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Abstract: In line with the upcoming of a new field called Search Based Software Engineering (SBSE), many newly developed t-way 
strategies adopting meta-heuristic algorithms can be seen in the literature for constructing interaction test suite (such as Simulated 
Annealing (SA), Genetic Algorithm (GA), Ant Colony Optimization Algorithm (ACO), Particle Swarm Optimization (PSO), 
Harmony Search (HS) and Cuckoo Search (CS)). Although useful, most of the aforementioned t-way strategies have assumed 
sequence-less interactions amongst input parameters. In the case of reactive system, such an assumption is invalid as some parameter 
operations (or events) occur in sequence and hence, creating a possibility of bugs triggered by the order (or sequence) of input 
parameters. If t-way strategies are to be adopted in such a system, there is also a need to support test data generation based on sequence 
of interactions. In line with such a need, this paper presents a unified strategy based on the new meta-heuristic algorithm, called the 
Elitist Flower Pollination Algorithm (eFPA), for sequence and sequence-less coverage. Experimental results demonstrate the proposed 
strategy gives sufficiently competitive results as compared with existing works. 
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1 Introduction 

Recently, a new field of Software Engineering, termed 
Search based Software Engineering (SBSE) has been coined 
leveraging on the application of meta-heuristics algorithms 
for solving optimization problem within software 
engineering applications (Harman et al., 2009). In the field of 
interaction testing, many meta-heuristics algorithms have 
been adopted as the basis of the t-way strategy 
implementation (where t indicates the interaction strength). 
Sampling of the test cases from a large set of combinatorial 
values based on the specified t-wise interaction, many 
existing works have been developed in the literature 
including Simulated Annealing (SA) (Stardom, 2001), 
Genetic Algorithm (GA) (Shiba et al., 2004; Stardom, 2001), 
Ant Colony Algorithm (ACA) (Shiba et al., 2004), Particle 
Swarm Optimization (Ahmed et al., 2012) , Harmony Search 
(HS) (Alsewari & Zamli, 2012) and Cuckoo Search (CS) 
(Ahmed et al., 2015) respectively.  

At a glance, the adoption of the aforementioned meta-
heuristic based strategies appears to be sufficiently effective 

for obtaining good quality solution as reported in many 
benchmarking experiments related to t-way testing (Ahmed 
et al., 2012; Alsewari & Zamli, 2012). Nonetheless, a closer 
look suggests two subtle limitations. 

Firstly, existing meta-heuristic based strategies assume 
“sequence-less” interactions between input parameters. 
However, this assumption is not always true. In the real 
world, many systems show sequence dependencies, hence, 
their faults may not be exposed if the sequences of inputs are 
not considered. For these reasons, the adoption of meta-
heuristic algorithm as the basis for t-way strategy for both 
sequence and sequence-less t-way testing is seen as a useful 
endeavour. 

Secondly, as the effectiveness of any meta-heuristic based 
strategy is largely dependent on their control parameter 
settings, it is desirable to adopt algorithm with small number 
of control parameters.  Existing work on meta-heuristic based 
t-way strategies demand extensive tuning of its main control 
parameters before optimal solutions can be obtained. For 
example, Simulated Annealing is overly sensitive on the 
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initial and final temperature as well as its temperature 
reduction function. Genetic Algorithm requires substantial 
tuning for population size, mutation and cross over rate. The 
same issue also appears in the case of Particle Swarm 
Optimization (Ahmed et al., 2012) which relies on population 
size, inertia weight, social and cognitive parameters as 
parameters. Similarly, Harmony Search (Geem, 2009) 
requires tuning of harmony size, harmony memory 
consideration rate, and pitch adjustment. In many cases, 
improper tuning for all of these control parameters 
undesirably increases computational efforts as well as yields 
sub-optimal solution. 

 
2 Background 
2.1 Theoretical Background  

Covering Array (CA) is often adopted as a mathematical 
object to describe and formulate the problems related to t-
way testing (Burr & Young, 1998; Yilmaz et al., 2006). In 
general, any system under test (SUT) consists of different 
components, which interact with each other, called 
parameters with their associated values, and a number of 
events. Throughout this paper, the symbols v, p, t, and e are 
used to refer to number of parameters, associated levels, 
interaction strength and number of events respectively. When 
the number of values (v) is equal for all the parameters (p), 
then the covering array is represented as uniform Covering 
Array, CA(N; t, vp). For example, a covering array of CA(6; 
2, 24 ) consists of 6 rows of test cases generated from 4 
column (or parameters) with 2 values each. When the number 
of parameters are not equal (i.e. each parameters has different 
number of values), the covering array representation takes the 
Mixed Coverage Array notation of MCA(N;	t,	v1	p1		v2	p2		v3	
p3	.....vj	pj). For example, MCA (12; 3, 23 31) represents a test 
suite consisting an array of 12 rows of test cases, 4 columns 
of parameters with three parameters having 2 values and one 
parameter having 3 values. A sequence covering array of e 
events with t interaction strength is represented as SCA(N; t, 
e). For example, SCA(8; 3, 6),  represents a test suite 
consisting an array  with 8 rows of test cases generated from 
4 events for interaction strength equals to 3. 

 
2.2 Problem Definition Model 

To illustrate the t-way testing problem, consider the online 
ticket booking system for AirAsia airline in Figure 1. This 
system is used for four types of bookings: Flight, Hotel, 
Flight + Hotel, or Car. To simplify the example, we consider 
only flight booking system. Flight booking system uses 
different components, such as Journey type, Origin location, 
Destination location, Number of passenger, Number of 
Kid/Infant, Depart date, and Return date.  

