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Abstract—Human motion recognition has been extensively in-
creased in recent years due to its importance in a wide range of appli-
cations, such as human-computer interaction, intelligent surveillance,
augmented reality, content-based video compression and retrieval,
etc. However, it is still regarded as a challenging task especially
in realistic scenarios. It can be seen as a general machine learning
problem which requires an effective human motion representation
and an efficient learning method. In this work, we introduce a
novel descriptor based on Laban Movement Analysis technique, a
formal and universal language for human movement, to capture both
quantitative and qualitative aspects of movement. We use Discrete
Hidden Markov Model (DHMM) for training and classification
motions. We improve the classification algorithm by proposing two
DHMMs for each motion class to process the motion sequence in two
different directions, forward and backward. Such modification allows
avoiding the misclassification that can happen when recognizing
similar motions. Two experiments are conducted. In the first one,
we evaluate our method on a public dataset, the Microsoft Research
Cambridge-12 Kinect gesture data set (MSRC-12) which is a widely
used dataset for evaluating action/gesture recognition methods. In
the second experiment, we build a dataset composed of 10 gestures
(Introduce yourself, waving, Dance, move, turn left, turn right, stop,
sit down, increase velocity, decrease velocity) performed by 20
persons. The evaluation of the system includes testing the efficiency
of our descriptor vector based on LMA with basic DHMM method
and comparing the recognition results of the modified DHMM with
the original one. Experiment results demonstrate that our method
outperforms most of existing methods that used the MSRC-12 dataset,
and a near perfect classification rate in our dataset.

Keywords—Human Motion Recognition, Motion representation,
Laban Movement Analysis, Discrete Hidden Markov Model.

I. INTRODUCTION

Human motion recognition is an active area of research due
to its importance in many applications: video surveillance,
indexing videos, interaction Human-machine, security, and
health-care. The purpose of a human motion recognition
system is to recognize simple actions of everyday life such
as running, knocking, eating, walking, etc.) from videos. The
problem of human motions recognition has attracted the atten-
tion of several researchers and the advantages and limitations
of the different proposed approaches have been discussed over
the last years. Two crucial aspects of motion recognition are
to extract relevant features by representing the contents to
be classified by a descriptor vector and to develop a robust
learning algorithm in order to associate with this representation
a label. Many descriptors have been chosen in the computer
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vision literature. First methods based on interest points have
been proposed to describe human movements by Laptev and
Lindberg [6]. They have used the Harris 3D point-of-interest
detector, which is an extension of the Harris detector, adding to
it the temporal dimension. Dollar et al. [3] have also proposed
a similar detection algorithm, the cuboid detector, based on
interests points calculated from Gabor’s filter responses in the
space and time domain. Other approaches have illustrated the
relevance of tracking point trajectories for recognizing actions
in videos. For instance, Messing et al. [10] have extracted
features trajectories by tracking Harris3D interest points with
the help of the KLT tracker. Also Matikainen et al. [9] have
extracted trajectories of tracked feature points in a bag of
words paradigm for action recognition. Wang et al. [15], have
extracted features aligned with the trajectories to characterize
appearance and motion. To reduce the influence of camera
motion on action recognition, they introduced a descriptor
based on motion boundary histograms (MBH) which rely
on differential optical flow. When trying to identify human
motions, it is sometimes wise to know where the actor of
the action is in order to isolate him from the rest of the
scene. This allows focussing on his movements, regardless
of what happened in the background. To do this, two paths
have been widely studied, the first one was the analysis of
the shape of the character, through his silhouette, here we can
cite the work of Shao and Chen [12] who have employed
body poses sampled from silhouettes that were fed into a bag-
of-words model. Also, Ahmad and Lee [1] have proposed
a spatiotemporal silhouette representation, called Silhouette
Energy Image (SEI) to differentiate the properties of form and
motion for the human action recognition. The second path
was the analysis of the movement of the actor through the
identification of his limbs (hands, head, legs, etc.). Zanfir et
al. [17] have proposed a moving pose descriptor defined by
both pose information and differential information (velocity
and acceleration). Hussein et al. [5] have introduced the covari-
ance matrix of skeleton joint locations over time as a descriptor
vector. In order to code the temporal dependence of the joints
positions, multiple covariance matrices have been deployed
over sub-sequences in a hierarchical way. Yang et al. [16] have
introduced both spatial and temporal aspects. Their descriptor
vector included three pieces of information, the static pose
posture information (fcc), the temporal movement of a pose
defined by the difference between the current and the previous
pose (fcp) and the offset from an initial pose (fci).



