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16.1 Introduction
Image analysis includes a variety of tasks such as image restoration, segmentation, registra-
tion, visual tracking, retrieval, texture modelling, classification and sensor fusion. Important
application domains are medical imaging, remote sensing and computer vision. Problems
involving incomplete data, where part of the data is missing or unobservable, are common,
and mixture models can be used in many of these tasks directly or indirectly. The aim may
be to recover an original image which is hidden and has to be estimated from a noisy or
blurred version (restoration). More generally, the observed and hidden data are not neces-
sarily of the same nature (segmentation). The observations may represent measurements,
for example, multidimensional variables recorded at each pixel of an image, while the hid-
den data could consist of an unknown class assignment to be estimated at each pixel. To
give an idea of the variety of uses, mixture models have been used for image restoration
(e.g. Niknejad et al., 2015), for image registration (Gerogiannis et al., 2009), visual tracking
(Karavasilis et al., 2012), image retrieval (Beecks et al., 2015), texture modelling (Blanchet
& Forbes, 2008), classification (Bouveyron et al., 2007) and sensor fusion (Gebru et al.,
2016), to name only a few of the relevant papers. However, the most typical and direct use
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relates to image segmentation which can be recast straightforwardly into a clustering task.
More generally, in this chapter we will focus on problems that can be posed as labelling
or clustering problems in which the solution is a set of labels assigned to image pixels or
features.

In the context of statistical image segmentation, choosing the probabilistic model that
best accounts for the observations is an important first step for the quality of the subsequent
estimation and analysis. Hidden Markov random field (HMRF) models were revealed to be a
powerful tool for image segmentation (Geman & Geman, 1984; Besag, 1986). They are very
useful in accounting for spatial dependencies between the di�erent pixels of an image, but
these spatial dependencies are also responsible for a typically large amount of computation.
Markov model-based segmentation requires estimation of the model parameters. A common
approach involves alternately restoring the unknown segmentation (labelling or clustering)
based on a maximum a posteriori rule and then estimating the model parameters using the
observations and the restored data. This is the case, for instance, in the popular iterated
conditional mode (ICM) algorithm of Besag (1986) which makes use of the pseudo-likelihood
approximation (Besag, 1974). This combination usually provides reasonable segmentations
but is known to lead to biased parameter estimates, essentially due to the restoration step.
Because of the missing data structure of the task, the expectation-maximization (EM)
algorithm provides another justifiable formalism for such an alternating scheme. It has the
advantage of dealing with conditional probabilities instead of committing to suboptimal
restorations of the hidden data.

In this chapter, we first present how HMRF models generalize standard mixture models
(Section 16.2). We propose an inference procedure using variational approximation (Sec-
tion 16.3) and illustrate the framework with two real medical image applications (Sec-
tion 16.4).

16.2 Hidden Markov Model Based Clustering
Hidden structure models, and more specifically Gaussian mixture models, are among the
most statistically mature methods for clustering. A clustering or labelling problem is speci-
fied in terms of a set of sites S and a set of labels G. A site often represents an item, a point
or a region in Euclidean space such as an image pixel or an image feature. A set of sites
may be categorized in terms of their regularity. Sites on a lattice are considered as spatially
regular (e.g. the pixels of a two-dimensional image). Sites which do not present spatial reg-
ularity are considered as irregular. This is the usual case when sites represent geographic
locations (Green & Richardson, 2002) or features extracted from images at a more abstract
level, such as interest points (see Lowe, 2004; Blanchet & Forbes, 2008). It can also be that
the sites correspond to items (e.g. genes) that are related to each other through a distance
or dissimilarity measure (Vignes & Forbes, 2009) or simply to a collection of independent
items.

A label is an event that may happen to a site. We will consider only the case where
a label assumes a discrete value in a set of G labels. In the following developments, it is
convenient to consider G as the set of G-dimensional indicator vectors G = {e1, . . . , eG},
where each eg has all its components being 0, except the gth which is 1. The labelling
problem is to assign a label from a label set G to each of the sites. If there are n sites, the
set z = {z1, . . . , zn}, with zi œ G for all i œ S, is called a labelling of the sites in S in terms
of the labels in G. We consider cases where the data naturally divide into observed data
y = {y1, . . . , yn} and unobserved or missing membership data z = {z1, . . . , zn}. They are
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considered as random variables denoted by Y = {Y1, . . . , Yn} and Z = {Z1, . . . , Zn} with
domain Z being equal to Z = Gn.

For image analysis or spatial data clustering, dependencies or contextual information
can be taken into account using HMRF models, which can be seen as a generalization of
standard mixture models.

16.2.1 Mixture models
Before introducing the HMRF model, we recall the underlying mixture modelling corre-
sponding to independent Zi. The model reduces to a standard mixture model that we will
refer to as an independent mixture; see also Chapter 1. The distribution of (Y, Z) is defined
by

p(z) =
Ÿ

iœS

p(zi), (16.1)

p(y|z) =
Ÿ

iœS

p(yi|zi). (16.2)

Equation (16.1) means that the hidden variables Zi are independent, while equation (16.2)
is sometimes referred to as the independent noise assumption. Under (16.1) and (16.2), the
Yi are also independent variables. To recover the standard mixture definition, we need
to assume that the Zi are identically distributed according to a multinomial distribu-
tion with parameters ÷ = {÷1, . . . , ÷G}. Similarly, the conditional distribution for class
g, p(·|Zi = eg) = f(·|◊g), is assumed not to depend on i but only on some parameter ◊g.
Di�erent choices are possible for f(·|◊g). The most commonly encountered in applications
are multivariate Gaussians (Celeux & Govaert, 1995; Banfield & Raftery, 1993), multivari-
ate Student (McLachlan & Peel, 2000; Gerogiannis et al., 2009), and Poisson distributions
for count data (Green & Richardson, 2002; Forbes et al., 2013; Karlis & Meligkotsidou,
2007); see also Chapter 8 above for a review of mixture modelling of count data.

