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ABSTRACT
Currently there is an important delay between the onset
of Parkinson’s disease and its diagnosis. The detection of
changes in physical properties of brain structures may help
to detect the disease earlier. In this work, we propose to take
advantage of the informative features provided by quantita-
tive MRI to construct statistical models representing healthy
brain tissues. This allows us to detect atypical values for
these features in the brain of Parkinsonian patients. We intro-
duce mixture models to capture the non-standard shape of the
data multivariate distribution. Promising preliminary results
demonstrate the potential of our approach in discriminating
patients from controls and revealing the subcortical structures
the most impacted by the disease.

Index Terms— Brain, Biomarker, Statistical mixture
models

1. INTRODUCTION

Parkinson’s Disease (PD) is a complex neurodegenerative dis-
ease that can be divided into two stages. First, a prodro-
mal phase lasting from a few years to several decades where
dopaminergic neurons are lost progressively, affecting mainly
subcortical brain structures. Then, a clinical phase involving
cortical networks and marked by PD motor symptoms, such
as gait impairment, rigidity and resting tremor. It would be of
great importance, with respect to research and treatment, to
identify biomarkers that may yield early PD diagnosis. Mag-
netic Resonance Imaging (MRI) is a non-invasive imaging
technique useful for the detection, characterization and mon-
itoring of neurological changes in de novo, i.e. just diag-
nosed, PD patients. Several innovative quantitative MRI tech-
niques have been developed to measure meaningful physical
or chemical brain properties [1]. The combination of mea-
sures from multiple MRI modalities may provide a complete
picture of functional and structural changes caused by PD [2].

In the quest to find biomarkers that accurately differenti-
ate PD patients from healthy subjects, we propose an abnor-
mality detection approach that identifies unusual patterns in
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multi-parametric MRI data. For this purpose, we fit a mixture
model to data from healthy volunteers (reference model), then
compare to de novo PD data to search for outliers, i.e. possi-
ble abnormalities, in different brain regions, to which we fit
another mixture model (atypical model) to represent the po-
tentially complex distribution of abnormal tissues.

Mixture models are probabilistic models that represent
subpopulations within an overall population. They do not re-
quire prior knowledge of which subpopulation a data point
belongs to, allowing the model to learn automatically the sub-
populations in an unsupervised manner.

In our study, the reference model is built assuming that
healthy subjects present a set of distinct healthy tissues char-
acterized by different quantitative characteristics. These
classes of characteristics are captured using a mixture model
with an appropriate number of components, whose number is
determined automatically from the data. Abnormal regions
in PD patients are then detected as those with a too low log-
density score in the reference model. The detected abnormal
regions are in turn used to build another mixture that defines
a new model for atypical characteristics.

2. QUANTITATIVE MRI DATA

Quantitative MR data are considered, in particular, to be as in-
dependent as possible of the MRI scanner or the study center
[1]. The scanner is no longer considered only as a camera but
as a means of measurement. In this paper, we consider Dif-
fusion imaging (DI) and Perfusion Imaging (PI). Through DI,
different indexes can be extracted describing water diffusion:
mean diffusivity [MD] describes the overall displacement of
molecules and fractional anisotropy [FA] indicates the orien-
tation of diffusion. Although there are some inconsistent find-
ings regarding diffusivity in PD patients, DI has been helpful
to discriminate PD from other syndromes [3, 4]. Moreover,
with the development of arterial spin labelling (ASL), brain
perfusion can be assessed non-invasively. Cerebral blood flow
(CBF) has been reported to be decreased in the cortex of PD
patients and either preserved or decreased in their basal nuclei
[5, 6].

To explore the feasibility of our method described in Sec-
tion 3, we extracted FA and MD parameter maps from DI,



and CBF maps from PI, for three healthy subjects (C1-C3)
and nine de novo PD patients (P1-P9). For each individual,
the computed maps were coregistered and resliced to obtain,
for each voxel v, three corresponding feature values yv =
(FAv,MDv,CBFv).

In this first attempt, we have searched for outliers in the
subcortical brain structures where changes were most likely
to take place in de novo PD patients, namely the substantia
nigra (SN), the red nucleus (RN), the subthalamic nucleus
(STN), the Globus Pallidus interna and externa (GPi, GPe),
the thalamus, the putamen and the caudate nucleus. To obtain
a mask of these Regions of Interest (ROIs), we performed a
non-linear deformation of the MNI PD25 atlas [7], specifi-
cally designed for PD patient exploration. In addition, we
considered the superior colliculus (SC) and the inferior col-
liculus (IC), where we recently found functional deficits [8].
The results of this experiment are summarized in Section 4.