In our work, we tried to propose more suitable features and
advanced learning algorithm to improve human motion recog-
nition performance. Our descriptor based on a Laban Move-
ment Analysis method (LMA) introduced by Rudolf Laban
(1879 to 1958) to analyze, describe, visualize and annotate all
varieties of human motion using a specific notation. LMA is a
descriptive language widely used in the field of dance, physical
therapy, athletics, and behavioral science. It is generally used
to analyze the movement of dancers and athletes. It captures
both quantitative and qualitative aspects of the movement by
encoding Laban components. To model human motion data we
used DHMM method for motions recognition. Classification
step is based on Forward algorithm [11] where each motion
is presented with two DHMMs to encode motion sequence in
the forward and backward directions. By applying Forward
algorithm in the two cases we avoid the conflict that can
happen between some gestures which share a same part of the
motion. For example, extend your arm straight forward and
knocking the door are two actions having the same motion in
the first frames, which can lead to a misclassification between
them. So, the idea here is to classify both motions with taking
into consideration the two motion sequence directions which
can help to make a distinction between them.

The remainder of the paper is organized as follows. In
Section 2, we describe our proposed approach starting with
preprocessing data step, feature extraction and finally gesture
recognition step. Experimental results are reported in section
3. We first evaluate our descriptor vector with a public dataset
MSRC-12 and with our dataset dedicated to control gestures.
We compare between recognition results obtained by the basic
DHMM method and our proposed DHMM method. Finally,
conclusion and future work are presented in Section 4.

II. HUMAN MOTION RECOGNITION SYSTEM

In general, a human motion recognition system is composed
of three important steps: preprocessing data, feature extraction,
and motion recognition (Fig.1). In the first step, we introduce
an invariant approach to make our system independent of the
initial position and orientation of the user. In the follow-
ing step, to represent human motion, we used three LMA
components, Body, Space, and Shape. We didn’t use Effort
component because it describes the qualitative use of energy
and the inner attitude. Effort qualities depend on the rhythm,
weight and the intention of the motion and are often used
to describe emotions. However, our application consists in
recognizing human gestures regardless their rhythm. So, if we
make the same gesture at different speeds our system should
give the same result. In the recognition step, we used DHMM
model which accepts discrete values as input. A discretization
approach was implemented following a quantization algorithm
(kmeans) in order to generate a set of discrete values which
will be implemented into Baum Welch algorithm for training
data. In the classification step, we presented each gesture
with two DHMM models to process the gesture sequence in
two opposite directions and apply the forward algorithm to
conclude the action label for a testing gesture.

A. Data Collection And Preprocessing

Prior to the extraction of features, a preprocessing data
step is applied to each gesture sequence captured by kinect
sensor. So, first we define a local skeleton coordinate system
(X ′, Y ′, Z ′) which origin is the hip center joint. X ′− axis is
the vector starting from the right hip center and going to the
left hip center. Y ′ − axis is the vector connecting between
the midpoint of hips (Jc) and the torso joint (Pt). And finally
Z ′ − axis is orthogonal to both vectors.

i′ =
Jlhi − Jrhi
‖Jlhi − Jrhi‖

; j′ =
Js − Jc
‖Js − Jc‖

; k′ = i′ ∧ j′ (1)

Let [Jj ](X,Y,Z) be the 3D position of joint j presented in the
camera coordinate system (X,Y, Z). We translate the skeleton
coordinate system to the center of kinect:

