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LYAPUNOV STABILITY OF COMPLEMENTARITY AND

EXTENDED SYSTEMS

M. KANAT CAMLIBEL† , JONG-SHI PANG‡ , AND JINGLAI SHEN§

Abstract. A linear complementarity system (LCS) is a piecewise linear dynamical system
consisting of a linear time-invariant ordinary differential equation (ODE) parameterized by an alge-
braic variable that is required to be a solution to a finite-dimensional linear complementarity problem
(LCP), whose constant vector is a linear function of the differential variable. Continuing the authors’
recent investigation of the LCS from the combined point of view of system theory and mathematical
programming, this paper addresses the important system-theoretic properties of exponential and
asymptotic stability for an LCS with a C1 state trajectory. The novelty of our approach lies in our
employment of a quadratic Lyapunov function that involves the auxiliary algebraic variable of the
LCS; when expressed in the state variable alone, the Lyapunov function is piecewise quadratic, and
thus nonsmooth. The nonsmoothness feature invalidates standard stability analysis that is based on
smooth Lyapunov functions. In addition to providing sufficient conditions for exponential stability,
we establish a generalization of the well-known LaSalle invariance theorem for the asymptotic stabil-
ity of a smooth dynamical system to the LCS, which is intrinsically a nonsmooth system. Sufficient
matrix-theoretic copositivity conditions are introduced to facilitate the verification of the stability
properties. Properly specialized, the latter conditions are satisfied by a passive-like LCS and cer-
tain hybrid linear systems having common quadratic Lyapunov functions. We provide numerical
examples to illustrate the stability results. We also develop an extended local exponential stability
theory for nonlinear complementarity systems and differential variational inequalities, based on a
new converse theorem for ODEs with B-differentiable right-hand sides. The latter theorem asserts
that the existence of a “B-differentiable Lyapunov function” is a necessary and sufficient condition
for the exponential stability of an equilibrium of such a differential system.

Key words. complementarity systems, Lyapunov stability, LaSalle’s invariance principle, asymp-
totic and exponential stability

1. Introduction. Fundamentally linked to a linear hybrid system, a linear com-
plementarity system (LCS) is a piecewise linear dynamical system defined by a linear
time-invariant ordinary differential equation (ODE) parameterized by solutions of a
finite-dimensional linear complementarity problem (LCP) linearly coupled with the
state of the differential equation. LCSs, and also nonlinear complementarity systems
(NCSs), belong to the more general class of differential variational inequalities (DVIs)
[38]. In the last few years there has been a rapidly growing interest in complementarity
systems and DVIs from the mathematical programming community and the systems
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and control community, due to their applications in many areas such as robotics, non-
smooth mechanics, economics, and finance and traffic systems; see the recent review
papers [3, 50] and [4, 5, 6, 7, 8, 9, 11, 19, 20, 21, 22, 37, 51, 53, 54] for studies on
specific issues pertaining to the LCS.

Stability is a classical issue in dynamical system theory. One of the most widely
adopted stability concepts is Lyapunov stability, which plays important roles in sys-
tem and control theory and in the analysis of engineering systems. In the classical
Lyapunov stability theory, we assume that the ODE in consideration has a smooth (at
least C1) right-hand side and the origin is an equilibrium. Furthermore, we assume
that there exists a continuously differentiable, positive definite, and coercive function
of the system states, which is called a Lyapunov function. If the Lie derivative of such
a function along the vector field of the system is nonpositive at all states (in a small
neighborhood of the origin), then one can establish stability of the origin in the sense
of Lyapunov. On the other hand, if the Lie derivative of such a Lyapunov function
along the vector field of the system is negative at all nonzero states (in a small neigh-
borhood of the origin), then the system is asymptotically stable at the origin. In the
setting of linear systems, this leads to the well-known Lyapunov equation.

An important extension of the above results is LaSalle’s invariance principle [28],
which plays a fundamental role in the stability analysis of smooth systems. This
theorem says that if the largest invariant set of the zero level of the Lie derivative
of the Lyapunov function along the system vector field is a singleton and contains
the origin only, then the system is asymptotically stable at the origin. It is known
that the singleton condition can be further expressed in terms of certain observability
conditions. Thus checking the singleton condition is closely related to the observability
analysis of the system.

Extending classical smooth system theory to stability analysis of hybrid and
switched systems has received growing attention in recent years. Among the exten-
sive literature on the stability of linear switched systems, we mention a few relevant
papers. A multiple-Lyapunov-function approach was proposed in [2]; see also [56]
for related discussion. Uniform (asymptotic) stability of switched linear systems is
studied in [23] where an extension of LaSalle’s invariance principle to certain classes
of switched linear systems is addressed. The latter result is further generalized to the
stability analysis of switched nonlinear systems [24], where several nonlinear norm-
observability notions generalizing classical observability concepts are introduced to
obtain sufficient conditions for asymptotic stability using arguments of the LaSalle
type. For surveys of recent results, including extensive references, on stability and
stabilization of switched linear systems, see [14, 29]. Typically, the mentioned results
assume that a Lyapunov-like function exists for each mode’s vector field and holds
for the entire state space. In many hybrid and switched systems, however, each mode
holds only over a subset of the state space, especially for those systems whose switch-
ings are triggered by state evolution, such as the LCS. Hence, the above results are
rather restrictive, even for linear switched systems. Due to this concern, the paper
[12] had proposed copositive Lyapunov functions for “conewise linear systems” for
which the feasible region of each mode is a polyhedral cone. This proposal leads to an
interesting study of copositive matrices that satisfy the Lyapunov equation. Similar
ideas and relevant results for piecewise linear systems can also be found in [26]. Also
employing a copositivity theory, the authors of several recent papers [1, 16, 17, 18]
have developed an extensive stability theory for evolutionary variational inequalities
(EVIs), including an extension of LaSalle’s invariance principle to such systems, nec-
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essary conditions for asymptotic stability, application to mechanical systems under
frictional contact, and matrix conditions for stability and instability for linear EVIs
(LEVIs). The EVIs belong to the class of differential inclusions and are dynamic
generalizations of a finite-dimensional variational inequality [15]. In this paper, as
an example of a DVI, we briefly discuss the “functional evolutionary variational in-
equality” (FEVI) as another dynamic generalization of a static finite-dimensional
variational inequality (VI); see the system (5.8). In contrast to the EVI, the FEVI
always has continuously differentiable solution trajectories, whose stability properties
can be established without resorting to the framework of differential inclusions (DIs).
Last, we mention [52, section 8.2], which studies the stability of “linear selectionable”
DIs. While an LCS is related to such a DI, the two are quite different; consequently,
the results from this reference are not applicable to the LCS. See the discussion at
the end of subsection 3.3 for details.

It should be emphasized that while complementarity systems, and more generally,
differential variational systems via their Karush–Kuhn–Tucker formulations, could be
considered as special switched systems, LCSs, NCSs, and DVIs occupy a significant
niche in many practical applications and have several distinguished features: inequal-
ity constraints on states, state-triggered mode switchings, and an endogenous control
variable. These features invalidate much of the known theory of hybrid systems, which
often allow arbitrary switchings, and necessitate the employment of the copositivity
theory pioneered by such authors as Brogliato, Goeleven, and Schumacher. Another
noteworthy point about the switched system theory is that it takes for granted a fun-
damental “non-Zenoness assumption” (i.e., finite number of switches in finite time)
whose satisfaction is the starting point for stability analysis; for complementarity sys-
tems, this issue of finite switches is nontrivial and has been rigorously analyzed only
very recently [37, 51]; see also [10].