The system consists of seven parameters, each parameter has 
its associated configurations or values (i.e. the parameter-
values of Journey type are Return, One way, or Multi-city, 
the values of origin location are 9 origins, the values of 
destination location are 9 destinations, …, and so on). To 

describe the consecutive sequence of events, the term event 
is used to set the parameter-values of one parameter or more. 
For instance, the event "Select origin location" is invoked to 
set value for Origin Location parameter. Further examples of 
events include selecting a Depart Date, Destination 
Location, Return Date, and clicking a Search button. 

 
Figure 1: Air Asia Ticket Booking Website 

 
Table 1: Air Asia Ticketing System Options 

Journey  
Type 

Origin  
Location 

Destination 
Location 

# 
Passenger   

#  
Kid 

Depart 
Date 

Return 
Date 

One way Malaysia Malaysia 0 0 1 1 

Return Indonesia Indonesia 1 1   

Multi-city Thailand Thailand 2 2   

 Singapore Singapore 3 3   

 Philippine
s 

Philippine
s 4 4   

 Vietnam Vietnam 5 5   

 Cambodia Cambodia 6 6   

 Laos Laos 7 7   

 China China 8 8   

   9 9   

Table 2: List of Events 

Event Return Date 

e1 Selecting an origin Location 

e2 Selecting a Depart Date 

e3 Selecting a Destination Location 

e4 Selecting a Return Date 

e5 Selecting number of Passenger 

e6 Selecting number of Kids 

e7 Selecting Currency 

e8 Clicking a Search button 

The system can be summarized as seven parameters; one 
parameter with three values, two parameters with nine values, 
two parameters with 1 value, two parameters with 10 values 
(as shown in Table 1), and eight events (as shown in Table 
2). In this example, exhaustive testing requires 24,300 test 
cases (i.e. 3×9×9×10×10×1×1) for testing input parameters, 
and 40,320 test cases (i.e. 8!=40,320)  for testing sequence 
events, which is hardly feasible in practice. In this case, we 
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consider the following t-way strategies to systematically 
minimize the tests: 

A) Sequence-less t-way strategy generates the test suite that 
covers every t combination of parameter-value at least once 
irrespective of the parameter order. Considering our running 
example, the test cases are reduced to 105 test cases from 
24,300 tests exhaustively if we consider t=2.  

B) Sequence t-way strategy generates the sequences of 
events such that every combination of events is covered at 
least one time with respect to the order. Sequence-based t-
way test suite is a set of permutation of m events such that 
every permutation of . events occurs at least one time. For 
instance, the sequence of e1, e2, e3, e4 and e5 is covered the 
3-way sequences of [e1, e2, e3], [e1,e2,e4], [e1,e2,e5], 
[e1,e3,e4], [e1,e3,e5], [e1,e4,e5], [e2,e3,e4], [e2,e3,e5], 
[e2,e4,e5] and [e3,e4,e5]. Here, the combinations (e1, e2) and 
(e2, e1) are not equivalent. In our running example, using 3-
way for generating sequence test suite require only 10 test 
cases out of 40,320 test candidates. 

This paper draws upon these similarities to design a unified 
t-way strategy for sequence and sequence-less t-way test 
generation. To the best of our knowledge, this work is the 
first attempt to address the problem of generating both 
sequence and sequence-less t-way test suite within the same 
strategy implementation. 

 
3 Related Works 

This section provides an overview on the existing works for 
generating a t-way test suite. The literature review of existing 
works will be grouped into two parts. The first part consists 
of detailed review of t-way test suite generation 
strategies. The second part of the literature review provides 
an overview sequence based t-way test suite generation 
strategies. 

 
3.1 T-way Test Suite Generation Strategies 

Considering the scope of this paper is on the application of 
SBSE for t-way test suite generation, our review gives 
specific focus on the strategies that adopt meta-heuristic 
algorithms (i.e. search based strategies).  

Generally, most of search-based strategies start by generating 
the search space, which represents all t-way interaction 
elements. Then, the strategy applies one of the search 
algorithms to find the test case with highest fitness score. 
Finally, the covered interactions elements are removed from 
the search space. This process is repeated until all interaction 
elements are covered. Otherwise, search process is repeated 
again. 

Hill Climbing (HC) is the most basic search algorithm for 
constructing t-way test suite (Cohen, 2004). HC is a single-
solution based local search algorithm with low computational 
complexity (and parameter free), however, it is often prone 
to getting stuck in local minima. Unlike HC, LAHC is a 
population based algorithm making late decision on the best 

solution as a way to avoid local minima. Complementing HC 
and LAHC, Tabu Search (TS) has also been successfully 
adopted for 2-way testing (Stardom, 2001). Unlike HC, TS 
allows movement to poor solution, when the current solution 
is not improving. TS maintains a short-term memory (i.e. 
Tabu list) of recent solutions that have been visited in the 
search space to prevent regeneration. TS exhaustively 
explores the neighbourhood of each potential solution, rather 
than random as in HC. SA is a similar algorithm to HC but 
allows the algorithm to move to poor solution, with a 
decreasing acceptance probability.  