[Jj ]X
′ = [Jj ]X − cx; [Jj ]Y ′ = [Jj ]Y − cy; [Jj ]Z ′ = [Jj ]Z − cz

(2)

Where Jc(cx, cy, cz) is the 3D position of the hip center joint
in the kinect coordinate system. After we apply a rotation to
align both coordinate systems, we have:

[Jj ](X,Y,Z) = R(X,Y,Z)←(X′,Y ′,Z′)[Jj ](X′,Y ′,Z′) (3)
= [r1 r2 r3][Jj ](X′,Y ′,Z′) (4)

where r1, r2 and r3 are the rotation vectors around the
X −Axis, Y −Axis and Z −Axis respectively.

By applying (4), we have:

r1 =
[Jlhi](X,Y,Z)

a ; r2 =
[Js](X,Y,Z)

c and r3 = r1 ∧ r2 where
a is the distance between C and Jlhi, and Jc is the distance
between Jc and Js. Since r1, r2 and r3 are orthogonal unit
vectors, hence RT = R−1. Then:

[Jj ](X′,Y ′,Z′) = RT(X,Y,Z)←(X′,Y ′,Z′)[Jj ](X,Y,Z) (5)

B. Feature Extraction

Feature extraction can be defined as the extraction of
significant features from raw data, which maximizes the dif-
ference between class patterns while enhancing the variability
between class patterns. Our descriptor vector is derived from
LMA approach which can describe and interpret all varieties
of human movements. For human motion representation we
quantify three LMA components: Body component, expresses
which body parts are moving and how their movement are
related to each other. It also addresses issues concerning loco-
motion and kinematics by describing structural and physical
characteristics of the human body. Body organization is related
to the connection between body parts. In the upper body part,
we describe the extension of elbows (θl1, θ

r
1,) and shoulders

(θl2, θ
r
2). And we describe outstretched arms by computing the

distance between two hands (dHs). To know more about hands
pathway, we add three others features, the distances between
the shoulder center and left (dshc,lh) and right hand (dshc,rh),
and the angle between two hands with respect to shoulder



Fig. 1. Human motion recognition steps.
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Fig. 2. Body characteristics.

center joint(θHs). In the lower part we describe legs extension
(θl3, θ

r
3)) and legs spread (θLs).

Space component defines where in space the motion is
happening, the directions and spatial patterns. We define the
torso direction by computing the normal vector ~N of the
triangle formed by left hip (hil), right hip (hir) and neck
(n) joints.

−→
N =

−−→
nhil ∧

−−→
nhir

||
−−→
nhil ∧

−−→
nhir||

(6)

Shape component describes the way the body changes
shape during movement. It focuses on two main qualities,
”What forms does the body make”?, ”Is the shape changing
in a self-to-self relationship or in relation to a goal in space”?
”. Shape category is composed of three subcategories: Shape
Flow, Carving, and Directional Movement.

Shape flow represents the relationship of the body to itself. It
is related to the shape deformation, expanding or condensing,
during movement. We compute the volume of the smallest
convex envelope of the human body based on Quickhull
algorithm [2]. Directional movement, represents the pathway
through space of the movement, either curving or straight. We
quantified how curved are the trajectories made by the upper

extremities (head and hands) by computing the gradual angular
change φ occurring by each joint between two successive
frames.

φJt = arccos(
−−−−→
Jt−1Jt∥∥∥−−−−→Jt−1Jt

∥∥∥ ·
−−−−→
JtJt+1∥∥∥−−−−→JtJt+1

∥∥∥ ) (7)

where Jt/t+1 is the position of joints (head and hands)
at frame t and t + 1, respectively. This equation describes
the local curvature of the upper body parts’pathway. So in
direct movement with straight-line trajectories, local curvature
feature will be closest to 0. But in curved trajectories, it will
be higher.

