollination as shown in Figure . Self-pollination occurs
when pollen is transferred from male parts to female parts of
the same flower or to another flower of same plant. Cross-
pollination refers to the case when pollen is transferred from
flower of one plant to flower of another plant. Based on the
pollination process described earlier, Yang and Deb develops
a new meta-heuristic algorithm, called the Flower Pollination
Algorithm (FPA) (Yang, 2012).

Referring to Figure 2, FPA can be represented
mathematically as two key steps: global pollination step and
local pollination step. Global pollination step in FPA is
represented in transferring the flower pollens, by pollinators
such as insects, over a long distance. This guarantee the fittest
pollens with high quality will carry over to the next
reproduction. Exploiting the Lévy flight motion, global
pollination step can be represented by Equation 1.

	/0(123) 		= /0(1) 	+ 	78é:;	 < =1 	− 	?@AB. 																	(1)

7 is step size to control the Lévy flight,	7 > 0.	 8é:;	 < is a
function to produce step size. The Lévy flight essentially is a
random walk interspersed by long jumps with various
distance steps. Lévy (λ) represents the flight behaviour of
pollinators based on the Lévy distribution:

Lévy λ = 	
λΓ λ sin πλ

2
π

	
1
s32M

, (s ≫ 	 sO > 0)										(2)

λ is distribution factor and Γ(λ) is standard gamma function.
This distribution is valid for large steps s > 0.

Flower pollination process can also involve self-pollination
where pollen’s flower can successfully pollinate the same
flower or another flower in the same plant, or with another
flower in different plants (i.e. termed local pollination step).
Local pollination step is formulated by following equation:

 An Elitist-Flower Pollination based Strategy for Constructing Sequence and Sequence-less t-way Test Suite 5

	/0(123) 		= /0(1) 	+ 	P(/Q(1) 	− 	/R(1))																																		(3)

where xT U and xV(U) are pollens selected randomly from
different flowers, ϵ is random number obeying uniform
distribution in [0,1]. Here, a switch condition p can be used
to alternate between common global pollination and intensive
local pollination. FPA can be summarized as shown in Figure
3.

Figure 2: Flower Pollination Methods, (1) Self Pollination, (2)

Pollination from same plant but different flower, and (3)
Pollination from different plant

.
1. Objective function f(x), x	 = 	 (x3, . . . , xX)	;
2. Initialize a population of n pollen with random solutions.
3. Find the best solution gbest in the initial population
4. Define a switch probability pa ∈ [0, 1]
5. while (t <MaxGeneration)
6. for i = 1 : n (all n flowers in the population)
7. if (rand < pa)
8. Global pollination via xt

i+1 = xt
i + 8(gbest − xt

i)
9. else
10. Randomly choose j and k among all the solutions
11. Do local pollination via xt

i+1 = xt
i + ǫ(xt

j − xt
k)

12. End if
13. Evaluate new solutions
14. If new solutions are better, update them.
15. End for
16. Find the current best solution gbest
17. End while

Figure 3 : Pseudocode of Flower Pollination Algorithm (Yang,
2012)

5 Flower Strategy Test Generation

As part of our work, we develop a unified Elitist Flower
Pollination Algorithm (eFPA) strategy, for sequence and
sequence-less t-way test generation problems. The complete
pseudo-code of eFPA algorithm can be represented in Figure
4.

In line 1, eFPA generates interaction elements list (L) based
on the Interaction_Type variable selection (i.e. sequence-less
or sequence). L represents all t interaction possibilities of
combinations between input values.

In case of sequence-less interaction elements, for a set of
parameters and their values :, all t-combinations of P that
met the interaction strength requirement are generated. Then,
the interaction elements are generated based on these
combinations. Consider a system CA with CA (N; 2, 23 31).

The t-way combinations of this system are P1P2, P1P3, P1P4,
P2P3, and P2, P4, where P= [P1, P2, P3, P4]. For our running
example, P1, P2, and P3 having two values (i.e., 0 and 1), and
P4 has three values (0, 1, and 2). For each t-combination, all
possible combinations of corresponding parameters’ values
are added in the L. For instance, P1P2 has 2×2 possible
interaction elements (i.e., 0:0, 0:1, 1:0, and 1:1), P1P4 has 2×3
possible interaction elements (i.e., 0:0, 0:1,1:0, 1:1, 2:0, and
2:1). The total interaction elements are (2×2) + (2×2) + (2×3)
+ (2×2) + (2×3) = 24.