Complementing the aforementioned works, this paper aims at analyzing the asymp-
totic and exponential stability of classes of nonsmooth differential systems, focusing
in particular on the LCSs, NCSs, and DVIs. For an early work on the asymptotic
behavior of solutions to the evolutionary nonlinear complementarity problem, see
Chapter 3 in the Ph.D. thesis [25]. A key assumption for the class of LCSs treated
in our work is that they have C1 state trajectories for all initial states. Since the
right-hand side of such an LCS is a Lipschitz function of state, the results for the
LEVIs are not applicable to this class of LCSs; see [16, Remark 10]. Nevertheless,
there are LCSs that fall within the framework of the LEVI, and which are therefore
amenable to the treatment in the cited reference (see, e.g., Corollary 2 therein) but
which cannot be handled by our approach. In contrast to a set-valued approach, our
analysis is based to a large extent on the theory of “B-differentiable” functions (see
section 2 for a formal definition of such a nonsmooth function). Specifically, unlike
many stability results in the literature where the candidate Lyapunov functions are
chosen to be continuously differentiable in the state, the nontraditional Lyapunov-like
function in our consideration is, in the case of the LCS, quadratic in both the state
and the associated algebraic variable; thus it is piecewise quadratic when expressed in
the system state only. The nonsmoothness of the resulting Lyapunov function is the
novelty of our work, as a result of which mathematical tools that go beyond the scope
of the classical Lyapunov stability theory are needed. In this regard, our analysis is
in the spirit of [52, Chapter 8]; yet the differential systems considered in our work are
of a particular type, whose structure is fully exploited in designing the class of Lya-
punov functions. Consequently, we are able to obtain much sharper results than those
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derived from the general theory of differential inclusions. In particular, combining
LCP theory and stability methods, we obtain asymptotic stability results via an ex-
tension of LaSalle’s invariance principle; moreover, our stability results for the LCS
are expressed in terms of matrix copositivity conditions. Several special cases are
highlighted and numerical examples are given. We further extend these results to
inhomogeneous LCSs, NCSs, and DVIs, with the latter two classes of systems sat-
isfying the strong regularity condition [43, 15]. The noteworthy point of the latter
extension is that it is based on a “converse theorem” of the exponential stability of an
equilibrium of an ODE with a “B-differentiable” right-hand side. The latter theorem
asserts that the existence of a “B-differentiable Lyapunov function” is a necessary
and sufficient condition for the exponential stability of an equilibrium to such a dif-
ferential system. Incidentally, there is an extensive literature on converse theorems
for switched systems, some of which even involve discontinuous Lyapunov functions;
see, e.g., [30, 33, 34, 42]. Our main result, Theorem 5.2, differs from the common
treatment in switched systems in a major way; namely, our theorem is established
for a general ODE with a B-differentiable right-hand side and thus potentially has
broader applicability than those restricted to switched systems.

The organization of the rest of the paper is as follows. In the next section,
we formally define the LCS, review the notions of stability, asymptotic stability, and
exponential stability, and briefly examine some matrix classes related to the LCP [13].
The stability results for the equilibrium xe = 0 of the LCS are presented in section 3,
first for the “P-case” which is then extended to a non-P system. Numerical examples
illustrating these results and the special case of a single-input-single-output (SISO)
system are also given. Sections 4 and 5 address the stability issues of the extended
systems; the former section treats the inhomogeneous LCS and the latter the NCS
and the DVI, via the above-mentioned converse theorem for a B-differentiable ODE.

2. Linear complementarity systems. An LCS is defined by a tuple of four
constant matrices A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜm×n, and D ∈ ℜm×m; it seeks
two time-dependent trajectories x(t) ∈ ℜn and u(t) ∈ ℜm for t ∈ [0, T ] for some
0 < T ≤ ∞ such that

ẋ = Ax + Bu,

0 ≤ u ⊥ Cx + Du ≥ 0,

x(0) = x0,

(2.1)

where ẋ ≡ dx/dt denotes the time derivative of the trajectory x(t), x0 is the initial
condition, and a ⊥ b means that the two vectors a and b are orthogonal, i.e., aT b = 0.
We denote the above LCS by the tuple (A,B,C,D). Obviously, the LCP of finding a
vector u ∈ ℜm satisfying

0 ≤ u ⊥ q + Du ≥ 0,

which we denote by the pair (q,D) and whose solution set we denote SOL(q,D), has
a lot to do with various properties of the above LCS. We refer the reader to [13] for
a comprehensive study of the LCP and also to the two-volume monograph [15] for
many advanced solution properties of the LCP that we will freely use throughout this
paper. In particular, under the blanket assumption that BSOL(Cx,D) is a singleton
for all x ∈ ℜn, an assumption which was introduced in [51] and used subsequently in
[39], it follows that the LCS (2.1) is equivalent to the ODE

ẋ = Ax + BSOL(Cx,D), x(0) = x0,(2.2)
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whose right-hand side Ax + BSOL(Cx,D) is a (single-valued) piecewise linear, and
hence Lipschitz continuous and directionally differentiable (i.e., B(ouligand)-differen-
tiable [35]) function of x ∈ ℜn. (A word about notation: we identify the single vector
in BSOL(Cx,D) with the set itself; thus we talk about the piecewise linear function
x 	→ BSOL(Cx,D) directly without referring to the element in BSOL(Cx,D). The
same usage applies to other similar contexts.) The class of B-differentiable functions
will play a central role throughout this work. Formally, a function Φ : D ⊆ ℜn → ℜm

is B-differentiable at a point x in the open set D if Φ is Lipschitz continuous in
a neighborhood of x contained in D and directionally differentiable at x; Φ is B-
differentiable in D if it is B-differentiable at every point therein. We refer the reader
to [15, Chapter 3] for basic properties of B-differentiable functions.

It follows from the ODE formulation (2.2) that the LCS (2.1) has a unique so-
lution, which we denote x(t, x0), for all initial conditions x0 ∈ ℜn. If the initial
condition x0 is clear from the context, we will simply write x(t) to de-emphasize the
dependence of the solution trajectory on the initial condition. Even in this case where
the x-trajectory is unique, there is no guarantee that there is a unique u-trajectory,
unless D is a P-matrix [13], which implies that SOL(q,D) is a singleton for all q ∈ ℜm,
or unless the quadruple (A,B,C,D) satisfies the passifiability by pole shifting prop-
erty and a rank condition [7]. See Proposition 2.2 for a unification of these uniqueness
conditions. For our purpose, we are interested in the LCS (2.1) where the x-trajectory
is unique and C1 in time. It turns out that this condition is equivalent to the single-
valuedness of BSOL(Cx,D) as made precise in the following result.

Proposition 2.1. Let (A,B,C,D) be given. The following two statements are
equivalent.

(a) For every x0 ∈ ℜn, the LCS (2.1) has a unique C1 trajectory x(t, x0) defined
for all t ≥ 0.

(b) For every x0 ∈ ℜn, the set BSOL(Cx0, D) is a singleton.
Proof. It remains to show (a) ⇒ (b). This is clear because for any u0 ∈

SOL(Cx0, D), we have Bu0 = ẋ(0, x0)−Ax0, where ẋ(0, x0) is the time derivative of
the unique trajectory x(t, x0) evaluated at the initial time t = 0.

Throughout the discussion of the LCS (2.1), we assume that condition (b) holds.
There are simple instances where this condition holds easily. Statement (a) of the
following result identifies one such instance; see [51]. The notation a ◦ b denotes the
Hadamard product of two vectors; i.e., the ith component of a ◦ b is equal to aibi.

Proposition 2.2. Suppose that SOL(Cx,D) �= ∅ for all x ∈ ℜn. The following
two statements hold.

(a) If u ◦Du ≤ 0 ⇒ Bu = 0, then BSOL(Cx,D) is a singleton for all x ∈ ℜn.
(b) If [u ◦ Du ≤ 0, Bu = 0] ⇒ u = 0, then BSOL(Cx,D) is a singleton for

all x ∈ ℜn if and only if for every x0 ∈ ℜn, there exists a unique pair of
trajectories (x(t, x0), u(t, x0)) defined for all t ≥ 0 satisfying (2.1) such that
x(·, x0) is C1.

Proof. For statement (a), it suffices to show that Bu1 = Bu2 for any two solutions
u1 and u2 in SOL(Cx,D). This is easy because any two such solutions must satisfy
u ◦ Du ≤ 0 for u ≡ u1 − u2. For statement (b), it suffices to show the “only if”
assertion; in turn it suffices to show the uniqueness of the u(t, x0) trajectory. But
this is also clear in view of the uniqueness of the C1 trajectory x(t, x0), which follows
from Proposition 2.1.

Remark 2.1. If D is positive semidefinite, then u◦Du ≤ 0 implies (D+DT )u = 0.

Thus, if the matrix [D + DT

B
] has full column rank, then the implication [u ◦Du ≤ 0,
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Bu = 0] ⇒ u = 0 holds. The former rank condition is used in [7] along with the
passifiability condition, which implies the positive semidefiniteness of D, to yield the
uniqueness of the u-trajectory.

There are many matrix classes in LCP theory; among these, the following are
most relevant to this work. A matrix D ∈ ℜm×m is a P-matrix if u◦Du ≤ 0 ⇒ u = 0;
the matrix D is an R0-matrix if SOL(0, D) = {0}; the matrix D is (strictly) copositive
on a cone C ⊆ ℜm if uTDu ≥ 0 for all u ∈ C (uTDu > 0 for all nonzero u ∈ C); a
copositive matrix D is copositive plus on C if [uTDu = 0, u ∈ C] ⇒ (D + DT )u = 0.
Properties of these matrices will be used freely in the paper; see [13]. In particular, it
is known that a matrix D is P if and only if SOL(q,D) is a singleton for all q ∈ ℜm;
moreover a constant cD > 0 exists such that ‖u‖ ≤ cD‖q‖ for all q ∈ ℜm, where u is
the unique solution of the LCP (q,D). It is further known that D is an R0-matrix if
and only if SOL(q,D) is bounded (possibly empty) for all q ∈ ℜm. Clearly a P-matrix
must be R0. Last, note that if D is copositive on a convex cone C, then

[uTDu = 0, u ∈ C ] ⇒ (D + DT )u ∈ C∗,

where C∗ denotes the dual cone of C. Consequently, if D is a symmetric matrix
copositive on a convex cone C, then

[uTDu = 0, u ∈ C ] ⇒ [ C ∋ u ⊥ Du ∈ C∗ ].(2.3)

We say that (D, C) is an R0-pair if the unique vector satisfying the right-hand com-
plementarity conditions in the above implication is u = 0.

