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Relevant LMA Features for Human Motion
Recognition

Insaf Ajili, Malik Mallem, and Jean-Yves Didier

Abstract—Motion recognition from videos is actually a very
complex task due to the high variability of motions. This paper
describes the challenges of human motion recognition, especially
motion representation step with relevant features. Our descriptor
vector is inspired from Laban Movement Analysis method. We
propose discriminative features using the Random Forest algorithm
in order to remove redundant features and make learning algorithms
operate faster and more effectively. We validate our method on
MSRC-12 and UTKinect datasets.

Keywords—Human motion recognition, Discriminative LMA fea-
tures, Random Forest, Features Reduction.

I. INTRODUCTION

Human motion recognition is a fundamental topic in the
field of computer vision. One of the main challenges with
motion recognition is that the same motion may be performed
in different ways by different persons, and even by the same
person. Although a significant amount of research has been
focused on human motion representation, it remains still not
enough. First motion features proposed in the computer vision
literature were based on interest points [8], [11]. After, another
type of features were studied based on depth informations
provided from depth sensors. The depth cameras in general
provide better quality 3D data than those estimated from
monocular video sensors. This allows to focus on the anal-
ysis of the human motion through the identification of his
joints [7], [16], [12], [10]. However, such proposed features
did not take into account the semantic aspects of motion, for
example to classify two actions with the same movement but
performed with different intentions or rythms. In such case
these features are not relevant to discriminate between these
motions. Another key challenge in motion representation is to
realize a good compromise between robustness performance
and computational costs. The assumption that increasing the
number of features can provide more informations about
motion is not always valid in practice, because it can be time
consuming and may lead to finding a less optimal solution. For
feature reduction, several approaches were proposed and could
be divided in two groups: methods based on statistical mea-
sures [5], [9], and methods based on learning algorithms [13],
[15]. The first category consists in ranking features according
to some statistical measures. It is fast and independ of any
classifier, but it requires a threshold to select the top ranked
features. Finally, in statistical approaches, some important
features that are less informative on their own, but they are

I.Ajili, M. Mallem and J. Didier are with IBISC, Univ Evry, Universit
Paris-Saclay, 91025, Evry, France.

informative when combined with others can be discarded. The
second category evaluates the importance of a random subset
of features by training a model on it. A learning method is used
to evaluate the importance of each combination of features
on the classification performance. Despite the effectiveness of
these methods, they have the constraint to be computationally
more expensive compared to the statistics methods due to the
repeated learning and cross validation steps.

In this paper, which extends our preliminary work presented
in [1], [2], we address the problem of analyzing human
motion from skeleton sequences captured by depth cameras.
Particularly, our work focuses on representing human motions
by keeping most salient and complementary features based on
Random Forest algorithm. Our descriptor vector is inspired
from Laban Movement Analysis method (LMA) to describe
quantitative and qualitative representations of motions. The
rest of the paper is structured as follows. Section 2 describes
our proposed approach with motion recognition steps. Sec-
tion 3 presents the experimental results on MSRC-12 and
UTKinect datasets. Finally, conclusions and future work are
stated in Section 4.

II. PROPOSED APPROACH

A. Data Acquisition

We use kinect sensor for data acquisition to extract 3D
skeleton joints in real time. The first step is the normalization
of all skeletons which consists in aligning all skeletons in
the center of the kinect coordinate sytem with the base
B at initial frame. Given a motion sequence S = {Jj,t},
j ∈ 1, . . . , N, t ∈ 1, . . . , T , Jj,t corresponds to the coordinates
of the joint j captured at frame t. We define a local coordinate
system to the skeleton anchored to the hip center joint (Jc),
represented by the base B′, equipped with three unit vectors,
the left hip joint vector ~nlh, the spine vector ~ns and their
cross product ~nc = ~nlh ∧ ~ns. For each sequence, we first
apply translation to move the skeleton to the center of kinect,
and after a rotation to align both coordinate systems (Fig.1).
The transformed joint yields to:

[Jj,t]B′ = R−1B←B′([Jj,t]B − [Jc,1]B) (1)

RB←B′ = [
~nlh

‖ ~nlh‖
~ns
‖ ~ns‖

~nc
‖ ~nc‖

] (2)

~nlh = [Jlhi,1]B − [Jc,1]B (3)
~ns = [Js,1]B − [Jc,1]B (4)

Once we applied transformations to all sequences, our system
is independent of the initial position and orientation of the



subject in the scene. Then, we pass to the next step which
consists in converting the skeleton joints data to a descriptor
vector based on LMA method.
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Fig. 1. Kinect and local coordinate systems.

