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Abstract The purpose of this paper is to describe hu-

man motions and emotions that appear on real video

images with compact and informative representations.

We aimed to recognize expressive motions and ana-

lyze the relationship between human body features and

emotions. We propose a new descriptor vector for ex-

pressive human motions inspired from the Laban Move-

ment Analysis method (LMA), a descriptive language

with an underlying semantics that allows to qualify

human motion in its different aspects. The proposed

descriptor is fed into a machine learning framework

including, Random Decision Forest, Multi-Layer Per-

ceptron and two multiclass Support Vector Machines

methods. We evaluated our descriptor first for motion

recognition and second for emotion recognition from

the analysis of expressive body movements. Prelimi-

nary experiments with three public datasets, MSRC-12,

MSR Action 3D and UTkinect showed that our model

performs better than many existing motion recognition

methods. We also built a dataset composed of 10 con-

trol motions (move, turn left, turn right, stop, sit down,

wave, dance, introduce yourself, increase velocity, de-

crease velocity). We tested our descriptor vector and
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achieved high recognition performance. In the second

experimental part, we evaluated our descriptor with

a dataset composed of expressive gestures performed

with four basic emotions selected from Russel’s Circum-

plex model of affect (happy, angry, sad and calm). The

same machine learning methods were used for human

emotions recognition based on expressive motions. A

3D virtual avatar was introduced to reproduce human

body motions, and three aspects were analyzed 1) how

expressed emotions are classified by humans, 2) how

motion descriptor is evaluated by humans, 3) what is

the relationship between human emotions and motion

features.

Keywords Motion recognition · Emotion recognition ·
Laban movement analysis · Features importance ·
Machine learning · Human perception

1 Introduction

Humans communicate with each other and with their

environment through different modalities: facial expres-

sions, speech, touch, gestures, etc. The body moves as

we talk, think, play, work, etc. It plays an important

role in human social interaction. Moreover, technology

today integrates the human body for different applica-

tions in order to naturally interact with it. For example,

the Kinect for Xbox 360 project enables users to con-

trol and naturally interact with a video game console

using gestures, without the need to physically touch

a game controller. The human body is an important

medium for emotional analysis and recognition [1]. In

some cases, body language is a way of expressing feel-

ings even better than spoken language. For example,

when we want to express our emotions to deaf peo-
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ple, when we are in a long distance conversation or

in a noisy environment, we are unable to convey our

emotions through spoken language. Then, we interpret

the emotional state from the sight of the body. Body

language involves gestures, body posture and facial ex-

pressions. The bulk of research into emotion perception

has usually focused on facial expressions as the pri-

mary modality through which emotion is conveyed [2,3].

However, during social interactions, emotional face per-

ception can be influenced when integrating body move-

ment. Some researchers [4, 5] have demonstrated that

body contexts can dramatically influence the recogni-

tion of emotions from facial expressions. Therefore, the

role of body movement has become of great importance

in the field of emotion, and many motion recognition

systems have been used in several application fields,

such as human-computer interaction, education, affec-

tive computing, etc. However, when it comes to whole

body expressions, affective movements can be highly

variable in different circumstances (energy, intensity,

emotion, expression, etc.), even when the same per-

son repeats the same movement multiple times. Such

variations are not easy to measure and it is very diffi-

cult to find universal algorithms to completely describe

the human motion. To cope with such challenges, body

movement representation should be considered as the

most important step for human motion recognition. It

is than essential to find reliable and discriminative fea-

tures to represent expressive human motions. In this

paper, which extends our preliminary work [6, 7], we

propose a suitable representation of motions that cap-

tures both the quantitative and qualitative aspects of

the movement. Two experimental parts are performed:

in the first one we evaluate our descriptor vector for mo-

tion recognition using three public datasets and our own

dataset of control motions. In the second part, we test

our descriptor in recognizing human emotions based on

expressive gestures. A second study of emotion percep-

tion and descriptor evaluation is carried out by humans

in order to evaluate the performance of our recognition

system.

The main contributions of this work are:

– A motion representation inspired by LMA qualities

for motion and emotion recognition. We also evalu-

ate our system against human perception.

– An accessible expressive motion database composed

of 5 gestures performed with 4 emotions selected

from the arousal-valence model [8] (happy, sad, an-

gry and calm).

This paper is organized as follows: section 2 discusses

previous works in this research area. Section 3 describes

our proposed system. In section 4, two experimental

parts are presented where the performance of the pro-

posed strategy is analyzed and discussed for the mo-

tion and emotion recognition processes, respectively. In

the second experiment, we test our descriptor ability

to characterize expressive motion with two approaches

(learning method and statistical method). The paper

ends with conclusions and perspectives for future work.

2 Related works

Human motion recognition is an active field in com-

puter vision with a wide variety of potential applica-

tions such as video surveillance, video content analysis,

human-computer interaction, robotics, etc. However,

the high variability of human appearance and motion

is problematic. It is therefore critical to extract robust

representations of these variations. Several descriptors

have been proposed in the literature based on the type

of gesture. We will review two approaches. The first

one considers a gesture as a simple movement without

integrating the emotional aspect. The second one inte-

grates the expressive dimension to analyze gestures and

recognize emotions.

2.1 Body motion description

Gong et al. [9] represented human motion sequences by

multivariate time series in the joint-trajectories space.

In each frame, the joint-position of several key human

body points was formulated as a point in the multi-

dimensional space. Junejo et al. [10] proposed 2D rep-

resentations by extracting silhouettes from actors. Each

extracted silhouette was converted to a 1D time series.