GA (Shiba et al., 2004; Stardom, 2001; Sthamer, 1995) and 
ACO (Shiba et al., 2004) are considered early works in 
adopting population-based algorithms for constructing t-way 
test suite. GA starts finding the optional solution from many 
positions, and then each solution of the population is 
subjected to repeated cycles of processes (i.e. selection, 
crossover, and mutation) in order to mimics natural selection 
of biological evolution. ACO mimics the behaviour of 
colonies of ants for finding food paths. The main advantage 
of GA over HC, TS and SA is that GA is not usually get stuck 
into local optima .Both of GA and ACO include some 
expensive computations such as crossover and mutation 
operations in GA and ant search process in ACO(Harman & 
Jones, 2001) 

In recent work, PSO has also been adopted a t-way strategy 
(Ahmed et al., 2012). PSO relies on a population of particles 
called a swarm. PSO mimics the swarm behaviour of bird and 
fish swarm in searching food. Similar to PSO, HS (Alsewari 
& Zamli, 2012) has also been adopted for t-way test suite 
generation. Using HS, the t-way generation process follows 
the analogy of the improvisation process by a skilled 
musician. To explore the search spaces in an efficient 
manner, HS uses a probabilistic-gradient to select current 
solution neighbour for optimal solutions. CS is a population 
based algorithm inspired from brood parasitic behaviour of 
cuckoos. CS has been implemented for t-way test suite 
generation in (Ahmed et al., 2015). CS provides optimal 
balance between local intensification and global 
diversification as well as provides the capability to explore 
all the search space efficiently through the use of Lévy flights 
(Yang et al., 2014) . Similar to GA, CS uses elitism 
mechanism to ensure that only solutions with higher fitness 
can proceed to next generation of iteration. Owing its 
effectiveness to enhance the solution, we have also opted to 
adopt elitism for our proposed eFPA strategy. 

Recently, (Zamli et al., 2016) proposes a new hyper-heuristic 
based strategy called High  Level  Hyper-Heuristic  (HHH). 
In HHH, Tabu search algorithm serves as the master 
algorithm (i.e. High level) to control other four low level 
algorithms (LLH); Teaching Learning based Optimization, 
Particle Swarm Optimization, Cuckoo Search Algorithm and 
Global Neighbourhood Algorithm. To ensure high 
performance, HHH defines a new acceptance mechanism for 
the selection LLH algorithm, relies on three operations (i.e. 
diversification, intensification and improvement). Further 
experiments have been done in  (Zamli et al., 2017b)  with 
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new acceptance  mechanism based on fuzzy inference system 
and new LLH operations  (i.e. GA’s crossover search 
operator, TLBO’s learning search operator, FPA’s global 
Pollination, and Jaya algorithm’s search operator). 

Building from earlier approach, (Zamli et al., 2017a)  develop 
a new strategy, called Adaptive Teaching Learning-Based 
Optimization (ALTBO). ATLBO improves the performance 
of standard TLBO resulting from a good balance between 
diversification and intensification through the adoption of 
fuzzy inference rules. 
 
3.2 Sequence T-way Test Suite Generation Strategies 

Contrary to sequence-less t-way test suite generation 
strategies, there are much little existing works that have been 
published on sequence-based t-way test suite generation. 
Although, sequence based strategies have a long history,  
most of existing works focus on sequences derived from state 
transitions, program control flow graphs , and syntax 
expressions(Offutt et al., 2003). The most closed works to 
this paper are combinatorial testing and applications of 
covering arrays such as greedy based strategies e.g. (Chee et 
al., 2013; Kuhn et al., 2012) or meta-heuristic based 
strategies (e.g. BA (Zabil et al., 2012)).  

Sequence of events in the CA have been considered as a 
combinatorial problem first by Kuhn et al. (Kuhn et al., 
2012). In their algorithm, called t-seq, a set of n events is 
numbered from 0 to n. Here, a small set of tests, which must 
cover every t-sequence at least once has to be generated. In t-
seq algorithm, large number of test cases is generated, then, 
each test case is scored based on the number of previously 
uncovered sequences. Then, using a greedy algorithm, the 
highest score test case covering the maximum number of t-
way sequence combination is chosen  (Kuhn et al., 2012).  

Bee Algorithm is adopted in sequence t-way test suite 
generation strategy (Zabil et al., 2012). BA is a population-
based algorithm inspired from behavior of honey bee 
colonies to find food. In the strategy, t-way sequence 
combinations represent the food source and bees will be 
employed to search for the best source of food. The 
population of test case is subjected to repeated cycles of 
searching to find the best test case. This searching process is 
repeated till t-way sequence combinations are covered.  
Mostafijur et al. proposed the Event Driven Input Sequence 
Testing  (EDIST-SA), by using the SA algorithm (Rahman et 
al.). However, EDIST-SA is designed to support only for t=2 
and t=3. Ahmad et al. develops Sequence Covering  Array  
Generator  (SCAT) (Ahmad et al., 2016), which groups 
similar quality candidates into a pool. Effectively, SCAT 
delays the selection of the best candidate till the very end for 
each cycle. 

Chee et al. (Chee et al., 2013)  exploit Upper bound (U) and 
upper bound reversal (Ur) in order to select one permutation 
from t-scrambling sets of permutations. Consisting of two 
selections of best candidates, the first one is based on the 
greedy algorithm covering the most uncovered t-sequence. 
The second one also uses the greedy algorithm but adds the 

reverse of the current best test case in the final test suite. 
Erdem et al. (Erdem et al., 2011)  adopts the concept of 
Answer Set Programing (ASP), essentially a finite set of rules 
based on logic programming for generating sequence t-way 
test suite. In this approach, SCA is computed using answer-
set programming where search problems are encoded using 
ASP, such that the solutions of a problem correspond to a set 
of answer models. 

 
4 Flower Pollination Algorithm 

Flower pollination algorithm is a recently developed meta-
heuristic algorithm based on the flower pollination process. 
To be specific, pollination process involves transferring 
pollen grains from male part of flower to ovules borne in 
female part via pollinators such as birds, butterflies, bees, and 
bats. According to mechanisms of pollen transfer, pollination 
can take two types: biotic and abiotic. Biotic pollination 
refers to the transfer pollen via pollinators (i.e. involving 
insects or other animals). Abiotic pollination, on the other 
hand, does not require any pollinators to transfer pollen (i.e. 
using non-animal vectors, such wind and water responsible). 
Often, pollination can be accomplished by self-pollination or 
cross-pollination as shown in Figure . Self-pollination occurs 
when pollen is transferred from male parts to female parts of 
the same flower or to another flower of same plant. Cross-
pollination refers to the case when pollen is transferred from 
flower of one plant to flower of another plant. Based on the 
pollination process described earlier, Yang and Deb develops 
a new meta-heuristic algorithm, called the Flower Pollination 
Algorithm (FPA) (Yang, 2012). 