B. Motions Representation

LMA approach employs a multilayered description of move-
ment, focusing on four components: Body, Space, Shape, and
Effort. Body component has the responsibility of highlighting
the body part which is moving, making the connection between
the moving parts and taking in consideration the issues of
locomotion and kinematics. For this category, we describe the
organization and connection between the different joints (Fig-
ure 2). We consider two parts, the upper and lower part. For
the first one, the extension of the different joints is described
by computing the following angles in left and right parts
respectively: between hands and shoulders (θl1, θ

r
1), between

elbows and hips (θl2, θ
r
2), between elbows and shoulders in

the symmetrical part (θl3, θ
r
3). We also calculate the distances

between the two hands (dHs) as well as the distances between
the shoulder center and both hands (dshc,lh, dshc,rh). It allows
us to have a more idea on the way of the two hands. For
the lower part of the body, the extension of the knees has
been described with the angles between the feet and the hips
(θl3, θ

r
3). These two characteristics allow to characterize spe-

cific actions like crouch or hide gestures. We also characterize
the opening of the legs with the angle computed between the
two knees θLs. Mean, standard deviation, and range of the
body features are computed to quantify the Body component.
We compute the length of trajectories (L) made by upper and
lower body extremities (head, hands, and feet) to quantify the
Space component.

L =

T−1∑
t=1

‖Jj,t+1 − Jj,t‖ (5)

In Shape component, we describe the way the body changes
shape during movement with three qualities. In the first Shape
flow factor, we charachterize the change shape in a self-to-
self relationship by computing the volume of the smallest
convex envelope of the human body based on Quickhull
algorithm [3], as shown in Figure 2. The second factor is the
Directional movement, we define the pathway of the movement
of upper body extremities (hands and head) through space by

computing their curvatures (C).

C =

T−1∑
t=2

arccos(

−−−−−−→
Jj,t−1Jj,t∥∥∥−−−−−−→Jj,t−1Jj,t

∥∥∥ ·
−−−−−−→
Jj,tJj,t+1∥∥∥−−−−−−→Jj,tJj,t+1

∥∥∥ ) (6)

Finally, we quantify the Carving factor of the Shape compo-
nent which describes the qualitative changes in the shape relat-
ing to spine joint pose at initial frame Js,1, according to three
planes: Horizontal (DH ), Frontal (DF ), and Sagittal (DS),
relating them to bipolar descriptors: spreading/enclosing, ris-
ing/sinking, and retreating/advancing, respectively (Figure 2).

DH =
1

T

T∑
t=1

(

N∑
j=1

sqrt((Jxj,t
− Jxs,1

)2)) (7)

DF =
1

T

T∑
t=1

(

N∑
j=1

sqrt((Jyj,t − Jys,1)
2)) (8)

DS =
1

T

T∑
t=1

(

N∑
j=1

sqrt((Jzj,t − Jzs,1)2)) (9)

Effort component describes how the body concentrates its
effort while performing a motion and characterizes expressive
behaviors based on four factors: Time: Sudden/Sustained,
Weight: Light/Strong, Flow: Bound/Free, and Space: Di-
rect/Indirect (Figure 3). In Effort component we focus on the
upper body part (head, hands, and spine), since it was the most
expressive part during human motion. Joints velocities and
accelerations are computed for quantifying Time and Weight
factors, respectively. Three measures of variability (Mean,
standard deviation, and range) are used for both features. We
quantify the Flow factor by computing the yaw and pitch range
of joints motion. For Free motion we will obtain a higher
range compared to Bound motion. To describe the direction
of the movement in space for Space factor, we compute the
Straightness index (S) of joints motion as the ratio of the
distance between the first and last frame (D) to the sum of
the displacements between two successives frames (L).

S =
D

L
(10)

C. Motions Recognition

For motions training and classification, we apply the Ran-
dom Forest approach (RF) [4]. This method consists of an
ensemble of decision trees, each tree is grown using by a
different bootstrap sample from the training data. Let the
feature vector be v = {fi}, i = 1, . . . , d, where d is the
number of features for each sample. At each node, best split is
chosen from a random sample of p features from d. Consider
a node k comprising Sk samples, splitted into left and right
child nodes with subsamples of Skl and Skr, respectively, the
tree is then grown by selecting the splitting condition that
maximizes the purity of the resulting tree. Gini index I(Sk) is
used to select the feature at each internal node k. The amount
of homogeneity gain achieved by the splitting node k in feature



(a) Body features (b) Shape flow features (c) Carving features

Fig. 2. Some LMA features.