Jiang et al. [11] introduced a hierarchical model for ac-

tion recognition, which consists in assigning each ac-

tion to a group based on the motion states of each

body part. For each group, joints motion and their

relative positions were adopted as input to the KNN

model for actions classification. Wang et al. [12] in-

troduced a descriptor based on motion boundary his-

tograms. They extracted dense trajectories obtained

by tracking densely sampled points using optical flow

fields. Xia et al. [13] extracted STIPs from depth videos

(DSTIPs) and proposed the Depth Cuboid Similarity

Feature (DCSF) to boost the performance of their sys-

tem. Oreifej et al. [14] proposed a novel descriptor, a

histogram of oriented 4D normals, in which they en-

coded the distribution of the surface normal orientation

in the 4D space of depth, time and spatial coordinates.
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2.2 Expressive motion description

Previous researchers mainly concentrated on the quan-

titative aspect of motions and have neglected the qual-

itative side of a movement which is important to rec-

ognize high-level gestures and to highlight the expres-

sive qualities of the movements. For example, the dif-

ference between punching and reaching for an object

is very slight in terms of body structure, both rely on

the extension of the arm. But as the dynamics of the

movement differs resulting in different intentions be-

hind motions. Also, when performing the same motion

with different moods, we need to characterize the qual-

ity of the movement to differentiate them. So another

field appeared in the literature dedicated to expressive

motion analysis aimed at different purposes.

Motion retrieval and synthesis There is a wide array

of research devoted to motion retrieval and synthesis,

such as Chi et al. [15] which developed a 3D charac-

ter animation system named the EMOTE model. They

employed Effort-Shape LMA components to produce

expressive limb motions using empirical mappings be-

tween LMA components and motion parameters. This

system enables the modification of a predefined motion

in terms of its style in order to produce more expres-

sive and natural simulated motions. Likewise, Kapadia

et al. [16] encoded motions using keys which represent

motion properties based on LMA factors for indexing

motions. These keys were then combined to search for

complex motions in large motion databases. Müller et

al. [17] introduced a set of geometric features describ-

ing geometric relations between certain body points of a

pose to identify logically similar motions. For the same

purpose, Durupinar et al. [18] proposed a motion rep-

resentation inspired by LMA qualities. They performed

a mapping between the human motion parameters and

different personality traits in an effort to synthesize mo-

tions with personality.

Emotion stylization and style transfer The integra-

tion of motion style editing or modification research

has also been addressed in the computer vision litera-

ture. This approach consists in transferring style from

one motion to another to obtain a newly synthesized

motion. Hsu et al. [19] used iterative time warping

to map from the input to the output sequence. They

transformed a motion sequence into a new motion style

while retaining its original content. Xia et al. [20] de-

signed a data-driven animation system to add various

styles to the existing animation. They constructed a

series of local mixtures of autoregressive models to rep-

resent the complex relationships between styles and au-

tomatically transform an unlabeled heterogeneous mo-

tion data into different styles. Ymer and Mitra [21] pro-

posed an approach for style transfer based on spectral

analysis, which not only handles heterogeneous motion

sequences but also transfers style between independent

actions. Aristidou et al. [22] employed the LMA model

to synthesize human motions from existing motion cap-

ture data. They extracted quantitative and qualitative

characteristics of the movement based on LMA com-

ponents. They applied the RBF regression model for

mapping motion features to their emotion coordinates

on Russell’s Circumplex Model (RCM) of affect. The

same authors [23] adopted the LMA model to synthe-

size motion by calculating both posture and style cor-

relations. They first extracted the movement’s features

inspired from LMA components and found their stylis-

tic correlations.

Expressive motion analysis and recognition Expres-

sive motion representation requires high-level features

describing both kinematics and semantic characteris-

tics, and LMA answers these requirements. It is a for-

mal and universal language developed by Rudolf La-

ban [24]. It allows to qualify human motion in its differ-

ent aspects. This approach was used for many purposes,

such as motion representation [29], segmentation [30],

style transfer [22], etc. Many authors were inspired by

the LMA method to design expressive motion descrip-

tors, such as Glowinski et al. [29] who proposed a min-

imal representation of expressive movements. They fo-

cused only on the upper body. Visual tracking of tra-

jectories of head and hands was carried out from a

frontal and a lateral view. In their approach, the PCA

indicated four components (roughly indicating motion

activity, temporal and spatial excursion of movement,

spatial extent and postural symmetry, motion disconti-

nuity and jerkiness) which could characterize the affec-

tive behavior expressed by the human in 2D arousal-

valence emotion space. Samadi et al. [31] quantified

the Effort component and directional movement factor

to analyze hand and arm movements. They designed a

database composed of 6 motions in order to convey 6

basic emotions (anger, happiness, sadness, fear, disgust,

surprise). After, their dataset was annotated by a cer-

tified movement analyst (CMA) to study the statistical

correlation between the CMA-annotated and the quan-

tified Laban components. Truong et al. [26] proposed

a descriptor based on the LMA model to recognize the

gesture and analyze the emotional content of orches-

tra conductors. For emotion analysis, they asked pro-

fessional orchestra conductors to annotate each motion

by choosing emotions among the categories proposed in

their dataset. However, only a a few authors have ad-

dressed the issue of automatic classification of emotions

expressed in body motions using the machine learning
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method [25,32]. Aristidou et al. [25] presented an LMA-

based framework to extract motion features, aiming

to classify acted dance movements with regard to the

expressed emotion. Professional dancers were invited

to perform an emotional state, together with music of

their choice. In total, they obtained 72 dances, with ap-

proximately 130 minutes of motion. Their framework

has also been used by Senecal et al. [32] who created

constituent social agents that recognize the emotion of

users by mapping motion onto the Russell Circumplex

model diagram using neural networks.

In [25] professional dancers were invited to express

their emotions with dance movements. Their gestures

are explicity chosen for special emotions, for example

happy emotion will be expressed with open arms. So,

their algorithm is helped by the type of gesture. In our

case, we want to optimize the algorithm so that it is

more effective in the case of the same gesture and able

to recognize the emotion without being influenced by

the type of gesture. So, we constructed a generic de-

scriptor vector for characterizing expressive motions,

able to distinguish different emotions expressed through

the same motion. We created our database with emo-

tions expressed by non-professional people for our final

application referred to Human-Robot interaction. Also

we proposed a statistical method based on human in or-

der to evaluate the reliability and the adequacy of our

proposed system. Only very few works have addressed

the topic of human emotion recognition while perform-

ing the same motion, such as Cimen et al. [33]. The

authors focused on a single movement task which was

”walking”. They used the SVM method for classifica-

tion. In our work, we used a larger dataset composed

of 5 gestures acting with 4 emotions, which requires a

more robust descriptor able to characterize the move-

ment and its qualities. We constructed a system invari-

ant to initial positions and orientations of people. We

evaluated our approach with 4 learning methods. More-

over we studied the importance of our motion descrip-

tor to estimate the pertinence of each motion feature

in characterizing each emotion and we compared the

results obtained from the automatic learning method

against human perception.