16.2.2 Markov random fields: Potts model and extensions
When the Zi are not independent, the interrelationship between sites can be modelled by
a so-called neighbourhood system usually defined through a graph. Two neighbouring sites
correspond to two nodes of the graph linked by an edge. The dependencies between neigh-
bouring Zi are then modelled by further assuming that the joint distribution of Z1, . . . , Zn

is a discrete Markov random field (MRF) on this specific graph defined by

p(z) = W ≠1 exp(≠H(z)), (16.3)

where W is a normalizing constant and H is a function assumed to be of the following form
(we restrict to pairwise interactions):

H(z) =
ÿ

i≥j

Vij(zi, zj) +
ÿ

iœS

Vi(zi), (16.4)

where the Vij (Vi) are functions referred to as pair (singleton) potentials. We write i ≥
j when sites i and j are neighbours on the graph, so that the sum above is only over
neighbouring sites.

A simple model is the so-called Ising model where the Zi are binary variables represent-
ing spin orientations. The more general Potts model allows the Zi to take G values that
correspond to G classes with G > 2.
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The singleton potentials Vi(zi) impact the probability of assigning site i to label or
class zi. When these potentials depend on i and not only on zi, they are referred to as a
non-stationary external field. Such non-stationarity can be useful to account for a priori
knowledge that may vary with the site. This is typically the case when introducing prob-
abilistic atlases in brain MRI data analysis (Forbes et al., 2011). Often, however, we restrict
to a stationary external field that can be then denoted by Vi(zi) = ≠–zi . The potentials
are then defined by a G-dimensional vector – = {–1, . . . , –G} using the vector notation
Vi(zi) = ≠Èzi, –Í, where Èzi, –Í denotes the scalar product between zi and –. The latter
notation has the advantage that it still makes sense when the vectors are arbitrary and not
necessarily indicators. This will be useful when describing the algorithms of Section 16.3.

The singleton potentials are linked to the standard mixture proportions ÷. When the
Vij are zero in (16.4), p(z) in (16.3) reduces to a standard mixture model up to the repa-
rameterization

p(z) =
Ÿ

iœS

exp(Èzi, –Í)
q

G

gÕ=1 exp(–gÕ)
. (16.5)

From (16.5), we can identify the link between – and ÷ as, for all g = 1, . . . , G,

÷g = exp(–g)
q

G

gÕ=1 exp(–gÕ)
.

The pair potentials allow us to model the dependence between Zi and Zj at sites i and
j. We consider pair potentials Vij that depend on zi and zj but also possibly on i and j.
Since the zi can only take a finite number of values, for each i and j, we can define a G ◊ G
matrix ij = ( ij(k, l))1Æk,lÆG and write without lost of generality Vij(zi, zj) = ≠ ij(k, l)
if zi = ek and zj = el, or, using the indicator vector notation, Vij(zi, zj) = ≠Èzi, ijzjÍ.

If, for all i and j, ij = — ◊ IG where — is a scalar and IG is the G ◊ G identity matrix,
then the pair potentials reduce to a single scalar interaction parameter — and we get the
Potts model traditionally used for image segmentation (Besag, 1986). Note that this model
is appropriate most of the time for segmentation since, for positive —, it tends to favour
neighbours that are in the same class.

In practice, these parameters can be tuned according to experts or a priori knowledge or
they can be estimated from the data. In the latter case, the part to be estimated is usually
assumed independent of the indices i and j. In what follows, the Markov model parameters
will reduce to a single matrix . Note that, formulated as such, the model is not identifiable
in the sense that di�erent values of the parameters, namely and + c (where denotes
the G ◊ G matrix with all its components being 1 and c an arbitrary scalar value) lead to
the same probability distribution. This issue is generally easily handled by imposing some
additional constraint such as (k, l) = 0 for one of the components (k, l).

16.2.3 Hidden Markov field with independent noise
The independent noise assumption (16.2) underlying standard mixture models is also crucial
in the more general hidden Markov random field. When the goal is to estimate z from the
observed Y = y, most approaches fall into two categories. The first ones focus on finding
the best z using a Bayesian decision principle such as maximum a posteriori or maximum
posterior mode rules. This explicitly involves the use of p(z|y) and uses the fact that the
conditional field denoted by Z|Y = y is a Markov field. This includes methods such as ICM
(Besag, 1986) and simulated annealing (Geman & Geman, 1984) which di�er in the way
they deal with the intractable p(z|y) and use its Markovianity. A second type of approach
is related to a missing-data point of view, for which the focus is on estimating parameters
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when some of the data are missing (the zi here). The reference algorithm in such cases is
the EM algorithm (Dempster et al., 1977). In addition to estimating the parameters, the
EM algorithm provides also a segmentation z by o�ering the possibility of restoring the
missing data; see Chapter 2 above for a detailed review of the EM algorithm.

However, when applied to hidden Markov fields, the algorithm is not tractable and re-
quires approximations. It follows a number of procedures including the Gibbsian EM of
Chalmond (1989), the MCEM algorithm and a generalization of it (Qian & Titterington,
1991), the PPL-EM algorithm of Qian & Titterington (1991) and various mean-field-like
approximations of EM (Celeux et al., 2003). Such approximations are also all based on the
Markovianity of Z|Y = y. This property is a critical requirement for any further develop-
ments.