Carving describes the qualitative changes in the shape
according to three planes horizontal, frontal, and sagittal,
and relating them to bipolar descriptors like spreading and
enclosing, rising and sinking, and retreating and advancing,
respectively. We quantify Carving factor by computing the
projected distances between head, upper and lower extremity
joints (hands, elbows, knees, and feet) relating to spine joint
pose at the initial frame. These projections provide the frontal,
sagittal and horizontal displacements of the head, arms, and
legs.

d =

√∑
d

(pje − pse)2 (8)

where j represents each joint considered at each frame, s is
the spine joint at the initial frame and e belongs to one of the
following sets {x, y}, {y, z} and {z, x} for each considered
projection.

C. Recognition phase

The problem of human motions recognition can be reduced
to a problem of supervised classification. In order to make a
decision on a given motion, the system performs two steps:
training and testing. The purpose of the training phase is to
build a set of rules that will be used for the recognition of
future actions. Indeed, based on the labeled data (the truth



ground), the system is capable of building decision rules to be
able to distinguish between the different categories of human
motions. By applying these decision rules to a given action,
the system is able to predict its class. In this paper, we use
the Hidden Markov Model for both training and classifying
motions.

1) Discrete Hidden Markov Model: Hidden Markov Mod-
els [11] is one of the most well-known methods in machine
learning. An HMM is a statistical model for time series, used
to represent the evolution of observable sequences (O) that
depend on unobserved, or discrete state variables (S). We
modeled each gesture with a left-right HMM. In such model,
only transitions from one state to itself or to a unique successor
are allowed.

A set of trained HMMs for the C classes of gestures can
be represented as σ{1,...,C} = {σ1, σ2, . . . , σC}.

The HMMs we use are discrete HMMs and discrete HMMs.
They accept only discrete values as inputs. Thus, given our
descriptor vector, before implementing it into an HMM, we
use discretization and quantization algorithms during training
and classification steps. In discretization approach, we im-
plemented a C++ algorithm presented in Algorithm 1 which
consists in sampling gesture sequences with different sizes into
a fixed-size T . A gesture sequence sin = {f1, f2, . . . , fN} is
defined as a N×d matrix composed of N feature vectors with
d features, fk is a feature vector recording at frame k with size
d (d=number of features). The output of our discretization
algorithm is a T × d matrix presented a gesture sequence
composed of T feature vectors sout = {h1, h2, . . . , hT }.

Algorithm 1: Discretization algorithm.
Input : sin = {f1, f2, . . . , fN}, T
Output: sout = {h1, h2, . . . , hT }

1 g1 = f1
2 j ← 2
3 k ← 1
4 for i← 2 to N do

5 Compute D =
√∑d

l=1(fi,l − fk,l)2 . D is the
distance between two feature vectors fi and fk.
if D ≥ ε then

6 gj = fi
7 j ← j + 1
8 k = i
9 end

10 end
11 Compute the average distance: D′= N ′

T . g is the
matrix of N ′ feature vectors obtained after
removing noise.

12 for i← 0 to T − 1 do
13 hi+1 = g1+i∗D′ .
14 end

After the discretization step, we apply k-means algo-
rithm [8] to cluster the feature vectors of all gesture sequences
into K clusters {c1, c2, . . . , cK} in which each feature vector

belongs to the closest cluster, so as to satisfy the condition
expressed by:

argmin
c

K∑
j=1

∑
hi∈cj

‖hi − µj‖2 (9)

where µj is the mean of the elements in the cluster cj . At the
end of the quantization algorithm, a gesture sequence will be
presented as an observation sequence O = {o1, o2, . . . , oT },
where oi is a discrete symbol ∈ {c1, c2, . . . , ck}. So each
symbol oi corresponds to the cluster of the feature vector fi,
and the output sequence length is T , which acts as the discrete
observation sequence to be the input observation sequences to
learn the HMM model and use this model to predict for the
unknown sequence.

The parameters of the model HMM can be represented
in the compact way σ = (π,A,B), where π is the initial
probability distribution over states, A is the transition proba-
bility matrix, and B is the matrix that represents the emission
probability of a symbol observed from a specific state.