3. ABNORMALITY DETECTION VIA MIXTURE
MODELS

To eliminate possible redundant information, we perform
a Principal Component Analysis (PCA) on the three maps
(CBF, FA and MD) for our healthy subjects. Each parameter
contributes equally to the information of explained variance
(38%, 33%, 29%) on axes (1, 2, 3) and all parameters are
then considered in the statistical analysis. A following step is
then to decide on an appropriate model that best accounts for
the data distribution. Although Gaussian distributions are the
most widely used statistical distributions for their tractability
and representation power, they are constrained by elliptical
shapes. Mixtures of Gaussians can help in modelling richer
distributional shapes but they are still not appropriate when
the data present elongated and strongly non-elliptical sub-
groups. As an alternative, we consider a richer family of
distributions based on multiple scaled t-distribution (MSD)
mixtures. These heavy-tailed distributions are endowed with
variable marginal amounts of tail-weight and their mixtures
have been showed to provide an efficient alternative to Gaus-
sian mixtures [9, 10]. In particular, their ability to model
over-dispersed values is illustrated in Figure 1.

The tridimensional measures (FA, MD, CBF) are sepa-
rated into healthy and patient datasets,

YH = {yv, v ∈ VH} and YP = {yv, v ∈ VP }, (1)

where VH and VP respectively represent the voxels belong-
ing to healthy volunteers and to patients. By fitting an MSD
mixture to the healthy data YH , we build a reference model
density fH that describes healthy tissues as follows:

fH(y|π,θ) =
KH∑
k=1

πkMSD(y; θk), (2)

where KH is the number of mixture components, and each
component is characterized by a proportion πk and an MSD

Fig. 1. Bivariate marginal distributions of our three parame-
ter maps (CBF, FA, MD). The colors represent the different
classes assigned by the MSD mixture reference model (2).

parameter θk. The optimal number of components KH is
chosen using the Bayesian Information Criterium (BIC). The
Expectation-Maximization algorithm (EM) [9] is used to ob-
tain the best fit of the MSD mixture on YH : it jointly estimates
the weights π and the parameters θ by reaching a (local) max-
imum of the model log-likelihood.

The log-density (or log-score) of each voxel (in VH and
VP ) with respect to fH , {log fH(yv), v ∈ VH ∪ VP }, can
then be used to compute a threshold to detect abnormal vox-
els. The log-score can be considered as a measure of prox-
imity of one voxel v (associated to value yv) to the reference
healthy model (represented by fH ). The rational is that vox-
els from healthy subjects are more likely to have a high log-
score while pathological voxels may not be well explained by
the reference model and consequently have a lower log-score.
A threshold can be computed in a data-driven way by fitting
a 2-component mixture model on the log-scores, defining the
threshold at the intersection of the two distributions. This sep-
aration into high and low score groups would correspond to a
certain false positive error rate (FPR) that can be determined
as proposed in [10]. We choose another option which con-
sists of deciding on an acceptable FPR α and determining the
corresponding threshold τα: the probability the log-score is
smaller than τα, although the log-score is that of an healthy
voxel, is α. In other words, τα is the value such that

P (log(fH(Y )) < τα) = α,

when Y is a random variable following the fh reference
model distribution. In practice, while fH is known explicitly,
the probability distribution of log(fH(Y )) is not. However, it
is easy to simulate this distribution so that τα can be computed
using empirical quantiles.

All the voxels whose log-score is below τα are then la-
beled as abnormal and the corresponding measures provide a



set of parameters that are referred to as the abnormal data set

YA = {yv, v ∈ VH ∪ VP , s.t. log fh(yv) < τα} .

An abnormality model denoted by fA is then constructed fol-
lowing the same procedure as for the reference model:

fA(y|µ,φ) =
KA∑
k=1

µkMSD(y;φk). (3)

This abnormality model is used to account for the fact that
voxels detected as abnormal may belong to different abnor-
mality classes, with different physiological characteristics.
Typically, the above formula indicates that among the YA set
there are KA different groups. Theses groups can be used to
build a signature ρs of each subject s by determining the pro-
portion of voxels that are assigned to each of the KA classes:

ρs = (ps1, . . . , p
s
KA

). (4)

Figure 3 provides an example of such signatures. The top
plot illustrates that abnormal voxels can be detected in healthy
subject although in a much lower proportion that in PD sub-
jects. In addition the abnormality pattern in healthy subjects
is usually different and may be distinguished from PD pat-
terns. A model of this difference can be quantified using stan-
dard discriminant analysis models and the known status of
each subject (control or patient). As explained in [10], we can
make use of this classification information and of additional
spatial information to refine abnormality detection. Notably,
clusters of less than 4 atypical voxels are not selected. Figure
3-bottom shows the effect of such a post-processing.