Input:
Interaction_Type: [sequence-less, sequence]
Elitism: Boolean
(P, v, n): Set of parameters P, its parameter-value v and

number of events.
t: interaction strength.

Output:
Final test suite List FTS;

Begin
1. Initialize interaction elements list L.
2. Initialize pollen_size, sp, and ep.
3. Generate population of pollens, M={ M1, M2 … Mpollen_size
4. While L is not empty
5. While t < MaxGeneration
6. For i = 1 : n (all n pollens in the population)
7. If (rand < sp)
8. Global pollination via xt

i+1 = xt
i + L(gbest − xt

i)
9. Else
10. Randomly choose j and k among all the solutions
11. Do local pollination via xt

i+1 = xt
i + ǫ(xt

j − xt
k)

12. End if
13. Evaluate new solutions
14. If new solutions are better
15. update them in the population
16. End for
17. // decision based on elitism
18. If (Elitism== true)
19. For i = 1 : n (all n pollens in the population)
20. If random < 0.25 then
21. Get the worst pollen index, say j.
22. Replace j by randomly new solution;
23. End if
24. End For
25. End if
26. Find the current best solution gbest
27. End while
28. Add the best test case, gbest, into FTS.
29. Remove covered interactions elements from L.
30. End while
31. End

Figure 4: Pseudo-code of eFPA

Concerning the generation of sequenced interaction
elements, every t-way combination of events is covered at
least once with respect to the particular order. For given n
events (i.e. 1, 2 … n), we generate sequence interaction
elements list based on t-combinations set. For each
combination, all possible permutations of corresponding
events are added into L. For instance, for SCA(N;4,3), the all
3-combinations set is (i.e. P1P2P3, P1P2P4, P1P3P4, P2P3P4).
Here, the combination P1P2P3 has 6 permutations (i.e., 1:2:3",
1:3:2, 2:1:3, 2:3:1, 3:1:2, and 3:2:1), while P1P2P4 6
permutations (i.e. 0:1:3, 0:3:1, 1:0:3, 1:3:0, 3:0:1, and 3:1:0).
The total interaction elements are 3! +3! +3! +3! =24.

Line 2 marks the start of the test suite generation algorithm.
Here, eFPA specifies initial values for population size
pollen_size, switch probability (sp), elitism probability (ep)

6 Nasser et al.

and stopping criteria (i.e., maximum iteration for
improvement). Line 3 initializes random population of
pollens M= [M1, M2 … Mpollen_size], Mi

= /30	, /[0	, … , /]^30, /]0	 , and calculates the pollen’s
fitness. Here, the pollen’s fitness is the number of covered
interaction elements by the pollen. In lines 4-24, eFPA
subjects M to repeated cycles of the search process in order
to cover maximum number of interactions in L. Based on the
value of sp, in line 7, eFPA selects one of the two core
operations of FPA. Global pollination (in line 8) permits the
adoption of Lévy flight to produce new potential
pollen,/_`a 		= /3_`a	, /[_`a	, … , /_^3_`a, /__`a	 using
equation (1). Using the local pollination (in lines 10-11),
eFPA selects two existing pollens, xT U and xV(U) randomly
from the population to generate now pollen using equation
(2). In lines 13 and 14, eFPA evaluates the fitness of the
generated pollens. If the new pollen fitness is better than
current one, the new pollen replaces the current pollen.

Lines 18-23 introduce the elitism into eFPA if the variable
elitism is set to be true. Here, a fraction of worse pollens are
replaced by new pollens (lines 20 and 21). Elitism ensures
that only pollens with high fitness are passed to next
generation. For sampling, the value of elitism probability (ep)
depends on the user setting.

The search process is repeated until the maximum number of
improvement has been satisfied (in lines 5-27). Then, the
eFPA adds the best test case into the final test suite (line 27),
and then the covered interactions elements are removed from
the interaction list (line 28). After that, interaction elements
list is checked, once all interaction elements are covered (i.e.,
the interaction list is empty), the iteration stops. Otherwise,
the overall iteration is repeated.