Referring to Figure 2, FPA can be represented 
mathematically as two key steps: global pollination step and 
local pollination step. Global pollination step in FPA is 
represented in transferring the flower pollens, by pollinators 
such as insects, over a long distance. This guarantee the fittest 
pollens with high quality will carry over to the next 
reproduction. Exploiting the Lévy flight motion, global 
pollination step can be represented by Equation 1. 

	/0(123) 		= /0(1) 	+ 	78é:;	 < =1 	− 	?@AB. 																	(1) 

7 is step size to control the Lévy flight,	7 > 0.	 8é:;	 <  is a 
function to produce step size. The Lévy flight essentially is a 
random walk interspersed by long jumps with various 
distance steps. Lévy (λ) represents the flight behaviour of 
pollinators based on the Lévy distribution: 

Lévy λ = 	
λΓ λ sin πλ

2
π

	
1
s32M

, (	s ≫ 	 sO > 0)										(2) 

λ is distribution factor and Γ(λ) is standard gamma function. 
This distribution is valid for large steps s > 0.  

Flower pollination process can also involve self-pollination 
where pollen’s flower can successfully pollinate the same 
flower or another flower in the same plant, or with another 
flower in different plants (i.e. termed local pollination step). 
Local pollination step is formulated by following equation: 
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	/0(123) 		= /0(1) 	+ 	P(/Q(1) 	− 	/R(1))																																		(3) 

where xT U  and xV(U) are pollens selected randomly from 
different flowers, ϵ is random number obeying uniform 
distribution in [0,1]. Here, a switch condition p can be used 
to alternate between common global pollination and intensive 
local pollination. FPA can be summarized as shown in Figure 
3. 

 
Figure 2: Flower Pollination Methods, (1) Self Pollination, (2) 

Pollination from same plant but different flower, and (3) 
Pollination from different plant 

. 
1. Objective function f(x), x	 = 	 (x3, . . . , xX)	; 
2. Initialize a population of n pollen with random solutions. 
3. Find the best solution gbest in the initial population 
4. Define a switch probability pa ∈ [0, 1] 
5. while (t <MaxGeneration) 
6.     for i = 1 : n (all n flowers in the population) 
7.         if  ( rand < pa ) 
8.                 Global pollination via xt

i+1 = xt
i + 8(gbest − xt

i) 
9.         else 
10.                 Randomly choose j and k among all the solutions 
11.                 Do local pollination via xt

i+1 = xt
i + ǫ(xt

j − xt
k) 

12.         End if 
13.         Evaluate new solutions 
14.         If new solutions are better, update them. 
15.     End for 
16. Find the current best solution gbest 
17. End while  

Figure 3 : Pseudocode of Flower Pollination Algorithm (Yang, 
2012) 

 
5 Flower Strategy Test Generation 

As part of our work, we develop a unified Elitist Flower 
Pollination Algorithm (eFPA) strategy, for sequence and 
sequence-less t-way test generation problems. The complete 
pseudo-code of eFPA algorithm can be represented in Figure 
4.  

In line 1, eFPA generates interaction elements list (L) based 
on the Interaction_Type variable selection (i.e. sequence-less 
or sequence). L represents all t interaction possibilities of 
combinations between input values.  

In case of sequence-less interaction elements, for a set of 
parameters and their values :, all t-combinations of P that 
met the interaction strength requirement are generated. Then, 
the interaction elements are generated based on these 
combinations. Consider a system CA with CA (N; 2, 23 31). 

The t-way combinations of this system are P1P2, P1P3, P1P4, 
P2P3, and P2, P4, where P= [P1, P2, P3, P4]. For our running 
example, P1, P2, and P3 having two values (i.e., 0 and 1), and 
P4 has three values (0, 1, and 2). For each t-combination, all 
possible combinations of corresponding parameters’ values 
are added in the L. For instance, P1P2 has 2×2 possible 
interaction elements (i.e., 0:0, 0:1, 1:0, and 1:1), P1P4 has 2×3 
possible interaction elements (i.e., 0:0, 0:1,1:0, 1:1, 2:0, and 
2:1). The total interaction elements are (2×2) + (2×2) + (2×3) 
+ (2×2) + (2×3) = 24. 

Input:   
Interaction_Type: [sequence-less, sequence] 
Elitism: Boolean 
(P, v, n):    Set of parameters P, its parameter-value v and 

number of events. 
t:       interaction strength. 

Output:   
Final test suite List FTS;  

Begin 
1. Initialize interaction elements list L. 
2. Initialize pollen_size, sp, and ep. 
3. Generate population of pollens, M={ M1, M2 … Mpollen_size 
4. While L is not empty  
5.    While t < MaxGeneration  
6.      For i = 1 : n (all n pollens in the population)  
7.        If  ( rand < sp ) 
8.           Global pollination via xt

i+1 = xt
i + L(gbest − xt

i) 
9.        Else 
10.           Randomly choose j and k among all the solutions 
11.           Do local pollination via xt

i+1 = xt
i + ǫ(xt

j − xt
k) 

12.        End if 
13.        Evaluate new solutions 
14.        If new solutions are better  
15.       update them in the population 
16.    End for 
17. //  decision  based on elitism 
18.   If (Elitism== true) 
19.     For i = 1 : n (all n pollens in the population) 
20.         If random < 0.25 then  
21.          Get the worst pollen index, say j. 
22.           Replace j by randomly new solution; 
23.         End if 
24.       End For 
25.    End if 
26.    Find the current best solution gbest 
27.    End while 
28.    Add the best test case, gbest, into FTS.  
29.    Remove covered interactions elements from L. 
30.  End while 
31. End 