4. RESULTS

For control data, the highest BIC score for the MSD mixture
reference model (2) is obtained for KH = 7 components.
It is critical that the reference model correctly characterizes
the physiological properties of brain structures while encom-
passing the individual variability. Interestingly, while individ-
ual differences emerge, a spatial symmetry is observed over
the two brain hemispheres, when looking at individual brain
slices annotated with the reference classification. The propor-
tion of each class in the control subjects provides an insight
into these differences, see Figure 2(A).

To separate atypical from healthy voxels we choose a FPR
of α = 5%. Figure 2(B) shows the density of the log-scores
computed for all voxels with respect to the reference model.
Voxels considered as abnormal are located left to the vertical
red line representing the threshold τα. 49 196 voxels are la-
belled as abnormal (i.e. 20.4% of the set of voxels). Note that
the majority of these abnormal voxels belong to PD patients,
however, but some are detected in the controls. This is ex-
pected for two reasons. First, because each healthy individual
is unique and can bring some non-pathological extreme val-
ues, just like for a patient, the physiological measures are not

(A) (B)

Fig. 2. Panel (A): proportion of each of the KH = 7 classes
for controls C1, C2 and C3 given by the reference model fH .
Panel (B): density of the log-scores computed for all voxels
(controls and patients) with respect to fH . The red line repre-
sents the abnormality threshold τα.

Fig. 3. Subjects signatures derived from fA before (top) and
after post-processing (bottom). Each color represents one the
KA = 10 abnormal classes. Their localization in the brain is
illustrated for PD patient P1 (right).

all abnormal; and second, because we have admitted a non-
zero FPR.

The abnormal model is best defined by KA = 10 classes
according to BIC score. Figure 3 displays the abnormal sig-
natures of all subjects before and after post-processing. After
post-processing only 28 377 voxels, i.e 11.8% of all voxels,
are labelled as abnormal. For Controls, no more voxels are
detected as abnormal. The largest numbers of abnormal vox-
els are detected for patients P1 and P4. This is coherent with
the corresponding additional functional MRI data obtained
for these two subjects, which show alteration in visual infor-
mation processing in their subcortical structures[8].

Table 1 indicates the localization for each PD patient of
abnormal voxels with regard to the corresponding subcortical



structures. We computed the percentage of each ROI that was
detected as abnormal. In accordance with the literature, with
found that the substantia nigra (SN), the red nucleus (RN)
and the globus pallidus (GP) were the most impacted by the
pathology. Indeed,the degeneration of dopaminergic neurons
in the SN pars compacta and the subsequent denervation of
the dorsal striatum are at the origin of PD [11]. Abnormal
signatures found in SN, GP and Cau are also in line with the
reduced degree of myelination found in these regions for PD
patients [12, 5]. Moreover, SN and RN show an augmented
FA [3] and there is evidence of a decrease in structural con-
nectivity between SN, ipsilateral putamen and thalamus [13];

% P1 P2 P3 P4 P5 P6 P7 P8 P9
SN 71 19 18 64 10 49 60 29 7
RN 48 1 0 7 41 31 27 24 0
STN 22 2 0 45 0 11 12 0 0
GPe 49 4 9 24 29 21 19 5 10
GPi 63 4 1 21 11 39 24 0 22
Th 20 10 32 11 12 16 5 32 3
Put 30 11 7 25 20 5 7 4 3
Cau 27 1 4 14 28 13 15 5 0
SC 0 0 13 0 0 22 16 0 0
IC 33 0 0 0 0 18 58 13 0

Table 1. Percentages of abnormal voxels after post-
processing in each patient subcortical structure.

5. CONCLUSION AND PERSPECTIVES

We presented a method for the detection of abnormalities in
de novo PD patients. We demonstrated its potential on a
small cohort of three controls and nine PD patients. Clearly,
more subjects are needed to bring out robust biomarkers of
PD. However, these preliminary results show that the applica-
tion of mixture models of relevant distributions is informa-
tive and promising to correctly discriminate the pathology.
In addition, our method, in contrast to supervised machine
learning techniques, does not rely on a large set of anno-
tated data, which are difficult to obtain in medical contexts.
Moreover, it relies on interpretable statistical tools that can be
tuned and compared, providing a model of physical proper-
ties alterations. Last but not least, it does not require ground-
truth comparison, making it a valuable tool for the exploration
of any physiological changes. Future work will extend our
method to the study of the entire brain on large cohorts and
on the inclusion of new physiological measures to fully ex-
ploit the potential of multi-parametric quantitative MRI.
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