6 Evaluation of eFPA

The evaluation of eFPA is divided into two parts. The first
part evaluates eFPA with the original FPA in terms of
convergence rate. The second part deals with comparative
studies with existing sequence and sequence-less t-way
strategies, in terms of the generated test suite size. To perform
the experiments, we adopt the Intel (R) Core (TM) i7-3770
CPU@ 3.40 GHz - 3.40 GHz, 4GB of RAM, Windows 7
Professional, and 32-bit Operating System. For parameters
adjustment, we have adopted Pa = 0.8, maximum iteration =
700, pollen size = 50 and switch probability = 0.25, based on
the experiments recommended values by (Ahmed et al.,
2015; Nasser et al., 2015; Yang, 2012). Each cell displays
the minimum test suite size for each the existing strategies
where the best (marked as shaded cell) and the average test
suite size is recorded. Cells marked as NA denote
unavailability of the results in the literature. To allow
meaningful comparison between each strategy (with both
FPA and eFPA), we define the following relationship:

Δ	 = 	β	 − 	α																																																										(4)
where β = our solution (including FPA and eFPA)

α = the best known solution from existing strategies.

If Δ < 0, our solution is better than the known best solution.
By the same token, if Δ > 0, then our solution is poorer than
that of the known best. Similarly, when Δ = 0, our solution
matches with the known best solution.

6.1 Convergence Rate Comparison eFPA versus FPA

The convergence rates of the proposed strategy with elitism
(i.e. referred to as eFPA) and without elitism (i.e. referred to
as FPA) are compared using the sequence-less t-way CA(N;
2, 105), and the sequence t-way SCA(N; 20, 3). FPA and
eFPA are executed with different values of the iteration (i.e.
5, 10, 20, 30, 40, 50, 100, 200, 300, 400, and 500). The
average values of 20 runs for the two covering arrays are
shown in Figure 6.

Referring to Figure, eFPA outperforms FPA for the two
sequence-less and sequence t-way problems. In this case,
introducing elitism into eFPA increases the randomization of
population. Hence, the quality of solutions for eFPA and the
convergence rate improve.

6.2 Benchmarking with Existing t-way Strategies

Our benchmark consists of sequence-less and sequence based
experiments as follows.

A) Benchmarking with Sequence-less t-way Strategies

Our sequence-less benchmark comparison is based on the
following experiments.

Figure 6: Convergence Rate of eFPA versus FPA for CA(N; 2,
105), and SCA(N; 20, 3)

 An Elitist-Flower Pollination based Strategy for Constructing Sequence and Sequence-less t-way Test Suite 7

• Experiment 1: Comparison with existing strategies as
published in (Ahmed et al., 2015; Alsewari & Zamli,
2012) for 13 different configurations.

• Experiment 2: Comparison with existing strategies for
CA (N; t, 210), t varied from 2 to 10.

• Experiment 3: Comparison with existing strategies for
CA(N; 4, v10), v varied from 2 to 7

• Experiment 4: Comparison with existing strategies for
CA(N; 4, 5P), p varied from 5 to 10

The results in Table 3 deals with small interaction strength
(i.e. t = 2 and t = 3). Referring to the Δ values in Table 3, FPA
and eFPA contribute in terms of generating the best overall
test suite size. Comparatively, judging by the Δ values, eFPA
generally outperforms FPA. As for the overall performance,
SA appears to produce the best overall test suite size with
ACA, GA, and eFPA coming in as the closest runner up.
TVG perform the poorest overall.

One subtle observation is the fact that meta-heuristic based
strategies always outperform the general computational
strategies with the exception of the case involving AETG
with CA (N; 2, 313) and mAETG with CA (N; 3, 106)
respectively.