Figure 4: Pseudo-code of eFPA 

Concerning the generation of sequenced interaction 
elements, every t-way combination of events is covered at 
least once with respect to the particular order. For given n 
events (i.e. 1, 2 … n), we generate sequence interaction 
elements list based on t-combinations set. For each 
combination, all possible permutations of corresponding 
events are added into L. For instance, for SCA(N;4,3), the all 
3-combinations set is (i.e. P1P2P3, P1P2P4, P1P3P4, P2P3P4). 
Here, the combination P1P2P3 has 6 permutations (i.e., 1:2:3", 
1:3:2, 2:1:3, 2:3:1, 3:1:2, and 3:2:1), while P1P2P4 6 
permutations (i.e. 0:1:3, 0:3:1, 1:0:3, 1:3:0, 3:0:1, and 3:1:0). 
The total interaction elements are 3! +3! +3! +3! =24. 

Line 2 marks the start of the test suite generation algorithm. 
Here, eFPA specifies initial values for population size 
pollen_size, switch probability (sp), elitism probability (ep) 



6 Nasser et al.  

and stopping criteria (i.e., maximum iteration for 
improvement). Line 3 initializes random population of 
pollens M= [M1, M2 … Mpollen_size], Mi 

= /30	, /[0	, … , /]^30, /]0	 , and calculates the pollen’s 
fitness. Here, the pollen’s fitness is the number of covered 
interaction elements by the pollen. In lines 4-24, eFPA 
subjects M to repeated cycles of the search process in order 
to cover maximum number of interactions in L. Based on the 
value of sp, in line 7, eFPA selects one of the two core 
operations of FPA. Global pollination (in line 8) permits the 
adoption of Lévy flight to produce new potential 
pollen,/_`a 		= /3_`a	, /[_`a	, … , /_^3_`a, /__`a	  using 
equation (1). Using the local pollination (in lines 10-11), 
eFPA selects two existing pollens, xT U  and xV(U) randomly 
from the population to generate now pollen using equation 
(2). In lines 13 and 14, eFPA evaluates the fitness of the 
generated pollens. If the new pollen fitness is better than 
current one, the new pollen replaces the current pollen.  

Lines 18-23 introduce the elitism into eFPA if the variable 
elitism is set to be true. Here, a fraction of worse pollens are 
replaced by new pollens (lines 20 and 21). Elitism ensures 
that only pollens with high fitness are passed to next 
generation. For sampling, the value of elitism probability (ep) 
depends on the user setting.  

The search process is repeated until the maximum number of 
improvement has been satisfied (in lines 5-27). Then, the 
eFPA adds the best test case into the final test suite (line 27), 
and then the covered interactions elements are removed from 
the interaction list (line 28). After that, interaction elements 
list is checked, once all interaction elements are covered (i.e., 
the interaction list is empty), the iteration stops. Otherwise, 
the overall iteration is repeated. 
 
6 Evaluation of eFPA 

The evaluation of eFPA is divided into two parts. The first 
part evaluates eFPA with the original FPA in terms of 
convergence rate. The second part deals with comparative 
studies with existing sequence and sequence-less t-way 
strategies, in terms of the generated test suite size. To perform 
the experiments, we adopt the Intel (R) Core (TM) i7-3770 
CPU@ 3.40 GHz - 3.40 GHz, 4GB of RAM, Windows 7 
Professional, and 32-bit Operating System. For parameters 
adjustment, we have adopted Pa = 0.8, maximum iteration = 
700, pollen size = 50 and switch probability = 0.25, based on 
the experiments recommended values by (Ahmed et al., 
2015; Nasser et al., 2015; Yang, 2012).  Each cell displays 
the minimum test suite size for each the existing strategies 
where the best (marked as shaded cell) and the average test 
suite size is recorded. Cells marked as NA denote 
unavailability of the results in the literature. To allow 
meaningful comparison between each strategy (with both 
FPA and eFPA), we define the following relationship: 

Δ	 = 	β	 − 	α																																																										(4) 
where   β = our solution (including FPA and eFPA) 

α = the best known solution from existing strategies. 

If Δ < 0, our solution is better than the known best solution. 
By the same token, if Δ > 0, then our solution is poorer than 
that of the known best. Similarly, when Δ = 0, our solution 
matches with the known best solution.  
 
6.1 Convergence Rate Comparison eFPA versus FPA 

The convergence rates of the proposed strategy with elitism 
(i.e. referred to as eFPA) and without elitism (i.e. referred to 
as FPA) are compared using the sequence-less t-way CA(N; 
2, 105), and the sequence t-way SCA(N; 20, 3). FPA and 
eFPA are executed with different values of the iteration (i.e. 
5, 10, 20, 30, 40, 50, 100, 200, 300, 400, and 500). The 
average values of 20 runs for the two covering arrays are 
shown in Figure 6. 

Referring to Figure, eFPA outperforms FPA for the two 
sequence-less and sequence t-way problems. In this case, 
introducing elitism into eFPA increases the randomization of 
population. Hence, the quality of solutions for eFPA and the 
convergence rate improve.  

 
6.2 Benchmarking with Existing t-way Strategies 

Our benchmark consists of sequence-less and sequence based 
experiments as follows. 

A) Benchmarking with Sequence-less t-way Strategies 

Our sequence-less benchmark comparison is based on the 
following experiments. 

 

Figure 6: Convergence Rate of eFPA versus FPA for CA(N; 2, 
105), and SCA(N; 20, 3) 
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• Experiment 1: Comparison with existing strategies as 
published in (Ahmed et al., 2015; Alsewari & Zamli, 
2012) for 13 different configurations. 