3 The proposed approach

In this section, the proposed human motion recognition

approach is detailed. It includes three important steps:

data preprocessing, motion representation and classifi-

cation.

3.1 View invariant system

We use the Kinect sensor for data acquisition to extract

3D skeleton joints in real time. The first step after data

acquisition is the normalization of all skeletons which

consists in aligning all the skeletons in the initial frame.

So if two users perform the same gesture from differ-

ent positions, our system should give the same result.

This step makes our system independent of the initial

position and orientation of the user. Given an action

sequence S = {Jt,j , t ∈ 1, . . . , T , j ∈ 1, . . . , N} with T

frames and N joints, Jt,j corresponds to the coordinates

of the joint j captured at frame t.

We define a local coordinate system for the skeleton

placed at the hip center joint (Jc), represented by three

axes (X ′, Y ′, Z ′) and equipped with three unit vectors

respectively, the left hip joint vector nlhi, the spine vec-

tor ns and their cross product nc = nlhi ∧ns. For each

sequence, we first apply a translation to move the skele-

ton to the center of Kinect, and after a rotation to align

both coordinate systems (Figure 1). So the transformed

joint yields:

[Jt,j ](X′,Y ′,Z′) = R−1(X,Y,Z)←(X′,Y ′,Z′)([Jt,j ](X,Y,Z) − J1,c)

(1)

R(X,Y,Z)←(X′,Y ′,Z′) = [
nlhi
‖nlhi‖

ns
‖ns‖

nc
‖nc‖

] (2)

Where:

J1,c = ([J1,lhi](X,Y,Z) + [J1,rhi](X,Y,Z))/2 (3)

nlhi = [J1,lhi](X,Y,Z) − J1,c (4)

ns = [J1,s](X,Y,Z) − J1,c (5)

[J1,lhi] and [J1,rhi] refer to the positions of left and right

hip joints, respectively, captured at initial time (t=1).

Since the rotation vectors are orthogonal unit vectors,

then R−1 = RT .

[Jj ](X′,Y ′,Z′) = RT
(X,Y,Z)←(X′,Y ′,Z′)[Jj ](X,Y,Z) (6)

Once we apply transformations to all sequences, our

representation becomes invariant to the position and

orientation of the subject in the scene, we convert the

skeleton joint data to a descriptor vector based on the

LMA method for human motion representation.

3.2 Motion representation

Human body motion representation is considered as one

of the most important steps in the motion recognition

process since each movement must be described with

specific features. For example in walking, the motion of
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Fig. 1 Kinect and local coordinate systems.

the hip joint is considered an important feature for mo-

tion description, which is not the case in sitting, where

the bending feature is the most expressive features. Our

descriptor vector is derived from the LMA model, used

as a tool by dancers, athletes, physical and occupational

therapists. This approach can describe and interpret all

varieties of human movements. LMA provides a rich de-

scription of movement, focusing on the four major com-

ponents of movement: body, space, shape and effort.

The Body describes structural and physical char-

acteristics of the body in movement. It indicates how

the whole body is connected and organized and which

body parts are influenced by others. In the upper

body part, we compute the following angles in left and

right parts respectively (Figure 2): between hands and

shoulders(θl1, θ
r
1), between elbows and hips (θl2, θ

r
2), be-

tween elbows and shoulders in the symmetrical part

(θl3, θ
r
3). And we describe outstretched arms by com-

puting the distance between two hands (dHs). To know

more about the hands pathway, we add three other fea-

tures, the distances between the head and left (dh,lh)
and right hand (dh,rh), and the angle between two

hands with respect to the shoulder center joint(θHs).

In the lower part, we describe leg extension by comput-

ing the angle between foot and hip joints, respectively in

left and right parts (θl4, θ
r
4). Also, we describe leg spread

by computing the opening angle of the knees (θLs). To

encode body quality, three measures of variability are

used for each feature: the mean, the standard deviation

and the range.

The Space component describes the movement in

the space. It defines directions and paths of a move-

ment. We compute the length of the trajectory followed

by upper extremities including the head and hands. It

is interesting to know the length (L) of joint trajecto-

ries which adds more information about motion type.

L =

T−1∑
t=1

‖Jt+1 − Jt‖ (7)

dHs

dh,lhdh,rh

θl1θr1

θl2θr2
θl3θr3

θl4θr4

θLs

θHs

Fig. 2 Body features.

The Shape component describes the way the body

changes shape during movement. It is characterized by

the body’s interaction with itself as well as the space

around it. The shape component is composed of three

subcomponents: shape flow, directional movement and

shaping.

– Shape Flow refers to how a body can interact and

change shape in a self-to-self relationship. We con-

struct the smallest convex envelope of the skeleton

based on the Quickhull algorithm [34] and compute

its volume to characterize the deformation of the

skeleton’s shape over time. The convex hull offer a

more precise fit than a simple bounding box. Fig-

ure 3 illustrates the 3D skeleton convex hull and

its shape deformation in the ”start music” gesture

from the MSRC-12 dataset [35]. In the first frame,

the person is in her initial position. After she raises

her hands, the volume of the body envelope convex

increases. So, by computing the volume of the con-

vex hull we have more idea about body extension.
Mean, standard deviation and the range of the 3D

convex hull volume feature are computed to quan-

tify the shape flow factor.

Fig. 3 Variation of convex hull feature in ”start music” ges-
ture from the MSRC-12 dataset [35].
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– Directional movement defines the pathway of the

movement through space. We describe the pathway

of the upper extremities, hands and head, by com-

puting their local curvatures. We usually focus on

the upper body part, especially hands and head,

since they are the most flexible human body parts.