For the training step, we use the Baum-Welch algorithm
to find optimal parameters to the HMM given an initial
model σi = (πi, Ai, Bi) and the observations sequences
{O1, O2, . . . , Os} corresponding to the learning gesture se-
quences.

σ∗ = argmax
σ

(

s∑
i=1

logP (Oi|σ)) (10)

For classification step, we use the Forward algorithm to
classify a sequence test Ot = {o1, o2, . . . , oT }. The class
label is assigned via Maximum Likelihood after evaluating
the sequence in every HMM.

C = argmax
allσ

(log(P (Ot|σ)) (11)

2) Modified DHMM: In the classification step, sometimes
we have very similar motions, in such case our recognition
algorithm can make a misclassification gesture. An example
is provided in Fig.3 which shows two similar gestures (G1
and G2). Gesture 2 shares a part with Gesture 1 in the first
three initial frames. In such case, initial state probabilities and
transition probability matrices of the two models are very close
which can lead to an error classification.

The idea here is to process the gesture sequence in two
directions the forward (from the first frame to the last frame)
and backward (from the last frame to the first frame). We
define two models for each gesture σdG and σiG are the DHMM
models when considering the gesture sequence (G) in the
forward direction and in the backward direction, respectively.
If we take a test sequence (Odt ) of the second gesture (G2),
we have:

P (Odt |σdG1
) ≈ P (Odt |σdG2

) (12)

Now if we consider the observation sequence in the backward
direction (Oit) we have:

P (Odt |σdG2
) ≈ P (Oit|σiG2

) (13)

P (Oit|σiG2
) > P (Oit|σiG1

) (14)



According to (12) (14), we obtain the following Equation:

min(P (Odt |σdG2
), P (Oit|σiG2

)) > min(P (Odt |σdG1
), P (Oit|σiG1

))
(15)

According to (15), we can declare the class label of the test
sequence (Ot) as:

C = argmax
allσ

min(log(P (Odt |σdG)), log(P (Oit|σiG))) (16)

Fig. 3. Processing gestures sequences in two opposite directions for two
similar gestures.

III. EXPERIMENTAL RESULTS

We evaluated the robustness of our descriptor and our
classification method for action recognition. We performed this
evaluation on two datasets: The first one is a public dataset
(MSRC-12) acquired using a Kinect sensor and the second
dataset is our dataset dedicated to control gestures built under
Robot Operating System (ROS). We applied our descriptor
vector and modified DHMM method for action recognition
step. Details of the experiments are presented in the following
subsections.

A. MSRC-12 Dataset [4]

To evaluate our approach, we tested our method on a rela-
tively large dataset captured by a Kinect sensor, the MSRC-
12. The dataset is composed of 12 gestures performed by 30
subjects. Each subject repeats the same gesture several times.
In total, there are 6244 gesture instances. The motion files
contain 3D coordinates of 20 joints captured at a sample rate
of 30Hz with an accuracy of about 10 centimeters in joint
positions.

The dataset is divided into two groups: iconic (hide, shoot
pistol, throw object, change weapon, kick, put goggles) and
metaphoric (raise volume, navigate to next menu, wind up
music, take a bow, protest music, low down song) gestures.
We converted the raw data into a descriptor vector based on
the three LMA components. After, we discretized gesture se-
quences into a fixed length by applying discretization method
presented in Algorithm 1 with T = 70 frames. A grid search
on DHMM parameters (number of states S, and number of

TABLE I
COMPARISONS WITH STATE-OF-THE-ART APPROACHES ON THE MSRC-12

DATASET.

Methods Iconic Metaphoric
Lehrmann et al. [7] 90.90 -
Song et al. [13] 79,77 81
Truong et al. [14] 88.6 75.2
Ours (DHMM) 96.33 90.66

symbols O) ranging from 5 to 40 has been done. Best results
are achieved with S = 20 states and O = 40 symbols.

In order to compare our approach with state of the art
methods, we used the more challenging validation method,
the cross-subject test where one-half of the subjects are used
for training and the remaining for testing.