Unlike Table 3, Table 4 deals with fixing CA (N; t, 210) whilst
varying t from 2 to 10. Referring to the Δ values, FPA and
eFPA also contribute in terms of generating the best overall
test suite size. Again, based on the Δ values, eFPA generally
outperforms FPA. However, there is a large difference in Δ
values for the case involving CA (N; t, 210) for FPA and
eFPA. In this case, it appears that elitism element within
eFPA is counter-productive. We perceive this case as outlier
owing to the fact that meta-heuristics can be influenced by
chance – as the algorithm relies heavily on randomness to
generate the solution. Concerning the overall performance,
eFPA performs the best followed by HSS and CS. As with
the Table 3, meta-heuristic based strategies outperform the
computational based ones.

Table 5 shows the results of the comparison with existing
strategies when v varied from 2 to 7 for CA(N; 4, v10).
Referring to the Δ values, eFPA is also outperforming its FPA
counterparts. As for the overall performance, eFPA
outperform other strategies with three cases (i.e. with v = 3,
v = 5, and v = 6) with MIPOG comes as the runner up.

Table 6 reports results for CA(N; 4, 5P) where P is varied
from 5 to 12. Based on Δ values, eFPA outperforms its FPA
counterparts in most cases. In fact, eFPA outperforms all the
existing strategies when P is varied from 8 to 11. MIPOG
outperforms the existing strategies when P equal to 5, 6, 7
and 12. In fact, MIPOG optimizes both the vertical and
horizontal extensions which improve the test suite size.

B) Benchmarking with Sequence t-way Strategies

In this section, we compare FPA and eFPA with available
results for sequence-based t-way strategies involving U, Ur,
BA, SCAT, and T-SEQ. The experiments were adopted from

(Ahmad et al., 2016; Chee et al., 2013; Kuhn et al., 2012;
Zabil et al., 2012). Our benchmark comparison is based on
the following experiments.

• Experiment 5: Comparison with existing strategies for
SCA(N;t, e), t =3 and e varied from 4 to 20.

• Experiment 6: Comparison with existing strategies for
SCA(N;t, e), t =4 and e varied from 5 to 20

• Experiment 7: Comparison with existing strategies for
SCA(N;t, e), t =5 and t = 6, with e varied from 6 to 10,
and 7 to 10, respectively.

Table 7 shows that FPA and eFPA have good overall
performance as compared to existing work. Most Δ columns
give negative values indicating that most of the results for
FPA and eFPA outperform others. In fact, eFPA and FPA
generates nearly half of the test suite size as compared to the
cases of U and Ur,

Table 8 reports comparison results for SCA(N;4, e) where e
is varied from 5 to 20. In this case, the performance of eFPA
and FPA is similar. In fact, FPA and eFPA outperform the
existing strategies almost all test cases except when e = 5 and
e = 20. In these two cases, SCAT has outperformed FPA and
eFPA. Again, U and Ur perform the poorest in all cases.
Referring to Table 9, all Δ columns give negative values
indicating that most of the results for FPA and eFPA
outperform other strategies. We note that all existing
strategies do not give the support for t = 5 and t = 6.

7 Discussion

Finding a general strategy for generating sequence and
sequence-less test suite is difficult as both are NP-hard
problems. One reason is that there is a fundamental difference
between the sequence and seq uence-less t-way test
generation. Sequence t-way test generation focuses on
obtaining sequences of events (as test cases) such that every
combination of events is covered at least once with respect to
the order. For sequence-less t-way test generation, the
interaction elements must be covered at least once whilst the
order of coverage is not important. When dealing these two
issues, developing a unified strategy for both sequence and
sequence-less less t-way test generation dictates factoring out
the way that t way coverage is handled. The work on FPA
and its variant are the first of its kind as most existing
strategies support either but not both cases involving
sequence and sequence-less t-way test generation.

Concerning the overall performance of eFPA for each
sequence and sequence-less, eFPA strategy produces
sufficiently competitive results against existing strategies in
most of cases with more superiority for sequence results.
Comparing to FPA, eFPA is able to generate better results in
most of cases due to its enhanced exploration capability (i.e.
via elitism).