The condition that BSOL(Cx,D) is a singleton is not as restrictive as it seems.
Indeed, consider a homogeneous differential affine variational inequality (DAVI)

ẋ = Ax + Bu,

u ∈ SOL(K,Cx,D),
(2.4)

where u ∈ SOL(K,Cx,D) means that u ∈ K and

(u ′ − u)T (Cx + Du) ≥ 0 ∀u ′ ∈ K,

with K being the polyhedral cone {u ∈ ℜm : Eu ≤ 0} for some matrix E of appro-
priate dimension. Introducing a multiplier λ for the constraint in K, we deduce that
u ∈ SOL(K,Cx,D) if and only if

0 = Cx + Du + ETλ,

0 ≤ −Eu ⊥ λ ≥ 0.

If D is positive definite, we can solve for u from the first equation, obtaining u =
−D−1[Cx+ETλ], which we can substitute into Eu and Bu. This results in the LCS

ẋ = [A−BD−1C ]x−BD−1ETλ,

0 ≤ λ ⊥ −ED−1Cx + ED−1ETλ ≥ 0.

It is easy to see that the triple of matrices (B ′, C ′, D ′) ≡ (−BD−1ET ,−ED−1C,
ED−1ET ) satisfies the property that B ′SOL(C ′x,D ′) is a singleton for all x, due
to the positive definiteness of D. More generally, if D is only positive semidefinite
(but not necessarily symmetric), it is still possible to convert (2.4) into an LCS (2.1)
satisfying the desired singleton property, under suitable conditions; we refer the reader
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to [15, Exercise 1.8.10] for a general conversion scheme. In what follows, we illustrate
how this conversion can be carried out by assuming that the matrix

[
D ET

−E 0

]

is nonsingular. Letting w = −Eu, we can show that (2.4) is equivalent to

ẋ = Âx + B̂w,

0 ≤ w ⊥ Ĉx + D̂w ≥ 0,

where

Â ≡ A−
[
B 0

]
[

D ET

−E 0

]−1 [
C

0

]
, B̂ ≡

[
B 0

]
[

D ET

−E 0

]−1 [
0

I

]
,

Ĉ ≡ −
[
0 I

]
[

D ET

−E 0

]−1 [
C

0

]
, D̂ ≡

[
0 I

]
[

D ET

−E 0

]−1 [
0

I

]
.

It is not difficult to show that if SOL(K,Cx,D) �= ∅ for all x ∈ ℜn and if (D+DT )u =

0 ⇒ Bu = 0, then the triple (B̂, Ĉ, D̂) is such that B̂SOL(Ĉx, D̂) is a singleton for
all x ∈ ℜn.

2.1. Stability concepts. An important goal of this paper is to derive sufficient
conditions for the “equilibrium solution” x = 0 of the LCS (2.1) to be “exponentially
stable” and “asymptotically stable.” While these are well-known concepts in systems
theory [28], we offer their formal definitions below for completeness. The setting is a
time-invariant system on ℜn,

ẋ = f(x), x(0) = x0,(2.5)

where f : ℜn → ℜn is Lipschitz continuous. Let xe ∈ ℜn be an equilibrium of the
system (2.5), i.e., f(xe) = 0, and let x(t, x0) denote the unique trajectory of (2.5).

Definition 2.3. The equilibrium xe of (2.5) is
(a) stable in the sense of Lyapunov if, for each ε > 0, there is δε > 0 such that

‖x0 − xe ‖ < δε ⇒ ‖x(t, x0) − xe ‖ < ε ∀ t ≥ 0;

unstable otherwise;
(b) asymptotically stable if it is stable and δ > 0 exists such that

‖x0 − xe ‖ < δ ⇒ lim
t→∞

x(t, x0) = xe;

(c) exponentially stable if there exist scalars δ > 0, c > 0, and μ > 0 such that

‖x0 − xe ‖ < δ ⇒ ‖x(t, x0) − xe ‖ ≤ c ‖x0 − xe ‖ e−μt ∀ t ≥ 0.

Clearly, exponential stability implies asymptotic stability, which further implies
stability, but not vice versa. For a Lipschitz function f(x) that is positively homoge-
neous in x, i.e., f(τx) = τf(x) for all τ ≥ 0, we will be interested in the particular
equilibrium xe = 0. For the system (2.5) with such an f , we have x(t, τx0) = τx(t, x0)
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for all τ ≥ 0 and all pairs (t, x0) ∈ [0,∞) × ℜn. For such a function f , stability of
xe = 0 is equivalent to linearly bounded stability, which means the existence of a
constant η > 0 such that ‖x(t, x0)‖ ≤ η‖x0‖ for all (t, x0) ∈ [0,∞) × ℜn; asymptotic
stability is equivalent to global asymptotic stability, which means limt→∞ x(t, x0) = 0
for all x0 ∈ ℜn; and exponential stability is equivalent to global exponential stability,
which means the existence of scalars c > 0 and μ > 0 such that ‖x(t, x0)‖ ≤ c‖x0‖e−μt

for all (t, x0) ∈ [0,∞)×ℜn. Throughout the paper, we will omit the adjective “global”
when we deal with the equilibrium xe = 0 for an ODE with a positively homogenous
right-hand side.

Returning to the LCS (2.1), we note that, under our blanket assumption, the
above definition is applicable to the equivalent system (2.2). Furthermore, since
BSOL(0, D) = {0}, xe = 0 is indeed an equilibrium of (2.2). Due to its piecewise
linearity, the right-hand function f(x) ≡ Ax+BSOL(Cx,D) is in general not Fréchet
differentiable (but is indeed positively homogeneous). Although f(x) is (globally)
Lipschitz continuous, the nonsmoothness of f(x) invalidates much of the standard
analysis of well-known stability results for smooth dynamical systems; see, e.g., the
book [28]. Our goal is to undertake a generalized stability analysis of the system (2.2),
taking advantage of the special piecewise linear structure of the function f(x). The
resulting theory is a significant advance from the classical linear systems theory and
involves matrix-theoretic properties that are based on LCP theory.

Before proceeding to derive sufficient conditions for the asymptotic stability of
the equilibrium x = 0, we state and prove a necessary condition for the said stability.

Proposition 2.4. Suppose that BSOL(Cx,D) is a singleton for all x ∈ ℜn. A
necessary condition for xe = 0 to be an asymptotically stable equilibrium for the LCS
(2.1) is that for all scalars λ ≥ 0, the following implication holds:

λx = Ax + Bu

0 ≤ u ⊥ Cx + Du ≥ 0

}
⇒ x = 0.(2.6)

If D is an R0-matrix, then (2.6) holds if and only if

λx = Ax + Bu

0 ≤ u ⊥ Cx + Du ≥ 0

}
⇒ (x, u ) = 0.(2.7)

Proof. Indeed, if (x∗, u∗) is a solution of the system at the left-hand side of (2.6)
for some λ∗ ≥ 0, then defining the trajectory (x(t, x∗), u(t, x∗)) = (eλ

∗tx∗, eλ
∗tu∗) for

all t ≥ 0, we deduce that, limt→∞ x(t, x∗) = 0 only if x∗ = 0. This establishes the
implication (2.6). Clearly (2.7) implies (2.6). The converse is also clear, provided that
D is an R0-matrix.

Remark 2.2. By the implication (2.6), which holds for all λ ≥ 0, and by the
homotopy invariance of the degree of a continuous mapping [31], it follows that the
index of the map x 	→ −Ax−BSOL(Cx,D) at the origin is well defined and equal to 1.
(The index of a continuous map at an isolated zero is a well-known topological concept;
see the reference.) The latter degree-theoretic necessary condition for asymptotic
stability is a special case of a more general result due to Mawhin [32]. The implication
(2.7) defines the “mixed R0”-property of the matrix

[
A− λI B

C D

]
.
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If A − λI is nonsingular, then this property is equivalent to the R0-property of the
Schur complement D − C(A − λI)−1B. In this regard, the left-hand system of (2.6)
is an instance of a homogeneous “mixed LCP,” where there is a mixture of linear
equations and standard linear complementarity conditions.

3. Stability results for x
e = 0. As in the classical analysis, our approach

to the stability analysis of the system (2.1) is based on the existence of a Lyapunov
function of a special kind. The novelty of our approach lies in the choice of the
Lyapunov function: it is a quadratic function in the pair (x, u), which when expressed
in the state variable x alone, is piecewise quadratic, and thus not smooth. At this
point, we refer to the habilitation thesis of Scholtes [49] for the precise definition
and an extensive study of piecewise differentiable functions; see also [15, Chapter 4].
Results from these references will be used freely in our discussion.