• Experiment 2: Comparison with existing strategies for 
CA (N; t, 210), t varied from 2 to 10. 

• Experiment 3: Comparison with existing strategies for 
CA(N; 4, v10), v varied from 2 to 7 

• Experiment 4: Comparison with existing strategies for 
CA(N; 4, 5P), p varied from 5 to 10  

The results in Table 3 deals with small interaction strength 
(i.e. t = 2 and t = 3). Referring to the Δ values in Table 3, FPA 
and eFPA contribute in terms of generating the best overall 
test suite size. Comparatively, judging by the Δ values, eFPA 
generally outperforms FPA.  As for the overall performance, 
SA appears to produce the best overall test suite size with 
ACA, GA, and eFPA coming in as the closest runner up. 
TVG perform the poorest overall.  

One subtle observation is the fact that meta-heuristic based 
strategies always outperform the general computational 
strategies with the exception of the case involving AETG 
with CA (N; 2, 313)  and mAETG with CA (N; 3, 106 ) 
respectively.  

Unlike Table 3, Table 4 deals with fixing CA (N; t, 210) whilst 
varying t from 2 to 10. Referring to the  Δ values, FPA and 
eFPA also contribute in terms of generating the best overall 
test suite size. Again, based on the  Δ values, eFPA generally 
outperforms FPA. However, there is a large difference in Δ 
values for the case involving CA (N; t, 210) for FPA and 
eFPA. In this case, it appears that elitism element within 
eFPA is counter-productive.  We perceive this case as outlier 
owing to the fact that meta-heuristics can be influenced by 
chance – as the algorithm relies heavily on randomness to 
generate the solution. Concerning the overall performance, 
eFPA performs the best followed by HSS and CS. As with 
the Table 3, meta-heuristic based strategies outperform the 
computational based ones. 

Table 5 shows the results of the comparison with existing 
strategies when v varied from 2 to 7 for CA(N; 4, v10). 
Referring to the Δ values, eFPA is also outperforming its FPA 
counterparts. As for the overall performance, eFPA 
outperform other strategies with three cases (i.e. with v = 3, 
v = 5, and v = 6) with MIPOG comes as the runner up. 

Table 6 reports results for CA(N; 4, 5P) where P is varied 
from 5 to 12. Based on Δ values, eFPA outperforms its FPA 
counterparts in most cases. In fact, eFPA outperforms all the 
existing strategies when P is varied from 8 to 11. MIPOG 
outperforms the existing strategies when P equal to 5, 6, 7 
and 12. In fact, MIPOG optimizes both the vertical and 
horizontal extensions which improve the test suite size. 

B) Benchmarking with Sequence t-way Strategies 

In this section, we compare FPA and eFPA with available 
results for sequence-based t-way strategies involving U, Ur, 
BA, SCAT, and T-SEQ. The experiments were adopted from 

(Ahmad et al., 2016; Chee et al., 2013; Kuhn et al., 2012; 
Zabil et al., 2012). Our benchmark comparison is based on 
the following experiments. 

• Experiment 5: Comparison with existing strategies for 
SCA(N;t, e), t =3 and e varied from 4 to 20. 

• Experiment 6: Comparison with existing strategies for 
SCA(N;t, e), t =4 and e varied from 5 to 20 

• Experiment 7: Comparison with existing strategies for 
SCA(N;t, e), t =5 and t = 6, with e varied from 6 to 10, 
and 7 to 10, respectively. 

Table 7 shows that FPA and eFPA have good overall 
performance as compared to existing work. Most Δ columns 
give negative values indicating that most of the results for 
FPA and eFPA outperform others. In fact, eFPA and FPA 
generates nearly half of the test suite size as compared to the 
cases of U and Ur, 

Table 8 reports comparison results for SCA(N;4, e) where e 
is varied from 5 to 20. In this case, the performance of eFPA 
and FPA is similar. In fact, FPA and eFPA outperform the 
existing strategies almost all test cases except when e = 5 and 
e = 20. In these two cases, SCAT has outperformed FPA and 
eFPA. Again, U and Ur perform the poorest in all cases. 
Referring to Table 9, all Δ columns give negative values 
indicating that most of the results for FPA and eFPA 
outperform other strategies. We note that all existing 
strategies do not give the support for t = 5 and t = 6. 

 
7 Discussion  

Finding a general strategy for generating sequence and 
sequence-less test suite is difficult as both are NP-hard 
problems. One reason is that there is a fundamental difference 
between the sequence and seq uence-less t-way test 
generation. Sequence t-way test generation focuses on 
obtaining sequences of events (as test cases) such that every 
combination of events is covered at least once with respect to 
the order. For sequence-less t-way test generation, the 
interaction elements must be covered at least once whilst the 
order of coverage is not important. When dealing these two 
issues, developing a unified strategy for both sequence and 
sequence-less less t-way test generation dictates factoring out 
the way that t way coverage is handled. The work on FPA 
and its variant are the first of its kind as most existing 
strategies support either but not both cases involving 
sequence and sequence-less t-way test generation. 