8 Nasser et al.

Table 3: Comparison with Existing Strategies for Experiment 1

System
configurations

Computational-based Strategies Meta-heuristic Strategies
Δ	
= 	β	 − 	α mAET

G
AET

G IPOG Jen-
ny TVG SA ACA GA PSO HSS CS

FPA eFPA

Avg Best Avg Best Δ
FPA

Δ
eFPA

CA(N; 2, 34) 9 9 9 10 11 9 9 9 9 9 9 10.6 9 10.0 9 0 0
CA(N; 2, 313) 17 15 20 20 19 16 17 17 17 18 20 19.9 18 18.2 17 +3 +2

CA(N; 2, 1010) NA NA 176 157 208 NA 159 157 NA 155 NA 156.7 153 153.9 150 -3 -5
CA(N; 2, 510) NA NA 50 45 51 NA NA NA 45 43 NA 43.5 42 42.8 42 -1 -1
CA(N, 2, 810) NA NA 117 104 124 NA NA NA 109 105 NA 105.55 103 105.34 101 -1 -3

CA(N; 2, 1510) NA NA 373 336 473 NA NA NA NA 342 NA 348.7 345 339.1 333 +12 -3
CA(N; 3, 36) 38 47 53 51 49 33 33 33 42 39 43 45.5 44 46.3 41 +11 +8
CA(N; 3, 46) 77 105 64* 112 123 64 64 64 102 70 105 105.0 101 103.8 93 +37 +29
CA(N; 3, 56) 194 NA 216 215 234 152 125 125 NA 199 NA 199.0 195 198.6 194 +70 +69
CA(N; 3, 57) 218 229 274 236 271 201 218 218 229 236 233 222.3 220 221.9 217 +19 +16

CA (N; 3, 106) 1426 1496 NA 1572 1919 1508 1501 1473 1506 1505 NA 1484.2 1478 1475.0 1470 +52 +44
MCA(N; 2, 51 38 22) 20 19 19 23 22 15 16 15 NA 20 21 22.0 21 21.5 20 +6 +5
MCA(N; 3, 52 42 32)

114 NA 111 131 136 100 106 108 NA 120 NA 123.0 118 122.5 113 +18 +13

Table 4: Comparison with Existing Strategies for Experiment 2

t

Computational-based Strategies Meta-heuristic Strategies
Δ	 = 	β	 − 	α

IPOG TVG Jenny TConfig PICT` GTWay ITCH CTE-
XL MIPOG PSO HSS CS

FPA eFPA

Avg Best Avg Best ΔFPA ΔeFPA
2 10 10 10 9 NA NA 6 NA NA 8 7 8 8.7 8 8.6 8 +2 +2
3 19 17 18 20 NA NA 18 NA NA 17 16 16 16.7 16* 17.1 16 0 0
4 49 41 39 45 NA NA 58 NA NA 37 37 36 38.4 35 39.0 36 -1 0
5 128 84 87 95 NA NA NS NA NA 82 81 79 82.8 81 84.0 80 +2 +1
6 352 168 169 183 NA NA NS NA NA 158 158 157 160.5 158 159.4 157 +1 0
7 NS 302 311 NS NA NA NS NA NA NS 298 NS 295.0 292 293.4 290 -6 -8
8 NS 514 521 NS NA NA NS NA NA NS 498 NS 504.1 500 505.2 495 +2 -3
9 NS 651 788 NS NA NA NS NA NA NS 512 NS 671.8 592 705.6 621 +80 +109

10 NS NS 1024 NS NA NA NS NA NA NS 1024 NS 1024 1024 1024 1024 0 0

Table 5: Comparison with Existing Strategies for Experiment 3

v

Computational-based Strategies Meta-heuristic Strategies
Δ	 = 	β	 − 	α

IPOG TVG Jenny TConfig PICT GTWay ITCH CTE-XL MIPOG PSO HSS CS
FPA eFPA

Avg Best Avg Best ΔFPA ΔeFPA

2 49 40 39 45 43 46 58 NA 43 34 37 28 36 36 39.9 36 +2 +2
3 241 228 221 235 231 224 336 NA 217 213 211 211 212.3 211 209.8 208 0 -3
4 707 782 703 718 742 621 704 NA 637 685 691 698 662.6 661 659.8 657 +24 +20
5 1965 1917 1719 1878 1812 1714 1750 NA 1643 1716 1624 1731 1603.5 1605 1592.4 1592 -19 -32
6 3935 4159 3519 NA 3735 3514 NA NA 3657 3880 3475 3894 3354.0 3354 3310.4 3310 -130 -165
7 7061 7854 6462 NA NA 6459 NA NA 5927 NA 6398 NA 6215.4 6205 6211.8 6095 +288 +168