We first consider the case where D is a P-matrix. It follows that SOL(Cx,D) is
a singleton for all x ∈ ℜn, whose unique element we denote u(x). A constant c ′

D > 0
exists such that

‖u(x) ‖ ≤ c ′
D ‖x ‖ ∀x ∈ ℜm.(3.1)

Define three fundamental index sets:

α(x) ≡ { i : ui(x) > 0 = (Cx + Du(x) )i },

β(x) ≡ { i : ui(x) = 0 = (Cx + Du(x) )i },

γ(x) ≡ { i : ui(x) = 0 < (Cx + Du(x) )i }.

In terms of these index sets, we have

uα(x) = −(Dαα )−1Cα•x, uᾱ(x) = 0,

where α = α(x) and ᾱ = β(x)∪γ(x). Let Gr SOLCD denote the graph of the solution
function u(x); i.e., Gr SOLCD, which is a closed (albeit not necessarily convex) cone,
consists of all pairs (x, u(x)) for all x ∈ ℜn. This graph can be described as follows.
For each subset α of {1, . . . ,m} with complement ᾱ, define

Cα ≡

{
x ∈ ℜn :

[
−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0

}

and the matrix

Eα ≡

⎡
⎢⎣

I

−(Dαα )−1Cα•

0

⎤
⎥⎦ ∈ ℜ(n+m)×n.

We then have

ℜn =
⋃

α

Cα and Gr SOLCD =
⋃

α

{Eαx : x ∈ Cα } .(3.2)

The solution function u(x) is piecewise linear in x and thus has directional derivatives
given as follows: with

u ′(x; d) ≡ lim
τ↓0

u(x + τd) − u(x)

τ
(3.3)
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denoting the directional derivative of u at x along the direction d, u ′(x; d) is the
unique vector v such that

free vi (Cd + Dv)i = 0, i ∈ α(x),

0 ≤ vi ⊥ (Cd + Dv)i ≥ 0, i ∈ β(x),

0 = vi, i ∈ γ(x).

Thus there exists a subset βd ⊆ β(x) such that the directional derivative u ′(x; d) is
given by

u ′
αd

(x; d) = −(Dαdαd
)−1Cαd• d, u ′

ᾱd
(x; d) = 0,

where αd = α(x) ∪ βd and ᾱd = {1, . . . ,m} \ αd. Note that we also have

uαd
(x) = −(Dαdαd

)−1Cαd• x, uᾱd
(x) = 0.

Since there are only finitely many subsets αd, a constant ĉ ′ > 0 exists such that

‖u ′(x; d) ‖ ≤ ĉ ′ ‖ d ‖ ∀ (x, d ) ∈ ℜ2n.(3.4)

Based on the LCP functions, we define the LCS map SOL ′
LCS : x ∈ ℜn → ℜ2m by

SOL ′
LCS(x) ≡

(
u(x)

u ′(x; dx)

)
, where dx ≡ Ax + Bu(x),

and let Gr SOL ′
LCS denote its graph. Unlike Gr SOLCD, which has a fairly simple

representation in terms of the index subsets of {1, . . . ,m} (cf. (3.2)), Gr SOL ′
LCS is

somewhat more complicated to describe using index sets; for one thing, the latter
graph is not closed because the function u ′(x; d) is in general not continuous in x.
We denote the closure of Gr SOL ′

LCS by cl Gr SOL ′
LCS. Like Gr SOLCD, Gr SOL ′

LCS

is a cone, albeit not necessarily convex.
In terms of u(x), the LCS (2.1) becomes the ODE ẋ = Ax+Bu(x) with a piecewise

linear right-hand side which vanishes at the origin. In order to analyze the stability
properties of the latter equilibrium xe = 0, we postulate the existence of a symmetric
matrix

M ≡

[
P Q

QT R

]
∈ ℜ(n+m)×(n+m)

that is strictly copositive on the cone Gr SOLCD; i.e., yTMy > 0 for all nonzero
y ∈ Gr SOLCD. Since the latter is a closed cone, the strict copositivity condition is
equivalent to the existence of a scalar cM > 0 such that

yTMy ≥ cM yT y ∀ y ∈ Gr SOLCD.(3.5)

In fact, one such choice is cM ≡ min{yTMy : y ∈ Gr SOLCD, ‖y‖ = 1}, which is well
defined and positive. Let

V (x, u) ≡

(
x

u

)T [
P Q

QT R

](
x

u

)
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be the quadratic form associated with the matrix M . The composite function

V̂ (x) ≡ V (x, u(x)) = xTPx + 2xTQu(x) + u(x)TRu(x)

is locally Lipschitz continuous and directional differentiable with

V̂ ′(x; v) = 2xTPv + 2vTQu(x) + 2xTQu ′(x; v) + 2u(x)TRu ′(x; v).

Associated with the trajectories (x(t, x0), u(t, x0)) of the LCS (2.1), where u(t, x0) ≡
u(x(t, x0)), define

ϕx0(t) ≡ V̂ (x(t, x0)) ∀ t ≥ 0.

By the chain rule of directional differentiation, the one-sided derivative of ϕx0(t) is
given by

ϕ ′
x0(t+) = lim

τ↓0

ϕx0(t + τ) − ϕx0(t)

τ
= V̂ ′(x(t, x0); ẋ(t, x0))

= 2x(t, x0)TPẋ(t, x0) + 2ẋ(t, x0)TQu(t, x0) + 2xTQu ′(x(t, x0); ẋ(t, x0))

+ 2u(t, x0)TRu ′(x(t, x0); ẋ(t, x0)).

Letting v(t, x0) ≡ u ′(x(t, x0); ẋ(t, x0)) and substituting ẋ(t, x0) = Ax(t, x0)+Bu(t, x0),
we deduce ϕ ′

x0(t+) = v(t, x0)TN(t, x0), where

N ≡

⎡
⎢⎣

ATP + PA PB + ATQ Q

BTP + QTA QTB + BTQ R

QT R 0

⎤
⎥⎦ and z(t, x0) ≡

⎛
⎜⎝

x(t, x0)

u(t, x0)

v(t, x0)

⎞
⎟⎠ ∈ Gr SOL ′

LCS.

(3.6)

Note that, by (3.4),

‖ v(t, x0) ‖ ≤ ĉ ′ ‖ ẋ(t, x0) ‖ ≤ cv ‖ (x(t, x0), u(t, x0) )‖(3.7)

∀ ( t, x0 ) ∈ [ 0,∞ ) × ℜn,

for some constant cv > 0. Employing the notation introduced thus far, the following
result provides sufficient conditions for the various kinds of stability to hold for the
equilibrium xe = 0 of the LCS (2.1) with a P-matrix D.

Theorem 3.1. Let D be a P-matrix. Suppose that matrices P , Q, and R, with
P and R symmetric, exist such that M is strictly copositive on Gr SOLCD. The
following four statements hold for the equilibrium xe = 0 of (2.1).

(a) If −N is copositive on Gr SOL ′
LCS, then xe is linearly bounded stable.

(b) If −N is strictly copositive on cl Gr SOL ′
LCS, then xe is exponentially stable.

(c) If −N is copositive on Gr SOL ′
LCS and

[ z(t, ξ)TNz(t, ξ) = 0 ∀ t ≥ 0 ] ⇒ ξ = 0,(3.8)

then xe is asymptotically stable.
(d) If −N is copositive-plus on Gr SOL ′

LCS and

[Nz(t, ξ) = 0 ∀ t ≥ 0 ] ⇒ ξ = 0,(3.9)

then xe is asymptotically stable.
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Proof. Let x0 ∈ ℜn be arbitrary and let u0 ≡ u(x0). Since ϕx0(t) ≡ V̂ (x(t, x0)) is
locally Lipschitz continuous for t ≥ 0, it is almost everywhere differentiable on [0,∞),
by Radamacher’s theorem [48]. Hence for almost all t ≥ 0, ϕ ′

x0(t) exists and is equal
to ϕ ′

x0(t+), which is nonpositive, by the copositivity of −N on Gr SOL ′
LCS. On the

one hand, we have, for some constant ρM > 0 independent of x0,

ϕx0(t) = ϕx0(0) +

∫ t

0

ϕ ′
x0(s+) ds ≤ ϕx0(0) = V (x0, u0) ≤ ρM ‖ (x0, u0) ‖2.

Hence by (3.1), we deduce that, for some constant ρ ′
M > 0 independent of x0,

ϕx0(t) ≤ ρ ′
M ‖x0 ‖2 ∀ t ≥ 0.(3.10)

On the other hand, by (3.5),

ϕx0(t) = V (x(t, x0), u(t, x0)) ≥ cM ‖ (x(t, x0), u(t, x0) ) ‖2 ≥ cM ‖x(t, x0) ‖2.