We consider the gradual angular change φ occurring

between two successive frames as shown in Figure 4,

defined as follows:

φJt
= arccos(

−−−−→
Jt−1Jt∥∥∥−−−−→Jt−1Jt

∥∥∥ ·
−−−−→
JtJt+1∥∥∥−−−−→JtJt+1

∥∥∥ ) (8)

where Jt is the position of joints (hands and head)

at frame t and Jt+1 at the next frame. This equa-

tion describes the local curvature of the upper ex-

tremities pathway. From this angle, we derive the

curvature feature (C) defined as:

C =

T−1∑
t=2

φJt
(9)

where T is the number of frames. In straight-line

trajectories the Curvature index (C) is close to 0

and describes a linear movement. In curved paths it

changes to a very high value.

1

2
3

4

5

φJ2 φJ3

φJ4

Fig. 4 Gradual angles between successive frames.

– Shaping describes the qualitative changes in the

shape according to three planes: the Horizontal

plane describes spreading and enclosing movements;

spreading is, for example, a movement of both hands

starting in front of the body and opening to the

sides; enclosing is the opposite motion, as used

in a hug. The Frontal plane characterizes rising

and sinking movements and the Sagittal plane in-

cludes forward and backward movements. We de-

scribe body extension according to the three planes

by computing average distances of all skeleton joints

(N joints) with respect to the spine joint (J1,s) at

initial frame (Figure 5).

– For Spreading/Enclosing movements we com-

pute the average spread/enclose movement re-

lating to spine joint position at initial frame.

DH =
1

T

T∑
t=1

N∑
i=1

√
([Jt,i]X − [J1,s]X)2 (10)

– For Rising/Sinking movements we compute the

average rise/sink movement relating to spine

joint position at initial frame.

DF =
1

T

T∑
t=1

N∑
i=1

√
([Jt,i]Y − [J1,s]Y )2 (11)

– For Advancing/Retreating movements we com-

pute the average forward/backward movement

relating to spine joint position at initial frame.

DS =
1

T

T∑
t=1

N∑
i=1

√
([Jt,i]Z − [J1,s]Z)2 (12)

T is the number of frames and [Jt,i]X,Y,Z is the 3D

position of joint i at frame t.

-0.5

0.5

-0.6

0

-0.4-0.202.5

3

-0.5

0.5

-0.6

0

-0.4-0.202.5

3

-0.5

0.5

-0.6

0

-0.4-0.202.5

3

Fig. 5 Distance variation relating to the spine joint, in the
”crouch” gesture from the MSRC-12 dataset [35].

The Effort component encodes the change in the in-

tensity of exertion during motion. It is a form of ex-

pression, mostly related to the change of mood or emo-

tions. It describes the qualitative aspects of movement

by identifying the type of energy used in the move-

ment. For example, pushing a heavy object and clos-

ing the door are very slight in terms of body organi-

zation. Both require the extension of the arm but the

intention of the movement is different. The effort com-

ponent is divided into four factors, each factor ranges

between two opposite qualities: Weight (Light/Strong),

Time (Sustained/Abrupt), Space (Indirect/Direct) and

Flow (Free/Bound). It is the most important element

in LMA to describe the quality and the dynamics of the

movement. This component is essential, especially for

the emotion recognition process. We will focus on four

joints (head, spine, left and right hands) since, in our

emotions corpus, all expressive gestures were performed

by the upper body part.

– The Time factor differentiates between abrupt and

sustained motion. Abrupt movement involves less
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time consumption, so it is a high-speed and Sus-

tained movement is a continuous with constant ve-

locity. It can be represented as the change of accel-

eration of movement. So, to quantify this factor we

compute the mean, the standard deviation and the

range of velocity of upper body joints (head, spine

and hands).

– The Weight factor is about the level of force or pres-

sure used throughout a motion with the contrasting

elements: Strong like a punching action or Light like

dabbing paint on a canvas action. Light movement is

characterized by an invariant rhythm of motion. We

can describe it with zero acceleration. Strong move-

ment requires force and acceleration. We compute

the accelerations of head, spine and hands to quan-

tify the weight factor. Like the Time factor, mean,

standard deviation and the range of the acceleration

are computed to present the Weight Effort factor.

– The Flow factor characterizes the attitude towards

bodily tension and control, with the contrasting el-

ements Free and Bound. We compute the yaw and

pitch range of head and hands motions. For Free

motion, we will obtain a higher range compared to

a Bound motion.

– The Space factor characterizes the quality of atten-

tion that the person make in a movement and distin-

guishes a direct movement from an indirect move-

ment. A direct motion is characterized by a single

destination where all your attention is focused on a

single spatial possibility. For example, when point-

ing to a particular object we have a Direct gesture.

Indirect motion represents a widening of focus like

the waving away bugs action. We describe the di-

rectness of the upper body parts movements by com-

puting the Straightness index (S) of head and hands

motions as the ratio between the distance between

the positions of the articulation at the first and last

frame (D) and the sum of the distances between suc-

cessive frames (L) for head, spine and hands joints.

S =
D

L
(13)

A Straightness Index close to 1 means there is a

Direct motion, and is close to 0 in Indirect motion.

After encoding all the LMA components, we obtain a

descriptor vector composed of 85 features.

4 Experiments

This section describes our experiment which is di-

vided in two parts. The first one is about the motion

recognition where we evaluated our model with public

databases (MSRC-12 [35], Utkinect [36] and MSR Ac-

tion 3D [37]) and our dataset named CMKinect-10. In

the second part, we tested our model for emotion recog-

nition with our dataset composed of expressive motions.

We analyzed the importance of our descriptor vector

towards each expressed emotion. Both processes have

been carried out with learning and statistical methods.

4.1 Motion recognition

4.1.1 CMKinect-10

CMKinect-10 is a dataset composed of 10 control

motions as shown in Figure 6. Twenty subjects (10

men and 10 women) from the University of Evry Val

d'Essonne, ranged in age from 27 to 36 years old

(M=29.85 years, SD=2.47), took part in this study.