Fig. 3. Effort factors.

f can be evaluated in the following equation:

G(f, Sk) = I(Sk)−
∑
i∈l,r

(
|Ski| I(Ski)

|Sk|
) (11)

Where I(Sk) = 1 −
∑l

j=1(
Sj
k

Sk
)2, l is the number of classes

in node k, Sj
k denotes the number of learning samples which

belong to class j at node k. Therefore, after several selections
for f , the one producing the lowest value of Gini index is
picked as the split criterion for the node. In the testing step,
each test sample is simultaneously pushed through all trees,
starting from the root, and assigning the data to the right or
left child recursively until a leaf node is reached. Finally, the
forest chooses the classification having the majority of votes
from each of the decision trees made.

D. Features Reduction

Feature reduction step consists in keeping the smallest
subset of most relevant features for motions representation to
achieve a good compromise between accuracy and runtime
in the classification process. The measure of relevant feature
is returned by RF method. During training phase, each tree
is grown using a different bootstrap sample from the original
training data, leaving 1/3 as OOB (Out Of Bag) to estimate the
prediction error of OOB. The importance of the feature fi is
measured as the difference between OOB prediction accuracy
of each tree before and after permuting fi.

It(fi) =

∑
j∈Ot I(yj = yjt)

|Ot|
−
∑

j∈Ot I(yj = yijt)

|Ot|
(12)

I(fi) =

∑T
t=1 I

t(fi)

T
(13)

Ot corresponds to OOB samples for a tree t, yj is true
class label of the jth training sample. yjt and yijt are the
predicted classes for the jth sample by tree t before and after
permuting the feature fi, respectively. Finally, a high decrease
in accuracy is an indication of the feature importance. We
start with the whole set of features, we compute and record the
OOB error rate. After we sort the features in descending order
of importance, and we remove the feature of small importance
fmin. Moreover, we apply the Tukey's test (α = 0.05) to
simultaneously remove features that do not give a significant
difference of the OOB error rate result.

Algorithm 1: Feature reduction process.
Input : v0 = {fi}, i = 1, . . . , p . v0 is the whole feature

set.
Output: v∗ = {fj}, j = 1, . . . , p∗ . v∗ subset of most

relevant features.
1 k = 0
2 while |vk| ≥ 1 do
3 Compute and record OOB error rate: Ek(vk)
4 for i = 1 to p do
5 Compute I(fi) . Importance of each feature in

vk.
6 end
7 Sort {fi} in descending order according to values of

I(fi)
8 fmin = argmin

i
{I(fi)}

9 Apply Tukey's test and select set of features {ft} that
does not lead to a significant changement of Ek

10 R = fmin

⋃
{ft}

11 vk+1 = vk\R
12 k = k + 1
13 end
14 v∗ = argmin

k
{Ek(vk))} . v∗ is the optimal feature

subset with minimal OOB error.

III. EXPERIMENTAL RESULTS

To evaluate the performance of our method, we use two
public action datasets, MSRC-12 [6] and UTKinect [14],
we report two measures: the mean of fscores and the OOB
error rate. For the first measure, we adopt the 5-fold cross



validation to optimize the RF parameters, and compute the
averaged results. We employ the commonly used F-score as
the performance measure.

1) Evaluation on MSRC-12 Dataset: MSRC-12: is a dataset
composed of 594 sequences, containing the performances of
12 gestures by 30 people. In total, there are 6244 gesture
instances. The gesture classes are divided into two groups:
metaphoric gestures, and iconic gestures. The motion files
contain 3D coordinates of 20 joints captured at a sample rate
of 30Hz.