Concerning the overall performance of eFPA for each 
sequence and sequence-less, eFPA strategy produces 
sufficiently competitive results against existing strategies in 
most of cases with more superiority for sequence results. 
Comparing to FPA, eFPA is able to generate better results in 
most of cases due to its enhanced exploration capability (i.e. 
via elitism). 
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Table 3: Comparison with Existing Strategies for Experiment 1 

System 
configurations 

Computational-based Strategies Meta-heuristic Strategies  
Δ	
= 	β	 − 	α mAET

G 
AET

G IPOG Jen-
ny TVG SA ACA GA PSO HSS CS 

FPA eFPA 

Avg Best Avg Best Δ 
FPA 

Δ 
eFPA 

CA(N; 2, 34 ) 9 9 9 10 11 9 9 9 9 9 9 10.6 9 10.0 9 0 0 
CA(N; 2, 313 ) 17 15 20 20 19 16 17 17 17 18 20 19.9 18 18.2 17 +3 +2 

CA(N; 2, 1010 ) NA NA 176 157 208 NA 159 157 NA 155 NA 156.7 153 153.9 150 -3 -5 
CA(N; 2, 510 ) NA NA 50 45 51 NA NA NA 45 43 NA 43.5 42 42.8 42 -1 -1 
CA(N, 2, 810) NA NA 117 104 124 NA NA NA 109 105 NA 105.55 103 105.34 101 -1 -3 

CA(N; 2, 1510 ) NA NA 373 336 473 NA NA NA NA 342 NA 348.7 345 339.1 333 +12 -3 
CA(N; 3, 36 ) 38 47 53 51 49 33 33 33 42 39 43 45.5 44 46.3 41 +11 +8 
CA(N; 3, 46 ) 77 105 64* 112 123 64 64 64 102 70 105 105.0 101 103.8 93 +37 +29 
CA(N; 3, 56 ) 194 NA 216 215 234 152 125 125 NA 199 NA 199.0 195 198.6 194 +70 +69 
CA(N; 3, 57 ) 218 229 274 236 271 201 218 218 229 236 233 222.3 220 221.9 217 +19 +16 

CA (N; 3, 106 ) 1426 1496 NA 1572 1919 1508 1501 1473 1506 1505 NA 1484.2 1478 1475.0 1470 +52 +44 
MCA(N; 2, 51 38 22 ) 20 19 19 23 22 15 16 15 NA 20 21 22.0 21 21.5 20 +6 +5 
MCA(N; 3, 52 42 32 ) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

114 NA 111 131 136 100 106 108 NA 120 NA 123.0 118 122.5 113 +18 +13 

Table 4: Comparison with Existing Strategies for Experiment 2 

t 

Computational-based Strategies Meta-heuristic Strategies  
Δ	 = 	β	 − 	α 

IPOG TVG Jenny TConfig PICT` GTWay ITCH CTE-
XL MIPOG PSO HSS CS 

FPA eFPA 

Avg Best Avg Best ΔFPA ΔeFPA 
2 10 10 10 9 NA NA 6 NA NA 8 7 8 8.7 8 8.6 8 +2 +2 
3 19 17 18 20 NA NA 18 NA NA 17 16 16 16.7 16* 17.1 16 0 0 
4 49 41 39 45 NA NA 58 NA NA 37 37 36 38.4 35 39.0 36 -1 0 
5 128 84 87 95 NA NA NS NA NA 82 81 79 82.8 81 84.0 80 +2 +1 
6 352 168 169 183 NA NA NS NA NA 158 158 157 160.5 158 159.4 157 +1 0 
7 NS 302 311 NS NA NA NS NA NA NS 298 NS 295.0 292 293.4 290 -6 -8 
8 NS 514 521 NS NA NA NS NA NA NS 498 NS 504.1 500 505.2 495 +2 -3 
9 NS 651 788 NS NA NA NS NA NA NS 512 NS 671.8 592 705.6 621 +80 +109 

10 NS NS 1024 NS NA NA NS NA NA NS 1024 NS 1024 1024 1024 1024 0 0 

Table 5: Comparison with Existing Strategies for Experiment 3 

v 

Computational-based Strategies Meta-heuristic Strategies 
Δ	 = 	β	 − 	α 

IPOG TVG Jenny TConfig PICT GTWay ITCH CTE-XL MIPOG PSO HSS CS 
FPA eFPA 

Avg Best Avg Best ΔFPA ΔeFPA 

2 49 40 39 45 43 46 58 NA 43 34 37 28 36 36 39.9 36 +2 +2 
3 241 228 221 235 231 224 336 NA 217 213 211 211 212.3 211 209.8 208 0 -3 
4 707 782 703 718 742 621 704 NA 637 685 691 698 662.6 661 659.8 657 +24 +20 
5 1965 1917 1719 1878 1812 1714 1750 NA 1643 1716 1624 1731 1603.5 1605 1592.4 1592 -19 -32 
6 3935 4159 3519 NA 3735 3514 NA NA 3657 3880 3475 3894 3354.0 3354 3310.4 3310 -130 -165 
7 7061 7854 6462 NA NA 6459 NA NA 5927 NA 6398 NA 6215.4 6205 6211.8 6095 +288 +168 

Table 6: Comparison with Existing Strategies for Experiment 4 

P 

Computational-based Strategies Meta-heuristic Strategies 
Δ	 = 	β	 − 	α 

IPOG TVG Jenny TConfig PICT GTWay ITCH CTE- 
XL MIPOG PSO HSS CS 

FPA eFPA 

Avg Best Avg Best Δ FPA ΔeFPA 

5 908 849 837 773 810 731 625 NA 625 779 751 776 788.2 784 786.5 778 +159 +153 
6 1239 1128 1074 1092 1072 1027 625 NA 625 1001 990 991 991.4 988 994.6 985 +363 +360 
7 1349 1384 1248 1320 1279 1216 1750 NA 1125 1209 1186 1200 1170.0 1164 1169.4 1166 +39 +41 
8 1792 1595 1424 1532 1468 1443 1750 NA 1384 1417 1358 1415 1330.4 1329 1324.8 1319 -29 -39 
9 1793 1795 1578 1724 1643 1579 1750 NA 1543 1570 1530 1562 1478.0 1478 1466.4 1465 -52 -65 

10 1965 1971 1791 1878 1812 1714 1750 NA 1643 1716 1624 1731 1603.5 1605 1592.4 1592 -19 -23 
11 2091 2122 1839 2038 1957 1852 1750 NA 1722 1902 1860 2062 1742.0 1739 1732.3 1719 +17 -3 
12 2285 2268 1964 NA 2103 2022 1750 NA 1837 2015 2022 2223 1880.5 1879 1855.3 1854 +42 +17 
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8 Conclusion and Further Work 

Summing up, this paper has discussed and evaluated the 
unified Flower Pollination algorithm-based strategy (eFPA) 

supporting sequence and sequence-less t-way coverage. Our 
experiences with eFPA has been encouraging. As part of the 
future work, we are looking to support constraints as well as 
adopt eFPA for software product lines applications. 