Combining the two inequalities, we obtain ‖x(t, x0)‖ ≤
√

ρ ′
M/cM‖x0‖, establishing

the desired linearly bounded stability of xe = 0.
The strictly copositivity of −N on cl Gr SOL ′

LCS implies the existence of a scalar
cN > 0 such that zTNz ≤ −cNzT z for all z ∈ GrSOL ′

LCS. Hence, for all x0 ∈ ℜn and
for all t ≥ 0, ϕ ′

x0(t+) ≤ −cN‖(x(t, x0), u(t, x0), v(t, x0))‖2. By (3.7), we deduce the
existence of a constant c ′

M > 0 such that

ϕx0(t) ≥ c ′
M ‖ (x(t, x0), u(t, x0), v(t, x0)) ‖2.

Therefore, we obtain, for some constant c > 0,

‖ z(t, x0) ‖2 ≤ c

[
ϕx0(0) −

∫ t

0

‖ z(s, x0) ‖2 ds

]
∀ ( t, x0 ) ∈ [ 0,∞ ) ×ℜn,

where z(t, x0) ≡ (x(t, x0), u(t, x0), v(t, x0)). By Gronwall’s inequality, we therefore
deduce

‖x(t, x0) ‖2 ≤ ‖ z(t, x0) ‖2 ≤ c ϕx0(0) e−ct ≤ c ρ ′
M ‖x0 ‖2 e−ct,

where the last inequality is by (3.10). Consequently, ‖x(t, x0)‖ ≤
√
cρ ′

M ‖x0‖ e−ct/2.
This establishes part (b) of the theorem. We will postpone the proof of part (c) be-
cause it requires an auxiliary result that is of independent interest; see Proposition 3.2
below. Since N is symmetric, it follows that if −N is copositive-plus on Gr SOL ′

LCS,
then (3.8) and (3.9) are equivalent implications. Hence (d) follows from (c).

Part (c) of Theorem 3.1 is a generalized LaSalle’s theorem for the LCS (2.1). The
assumed implication (3.8) resembles a “generalized long-time observability condition”
on the zero state of the LCS. Subsequently, we will discuss more about this condition;
see subsection 3.1. For now, we note that if −N is copositive on Gr SOL ′

LCS and if
(−N, C), where C is the closure of the convex hull of Gr SOL ′

LCS, is an R0-pair, then
(3.8) holds. Indeed, in this case, by (2.3), it follows that z(t, ξ)TNz(t, ξ) = 0 implies
z(t, ξ) = 0. In particular ξ = x(0, ξ) = 0; hence (3.8) holds.

To prove part (c) of Theorem 3.1, we define for each fixed x0 ∈ ℜn the positive
limit set

Ω(x0) ≡
{
x∞ ∈ ℜn : ∃ { tk} ↑ ∞ such that x∞ = lim

k→∞
x(tk, x

0)
}
.
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If M is strictly copositive on Gr SOLCD and −N is copositive on cl Gr SOL ′
LCS, then

Ω(x0) is nonempty, by part (a) of Theorem 3.1. Additional properties of this set are
summarized below.

Proposition 3.2. Let D be a P-matrix. If M is strictly copositive on cl Gr
SOLLCS and −N is copositive on cl Gr SOL ′

LCS, then for every x0 ∈ ℜn, the following
three statements hold:

(a) for every x∞ ∈ Ω(x0), the trajectory {x(t, x∞)}t≥0 ⊂ Ω(x0);
(b) a constant σx0 exists such that V (x∞,SOL(Cx∞, D)) = σx0 for all x∞ ∈

Ω(x0);
(c) ϕ ′

x∞(t) = 0 for all x∞ ∈ Ω(x0).
Proof. Suppose x∞ = limk→∞ x(tk, x

0) for some sequence {tk} ↑ ∞. For any
t ≥ 0, we have x(t + tk, x

0) = x(t, x(tk, x
0)); hence taking limits as k ↑ ∞ and using

the continuity of x(t, ·) in the second argument, we deduce

lim
k→∞

x(t + tk, x
0) = x(t, x∞),

which establishes part (a). To prove part (b), note that since ϕ ′
x0(t+) ≤ 0 for all

t ≥ 0, it follows that ϕx0(t) is nonincreasing. Since

ϕx0(t) = V (x(t, x0), u(t, x0)) =

(
x(t, x0)

u(t, x0)

)[
P Q

QT R

](
x(t, x0)

u(t, x0)

)
≥ 0,

by the copositivity of M on Gr GCD(x(t, x0)), it follows that

lim
t→∞

ϕx0(t)

exists. With σx0 denoting the above limit, it follows that V (x∞, u(x∞)) = σx0 for all
x∞ ∈ Ω(x0). Combining (a) and (b), we deduce that for all x∞ ∈ Ω(x0), we have

ϕx∞(t) = V (x(t, x∞), u(t, x∞)) = σx0 ∀ t ≥ 0.

Thus, ϕx∞(t) is a constant function on [0,∞). Part (c) is therefore trivial.
Proof of Theorem 3.1(c). It suffices to show that Ω(x0) = {0} for all x0 ∈ ℜn.

Let x∞ ∈ Ω(x0) be given. By part (c) of Proposition 3.2, we have 0 = ϕ ′
x∞(t) =

z(t, x∞)TNz(t, x∞) for all t ≥ 0. Hence (3.8) implies x∞ = 0 as desired.
Admittedly, the conditions in Theorem 3.1 are in general not easy to verify. This

is inevitable because most matrix properties in LCP theory are already so. Neverthe-
less, such difficulties have not prevented the fruitful development of the theory and
applications of the LCP and its extensions. Thus we fully expect that Theorem 3.1
is of fundamental importance in the stability theory of the LCS. In what follows, we
provide evidence for this optimism by deriving various special results and by giving
examples to illustrate the broad applicability of this theorem. We begin by consid-
ering the case where both Q and R are taken to be zero. Proposition 3.3 below
provides succinct matrix-theoretic conditions that ensure the existence of a “common
Lyapunov function” for the LCS. (The study of copositivity has recently received
renewed interest in the mathematical programming community; see, e.g., the Ph.D.
thesis [41] and the paper [55]. It would be of interest to investigate how these works
can be used to help check the conditions obtained herein.)

Proposition 3.3. Let D be a P-matrix and P be a symmetric positive definite
matrix.
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(a) If, for every α ⊆ {1, . . . ,m},

[
−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0 ⇒ xT [A−B•α(Dαα )−1Cα• ]TPx ≤ 0,

(3.11)

then xe = 0 is a linearly bounded stable equilibrium of the LCS (2.1),
(b) If, for every α ⊆ {1, . . . ,m},

{[
−(Dαα)−1Cα•

Cᾱ• −Dᾱα(Dαα)−1Cα•

]
x ≥ 0, x �= 0

}

⇒ xT [A−B•α(Dαα)−1Cα• ]TPx < 0,(3.12)

then xe = 0 is an exponentially stable equilibrium of the LCS (2.1).
(c) If, for every α ⊆ {1, . . . ,m}, (3.11) holds and

[
−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0

xT [A−B•α(Dαα )−1Cα• ]TPx = 0

⎫
⎪⎪⎬
⎪⎪⎭

⇒ x = 0,(3.13)

then xe = 0 is an asymptotically stable equilibrium of the LCS (2.1).
Proof. With Q = 0 and R = 0, the matrices M and N become

M =

[
P 0

0 0

]
and N =

⎡
⎢⎣
ATP + PA PB 0

BTP 0 0

0 0 0

⎤
⎥⎦ .

By (3.1) and the positive definiteness of P , it follows that M is strictly copositive on
Gr SOLCD. For any triple z ≡ (x, u(x), v) ∈ cl Gr SOL ′

LCS with x ∈ Cα, we have

zTNz = 2xT [A−B•α(Dαα)−1Cα• ]TPx.

Hence, the proposition follows easily from Theorem 3.1.
Remark 3.1. It should be noted that the resulting matrix M in the above propo-

sition is not positive definite. This illustrates the fact that the strict copositivity of
M on Gr SOLCD is not as restrictive as it seems.

A special case of Proposition 3.3 pertains to a “passive-like” LCS for which there
exists a symmetric positive definite K such that

−

[
ATK + KA KB − CT

BTK − C −D −DT

]
(3.14)

is positive semidefinite. This class of LCSs is closely related to the class of passive
LCSs defined in [4, 7] and to the class of positive real transfer functions via the
well-known Kalman–Yakubovich–Popov lemma [28]. In essence, we have bypassed
the transfer functions and the “minimality” of the tuple (A,B,C,D) and worked
directly with the positive semidefinite matrix (3.14). Note that if (3.14) is positive
semidefinite, then the matrix D must be positive semidefinite albeit not necessarily
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symmetric. It is possible for such a D to be also P without being positive definite; a
trivial example is

D ≡

[
1 −2
0 1

]
.