When Z is Markovian, a simple way to guarantee the Markovianity of Z|Y = y is
the independent noise assumption (16.2). Indeed, equations (16.2) and (16.3) imply that
the conditional field (Y, Z) is a Markov random field, which implies that Z|Y = y is
an MRF too. This standard and widely used situation is referred to in Benboudjema &
Pieczynski (2005) as the hidden Markov field with independent noise (HMF-IN) model.
Equation (16.2) is a conditional independence and non-correlated noise condition. Denoting
by ◊ = {◊1, . . . , ◊G} the class-dependent distribution parameters, the HMF-IN parameters
are denoted by � = (◊, –, ). In the one-dimensional Gaussian case, ◊g = (µg, ‡2

g
), the

mean and variance parameters of the Gaussian distribution.
Like standard mixture models, hidden Markov (random) fields can then be used for a

number of segmentation or clustering tasks. Many applications are related to image analysis,
but other examples include population genetics (François et al., 2006) and bioinformatics
(Vignes & Forbes, 2009). The fact that Z is Markovian is not strictly necessary. However,
in a segmentation or clustering context, it has the advantage of providing some insight into
and control of the segmentation regularity through a meaningful and easy-to-understand
parametric model, but it also somewhat reduces the modelling capabilities of the approach
(see Blanchet & Forbes, 2008). More general approaches involve so-called couple MRF or
triplet MRF (Benboudjema & Pieczynski, 2005; Blanchet & Forbes, 2008) but will not be
described in this chapter.

16.3 Markov Model Based Segmentation via Variational EM
The model complexity of a hidden Markov random field is greater than that of standard
mixtures and makes the EM algorithm intractable. Solutions have been proposed which
associate the pseudo-likelihood approximation (Besag, 1974) and Monte Carlo simulations
(Chalmond, 1989), but the corresponding algorithms are time-consuming. In this section
we present a variational approximation approach. In a number of complex real imaging
applications, it has been observed as a competitive alternative to Markov chain Monte
Carlo approaches, in terms of the quality of the results, with a great gain in terms of
computation time (for a comparison in functional MRI analysis, see, for example, Chaari
et al., 2013). The variational approximation relates to the so-called mean field approximation
in statistical physics (Chandler, 1987). For a hidden Markov field model, the likelihood of
(Y, Z) is called the complete (or complete-data) likelihood and is given by

p(y, z|�) = p(y|z, ◊) p(z|–, ). (16.6)

The conditional field Z given Y = y is also a Markov field, with energy function H(z; –, )≠
log p(y|z, ◊). Henceforth, we will refer to the Markov fields Z and Z given Y = y as the
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marginal and the conditional fields, respectively. Recovering the unknown Z requires values
for the vector parameter � = (◊, –, ). If unknown, the parameters are often estimated
from the maximum likelihood perspective as

�̂ = arg max
�

log p(y|�), (16.7)

where p(y|�) is the incomplete (also called observed-data) likelihood. This optimization is
usually solved by the iterative EM procedure (Dempster et al., 1977); see also Chapter 2
above. Each iteration may be formally decomposed into two steps. Given the current value
of the parameter �(s) at iteration s, the E step involves computing the expectation of the
complete log likelihood knowing the observations y and the current estimate �(s). In the M
step, the parameter is then updated by maximizing this expected complete log likelihood,

�(s+1) = arg max
�

ÿ

zœZ

log p(y, z|�) p(z|y, �(s)). (16.8)

It is known that, under mild regularity conditions, EM converges to the set of stationary
points of the incomplete likelihood � ‘æ p(y|�) (Wu, 1983). As discussed in Csiszar &
Tusnady (1984) and Neal & Hinton (1998), denoting by D the set of distributions on missing
data, EM can be viewed as an alternating maximization procedure of a function F defined,
for any probability distribution q œ D, by

F (q, �) =
ÿ

zœZ

log
3

p(y, z|�)
q(z)

4
q(z). (16.9)

Starting from current values (q(s), �(s)), set

q(s+1) = arg max
qœD

F (q, �(s)) (16.10)

and

�(s+1) = arg max
�

F (q(s+1), �) (16.11)

= arg max
�

ÿ

zœZ

log p(y, z|�) q(s+1)(z).

The first optimization (16.10) has an explicit solution q(s+1) = p(·|y, �(s)), so that the
solutions of (16.8) and (16.11) are the same. Hence the “marginal” sequence {�(s)}s of the
sequence {(q(s), �(s))}s produced by the alternating maximization procedure of F is an EM
path. The maximization (16.11) can also be understood as the minimization of a Kullback–
Leibler divergence, up to some convention on p(y), thus justifying the name of alternating
minimization procedure (e.g. Csiszar & Tusnady, 1984; Byrne & Gunawardana, 2005).

There exist di�erent generalizations of EM when the M step (16.8) is intractable; it can
be relaxed by requiring just an increase rather than an optimum. This yields generalized
EM (GEM) procedures (McLachlan & Krishnan, 2008; see also Boyles, 1983, for a conver-
gence result). Unfortunately, EM (or GEM) is not appropriate for solving the optimization
problem (16.7) in HMRFs due to the complex structure of the hidden variables Z. The dis-
tribution p(z|–, ) is only known up to its normalizing constant W (the partition function)
which depends upon the parameters of interest . The domain Z is too large, so that the
E step is intractable.