Each subject is asked to make a gesture ten times. This

dataset has in total 2000 sequences (20 subjects × 10

motions × 10 times). For data acquisition, the OpenNI

driver under ROS (Robot Operating System) provided

a high-level skeleton tracking module. This module re-

quires initial calibration to record the 3D position of

skeleton joints at 640× 480 resolution at 30 fps.

4.1.2 Learning method parameter adjustment

For learning method parameter adjustment, we first

used the MSRC-12 dataset [35] and we computed the

F-score with a cross-validation test.

Random Decision Forest is an algorithm for clas-

sification that consists of many decision trees. During

tree induction, nodes are subdivided progressively into

child nodes and the tree is then grown until the node be-

comes pure or when a maximal depth is reached. There

are various functions to measure the quality of a split,

such as the information gain [38] or the Gini impu-

rity [39]. We varied the number of trees from 10 to 200.

The best result of 94% was obtained with 100 trees.

The other parameters were set in their default values:

for the maximum depth the nodes are expanded until

all leaves are pure or until all leaves contain less than

2. The number of features to consider when looking for

the best split is equal to
√

85. The minimum number of

samples required to split an internal node is equal to 2,

and the minimum number of samples required to be at

a leaf node is equal to 1 as recommended in [40].

Multiclass SVM was originally designed for bi-

nary classification. The often suggested implementa-

tions for SVM multiclass classification are One Against
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Fig. 6 CMKinect-10 dataset.

One (OAO) and One Against All (OAA). For an n-

class classification problem, OAO constructs n(n−1)/2

classifiers where each one is trained on data from two

classes, while OAA involves n binary SVM classifiers,

one for each class. Multi-class SVM provides various

parameters such as kernel type including linear, Gaus-

sian radial basis function, sigmoid and polynomial with

kernel parameters and regularization parameter C. We

varied the value of C starting from 0.01 to 10 in order to

control the trade-off between achieving a low error on

the training data and margin maximization.For RBF

and sigmoid kernels, we varied γ from 1 to 10. For the

polynomial kernel, experiments have been conducted

with d values ranging from 1 to 5. The best recognition

rate of 92% has been obtained with the polynomial ker-

nel function for d = 2, γ = 4 and C = 1.

Multi-Layer Perceptron is a feed-forward neural

network, consisting of a number of neurons organized in

several layers (one input and one output layer with one

or more hidden layers). The input layer receives an ex-

ternal activation vector and passes it through weighted

connections to the neurons in the first hidden layer.

These compute their activations and pass them to neu-

rons in the following layer. To find the optimal number

of hidden neurons, we varied the number starting from

10 to 100 neurons. For the activation function, we com-

pared between three functions (logistic sigmoid, hyper-

bolic tangent and Rectified linear unit function). The

MLP method utilizes a supervised learning technique

called backpropagation. Two Backpropagation param-

eters were adjusted, the learning rate (ε) which con-

trols the step-size in updating the weights, it should be

between 0 and 1 and the momentum (m) to acceler-

ate the convergence network while avoiding instability.

Best results were achieved with a single layer of 60 hid-
den neurons and a logistic sigmoid activation function.

For the backpropagation algorithm, optimal parameters

were obtained by setting m = 0.9 and ε = 0.001 which

yield a recognition rate of 93%.

4.1.3 Experimental results of motion recognition

MSRC-12 dataset

The performance of the system is measured in terms

of precision and recall with the F-score [41]. We per-

formed 5-fold cross-validation: the dataset is randomly

divided into 5 equal groups. For each of the 5 experi-

ments, 4 folds are used for training and the remaining

one for testing. The cross-validation process is then re-

peated 5 times, with each of the 5 folds used exactly

once as the test set. The performance measure is then

obtained by the average of the values computed in the

loop. Table 1 illustrates recognition rates obtained in

MSRC-12 for each learning method. Best results are
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Table 1 Recognition rates (%) of our method compared to
the state of the art methods on the MSRC-12 dataset.

Methods Iconic Metaphoric
Lehrmann et al. [45] 90.90 -
Song et al. [46] 79.77 57.21
Truong et al. [47] 88.6 75.2

Our method

RDF 99 93
OAO 98 90
OAA 98 91
MLP 98 89

achieved with the RDF method with recognition rates

of 93% in the metaphoric category and 99% in iconic

gestures. Figure 7 illustrates the confusion matrix for

MSRC-12 dataset when using the RDF method. The

diagonal elements represent the number of elements

where the predicted values are equal to the expected

values, while off-diagonal elements are those that are

mislabeled by the classifier. The higher the proportion

of values on the diagonal of the matrix in relation to

values off of the diagonal, the better the classifier. For

example, the ”wind up the music” gesture was correctly

recognized on 98% of the data, while it was incorrectly

recognized as ”throw an object” gesture by 2%. From

the confusion matrix, we can conclude that our pro-

posed descriptor is very good for discriminating the dif-

ferent gestures. We also compared our result to state of
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Fig. 7 Confusion matrix for MSRC-12 dataset.

the art methods in Table 1. As we can see, our method

outperforms their methods, which confirms the robust-

ness of our descriptor in characterizing both iconic and

metaphoric gestures.

MSR Action 3D dataset

To compare the performance of our descriptor with

state of the art methods on the MSR Action 3D dataset,

we followed the cross-subject test setting where half of

the subjects are considered as training data and the

rest as testing data. As shown in Table 2, we obtained

recognition rates close to the state of the art methods,

89.5%, 89% and 88.1%, with OAO, OAA and MLP, re-

spectively. The dataset is divided in three subsets AS1,

AS2 and AS3. The subsets AS1 and AS2 include actions

with similar movements, while AS3 groups complex ac-

tions. As a learning method, we used the one that gave

the best recognition results, the RDF method. Overall

accuracies of 90.3%, 88.7% and 93.1% were achieved

for AS1, AS2 and AS3, respectively. Figure 8 shows

Table 2 Recognition rates (%) of our method compared to
the state of the art methods on the MSR Action 3D dataset.