Table 7 : Comparison with Existing Sequence-based t-way Strategies for Experiment 5  

System 
Configurations U Ur BA SCAT T-SEQ FPA eFPA Δ	 = 	β	– 	α 

Avg Best Avg Best Δ FPA ΔeFPA 
SCA(N;3, 4) 12 12 6 8 NA 7.2 6 6.25 6 0 0 
SCA(N;3, 5) 17 16 8 10 8 8.6 7 8.0 7 -1 -1 
SCA(N;3, 6) 20 18 9 12 10 9.8 9 9.4 8 0 -1 
SCA(N;3, 7) 23 22 10 12 12 10.7 10 10.0 10 0 0 
SCA(N;3, 8) 26 24 11 12 12 11.5 11 11.1 10 0 -1 
SCA(N;3, 9) 28 26 13 14 14 12.3 12 12.1 11 -1 -2 

SCA(N;3, 10) 30 28 14 16 14 13.3 13 12.8 12 -1 -2 
SCA(N;3, 11) 32 30 NA 16 14 13.8 13 13.6 13 -1 -1 
SCA(N;3, 12) 33 30 NA 16 16 14.8 14 14.0 13 -2 -3 
SCA(N;3, 13) 35 32 NA 18 16 15.4 15 15.6 15 -1 -1 
SCA(N;3, 14) 36 34 NA 18 16 16.53 16 16.0 16 0 0 
SCA(N;3, 15) 37 34 NA 20 18 16.8 16 16.4 16 -2 -2 
SCA(N;3, 16) 39 36 NA 18 18 17.2 17 17.0 17 -1 -1 
SCA(N;3, 17) 40 36 NA 20 20 18.0 18 17.6 17 -2 -3 
SCA(N;3, 18) 41 38 NA 20 20 18.8 18 18.6 18 -2 -2 
SCA(N;3, 19) 42 38 NA 20 22 19.6 19 19.0 19 -3 -3 
SCA(N;3, 20) 42 38 NA 22 22 21.25 20 20.33 20 -2 -2 

Table 8 : Comparison with Existing Sequence-based t-way Strategies for Experiment 6 

System 
Configurations U Ur BA SCAT T-SEQ 

FPA eFPA Δ	 = 	β	– 	α 

Avg Best Avg Best Δ FPA ΔeFPA 

SCA(N;4, 5) 54 54 28 24 26 29.8 29 29.1 28 +5 +4 
SCA(N;4, 6) 79 78 36 36 36 36.8 36 36.0 36 0 0 
SCA(N;4, 7) 98 96 45 46 46 43.6 43 42.2 42 -3 -4 
SCA(N;4, 8) 114 112 55 54 50 50.4 50 48.6 48 0 -2 
SCA(N;4, 9) 128 126 62 62 58 57.6 57 55.5 54 -1 -8 

SCA(N;4, 10) 140 138 71 64 66 64.71 63 62.5 61 -1 -3 
SCA(N;4, 11) 151 148 NA 72 70 68.2 67 68.8 68 -3 -2 
SCA(N;4, 12) 160 158 NA 82 78 74.8 74 74.2 74 -4 -4 
SCA(N;4, 13) 169 166 NA 86 86 79.8 79 80.0 79 -7 -7 
SCA(N;4, 14) 177 174 NA 90 90 85.4 84 85.8 84 -6 -6 
SCA(N;4, 15) 184 180 NA 90 96 90.0 90 90.5 89 -6 -7 
SCA(N;4, 16) 191 188 NA 96 100 97.0 97 97.0 97 -3 -3 
SCA(N;4, 17) 197 194 NA 104 108 103.67 101 101.0 103 -3 -1 
SCA(N;4, 18) 203 203 NA 106 112 106.67 106 105.67 105 0 -1 
SCA(N;4, 19) 209 209 NA 114 114 111.0 109 110.0 110 -5 -4 
SCA(N;4, 20) 214 214 NA 112 120 115.0 114 115.45 115 +2 +3 

Table 9 : Comparison with Existing Sequence-based t-way Strategies for Experiment 7 

System 
Configurations U Ur BA SCAT T-SEQ 

FPA eFPA Δ	 = 	β	– 	α 

Avg Best Avg Best ΔFPA ΔeFPA 

SCA(N;5, 6) 294 294 159 154 NA 151.4 148 154.8 152 -6 -2 
SCA(N;5, 7) 437 436 212 212 NA 200.0 199 197.0 194 -3 -8 
SCA(N;5, 8) 552 550 271 264 NA 249.8 247 241.4 240 -17 -24 
SCA(N;5, 9) 648 646 329 324 NA 295.5 295 291.3 283 -29 -41 

SCA(N;5, 10) 731 728 383 368 NA 349.5 344 345.75 344 -24 -24 
SCA(N;6, 7) NA NA NA NA NA 982.3 980 963.4 960 - - 
SCA(N;6, 8) NA NA NA NA NA 1311.5 1301 1282.34 1274 - - 
SCA(N;6, 9) NA NA NA NA NA 1639.11 1636 1633.34 1628 - - 

SCA(N;6, 10) NA NA NA NA NA 1998.0 1998 2164.3 2161 - - 
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