Alternative approaches have been proposed and they can be understood as generaliza-
tions of the alternating maximization procedures mentioned above: the optimization (16.10)
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is solved over a restricted class of probability distributions D̃ on Z, and the M step (16.11)
remains unchanged. This yields the variational EM (VEM) algorithms (Jordan et al., 1998).
For a convex optimization justification see also Wainwright & Jordan (2003, 2005). Byrne &
Gunawardana (2005) proved that, under mild regularity conditions, VEM converges to the
set L of the stationary points of the function F in D̃. Here again, generalizations of VEM
can be defined by requiring an increase rather than an optimum in the M step (16.11), thus
defining generalized VEM procedures. These relaxation methods are part of the general-
ized alternating minimization procedures (Byrne & Gunawardana, 2005). The most popular
form of VEM occurs when D̃ is the set of independent probability distributions on Z so that
q(s+1)(z) is a factorized distribution

r
iœS

q(s+1)
i

(zi). Then optimizing (16.10) with respect
to q(s+1)

i
(ek) leads to a fixed point equation for all i œ S and for all ek œ V :

log q(s+1)
i

(ek) = ci +
ÿ

zœZ

log p(z|y, �(s))I(zi = ek)
Ÿ

j ”=i

q(s+1)
j

(zj), (16.12)

where ci is the normalizing constant. The Markov property implies that the right-hand side
of the equation only involves the probability distributions qj for j in the neighbourhood of
i that we will denote by j œ N (i). Another equivalent form of (16.12) is to update in turn,
for each i in S,

q(s+1)
i

(zi) Ã exp(E
q

(s+1)
\i

[log p(zi|y, Z\i, �(s))]) (16.13)

where the expectation is taken with regard to

q(s+1)
\i

(z\i) =
Ÿ

jœN (i)
q(s+1)

j
(zj).

See Chaari et al. (2013, Appendix) for a straightforward way to derive (16.13) using the
Kullback–Leibler divergence properties.

In practice, when developing the right-hand side of (16.13), the terms that do not depend
on zi can be omitted. The latter are part of the normalizing constant that can be deduced
(e.g. in the exponential family case as explained in Beal & Ghahramani, 2003) or computed
afterwards. In the HMF-IN case, it becomes

q(s+1)
i

(zi) Ã exp(E
q

(s+1)
\i

[log p(yi|zi, ◊(s)) + log p(zi|Z\i, –(s), (s))]).

For a pairwise potential MRF, it becomes

q(s+1)
i

(zi) Ã p(yi|zi, ◊(s)) exp

Q

a
K

zi,
ÿ

jœN (i)

(s)
ij

E
q

(s+1)
j

(Zj) + –(s)
i

LR

b . (16.14)

By way of illustration, let us consider a two-class Potts model for which zi œ {e1, e2}
and the potentials are defined by – = 0 and Vij(zi, zj) = —Èzi, zjÍ, that is, ij = = —I2
where I2 is the 2 ◊ 2 identity matrix. It follows that E

q
(s+1)
j

(Zj) = (q(s+1)
j

(e1), q(s+1)
j

(e2))€.
Then equation (16.14) for zi = e1 reads

q(s+1)
i

(e1) Ã p(yi|zi = e1, ◊(s)
1 ) exp

Q

a—
ÿ

jœN (i)
q(s+1)

j
(e1)

R

b ,
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which after normalization leads to

q(s+1)
i

(e1) =

Q

a1 + p(yi|zi = e2, ◊(s)
2 )

p(yi|zi = e1, ◊(s)
1 )

exp

Y
]

[—
ÿ

jœN (i)
(q(s+1)

j
(e2) ≠ q(s+1)

j
(e1))

Z
^

\

R

b
≠1

,

q(s+1)
i

(e2) = 1 ≠ q(s+1)
i

(e1). (16.15)

The fixed point equations (16.15) must be solved iteratively, updating each site in turn.
Equation (16.14) can also be recovered from a di�erent point of view. The idea when

considering a particular site i is to neglect the fluctuations of the sites interacting with
i so that the resulting system behaves as one composed of independent variables. More
specifically, for all j di�erent from i, the zj are fixed at their current conditional mean
value E(Zj |y, �(s)]). However, these mean values are unknown and it is the goal of the ap-
proximation to compute them. Therefore, the approximation depends on a self-consistency
condition: the mean values that can be computed from the approximate distribution must
be equal to the mean values used to define this approximate distribution. Then replacing
the exact conditional mean values by the mean values in the approximation leads to a fixed
point equation involving these mean values (see Celeux et al., 2003, for more details). Ex-
istence and uniqueness of a solution to (16.12) are properties that have not yet been fully
understood and will not be discussed here. We refer to Tanaka (2001) for a better insight
into the properties of the (potentially multiple) solutions of the mean field equations. Such
solutions are usually computed iteratively (see Ambroise & Govaert, 1998, Zhang, 1996,
and an erratum in Fessler, 1998).

Despite the relaxation which may make the summation of the VEM E step explicit
for a convenient choice of D̃ (i.e. the computation of F (q(s+1), �) in (16.11)), VEM re-
mains intractable for hidden Markov random fields. From (16.6) and (16.11), ◊ and (–, )
are updated independently, given q(s+1). Under additional commonly used assumptions on
p(y|z, ◊), ◊(s+1) is computed in closed form (see, for example, Section 16.4). The issue is the
update of (–, ) since it requires an explicit expression of the partition function or some
related quantities (its gradient, for example).

To overcome this di�culty, di�erent approaches have been proposed. The mean field and
simulated field algorithms proposed in Celeux et al. (2003) are alternatives to VEM that
propagate the approximation q(s+1) of p(z|y, �(s)) to p(z|–, ). The MCVEM approach
(Forbes & Fort, 2007) di�ers from the previous one in that the approximation method does
not lead to a simple valid model but appears as a succession of approximations to overcome
successive computational di�culties. Similar ideas have been used successfully to estimate

in various applications, for example, in Chaari et al. (2013) and Forbes et al. (2013).
Another common solution is to fixed to a sequence of values using an annealing scheme;
see, for example, Scherrer et al. (2009). The parameter – is often set to zero, although it
can be added to the set of unknown parameters to be estimated without much di�culty
(Celeux et al., 2004).