We converted the raw data into a descriptor vectors based
on our LMA qualities. Our descriptor vector composed of 85
features was fed into a learning algorithm, RF. Most important
parameters of RF, the number of trees (ntrees) and the number
of features to consider when splitting a node (maxfeatures)
were adjusted. We varied ntrees starting from 10 until 200
trees, and we tested three values of maxfeatures(85, log2(85),
and

√
85). Best recognition rate of 94.89% was achieved

when setting ntrees = 100 and maxfeatures = log2(85), and
almost the same recognition result of 94.88% was obtained
for ntrees = 100 and maxfeatures =

√
85. We also confirmed

the RF parameters values by computing OOB error rate while
varying ntrees and maxfeatures. As we can see in Figure 4,
the two curves of maxfeatures = log2(85), and

√
85 are very

close with a very little superiority result of maxfeatures =
log2(85). We identified the minimum value of ntrees where
OOB error stabilize (around 0.008), we found ntrees = 100,
which confirms the result obtained with the recognition rate
measure. Table I illustrates the recognition results of our

Fig. 4. OOB error rates in terms of RF parameters (ntrees and
maxfeatures).

method compared to the state of the art methods on MSRC-12
dataset. Our method outperforms the state of the art methods,
and is very close to the result obtained in [12], which confirms
the robustness of our descriptor in characterizing both iconic
and metaphoric gestures with an accuracy rates of 99% and
93%, respectively. After evaluating our descriptor vector on
gestures recognition in MRC12-dataset, we applied our feature

TABLE I
RECOGNITION RATES OF OUR METHOD COMPARED TO THE STATE OF THE

ART METHODS ON MSRC-12 DATASET.

Methods Recognition rates (%)
Hussein et al. [7] 91.70
Zhou et al. [16] 90.22
Wang et al. [12] 94.86
Lehrmann et al. [10] 90.90
Our method 94.89

TABLE II
COMPARISON OF (MEAN-FSCORES, OOB ERROR VALUES, NUMBER OF

FEATURES) BETWEEN BEFORE AND AFTER FEATURES REDUCTION STEP IN
MSRC-12 DATASET.

Mean F − score errOOB N
Before reduction 0.94 (+/-0.02) 0.008 85
After reduction 0.94 (+/-0.02) 0.004 67

reduction algorithm (Algorithm 1) in order to keep only most
discriminant features according to this dataset. To obtain more
stable results and better estimations for the expected OOB
error rate, we repeated this procedure 30 times and average
the results. In Table II, we make a comparison between results
obtained before and after feature reduction process, in terms of
Mean F − score, OOB error rate (errOOB), and number of
features (N ). We notice that the number of relevant features is
decreased about 20% achieving the same F-score results and
decreasing the OOB error rate. We obtained a low OOB error
rate of 0.004 with a number of relevant features N = 67 < 85
(see Fig.5).

2) Evaluation on UTKinect Dataset: We also evaluated
our descriptor with UTkinect dataset which is composed of
10 subjects performing 10 different activities in varied views
namely walk, sit down, stand up, pick up, carry, throw, push,
pull, wave hands, and clap hands. A total number of 199
sequences are available. Each action is repeated twice by
the actor. Sequences are captured using one Kinect in indoor
settings and their length ranges from 5 to 120 frames. This
is a challenging dataset due to variations in the view point
and high intra-class variations where each actor performs
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Fig. 5. Optimal feature subset with minimal OOB error using Tukey's test
(α = 0.05).



TABLE III
COMPARISON OF (MEAN-FSCORES, OOB ERROR VALUES, NUMBER OF

FEATURES) BETWEEN BEFORE AND AFTER FEATURES REDUCTION STEP IN
UTKINECT DATASET.

Mean F − score errOOB N
Before reduction 0.96 (+/-0.02) 0.0075 85
After reduction 0.96 (+/-0.01) 0.006 36

actions in different views. We applied both methodes, feature
extraction with LMA approach and after RDF method for
actions recognition. We measured the recognition rate using
same validation method as MSRC-12 dataset, the 5-fold cross
validation technique. We obtained as result the mean of f-
scores 0.96(+/− 0.01)/. With the same RDF parameters set-
ting in MSRC-12 dataset, we applied features reduction step.
Table III summarizes recognition results (Mean F − score,
OOB error rate (errOOB), and number of features (N ))
before and after applying features reduction step. With 36
features we obtained same mean f-score and a lower OOB
error value. So we can say that our method managed to
reduce features while keeping most relevant features and same
recognition results.

IV. CONCLUSION

In this paper, we presented an efficient method for ex-
tracting most relevant motion descriptors for human motion
recognition. Our descriptor was inspired from LMA technique
to combine both quantitative and qualitative characteristics of
motion. Furthermore, an effective feature reduction algorithm
was applied to keep only the most informatives features
which had a great impact on the computational latency while
maintaining or even improving the reported results. Based on
these results, we plan to recognize expressive motions and
study the importance of each LMA features to characterize
human emotions.
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