Methods Recognition rates (%)
Xia et al. [13] 89.30

Slama et al. [43] 86.21
Oreifej et al. [14] 88.89

Our method

RDF 90.5
OAO 89.5
OAA 89
MLP 88.1

the confusion matrices for AS1, AS2 and AS3, respec-

tively, when using the RDF method. The AS1 subset

contains high similar actions, which explains some mis-

classifications that we found in this subset, for example,

the confusion between the following actions: Horizon-

tal arm wave and Hammer, Forward punch and High

throw. Also, actions in AS2 are likely to be confused,

for example, ”draw tick” and ”draw circle”, since they

are quite similar. However, we get perfect recognition

results for actions in AS3.

UTkinect dataset

To compare our results with the state of the art

approaches on the UTKinect dataset, we followed

the experiment protocol proposed by Xia et al. [36]

where they applied Leave-One-Out Cross Validation

(LOOCV) [42] and achieved an overall mean accuracy

of 90.92% and the best accuracy of 95%. As shown in

Table 3, our method outperforms their results by a fac-

tor of about 1% when using the RDF classifier and the

same when applying MLP and OAA methods, but just

1.8% lower with the OAO method. The resulting confu-

sion matrix with the RDF method is shown in Figure 9.

Some confusions occurred between some classes, like the

confusion between ”throw” and ”push” classes. On the

other hand, we achieved recognition rates of 100% in

the following action classes: stand up, pull, wave hands

and clap hands.

CMKinect-10 dataset
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Fig. 8 Confusion matrices for MSR Action 3D dataset.

Table 3 Recognition rates (%) of our method compared to
the state of the art methods on the UTkinect dataset.

Methods Recognition rates (%)

Xia et al. [36] 95

Our method

RDF 96
OAO 93.2
OAA 95.3
MLP 95
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Fig. 9 Confusion matrix of our proposed approach for
UTkinect dataset.

We evaluated our descriptor with our dataset com-

posed of 10 control motions. Using the four learning

methods for motions classification. We used the 5-fold

cross-validation technique to assess the predictive per-

formance of our model. Table 4 summarizes recognition

results obtained for each learning method. As we can

see, we have almost the same result when applying the

four learning methods, the mean of the F-scores was

close to 1. The confusion matrix of our control motion

dataset is illustrated in Figure 10. We obtained per-

fect recognition results for the following motions: dance,

stop, turn left and turn right.

In conclusion, we evaluated our descriptor against

different public datasets and we can confirm the ro-

bustness of our descriptor in human motion recogni-

Table 4 CMKinect-10 dataset: The mean and standard de-
viation of F-scores results for each learning methods (RDF,
OAO, OAA and MLP).

Methods RDF OAO OAA MLP
Mean

F-scores
0.98

(+/-0.04)
0.98

(+/- 0.03)
0.98

(+/-0.01)
0.99

(+/- 0.01)
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tion. Now, we will evaluate how well it recognizes hu-

man emotions expressed through body motions.

4.2 Emotion recognition and analysis

4.2.1 Based on learning method

The purpose of this study is to build an emotional

dataset composed of 4 basic emotions (happy, angry,

sad and calm) performed with expressive motions. Such

a dataset can be used in a robotic application, for exam-

ple for robot teleoperation in an expressive way which

makes the interaction between human and robot more

natural. In such a case, the robot will be able to rec-

ognize not only the actions of the human but also his

mood. In the experimental part, we will first evaluate

the pertinence of our descriptor in characterizing hu-

man emotions based on learning methods and viewer
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Table 5 Emotions dataset: The mean and standard devi-
ation of F-scores results for each learning methods (RDF,
OAO, OAA and MLP).

Methods RDF OAO OAA MLP
Mean

F-scores
0.89

(+/-0.05)
0.78

(+/- 0.06)
0.71

(+/-0.13)
0.71

(+/- 0.12)

ratings. We will also study the relationship between

body features and expressed emotions in order to con-

clude the importance of each Laban feature to charac-

terize each emotion.

Emotion classification: Our emotional dataset

is composed of 5 control motions selected from the

CMKinect-10 dataset (move, turn left, turn right, wave

and stop) described in section 4.1.3. Each motion is

acted with 4 different emotions (happy, angry, sad and

calm). The same subjects who participated in the pre-

vious dataset (CMKinect-10) took part in this study.

We proposed scenarios presenting emotional situations.

Each participant was asked to read the proposed sce-

nario and take the time to feel the situation. After each

participant was asked to stay in front of the kinect and

perform each motion while acting the situation. Two

examples of scenarios proposed respectively for sad and

happy emotions were:

– Someone calls you and informs you that your best

friend is dead, so you feel very sad.

– You are selected in a game and you will win a for-

tune, so you feel very happy.

During the recording sessions, the order of scenarios,

emotions and motions were randomized from one par-

ticipant to another. We recorded 400 videos (20 par-

ticipants × 5 motions × 4 emotions). As classification

methods, we used the same four methods applied for

motion recognition. RDF trained and tested with 5 fold

cross-validation achieves the best result compared to

OAO, OAA and MLP with recognition rates of 89%,

78%, 71% and 71%, respectively (Table 5).