Table 6: Comparison with Existing Strategies for Experiment 4

P

Computational-based Strategies Meta-heuristic Strategies
Δ	 = 	β	 − 	α

IPOG TVG Jenny TConfig PICT GTWay ITCH CTE-
XL MIPOG PSO HSS CS

FPA eFPA

Avg Best Avg Best Δ FPA ΔeFPA

5 908 849 837 773 810 731 625 NA 625 779 751 776 788.2 784 786.5 778 +159 +153
6 1239 1128 1074 1092 1072 1027 625 NA 625 1001 990 991 991.4 988 994.6 985 +363 +360
7 1349 1384 1248 1320 1279 1216 1750 NA 1125 1209 1186 1200 1170.0 1164 1169.4 1166 +39 +41
8 1792 1595 1424 1532 1468 1443 1750 NA 1384 1417 1358 1415 1330.4 1329 1324.8 1319 -29 -39
9 1793 1795 1578 1724 1643 1579 1750 NA 1543 1570 1530 1562 1478.0 1478 1466.4 1465 -52 -65

10 1965 1971 1791 1878 1812 1714 1750 NA 1643 1716 1624 1731 1603.5 1605 1592.4 1592 -19 -23
11 2091 2122 1839 2038 1957 1852 1750 NA 1722 1902 1860 2062 1742.0 1739 1732.3 1719 +17 -3
12 2285 2268 1964 NA 2103 2022 1750 NA 1837 2015 2022 2223 1880.5 1879 1855.3 1854 +42 +17

•

Int. J. Xxxxxx Xxxxxxx Xxxxxxx, Vol. X, No. Y, XXXX

Copyright © 201x Inderscience Enterprises Ltd.

8 Conclusion and Further Work

Summing up, this paper has discussed and evaluated the
unified Flower Pollination algorithm-based strategy (eFPA)

supporting sequence and sequence-less t-way coverage. Our
experiences with eFPA has been encouraging. As part of the
future work, we are looking to support constraints as well as
adopt eFPA for software product lines applications.

Table 7 : Comparison with Existing Sequence-based t-way Strategies for Experiment 5

System
Configurations U Ur BA SCAT T-SEQ FPA eFPA Δ	 = 	β	– 	α

Avg Best Avg Best Δ FPA ΔeFPA
SCA(N;3, 4) 12 12 6 8 NA 7.2 6 6.25 6 0 0
SCA(N;3, 5) 17 16 8 10 8 8.6 7 8.0 7 -1 -1
SCA(N;3, 6) 20 18 9 12 10 9.8 9 9.4 8 0 -1
SCA(N;3, 7) 23 22 10 12 12 10.7 10 10.0 10 0 0
SCA(N;3, 8) 26 24 11 12 12 11.5 11 11.1 10 0 -1
SCA(N;3, 9) 28 26 13 14 14 12.3 12 12.1 11 -1 -2

SCA(N;3, 10) 30 28 14 16 14 13.3 13 12.8 12 -1 -2
SCA(N;3, 11) 32 30 NA 16 14 13.8 13 13.6 13 -1 -1
SCA(N;3, 12) 33 30 NA 16 16 14.8 14 14.0 13 -2 -3
SCA(N;3, 13) 35 32 NA 18 16 15.4 15 15.6 15 -1 -1
SCA(N;3, 14) 36 34 NA 18 16 16.53 16 16.0 16 0 0
SCA(N;3, 15) 37 34 NA 20 18 16.8 16 16.4 16 -2 -2
SCA(N;3, 16) 39 36 NA 18 18 17.2 17 17.0 17 -1 -1
SCA(N;3, 17) 40 36 NA 20 20 18.0 18 17.6 17 -2 -3
SCA(N;3, 18) 41 38 NA 20 20 18.8 18 18.6 18 -2 -2
SCA(N;3, 19) 42 38 NA 20 22 19.6 19 19.0 19 -3 -3
SCA(N;3, 20) 42 38 NA 22 22 21.25 20 20.33 20 -2 -2