16.3.1 Links with the iterated conditional mode and the Gibbs sampler
As presented in Besag (1974), the iterated conditional mode algorithm involves updating in
turn a solution zú that satisfies

zú(s+1)
i

= arg max
zi

p(yi|zi, ◊(s))p(zi|zú(s)
N (i))

= arg max
zi

p(yi|zi, ◊(s)) exp

Q

a—

K
zi,

ÿ

jœN (i)
zú(s)

i

LR

b .
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As noted in Celeux et al. (2003), it can be seen as a modal version of the variational mean
field in the sense that the fixed point equations are similar, with the mean operator replaced
by the mode (max) operator. Similarly, the Gibbs sampler as presented in Geman & Geman
(1984) is recovered by sampling

zú(s+1)
i

≥ p(yi|zi, ◊(s)) exp

Q

a—

K
zi,

ÿ

jœN (i)
zú(s)

i

LR

b ,

where ≥ indicates a simulation according to the distribution defined on the right-hand side.
The Gibbs sampler can be seen as a simulated version of the mean field approximation.

16.4 Illustration: MRI Brain Scan Segmentation
We illustrate how the modelling and estimation scheme presented could provide general
guidelines to deal with complex joint processes in medical image analysis. We provide two
applications, both involving brain MRI data, but in di�erent contexts and illustrating dif-
ferent capabilities of the models presented. Section 16.4.1 deals with image data where each
pixel is associated with a univariate observation (a single MR sequence). The emphasis is
on a sophisticated use of the external field or singleton potential parameters (–). In Sec-
tion 16.4.2 multivariate observations are considered. Multiple MR sequences are segmented
simultaneously. The emphasis is put on the design of the pair potential parameters ( ).

16.4.1 Healthy brain tissue and structure segmentation
The analysis of MR brain scans is a complex task that requires several sources of information
to be taken into account and combined. The analysis is frequently based on segmentations
of tissues and of subcortical structures performed by human experts. For automatic seg-
mentation, di�culties arise from the presence of various artefacts such as noise or intensity
non-uniformities (see Figure 16.1(a) and (c)). For structures, the segmentation requires in
addition the use of prior information usually encoded via a pre-registered atlas. Interest has
been growing (see, for example, Ashburner & Friston, 2005; Pohl et al., 2006) in tackling
this complexity by allowing the possibility of introducing mutual interactions between com-
ponents of a model. Such a coupling can be naturally expressed in a statistical framework
via the definition of a joint distribution that performs a number of essential tasks. The
statistical framework illustrated in this section allows (1) for tissue segmentation using local
HMRF models, (2) for MRF segmentation of structures and (3) for local a�ne registration
of an atlas. All tasks are linked, and completing each one of them can help in refining the
others. We specify a joint model from which conditional models are derived. As a result,
cooperation between tissues and structures and interaction between the segmentation and
registration steps are easily introduced. An explicit joint formulation has the advantage of
providing a strategy to construct more consistent or complete models that are open to in-
corporation of new tasks. Estimation is then carried out using a variational EM framework
(see Scherrer et al., 2009, and Forbes et al., 2011, for details). The evaluation performed on
both phantoms and real 3 tesla brain scans shows good results and demonstrates the clear
improvement provided by coupling the registration step to tissue and structure segmenta-
tion.
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16.4.1.1 A Markov random field approach to segmentation and registration

We consider a finite set S of n voxels on a regular three-dimensional grid. The observed
data y = {y1, . . . , yn} are the intensity values observed respectively at each voxel and the
missing data z = (t, s) is made up of two sets: the tissue classes t = {t1, . . . , tn} and the
subcortical structure classes s = {s1, . . . , sn}. The ti take their values in {e1, e2, e3}, which
represents the three tissues cerebro-spinal fluid (CSF), grey matter and white matter (see
Figure 16.1(b)). For the subcortical structure (see Figure 16.1(c)) segmentation we consider
L structures, the si taking their values in {eÕ

1, . . . , eÕ

L
, eÕ

L+1} where eÕ

L+1 corresponds to
an additional background class. Tissues and structures are linked and we denote by T si

the tissue of structure si at voxel i. The model parameters � = (◊, R) include both the
intensity distribution parameters ◊ and the registration parameters R. We consider them
in a Bayesian framework as realizations of random variables. The MRF parameters will be
considered here as fixed (see below).

To capture interactions between the various fields y, t, s and � we adopt a conditional
random field approach which involves specifying a conditional model p(t, s, �|y). We define
p(t, s, �|y) as a Gibbs measure with energy function H(t, s, �|y),

p(t, s, �|y) Ã exp(H(t, s, �|y)),

where the energy is decomposed into the following terms. We denote by f(yi|ti, si, ◊i) pos-
itive functions of yi and consider the decomposition

H(t, s, �|y) = HT (t) + HS(s) + HT,S(t, s) + HT,R(t, R) + HS,R(s, R)

+H◊(◊) + HR(R) +
ÿ

iœS

log f(yi|ti, si, ◊i) . (16.16)

In what follows, we discuss a number of essential tasks and show the terms in (16.16) can
be specified so that the model performs the tasks listed below.