The next result shows how Proposition 3.3 (b) can be applied to such an LCS. This
result complements Theorem 11.2 [7] in providing a sufficient condition for a passive-
like LCS to be asymptotically stable.

Corollary 3.4. Suppose that D is a P-matrix and there exists a symmetric
positive definite matrix K such that (3.14) is positive semidefinite. If for every α ⊆
{1, . . . ,m},

[
−(Dαα )−1Cα•

Cᾱ• −Dᾱα(Dαα )−1Cα•

]
x ≥ 0

[
ATK + KA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

][
I

−(Dαα )−1Cα•

]
x = 0

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⇒ x = 0,

then xe is asymptotically stable.
Proof. It suffices to verify the implication (3.13). Let x satisfy the left-hand

condition in the latter implication. Proceeding as before, we deduce

0 =

(
x

u

)T
[
ATK + KA KB − CT

BTK − C −D −DT

](
x

u

)

= xT

[
I

−(Dαα )−1Cα•

]T [
ATK + PA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

]

×

[
I

−(Dαα )−1Cα•

]
x,

which implies, since (3.14) is symmetric positive semidefinite,
[

ATK + PA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

][
I

−(Dαα )−1Cα•

]
x = 0.

The desired implication (3.13) follows easily from the assumption of part (b) here-
in.

The assumption in Proposition 3.3(b) is significantly weaker than the passivity
[4, 7] of the LCS tuple (A,B,C,D). The next two examples illustrate this point. The
first example has a matrix A that is not negatively stable and the matrix D is not
positive semidefinite.

Example 3.1. Consider the tuple with n = 1 and m = 2:

A = 1, B = [ 2 −2 ], C =

[
1

−1

]
, and D =

[
1 3
0 1

]
.

By an easy calculation, we have

A−B•α(Dαα )−1Cα• =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if α = ∅,

−1 if α = { 1 },

−1 if α = { 2 },

−9 if α = { 1, 2 },

and Cα =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{ 0 } if α = ∅,

(−∞, 0 ] if α = { 1 },

[ 0,∞ ) if α = { 2 },

{ 0 } if α = { 1, 2 }.
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Note that with P = 1, the matrix A − B•∅(D∅∅ )−1C∅• is not negative definite; nev-
ertheless, the assumption in Proposition 3.3(b) is satisfied.

The next example has the same matrix D but has A = −1 so that A is negatively
stable. Yet the LCS (A,B,C,D) is still not passive because D is not positive semidef-
inite. This example shows that passivity is not a necessary condition for exponential
stability, even with a negatively stable matrix A.

Example 3.2. Consider the tuple with n = 1 and m = 2:

A = −1, B = [ 0 1 ], C =

[
1

1

]
, and D =

[
1 3
0 1

]
.

By an easy calculation, we have

A−B•α(Dαα)−1Cα• =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if α = ∅,

−1 if α = {1},

−2 if α = {2},

−2 if α = {1, 2},

and Cα =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[ 0,∞ ) if α = ∅,

{0} if α = {1},

(−∞, 0 ] if α = {2},

{0} if α = {1, 2}.

Again, the assumption in Proposition 3.3(b) is satisfied with P = 1.
As noted in the proof of Theorem 3.1(b), the strict copositivity of −N on

cl Gr SOL ′
LCS is equivalent to the existence of a constant ρN > 0 such that

−zTNz ≥ ρN ‖ z ‖2 ∀ z ∈ Gr SOL ′
LCS.

Involving only Gr SOL ′
LCS, the latter inequality avoids the explicit description of

the closure of this graph, which is a nontrivial task. We employ this equivalent
condition for the strict copositivity of −N in the example below, for which we establish
the asymptotic stability of the equilibrium with the choice of a nonzero pair (Q,R)
satisfying part (b) of Theorem 3.1, and to which we cannot apply Proposition 3.3(b).
This example combines Example 3.1 and the one in [27, section IV]. As such, the
matrix A is not negatively stable.

Example 3.3. Consider the LCS

ẋ =

⎡
⎣

−5 −4 0
−1 −2 0

0 0 1

⎤
⎦x +

⎡
⎣

−3 0 0
−21 0 0

0 2 −2

⎤
⎦u,

0 ≤ u ⊥

⎡
⎣

1 0 0
0 0 1
0 0 −1

⎤
⎦x +

⎡
⎣

1 0 0
0 1 3
0 0 1

⎤
⎦u ≥ 0.

We claim that there exists no symmetric positive definite matrix P satisfying the
assumptions of Proposition 3.3. Consider the two index sets α = ∅ and α = {1}. For
these sets, we have

C∅ = {x ∈ ℜ3 : x1 ≥ 0 = x3 }, C{1} = {x ∈ ℜ3 : x1 ≤ 0 = x3 }

and

A−B•∅(D∅∅)
−1C∅• =

⎡
⎣

−5 −4 0
−1 −2 0

0 0 1

⎤
⎦
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and

A−B•{1}(D{1}{1})
−1C{1}• =

⎡
⎣

−2 −4 0
20 −2 0
0 0 1

⎤
⎦ .

By way of contradiction, suppose that there exists a symmetric and positive definite
matrix P such that the assumption in Proposition 3.3(b) is satisfied. This would
mean that there exists a symmetric positive definite matrix P̄ such that

x̄T (ĀT
i P̄ + P̄ Āi)x̄ < 0 ∀ x̄ ∈ C̄i,(3.15)

for i = 1, 2, where C̄1 ≡ {x̄ ∈ ℜ2 | x̄1 ≥ 0}, C̄2 = {x̄ ∈ ℜ2 | x̄1 ≤ 0}, and

Ā1 ≡

[
−5 −4
−1 −2

]
, Ā2 ≡

[
−2 −4
20 −2

]
.

Since C̄i are both half-spaces, the relations (3.15) hold if and only if ĀT
i P̄ + P̄ Āi are

both negative definite for i = 1, 2. As shown in [27, section IV], however, this cannot
happen. Next, we claim that xe = 0 is an exponentially stable equilibrium of the LCS
by verifying that with

P ≡

⎡
⎣

1 0 0
0 3 0
0 0 1

⎤
⎦ , Q ≡ 0, and R ≡

⎡
⎣

9 0 0
0 0 0
0 0 0

⎤
⎦ ,

the assumptions in Theorem 3.1 are satisfied. The strict copositivity of M on Gr
SOLCD, is not difficult to verify. We briefly sketch the proof of the strict copositivity
of the matrix

−N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 7 0 | 3 0 0 | 0 0 0
7 12 0 | 63 0 0 | 0 0 0
0 0 −2 | 0 −2 2 | 0 0 0
− − − | − − − | − − −
3 63 0 | 0 0 0 | 9 0 0
0 0 −2 | 0 0 0 | 0 0 0
0 0 2 | 0 0 0 | 0 0 0
− − − | − − − | − − −
0 0 0 | 9 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0
0 0 0 | 0 0 0 | 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

on the closure of Gr SOL ′
LCS. We have u1(x) = max(0,−x1), u2(x) = max(0,−x3),

and u3(x) = max(0, x3), With the last two rows and columns of N being identically
equal to zero, we need not deal with the directional derivatives of u2 and u3. Instead,
we focus on

u ′
1(x1; dx1) =

⎧
⎪⎨
⎪⎩

0 if x1 > 0,

−dx1 if x1 < 0,

max(0,−dx1) if x1 = 0,

where dx1 = C1•Ax + C1•Bu(x) = −5x1 − 4x2 − 3 max(0,−x1). It suffices to show
the existence of a constant ρN > 0 such that
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• x1 > 0 implies

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

max(0,−x3)
max(0, x3)

⎞
⎟⎟⎟⎟⎠

T
⎡
⎢⎢⎢⎢⎢⎢⎣

10 7 0 | 0 0
7 12 0 | 0 0
0 0 −2 | −2 2
− − − | − −
0 0 −2 | 0 0
0 0 2 | 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

max(0,−x3)
max(0, x3)

⎞
⎟⎟⎟⎟⎠

≥ ρN ‖x ‖2,

• x1 < 0 implies

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

−x1

max(0,−x3)
max(0, x3)
2x1 + 4x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10 7 0 | 3 0 0 | 0
7 12 0 | 63 0 0 | 0
0 0 −2 | 0 −2 2 | 0
− − − | − − − | −
3 63 0 | 0 0 0 | 9
0 0 −2 | 0 0 0 | 0
0 0 2 | 0 0 0 | 0
− − − | − − − | −
0 0 0 | 9 0 0 | 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

−x1

max(0,−x3)
max(0, x3)
2x1 + 4x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ ρN‖x‖2,

• and (x1 = 0 implies)

⎛
⎜⎜⎜⎜⎝

x2

x3

max(0,−x3)
max(0, x3)
max(0, 4x2)

⎞
⎟⎟⎟⎟⎠

T

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 0 | 0 0 | 0
0 −2 | −2 2 | 0
− − | − − | −
0 −2 | 0 0 | 0
0 2 | 0 0 | 0
− − | − − | −
0 0 | 0 0 | 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

x2

x3

max(0,−x3)
max(0, x3)
max(0, 4x2)

⎞
⎟⎟⎟⎟⎠

≥ ρN

∥∥∥∥
(
x2

x3

)∥∥∥∥
2

.