Table 8 : Comparison with Existing Sequence-based t-way Strategies for Experiment 6

System
Configurations U Ur BA SCAT T-SEQ

FPA eFPA Δ	 = 	β	– 	α

Avg Best Avg Best Δ FPA ΔeFPA

SCA(N;4, 5) 54 54 28 24 26 29.8 29 29.1 28 +5 +4
SCA(N;4, 6) 79 78 36 36 36 36.8 36 36.0 36 0 0
SCA(N;4, 7) 98 96 45 46 46 43.6 43 42.2 42 -3 -4
SCA(N;4, 8) 114 112 55 54 50 50.4 50 48.6 48 0 -2
SCA(N;4, 9) 128 126 62 62 58 57.6 57 55.5 54 -1 -8

SCA(N;4, 10) 140 138 71 64 66 64.71 63 62.5 61 -1 -3
SCA(N;4, 11) 151 148 NA 72 70 68.2 67 68.8 68 -3 -2
SCA(N;4, 12) 160 158 NA 82 78 74.8 74 74.2 74 -4 -4
SCA(N;4, 13) 169 166 NA 86 86 79.8 79 80.0 79 -7 -7
SCA(N;4, 14) 177 174 NA 90 90 85.4 84 85.8 84 -6 -6
SCA(N;4, 15) 184 180 NA 90 96 90.0 90 90.5 89 -6 -7
SCA(N;4, 16) 191 188 NA 96 100 97.0 97 97.0 97 -3 -3
SCA(N;4, 17) 197 194 NA 104 108 103.67 101 101.0 103 -3 -1
SCA(N;4, 18) 203 203 NA 106 112 106.67 106 105.67 105 0 -1
SCA(N;4, 19) 209 209 NA 114 114 111.0 109 110.0 110 -5 -4
SCA(N;4, 20) 214 214 NA 112 120 115.0 114 115.45 115 +2 +3

Table 9 : Comparison with Existing Sequence-based t-way Strategies for Experiment 7

System
Configurations U Ur BA SCAT T-SEQ

FPA eFPA Δ	 = 	β	– 	α

Avg Best Avg Best ΔFPA ΔeFPA

SCA(N;5, 6) 294 294 159 154 NA 151.4 148 154.8 152 -6 -2
SCA(N;5, 7) 437 436 212 212 NA 200.0 199 197.0 194 -3 -8
SCA(N;5, 8) 552 550 271 264 NA 249.8 247 241.4 240 -17 -24
SCA(N;5, 9) 648 646 329 324 NA 295.5 295 291.3 283 -29 -41

SCA(N;5, 10) 731 728 383 368 NA 349.5 344 345.75 344 -24 -24
SCA(N;6, 7) NA NA NA NA NA 982.3 980 963.4 960 - -
SCA(N;6, 8) NA NA NA NA NA 1311.5 1301 1282.34 1274 - -
SCA(N;6, 9) NA NA NA NA NA 1639.11 1636 1633.34 1628 - -

SCA(N;6, 10) NA NA NA NA NA 1998.0 1998 2164.3 2161 - -

10 Nasser et al.

Acknowledgement

The work undertaken in this paper is supported by the
Fundamental Research Grant: Reinforcement Learning Sine
Cosine based Strategy for Combinatorial Test Suite
(RDU170103) from Ministry of Higher Education Malaysia.

References
Ahmad, M. Z. Z., Othman, R. R., & Ali, M. S. A. R. (2016).

Sequence covering array generator (scat) for sequence
based combinatorial testing. International Journal of
Applied Engineering Research, 11(8), 5984-5991.

Ahmed, B. S., Abdulsamad, T. S., & Potrus, M. Y. (2015).
Achievement of minimized combinatorial test suite for
configuration-aware software functional testing using
the cuckoo search algorithm. Information and Software
Technology, 66, 13-29.

Ahmed, B. S., Zamli, K. Z., & Lim, C. P. (2012). Application
of particle swarm optimization to uniform and variable
strength covering array construction. Applied Soft
Computing, 12(4), 1330-1347.

Alsewari, A. R. A., & Zamli, K. Z. (2012). Design and
implementation of a harmony-search-based variable-
strength t-way testing strategy with constraints support.
Information and Software Technology, 54(6), 553-568.