Features importance: As shown in the section

above, our motion descriptor has successfully classified

the movements in the different public datasets and the

emotions in our expressive motions dataset when ap-

plying the different learning methods. Now, we want to

study the importance of chosen features and see if there

are redundant features that contribute less to the per-

formance of our descriptor. In the expressive motions

classification step, some authors have also discussed

this point and tried to characterize expressive gestures

through body movement parameters. The most relevant

is the one of Aristidou et al. [25] which is also based on

the LMA model to quantify motion features. Compared

to them, we work on short gestures (4 seconds of du-

ration) instead of complete dances during between one

to two minutes. This is a strong requirement of our

application which is in the context of human-robot in-

teraction. As the movement sequence is significatively

shorter, it means the amount of data is reduced. To

coped with this constraint, we decided to rely on all

components of LMA. Whereas it is not the case for

Aristidou et al. [25]. That is why we made a faithful as-

sociation with the LMA model. We quantified all LMA

factors. For example, in the Shape component, following

the definition of LMA, we quantified the three Shape

factors. Unlike Aristidou et al. [25], we considered the

directional movement factor as important since it al-

lows us to describe the attention that the person car-

ries in a movement. Also, for the Shape flow factor,

we constructed the skeleton convex hull that offers a

more precise fit than a simple bounding box and we

computed its volum to characterize the body shape de-

formation during movement. For the Space Effort fac-

tor, the authors considered a movement as direct when

the character is moving in the same direction as the

head orientation. They computed the angle between

the head’s orientation and the trajectory of the root

joint. However, based on our statistical experiments, if

we make an anger pointing gesture with the hand while

keeping the head not oriented to the pointing direction

means a direct movement. To avoid a such confusion

between two extreme qualities of the space factor (di-

rect and indirect), we described the directness of the

upper body parts (head, spine, and hands) by comput-

ing the Straightness index (S) of each articulations. For

the Space component, we quantified the trajectory of

the root joint as Aristidou et al. [25] but it is also im-

portant to know about the trajectories of hands in the

space to characterize emotions from body movement.

For example, in the pointing gesture a long trajectory

of the hand indicates sadness whereas a short trajectory

can indicate anger emotion.

In the next part, we will evaluate the importance

of our features. Aristidou et al. [25] studied the impor-

tance of each feature in their descriptor. In our case,

we prefer to study the importance of the set of features

to find which combinations of features give the best

classification result. We used the RDF method to mea-

sure the importance of each feature. During the train-

ing phase, each tree is grown using a different bootstrap

samples from the original training data, leaving 1/3 as

OOB (Out Of Bag) to estimate the prediction error.

The importance of the feature fi is measured as the

difference between the OOB prediction error of each

tree before and after permuting fi. We started with the

whole set of features and we computed the OOB error

rate. After, we sorted the features in descending order
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of importance, and removed the features with low im-

portance. We recomputed the OOB error rate of the

new set of features. We repeated the process until there

remained only one feature in the set. Finally, we sorted

all OOB error rate results obtained in each subset of

features and we selected the one that corresponds to

the smallest OOB error rate. As we can see in Fig-

ure 11, with the whole set of features (85 features), we

obtained a minimal OOB error rate of 0.04, which con-

firms the importance of the combination of all features

to characterize our expressive motion dataset.
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Fig. 11 Optimal features set giving the minimal value of
the OOB error.

4.2.2 Human perception

Emotions classification: We tried to make an exter-

nal evaluation of the emotions expressed in the videos.

We recruited 20 viewers (10 men and 10 women) from

the University of Evry Val d'Essonne, ranged in age

from 28 to 37 years old (M=30.9 years, SD=3.16).

They watched recorded videos and rated the degree

to which they perceived the expressed emotion using

a 5-item Likert scale (1=strongly disagree, 3=neutral,

5=strongly agree). For a reliable evaluation, expressive

motions in videos were reproduced by a virtual avatar

as shown in Figure 12 which represents the moving

gesture acted with happy and sadness emotions. This

helps viewers to make scores without being influenced

by some factors like facial expressions, gender, etc. Ta-

ble 6 illustrated the mean of perception ratings given

by all viewers for each expressed emotion. Each cell

represented the score (s) computed with the following

formula:

s =
1

N

1

V

N∑
i=1

V∑
v=1

siv

N is the number of expressed emotions, V is the num-

ber of viewers, and siv refers to the perception rating

given by viewer v for the expressed emotion i, using the

5-item Likert scale. To trust the evaluation of viewers

we check whether viewer ratings were due to chance

and if there was inter-viewer consistency. So, we com-

puted the Cronbach’s alpha, a measure used to assess

the reliability of a set of scale, it is expressed as a num-

ber between 0 and 1. According to [44], the acceptable

range is between 0.70 to 0.95 [44]. In our case, the mean

of Cronbach’s alpha was greater than 0.8 for all emo-

tions (happy 0.895, angry 0.916, sad 0.895, calm 0.873)

which indicates the high consistency between the view-

ers in rating emotions.

Fig. 12 Move gesture reproduced by a virtual avatar, ex-
pressed with happy and sad emotions.

Table 6 Confusion matrix of emotion recognition based on
viewer ratings.

Expressed
emotions

Perceived emotions
Happy Angry Sad Calm

Happy 3.08 2.16 1.77 2.04
Angry 2.29 3.27 1.80 1.81
Sad 1.67 1.81 3.41 2.15
Calm 2.14 1.95 2.28 3.17

Features evaluation: Once we have finished emo-

tion evaluation we proceeded to feature rating in each

observed video in order to study the correlation be-

tween emotions and body features. We asked the same

20 viewers to watch the same videos and rate each se-

lected feature using a 7-point Likert scale. Cronbach

's alpha has been used to determine the internal con-

sistency between viewers when evaluating features. We

obtained values higher than 0.7 (Time 0.958, Weight

0.874, Space 0.823, Flow 0.885, Shaping 0.914, Shape

Flow 0.843). So, we can say that we had a very good

reliability between viewers in feature rating, except in

the Directional Movement quality where we obtained a

value of 0.570 inferior to 0.7 which indicates an unsatis-

factory internal consistency reliability between viewers.

We can explain this by the type of motions selected

which makes the distinction between direct and indi-
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Table 7 Relationship between features and left/right ex-
tremities of Likert scale.

Components Factors 1=Left 7=Right

Shape
Shape Flow shrinking Growing
Directional
Movement

Curvilinear Rectilinear

Shaping Contracted Extended

Effort

Time Sustained Abrupt
Weight Light Strong
Space Indirect Direct
Flow Free Bound

rect movement sometimes difficult. Some gestures of our

dataset are limited (stop gesture) compared to free mo-

tions like dance movements, hence the challenge of rec-

ognizing emotions through restricted gestures. We used

the Pearson correlation to evaluate wether body fea-

tures are associated with expressed emotions. It ranges

from -1 for a perfect negative correlation to +1 for a

perfect positive correlation, 0 representing no correla-

tion. We focused on the two factors of LMA, Shape and

Effort, which describe the qualitative side of the move-

ment. Table 8 summarizes the relationship between the

four emotions and Effort-Shape features: The Happy

emotion was significantly characterized by Shape fac-

tors, there was a moderate positive correlation between

Happy emotion and Shape factors. It is then charac-

terized by the growth of the shape and the extension

of body members. About Effort factors, there was a

moderate positive correlation with Abrupt Time qual-

ity and a moderate negative correlation with Bound

Flow quality. The Angry emotion was characterized

by a moderate positive correlation with Shape factors.