Robust-to-noise segmentation

Robust-to-noise segmentation is generally addressed via MRF modelling. It introduces local
spatial dependencies between voxels, providing a labelling regularization. For tissue and
structure segmentations, we use the standard Potts model setting

HT (t) =
ÿ

iœS

ÿ

jœN (i)
—T Èti, tjÍ,

HS(s) =
ÿ

iœS

ÿ

jœN (i)
—S Èsi, sjÍ,

where Èti, tjÍ denotes the scalar product, N (i) represents the voxels neighbouring i, and —T

and —S are additional interaction strength parameters.

Local approach to deal with non-uniformity

Tissue intensity models are generally estimated globally through the entire volume and then
su�er from imperfections at a local level. We adopt a local segmentation alternative. The
principle is to locally compute the tissue models in various subvolumes of the initial volume.
These models better reflect local intensity distributions and are likely to handle di�erent
sources of intensity non-uniformity.

We consider intensity models that depend on the tissue class k but also on the voxel
localization, so that ◊ decomposes into ◊ = {◊i, i œ S} where ◊i = (◊1

i
, ◊2

i
, ◊3

i
)€. Although
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FIGURE 16.1
Obstacles to accurate segmentation of MR brain scans. Image (a) illustrates spatial inten-
sity variations: two local intensity histograms (bottom) in two di�erent subvolumes (top)
are shown with their corresponding Gaussians fitted using three-component mixture models
for the three brain tissues considered. The vertical line corresponds to some intensity value
labelled as grey matter or white matter depending on the subvolume. Image (b) illustrates
a segmentation into three tissues: white matter, grey matter and cerebro-spinal fluid. Im-
age (c) shows the largely overlapping intensity histograms (bottom) of three grey matter
structures segmented manually (top): the putamen, the thalamus and the caudate nuclei.

possible in our Bayesian framework, this general setting results in too many parameters
which could not be estimated accurately. The local approach provides an intermediate
e�cient solution where the ◊i are first considered as constant over subvolumes. Let C be a
regular cubic partitioning of the volume S into a number of non-overlapping subvolumes
{Vc, c œ C}. We write ◊ = {◊c, c œ C}, where ◊c = (◊1

c
, ◊2

c
, ◊3

c
)€ is the common value

of all ◊i for i œ Vc. In addition, to ensure consistency and spatial regularity between the
local estimations of the ◊cs, we consider an MRF prior p(◊) Ã exp(H◊(◊)). When Gaussian
intensity distributions are considered, this corresponds to assigning auto-normal Markov
priors to the mean parameters. Apart from the issue of estimating ◊, having voxel dependent
◊i is not a problem. We can easily return to this case from the estimated ◊cs, by using a
cubic splines interpolation step.

Incorporating a priori knowledge via local a�ne atlas registration

The a priori knowledge required for structure segmentation is classically provided via a
global non-rigid atlas registration. Most methods first register the prior information to the
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medical image and then segment the image based on that aligned information. Although reli-
able registration methods are available, it is still important in the subsequent segmentation
task to overcome biases caused by commitment to the initial registration. Also segmen-
tation results provide information that can be used for feedback on registration. Global
registration approaches generally lead to a high-dimensional minimization problem which
is computationally greedy and subject to a large number of local optima.

We instead choose a hierarchical local a�ne registration model as in Pohl et al. (2006).
We consider (a) a global a�ne transformation given by parameters RG, which describes
the non-structure-dependent deformations, and (b) one local a�ne structure-dependent
deformation for each structure, defined in relation to RG and capturing the residual
structure-specific deformations. It follows that L + 2 a�ne transformation parameters
R = (RG, RS

1 , . . . , RS

L+1) have to be estimated. Interactions between labels and regis-
tration parameters are introduced through HT,R(t, R) and HS,R(s, R). Similarly to Pohl
et al. (2006), the interaction between the structure classes s and R is chosen so as to favour
configurations for which the segmentation of a structure l is aligned on its prior atlas. We
denote by ’S = {’l

S
, l = 1, . . . , L+1} the statistical atlas of the brain subcortical structures

under consideration and by f(RG, RS

l
, i) the interpolation function assigning a position in

the atlas space to the image space. We compute the spatial a priori distribution f l

S
(R, ·) of

one structure l as

f l

S
(R, i) = ’l

S
(f(RG, RS

l
, i))

q
L+1
lÕ=1 ’lÕ

S
(f(RG, RS

lÕ , i))
.

The normalization across all structures is necessary as RS

l
are structure-dependent para-

meters and multiple voxels in the atlas space could be mapped to one location in the image
space. Although some atlas is potentially available for tissues, in our setting we build fT ,
the spatial a priori distribution of the K = 3 tissues, from the f l

S
:

fk

T
(R, i) =

ÿ

l:T l=k

f l

S
(R, i) + 1

K
fL+1

S
(R, i).

Agreement between structure segmentation and the atlas is then favoured by setting

HS,R(s, R) =
ÿ

iœS

Èsi, log (fS(R, i) + ‘)Í,

with the vectorial notation fS = (f1
S

, . . . , fL+1
S

)€. The logarithm and a positive scalar ‘ are
introduced respectively for homogeneity between probabilities and energies, and to ensure
the existence of the logarithm. We choose ‘ = 1, making in addition HS,R(s, R) positive,
but the overall method does not seem to be sensitive to its exact value. Similarly, we define
the interaction between t and R by

HT,R(t, R) =
ÿ

iœV

Èti, log (fT (R, i) + ‘) .Í

Then the term HR(R) can be used to introduce a priori knowledge to favour estimation
of R close to some average registration parameters computed from a training data set if
available. In our case, no such data set were available and we set HR(R) = 0.