We will leave it to the reader to verify that the desired constant ρN indeed exists in
view of the positive definiteness of certain appropriate matrices.

3.1. Role of observability. The implication (3.8) can be refined by employ-
ing an explicit analytic expansion for the vector z(t, ξ) for t > 0 sufficiently small.
The expansion enables the application of the following known fact about an analytic
function expressed in series form.

Lemma 3.5. Consider the univariate real-analytic function

ψ(t) ≡
∞∑

j=0

aj t
j , t ≥ 0,

where {aj}j≥0 is a given sequence of scalars. The following three statements are valid:
(a) in order for ψ(t) > 0 for all t > 0 sufficiently small, it is necessary and

sufficient that the sequence of coefficients {aj}j≥0 be lexicographically posi-
tive; i.e., these coefficients are not all zero and the first nonzero coefficient is
positive;
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(b) in order for ψ(t) ≥ 0 for all t > 0 sufficiently small, it is necessary and suffi-
cient that the sequence of coefficients {aj}j≥0 be lexicographically nonnegative;
i.e., either all coefficients are zero or the sequence is lexicographically positive;

(c) in order for ψ(t) = 0 for all t > 0 sufficiently small, it is necessary and
sufficient that aj = 0 for all j ≥ 0.

If the coefficients aj are given by eTGjξ for some n-vectors e and ξ and n×n matrix
G, the above conditions on the infinite sequence {aj}j≥0 can be replaced by the finite
sequence {aj}

n−1
j=0 .

For a given pair of matrices G ∈ ℜk×k and H ∈ ℜℓ×k, the unobservable space
of (H,G), denoted O(H,G), is the set of vectors ξ ∈ ℜk such that HGjξ = 0 for
all j = 0, 1, . . . , k − 1. In contrast to this linear subspace, the semiunobservable
cone of (H,G), denoted SO(H,G), is the set of vectors ξ ∈ ℜn such that the family of
scalars {Hi•G

jξ}k−1
j=0 is lexicographically nonnegative for all i = 1, . . . , ℓ. The two sets

O(H,G) and SO(H,G) have played an important role in the observability analysis
of the LCS [37]; they have an equally important role here in the asymptotic stability
analysis of the LCS. We also define the open subset SO(H,G) of SO(H,G) consisting
of vectors ξ ∈ ℜn such that the family of scalars {Hi•G

jξ}k−1
j=0 is lexicographically

positive for all i = 1, . . . , ℓ. Note that 0 �∈ SO(H,G).
The one-sided directional derivative u ′(x(t, x0);CAx(t, x0) + CBu(t, x0)) is the

unique vector v(t, x0) satisfying

free vi(t, x
0) (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i = 0, i ∈ α(x(t, x0)),

0 ≤ vi(t, x
0) ⊥ (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i ≥ 0, i ∈ β(x(t, x0)),

0 = vi(t, x
0), (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i free, i ∈ γ(x(t, x0)).

(3.16)

By a strong non-Zeno result for an LCS with a P-matrix D [37], we deduce the
existence of a time τ0 > 0 and a triple of index sets (αn, βn, γn), both dependent on
the initial condition x0, such that (α(x(t, x0)), β(x(t, x0)), γ(x(t, x0))) = (αn, βn, γn)
for all t ∈ (0, τ0]. For all such times t, the system (3.16) becomes

(CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i = 0, i ∈ αn,

0 ≤ vi(t, x
0) ⊥ (CAx(t, x0) + CBu(t, x0) + Dv(t, x0) )i ≥ 0, i ∈ βn,

0 = vi(t, x
0), i ∈ γn.

The latter is a mixed LCP of the P-type. As explained in [37], there exist a scalar τ̂ ∈
(0, τ0] and a subset βa ⊆ βn with complement β̄a ≡ βn \βa such that for all t ∈ (0, τ̂ ],
the unique solution v(t, x0) of the above mixed LCP satisfies (where K ≡ αn ∪ βa)

vK(t, x0) = −(DKK )−1CK•

[
A B

]
(

x(t, x0)

u(t, x0)

)
.

Note that vβa
(t, x0) ≥ 0, vβ̄a

(t, x0) = 0, and

{
Cβ̄a• −Dβ̄aK(DKK )−1CK•

} [
A B

]
(

x(t, x0)

u(t, x0)

)
≥ 0.

Provided that τ0 is sufficiently small, we have

supp(u(x0)) ⊆ αn ⊆ K ⊆ αn ∪ βn ⊆ { i : (Cx0 + Du(x0) )i = 0 }.
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In terms of the index set K, we have

0 <

0 =

(
uαn(t, x0)

uβa
(t, x0)

)
= −

[
Dαnαn Dαnβa

Dβaαn Dβaβa

]−1 [
Cαn•

Cβa•

]
x(t, x0)

and

0 =

0 <

⎧
⎨
⎩

[
Cβ̄a•

Cγn•

]
−

[
Dβ̄aαn Dβ̄aβt

Dγnαn Dγnβt

][
Dαnαn Dαnβa

Dβaαn Dβaβa

]−1 [
Cαn•

Cβa•

]⎫⎬
⎭x(t, x0).

Substituting the expression for uK(t, x0) into the ODE ẋ = Ax+Bu and noting that
ui(t, x

0) = 0 for all i �∈ K, we deduce

x(t, x0) =
∞∑

j=0

tj

j !
A(K)jx0, C(K)x(t, x0) =

∞∑

j=0

tj

j !
C(K)A(K)jx0,

[
A B

]
(

x(t, x0)

u(t, x0)

)
=

∞∑

j=0

tj

j !

[
A B•K

]
[

I

CK•(K)

]
A(K)jx0,

where A(K) ≡ A−B•K(DKK)−1CK•, and with K̄ ≡ {1, . . . ,m} \ K,

C(K) ≡

[
−(DKK )−1CK•

CK̄• −DK̄K(DKK )−1CK•

]

and

D(K) ≡ C(K)
[
A B•K

]
[

I

CK•(K)

]
.

By Lemma 3.5, in order for vβa
(t, x0) ≥ 0 = uβa

(t, x0) to hold for all t > 0 sufficiently
small, it is necessary and sufficient that x0 ∈ SO(Dβa•(K), A(K))∩O(Cβa•(K), A(K)).
Moreover, if αn �= ∅, then since uαn(t, x0) > 0 for all t > 0 sufficiently small,
we must have x0 ∈ SO(Cαn•(K), A(K)). Similarly, if γn �= ∅, we also have x0 ∈
SO(Cγn•(K), A(K)).

Turning our attention to the implication (3.8), we note that Nz(t, x0) is equal to

⎡
⎢⎣

ATP + PA PB•K + ATQ•K Q•K

(B•K)TP + (Q•K)TA (B•K)TQ•K + (Q•K)TB•K RKK

(Q•K)T RKK 0

⎤
⎥⎦

⎛
⎜⎝

x(t, x0)

uK(t, x0)

vK(t, x0)

⎞
⎟⎠

=

∞∑

j=0

tj

j !

⎡
⎢⎣

ATP + PA PB•K + ATQ•K Q•K

(B•K)TP + (Q•K)TA (B•K)TQ•K + (Q•K)TB•K RKK

(Q•K)T RKK 0

⎤
⎥⎦

×

⎡
⎢⎣

I

CK•(K)

DK•(K)

⎤
⎥⎦A(K)jx0.
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Define

N(K) ≡

⎡
⎢⎣

ATP + PA PB•K + ATQ•K Q•K

(B•K)TP + (Q•K)TA (B•K)TQ•K + (Q•K)TB•K RKK

(Q•K)T RKK 0

⎤
⎥⎦

⎡
⎢⎣

I

CK•(K)

DK•(K)

⎤
⎥⎦ .

By Lemma 3.5, in order for Nz(t, x0) = 0 for all t ≥ 0 sufficiently small, it is necessary
and sufficient that x0 ∈ O(N(K), A(K)).

Based on the above discussion, we state and prove the following result which is
derived from a refinement of the implication (3.8).