Burr, K., & Young, W. (1998). Combinatorial test
techniques: table-based automation, test generation
and code coverage. Paper presented at the proceedings
of the International Conference on Software Testing
Analysis & Review.

Chee, Y. M., Colbourn, C. J., Horsley, D., & Zhou, J. (2013).
Sequence covering arrays. SIAM Journal on Discrete
Mathematics, 27(4), 1844-1861.

Cohen, M. B. (2004). Designing test suites for software
interaction testing. (Doctoral dissertation), University
of Auckland. Retrieved from https://cse.unl.edu

Erdem, E., Inoue, K., Oetsch, J., Pührer, J., Tompits, H., &
Yılmaz, C. (2011). Answer-set programming as a new
approach to event-sequence testing. Paper presented at
the International Conference on Advances in System
Testing and Validation Lifecycle.

Geem, Z. W. (2009). Music-inspired harmony search
algorithm: theory and applications (Vol. 191).
Location: Springer.

Harman, M., & Jones, B. F. (2001). Search-based software
engineering. Information and Software Technology,
43(14), 833-839.

Harman, M., Mansouri, S. A., & Zhang, Y. (2009). Search
based software engineering: a comprehensive analysis
and review of trends techniques and applications (TR-
09-03)

Kuhn, D. R., Higdon, J. M., Lawrence, J. F., Kacker, R. N.,
& Lei, Y. (2012). Combinatorial methods for event
sequence testing. Paper presented at the IEEE 5th
International Conference on Software Testing,
Verification and Validation.

Nasser, A. B., Alsewari, A. R. A., & Zamli, K. Z. (2015).
Tuning of cuckoo search based strategy for t-way

testing. Paper presented at the International Conference
on Electrical and Electronic Engineering.

Offutt, J., Liu, S., Abdurazik, A., & Ammann, P. (2003).
Generating test data from state-based specifications.
Software Testing, Verification and Reliability, 13(1),
25-53.

Rahman, M., Othman, R. R., Ahmad, R. B., & Rahman, M.
M. (2014). Event driven input sequence t-way test
strategy using simulated annealing. Paper presented at
the 5th International Conference on Intelligent Systems,
Modelling and Simulation (ISMS).

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004). Using artificial
life techniques to generate test cases for combinatorial
testing. Paper presented at the The 28th Annual
International Computer Software and Applications
Conference.

Stardom, J. (2001). Metaheuristics and the search for
covering and packing arrays. Location: Simon Fraser
University.

Sthamer, H.-H. (1995). The automatic generation of software
test data using genetic algorithms. (Phd Thesis),
University of Glamorgan.

Yang, X.-S. (2012). Flower pollination algorithm for global
optimization. Paper presented at the International
Conference on Unconventional Computing and Natural
Computation.

Yang, X.-S., Deb, S., & Fong, S. (2014). Metaheuristic
algorithms: optimal balance of intensification and
diversification. Applied Mathematics & Information
Sciences, 8(3), 977.

Yilmaz, C., Cohen, M. B., & Porter, A. A. (2006). Covering
arrays for efficient fault characterization in complex
configuration spaces. IEEE Transactions on Software
Engineering, 32(1), 20-34.

Zabil, M. H. M., Zamli, K. Z., & Othman, R. R. (2012).
Sequence-based interaction testing implementation
using bees algorithm. Paper presented at the IEEE
Symposium on Computers & Informatics.

Zamli, K. Z., Alkazemi, B. Y., & Kendall, G. (2016). A Tabu
search hyper-heuristic strategy for t-way test suite
generation. Applied Soft Computing, 44, 57-74.

Zamli, K. Z., Din, F., Baharom, S., & Ahmed, B. S. (2017a).
Fuzzy adaptive teaching learning-based optimization
strategy for the problem of generating mixed strength t-
way test suites. Engineering Applications of Artificial
Intelligence, 59, 35-50.

Zamli, K. Z., Din, F., Kendall, G., & Ahmed, B. S. (2017b).
An experimental study of hyper-heuristic selection and
acceptance mechanism for combinatorial t-way test
suite generation. Information Sciences, 399, 121-153.