Cooperative tissue and structure segmentations

Tissues and structures are linked: a structure is made up of a specific tissue and knowledge on
structures, and locations provide information for tissue segmentation. Inducing cooperation
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between tissue and structure segmentations can be done through the term HT,S(t, s). We
set

HT,S(t, s) =
ÿ

iœS

Èti, eT si Í

so as to favour situations for which the tissue T si of structure si is the same as the tissue
given by ti. Cooperation between tissue and structure labels also appears via the energy
data term

q
iœS

f(yi|ti, si, ◊i). Considering Gaussian intensity distributions, we denote by
N (·|µ, ⁄≠1) the Gaussian distribution with mean µ and precision ⁄ (i.e. the inverse of the
variance). Denoting ◊k

i
= {µk

i
, ⁄k

i
}, we see ◊i as a three-dimensional vector, so that when

ti = ek, N (yi|Èti, ◊iÍ) denotes the Gaussian distribution with mean µk

i
and precision ⁄k

i
. To

account for both tissue and structure information, we set

f(yi|ti, si, ◊i) = N (yi|Èti, ◊iÍ)
1+Èsi,eÕ

L+1Í
2 N (yi|ÈeT si , ◊iÍ)

1≠Èsi,eÕ
L+1Í

2 .

When tissue and structure segmentations contain the same information at voxel i,
that is, either ti = eT si or si = eÕ

L+1, the expression for f above reduces to the
usual N (yi|Èti, ◊iÍ). When this is not the case, the expression for f above leads to
N (yi|Èti, ◊iÍ)1/2N (yi|ÈeT si , ◊iÍ)1/2, which is a more appropriate compromise.

This achieves the definition of the hierarchical model that can then be fitted to data
using a VEM approach as specified in Scherrer et al. (2009) and Forbes et al. (2011).

16.4.1.2 Experiments: Joint tissue and structure segmentation

We consider both phantoms and real 3 T brain scans. We use the normal 1 mm3 BrainWeb
phantoms database from the McConnell Brain Imaging Center (Collins et al., 1998). These
phantoms are generated from a realistic brain anatomical model and an MRI simulator
that simulates MR acquisition physics, in which di�erent values of non-uniformity and
noise can be added. Because these images are simulated we can quantitatively compare our
tissue segmentation to the underlying tissue generative model to evaluate the segmentation
performance.

We perform a quantitative evaluation using the Dice similarity metric (Dice, 1945). This
metric measures the overlap between a segmentation result and the gold standard. Denoting
by TPk the number of true positives for class k, FPk the number of false positives and FNk

the number of false negatives, the Dice metric is given by

dk = 2TPk

2TPk + FNk + FPk

.

It takes values in [0, 1], where 1 represents perfect agreement. Since BrainWeb phantoms
contain only tissue information, three subcortical structures were manually segmented by
three experts: the left caudate nucleus, the left putamen and the left thalamus. The results
we report are for eight BrainWeb phantoms, for 3%, 5%, 7% and 9% of noise with 20%
and 40% of non-uniformity for each noise level. Regarding real data, we then evaluate our
method on real 3 T MR brain scans (T1 weighted sequence) coming from the Grenoble
Institute of Neuroscience.

We then evaluate the performance of the joint tissue and structure segmentation. We
consider two cases: our combined approach with fixed registration parameters (LOCUSB-
TS) and with estimated registration parameters (LOCUSB-TSR). Table 16.1 shows the
evaluation on BrainWeb images using our reference segmentation of the three structures. The
table shows the means and standard deviations of the Dice coe�cient values obtained for
the eight BrainWeb images. It also shows the means and standard deviations of the relative
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TABLE 16.1
Mean Dice coe�cient values obtained on three structures using LOCUSB-TS and LOCUSB-
TSR for BrainWeb images, over eight experiments for di�erent values of noise (3%, 5%, 7%,
9%) and non-uniformity (20%, 40%). The corresponding standard deviations are shown
in parentheses. The second column shows the results when registration is done as a pre-
processing step (LOCUSB-TS). The third columns shows the results with our full model
including iterative estimation of the registration parameters (LOCUSB-TSR). The last col-
umn shows the relative Dice coe�cient improvement for each structure.

Structure LOCUSB-TS LOCUSB-TSR Relative Improvement
Left thalamus 91% (0) 94% (1) 4% (1)
Left putamen 90% (1) 95% (0) 6% (1)
Left caudate nucleus 74% (0) 91% (1) 23% (1)

improvements between the two models LOCUSB-TS and LOCUSB-TSR. In particular, a
significant improvement of 23% is observed for the caudate nucleus for the latter model.

The three structure segmentations improve when registration is combined. In particular,
in LOCUSB-TS the initial global registration of the caudate nucleus is largely suboptimal,
but it is then corrected in LOCUSB-TSR. More generally, for the three structures we observe
a stable gain for all noise and inhomogeneity levels.

Figure 16.2 shows the results obtained with LOCUSB-T, and LOCUSB-TSR on a real
3 T brain scan. The structures emphasized in image (c) are the two lateral ventricles, the
caudate nuclei, the putamens and the thalamus. Figure 16.2(e) shows in addition a 3D
reconstruction of 17 structures segmented with LOCUSB-TSR. The results with LOCUSB-
TS are not shown because the di�erences with LOCUSB-TSR were not visible at this
graphical resolution.

We therefore observe a gain in combining tissue and structure segmentation, in partic-
ular through the improvement of tissue segmentation for areas corresponding to structures
such as the putamens and thalamus. The additional integration of a registration parame-
ter estimation step also provides some significant improvement. It allows for an adaptive
correction of the initial global registration parameters and a better registration of the atlas
locally.