Between Angry emotion and Effort features, there was

a strong positive correlation with Abrupt Time and

Strong Weight and a strong negative correlation with

Bound Flow quality. The Sad emotion was significantly

characterized with Contracted and Shrinking Shape,

Sustained, Bound and Light movement. The Calm

emotion there was a low correlation between calm emo-

tion and most LMA features. We found a weak negative

correlation with Shape factors. There was a moderate

negative correlation with Time and Weight factors and

a positive correlation with Bound Flow factor.

Table 8 presented the correlation results obtained

between LMA factors and emotions. The scores greater

than 0.3 are written in bold (a correlation coefficient

of 0.3 is considered as a moderate correlation). From

this table, we can notice that the Directional Move-

ment quality has the least importance in characterizing

human emotions in expressive control motions.

4.2.3 Discussion

The purpose of this statistical part is to study the recog-

nition of emotions through body movement, and sub-

sequently to study the importance of body features to

characterize human emotions. For the first study, ac-

cording to the results in Table 6, we can notice that

viewers confuse Happy and Angry emotions both have

high arousal and differ in valence. Also, there is a con-

fusion between Sad and Calm emotions sharing a low

arousal and differing in valence. But generally the high

scores are presented in the diagonal of the confusion

matrix of emotion recognition which indicates the suc-

cess of viewers in classifying emotions. Same results

are obtained with learning methods especially with the

RDF method achieving a f-score of 0.89. For the sec-

ond study, according to results illustrated in Table 8,

we can notice that Happy and Angry emotions were as-

sociated with similar features but with different impor-

tance. The Angry emotion was strongly characterized

by abrupt, strong and free movements. However, the

Happy emotion was significantly characterized by grow-

ing shape and extended body members. On the other

hand, Sad and Calm emotions had the same feature

qualities but with different importance. The Sad emo-

tion was strongly associated with sustained, light and

bound movements with shrinking shape and contracted

body limbs. The Calm emotion was strongly charac-

terized by bound movements. According to the scores

given by the viewers we can say that most of the LMA

characteristics are important for the characterization of

emotions with the exception of the Directional move-

ment factor. However, with the RDF method we found

that the combinaison of all LMA features is important.
This can be explained by the type of our gestures where

in some cases the human is unable to differentiate be-

tween rectilinear and curvilinear movement for a same

movement acting with two different emotions.

Despite having recruited non-professional actors to

express emotions for the construction of the database,

the viewers were able to distinguish the Laban features

in the movements. This may be an advantage for the

application of our framework to be used even by non-

experts. On the other hand, we still have the opportu-

nity to enhance the consistency between viewer ratings

with some training Laban’s theories and techniques.

5 Conclusion and perspectives

In this paper, we have proposed an expressive motion

representation based on the Laban Movement Analysis

method. Our motion descriptor was inspired by LMA
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Table 8 Pearson's correlation coefficients r between LMA features rating and emotions recognition (**. Correlation is signif-
icant at the 0.001 level).

Happy Angry Sad Calm

Time
0.456**
Abrupt

0.734**
Abrupt

-0.791**
Sustained

-0.383**
Sustained

Weight
0.145**
Strong

0.765**
Strong

-0.579**
Light

-0.345**
Light

Flow
-0.463**
Free

-0.711**
Free

0.614**
Bound

0.627**
Bound

Space
0.340**
Direct

0.417**
Direct

-0.278**
Indirect

-0.455**
Indirect

Shape
flow

0.573**
Growing

0.392**
Growing

-0.657**
Shrinking

-0.188**
Shrinking

Shaping
0.509**
Extended

0.475**
Extended

-0.724**
Contracted

-0.217**
Contracted

Directional
movement

0.095 0.093
-0.114**
Curvilinear

-0.158**
Curvilinear

qualities and aiming at characterizing both quantita-

tive and qualitative aspects of human movement. Our

descriptor vector was tested for motion and emotion

recognition. Four learning methods were used for learn-

ing and classification motions (RDF, OAO, OAA and

MLP). In the first study, we compared our approach to

state of the art methods where we first analyzed the ro-

bustness of our descriptor in the recognition of motions

with three public datasets and our dataset dedicated

to control motions. In a second study, we evaluated the

pertinence of our descriptor in recognizing human emo-

tions based on five expressive motions. Each motion was

performed with four basic emotions selected from the

arousal-valence model (Happy, Angry, Sad and Calm).

The same learning methods were applied for emotion

recognition, and a study was proposed to analyze the

relationship between our descriptor and the four se-

lected emotions. Different scenarios were proposed to

participants in order to be able to express their emo-

tions in a natural way, and a 3D virtual avatar was

introduced to reproduce human body motions. A sta-

tistical study based on viewer ratings was proposed to

evaluate our recognition system. An external judgment

was made for the evaluation of emotions and the rat-

ing of features across all motions in order to analyze

the correlation between body features and the selected

emotions and then concluded the importance of each

feature to express each emotion.

As perspectives, we will expand our database with

other emotions to provide more information about the

relationship between body features and human emo-

tions. We will apply our framework in a robotic appli-

cation in order to control NAO robot with expressive

motions from our dataset.
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17. Müller, M., Röder, T., Clausen, M.: Efficient Content-
based Retrieval of Motion Capture Data. ACM Trans.
Graph. 24(3), 677-685 (2005)

18. Durupinar, F., Kapadia, M., Deutsch, S., Neff, M.,
Badler, N.: PERFORM: Perceptual Approach for Adding
OCEAN Personality to Human Motion Using Laban Move-
ment Analysis. ACM Trans. Graph. 36(1) (2016)

19. Hsu, E., Pulli, K., Popović, J.: Style Translation for Hu-
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