Fig.4 demonstrates that our method achieves an average
accuracy of 94.03% and 80.48% on iconic and metaphoric
gestures respectively when applying basic DHMM method.
With our modified DHMM we improved the recognition
results with an average accuracy of 96.33% for iconic gestures
and 90.66% for metaphoric gestures.

The results in Table I show the comparison between our
result and state of art results. For a faithful comparison,
we take the result of Truong et al. [14] where they used
the same learning method DHMM. Our method outperforms
their method by 7.73% on iconic gestures and 15.46% on
metaphoric gestures. In general, we can say that our method
performs better than the state-of-the-art result.

Fig. 4. Recognition rates results of MSRC-12 iconic gestures when applying
basic DHMM and modified DHMM.

Fig. 5. Recognition rates results of MSRC-12 metaphoric gestures when
applying basic DHMM and modified DHMM.



B. Control gestures dataset

After evaluating our system with a public dataset, we built
our dataset composed of ten control gestures (move, introduce,
turn left, stop, turn right, increase velocity, decrease velocity,
waving, dance, introduce yourself) as shown in Fig.9.

Fig. 6. Discretization of dHs feature in ”Stop” gesture with T = 30 frames.

Fig. 7. Discretization of θl1 feature in ”Waving” gesture with T = 30 frames.

Twenty subjects (10 men and 10 women) from the Uni-
versity of Evry Val d'Essonne, ranged in age from 27 to 45
years old (M=28.5 years, SD=5.5) took part in this study.
Each subject is asked to make gesture ten times. Our dataset
has in total 2000 sequences (20 subjects× 10 gestures× 10
times). Our system was implemented under ROS, a Robot
Operating System which consists in running a great number
of executables to exchange data synchronously (via topics)
or asynchronously (via services). For data acquisition, the
OpenNI driver provided a high-level skeleton tracking module.
This module requires initial calibration to record the 3D
position of skeleton joints at 640 × 480 resolution at 30 fps.

For each gesture, we computed the descriptor vectors from
raw data. After, we sampled descriptor vectors with 30 frames.
Two examples of the discretization of two extracted features
from our descriptor vector are shown in Fig.6 and Fig.7. The
first feature (dHs) is the distance between hands in ”stop”
gesture. As we can see in Fig.6, when performing stop gesture
this feature tends to zero at the end of the gesture. When
applying our discretization algorithm with T= 30 frames, we
convert the gesture sequence from a vector with 84 frames to
a vector with 30 frames. For the ”waving” gesture we take as
feature example the angle between left hand and left shoulder.
As shown in Fig.7, at initial frame the angle θl2 ≈ 180 deg
after it drops to ≈ 20 deg and finally it returns to its initial
value (≈ 180 deg). We sampled the feature sequence of θl2 in
”waving” gesture from 118 frames to 30 frames. We set the
number of clusters in K-means algorithm to 20 and the number
of hidden states to 5. As shown in Fig.8, our results were
very satisfying with an average accuracy result of 95% when
applying simple DHMM and a significant result of 96.2% with
our modified DHMM.

Fig. 8. Recognition rates results of our dataset when applying basic DHMM
and modified DHMM.

IV. CONCLUSION

In this paper we presented an effective approach for hu-
man motion recognition based on specific feature vectors
inspired from LMA technique. A series of steps have been
implemented starting with preprocessing data step based on
view-invariant human motion, folowing by a suitable feature
extraction method, ending with a robust recognition method
based on Discrete Hidden Markov Model in order to improve
the recognition accuracy of our approach. Experimental results
on MSRC-12 dataset show that our method proves to be
superior to some state of the art methods for skeleton-based
recognition. A perfect classification performance was achieved
in our dataset composed of ten control gestures. The future
work will focus on enhancing our dataset by introducing
expressive gestures, means gestures performed with different
emotions. The main purpose of this idea is to perform expres-
sive communicative gestures for a Human-Robot interaction.



Fig. 9. Control gestures dataset.
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