16.4.2 Brain tumor detection from multiple MR sequences
The previous subsection described a possible model for healthy brain segmentation using
three normal tissues. When considering brain damage, the number of extra tissues to take
into account can vary with the pathology. In this section, we illustrate the possibility of
modelling interactions between these tissues via the pair potential parameters.

16.4.2.1 Tissue interaction modelling

A fully automatic algorithm is now proposed to segment glioma MR sequences, by availing
of the additional information provided by multiple MR sequences. We adopt a data model
comprising five normal tissue classes; white matter, grey matter, ventricular CSF, extra-
ventricular CSF, and other. The glioma is modelled by a further four classes representing
the diseased tissue state: oedema, non-enhancing, enhancing and necrotic. As illustrated in
the previous section, the standard Potts model is often appropriate for clustering since it
tends to favour neighbours that are in the same class. However, this model penalizes pairs
that have di�erent classes with the same penalty, regardless of the tissues they represent. In
practice, it may be more appropriate to encode higher penalties when the tissues are known
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(a) (b)

(c) (d)

(e)

FIGURE 16.2
Evaluation of LOCUSB-TSR on a real 3 T brain scan shown in image (a). For comparison,
the tissue segmentation obtained with LOCUSB-TS is given in image (b). The results ob-
tained with LOCUSB-TSR are shown in the second row. Major di�erences between tissue
segmentations (images (c) and (d)) are indicated using arrows. Image (e) shows the corre-
sponding 3D reconstruction of 17 structures segmented using LOCUSB-TSR. The names of
the left structures (use symmetry for the right structures) are indicated in the image.

(a) (b)

FIGURE 16.3
Evaluation of P-LOCUS in image (b) on a real 3 T brain scan. The ground truth is shown
in image (a).

to be unlikely neighbours. For example, the penalty for a white matter and extraventricular
CSF pair is expected to be greater than that of a grey matter and extraventricular CSF
pair, as these two classes are more likely to form neighbourhoods. This models the undesir-
ability of abrupt changes in neighbouring tissues. In practice, the interaction matrix can
be tuned according to experts’ a priori knowledge, or can be estimated from the data. In
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the absence of su�cient data to robustly and accurately estimate a full free with G = 9,
further constraints are imposed on the matrix. The four glioma classes are considered a
single structure, whose interaction with the normal tissue classes is not dependent on the
specific glioma tissue state. Letting · be the set of classes comprising the glioma structure
and ·̄ the set of healthy tissues, we propose to use for a matrix defined by

(g, gÕ) =
;

—, for all (g, gÕ) such that g œ · and gÕ œ ·̄ ,
—g,gÕ , otherwise.

More generally, when prior knowledge indicates that, for example, two given classes are
likely to be next to each other, this can be encoded in the matrix with a higher entry for
this pair. Conversely, when there is enough information in the data, a full free matrix can
be estimated and will reflect the class structure (i.e. which class is next to which as indicated
by the data) and will then mainly serve as a regularizing term to encode additional spatial
information. The fine design of may be important in such a case. For another illustration
of a non-standard , see also Forbes et al. (2013).

For the distribution of the observed variables y given the classification z, the usual
conditional independence assumption is made. It follows that the conditional probability of
the hidden field z given the observed field y is

p(z|y, ◊, ) = W ( )≠1 exp
A

≠Hz(z, ) +
ÿ

iœS

log f(yi|zi, ◊)
B

.

For simplicity, no external field – is specified here, but it can be used in practice to ac-
count for prior knowledge via anatomical or vascular atlases (see Kabir et al., 2007, or the
Appendix in Menze et al., 2015 for more details).

16.4.2.2 Experiments: Lesion segmentation

The algorithm referred to as P-LOCUS, for “Pathological LOCUS”, was tested on real-
patient data from the BRATS 2013 data set. A more complete description of the model
used and the results is given in (Menze et al., 2015, Appendix). As an illustration, Fig-
ure 16.3 shows the correspondence between the ground truth corresponding to a manual
segmentation and the P-LOCUS result.

16.5 Concluding Remarks
In this chapter we focused on image segmentation as a typical image processing task that
can benefit from a mixture modelling approach. Regarding the specific brain MR appli-
cation we described, the framework can be adapted to other applications. It provides a
strategy and guidelines for dealing with complex joint processes involving more than one
identified subprocess. It is based on the idea that defining conditional models is usually
more straightforward and captures more explicitly cooperative aspects, including coopera-
tion with external knowledge.

The Bayesian formulation provides additional flexibility such as the possibility of deal-
ing, in a well-based manner, with some sort of non-stationarity in the parameters (like
that due to intensity non-uniformities in our MRI example). Of course, depending on the
application in mind, more complex energy functions than the one given in our MRI illustra-
tion may be necessary. In particular, for our example, it was enough to consider separately
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cooperation between label sets and spatial interactions. However, one useful extension, to
be investigated in future work, would be to add a spatial component in the cooperation
mechanisms themselves.

Beyond this illustration, images can be considered in a broad sense meaning that the
observed data do not need to be made up of a set of 2D or 3D pixels but could corre-
spond to more general graph structures. The material in this chapter can be more gen-
erally applied to dependent data clustering as illustrated in Green & Richardson (2002),
Vignes & Forbes (2009), and Forbes et al. (2013). In addition, we have not discussed a
number of common complications that can occur in the measurement process. This in-
cludes issues such as the high dimensionality of the observations, missing observations
and heterogeneous observations. Solutions exist in such cases. Some procedures using the
EM approach are implemented in the SpacEM3 software (Vignes et al., 2011) available at
http://spacem3.gforge.inria.fr. Finally, since image analysis is a vast domain in terms of both
methodology and applications, many important contributions are not cited or mentioned in
this chapter.
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