Proposition 3.6. Let D be a P-matrix. Suppose there exist symmetric matrices
P and R and a matrix Q such that M is strictly copositive on Gr SOLCD and −N is
copositive-plus on Gr SOL ′

LCS. Assume further that the following two conditions hold
for all triples of index sets (α, β, γ) partitioning {1, . . . ,m} and for all subsets βa of
β, with K ≡ α ∪ βa:

(a) for α = γ = ∅,

SO(DK•(K), A(K)) ∩ O(CK•(K), A(K)) ∩ O(N(K), A(K)) = { 0 },(3.17)

(b) for α ∪ γ �= ∅,

SO(Cα∪γ•(K), A(K)) ∩ SO(Dβa•(K), A(K))(3.18)

∩O(Cβa•(K), A(K)) ∩O(N(K), A(K)) = ∅;

then xe = 0 is an asymptotically stable equilibrium of the LCS (2.1).
Proof. It suffices to show that the implication (3.8) holds. Let ξ satisfy the

left-hand side of (3.8). Thus, in particular, Nz(t, ξ) = 0 for all t > 0 sufficiently
small. Following the above argument, we consider the pair of index sets (αn,K)
associated with the trajectories u(x(t, ξ)) and u ′(x(t, ξ); dx(t, ξ)), where dx(t, ξ) ≡
CAx(t, ξ) + CBu(x(t, ξ)). The empty intersection (3.18) implies that αn = γn = ∅.
Since ξ belongs to the intersection of the three sets in the left-hand side of (3.17), the
latter condition then yields ξ = 0 as desired.

3.2. A SISO system. We illustrate Proposition 3.6 for a single-input-single-
output (SISO) system, which has m = 1 and D = 1 (the latter is assumed without
loss of generality). We write cT for C and b for B. Thus the SISO LCS is of the form

ẋ = Ax + bmax(0,−cTx).(3.19)

In this case, we have u(x) = max(0,−cTx) and

SOL ′
LCS(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
0
0

)}
if cTx > 0,

{(
0

max( 0,−cTAx )

)}
if cTx = 0,

{(
−cTx

−cT (A− bcT )x

)}
if cTx < 0.
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The reader can easily check that Gr SOL ′
LCS is not closed; nevertheless, one can verify

that

cl Gr SOL ′
LCS =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(
0
0

)}
if cTx > 0,

{(
0
0

)
,

(
0

−cTAx

)}
if cTx = 0,

{(
−cTx

−cT (A− bcT )x

)}
if cTx < 0.

The matrix M ≡
[

P q

qT r

]
is strictly copositive on Gr SOLCD if and only if

{
[cTx ≥ 0, x �= 0] ⇒ xTPx> 0

}
and

{
[cTx< 0] ⇒ xT [P − qcT − cqT + rccT ]x> 0

}
.

In turn, this holds if and only if P and P −qcT −cqT +rccT are both positive definite.
To see this, suppose that the above two implications hold. If cTx < 0, then cT (−x) >
0; thus 0 < (−x)TP (−x) = xTPx. Hence P must be positive definite. This together
with the second implication establishes the positive definiteness of P−qcT−cqT +rccT .
The converse is obvious.

The matrix

−N ≡ −

⎡
⎢⎣

ATP + PA Pb + AT q q

bTP + qTA qT b + bT q r

qT r 0

⎤
⎥⎦

is copositive on Gr SOL ′
LCS if and only if

cTx ≥ 0 ⇒ xT (ATP + PA )x ≤ 0,

cTx≤ 0 ⇒

⎛
⎜⎝

x

−cTx

−cT (A− bcT )x

⎞
⎟⎠

T⎡
⎢⎣
ATP + PA Pb + AT q q

bTP + qTA qT b + bT q r

qT r 0

⎤
⎥⎦

⎛
⎜⎝

x

−cTx

−cT (A− bcT )x

⎞
⎟⎠≤ 0.

In turn the above implications hold if and only if −(ATP + PA) and

−
[
I −c −(AT − cbT )c

]
⎡
⎢⎣

ATP + PA Pb + AT q q

bTP + qTA qT b + bT q r

qT r 0

⎤
⎥⎦

⎡
⎢⎣

I

−cT

−cT (A− bcT )

⎤
⎥⎦

(3.20)

are both positive semidefinite and thus copositive-plus. We examine the two condi-
tions (3.17) and (3.18) in Proposition 3.6. For (3.17) where α = γ = ∅, there are two
cases: K = ∅ or {1}. For K = ∅, (3.17) stipulates that O(ATP + PA,A) = {0}. For
K = {1}, we have

N(1) = N

⎡
⎢⎣

I

−cT

−cT (A− bcT )

⎤
⎥⎦ ,
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and the condition (3.17) stipulates that

{ 0 } = SO(−cT (A− bcT ), A− bcT ) ∩ O(−cT , A− bcT ) ∩ O(N(1), A− bcT )

= O(cT , A) ∩ O(N(1), A− bcT ) = O(cT , A) ∩ O(ATP + PA,A),

which is implied by the former case. For (3.18), there are 2 subcases: α = {1} or
γ = {1}. For α = {1}, the condition (3.18) stipulates that SO(−cT , A − bcT ) ∩
O(N(1), A− bcT ) = ∅. For γ = {1}, the condition (3.18) stipulates that SO(cT , A−
bcT ) ∩ O(ATP + PA,A) = ∅, which is implied by O(ATP + PA,A) = {0} because
0 �∈ SO(cT , A− bcT ).

Summarizing the above analysis, we present a sufficient condition for xe = 0 to
be an asymptotically stable equilibrium of the SISO LCS (3.19).

Proposition 3.7. If there exist a symmetric positive definite matrix P , a vector
q, and a scalar r such that

(a) P − qcT − cqT + rccT is positive definite,
(b) −(ATP + PA) and (3.20) are both positive semidefinite,
(c) O(ATP + PA,A) = {0},
(d) SO(−cT , A− bcT ) ∩O(N(1), A− bcT ) = ∅,

then xe = 0 is an asymptotically stable equilibrium of the SISO LCS (3.19). If the
two matrices in (b) are positive definite, then xe = 0 is exponentially stable.

3.3. Extension to non-P systems. In this subsection, we extend Theorem 3.1
to the case where D is not a P-matrix; but we assume the blanket condition that
BSOL(Cx,D) is a singleton for all x ∈ ℜn. The extension turns out to be technically
nontrivial; for one thing, Gr SOL ′

LCS ceases to exist because SOL(Cx,D) is no longer a
single-valued function, and thus we cannot employ its directional derivatives as defined
by (3.3). In addition to the main result, Theorem 3.12, we also obtain a stability result
for a passive LCS without assuming the P-property of D; see Corollary 3.13.

To carry out the extended analysis, we assume that the matrices Q and R are
such that QSOL(Cx,D) and RSOL(Cx,D) are both singletons for all x ∈ ℜn. Among
other things, the single-valuedness of RSOL(Cx,D) yields the following important
property of the quadratic term SOL(Cx,D)TRSOL(Cx,D).

Proposition 3.8. Let R be a symmetric matrix. Suppose that RSOL(Cx,D)
is a singleton for all x ∈ ℜn. The function x 	→ SOL(Cx,D)TRSOL(Cx,D) is a
single-valued piecewise quadratic function on ℜn. In other words, for any four vectors
ui ∈ SOL(Cx,D), i = 1, 2, 3, 4, it holds that (u1)TRu2 = (u3)TRu4; moreover, this
function is continuous in x and there exist finitely many matrices {Ej}Kj=1 ⊂ ℜn×n

for some integer K > 0 such that SOL(Cx,D)TRSOL(Cx,D) ∈ {xTEjx}Kj=1 for
every x ∈ ℜn.

Proof. For any ui ∈ SOL(Cx,D), i = 1, 2, 3, 4, we have Ru1 = Ru2 = Ru3 = Ru4.
Hence by the symmetry of R, we have

(u1)TRu2 = (u3)TRu2 = (u3)TRu4.

Next, we show that the function x 	→ SOL(Cx,D)TRSOL(Cx,D) is continuous. This
follows easily from the single-valuedness of this map and the fact that the LCP solution
map q 	→ SOL(q,D) is pointwise upper Lipschitz continuous [13, 15, 44] on ℜm; i.e.,
for every q ∈ ℜm, there exist positive scalars c and ε such that

‖ q ′ − q ‖ < ε ⇒ SOL(q ′, D) ⊆ SOL(q,D) + c ‖ q ′ − q ‖B,
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where B is the unit ball in ℜm. Indeed, let {xk} ⊂ ℜn be any sequence of vec-
tors converging to some vector x∞ ∈ ℜn. Let {uk} ⊂ ℜm be such that uk ∈
SOL(Cxk, D) for every k. By the above continuity property of the LCP solution
map, it follows that there exists a corresponding sequence {ûk} such that ûk ∈
SOL(Cx∞, D) for every k and limk→∞ ‖uk − ûk‖ = 0. By the single-valuedness of
SOL(Cx∞, D)TRSOL(Cx∞, D) and RSOL(Cx∞, D), we can write

(uk)TRuk = (ûk)TRûk + 2(uk − ûk)TRûk + (uk − ûk)TR(uk − ûk)

= SOL(Cx∞, D)TRSOL(Cx∞, D) + 2(uk − ûk)TRSOL(Cx∞, D)

+ (uk − ûk)TR(uk − ûk).

Passing to the limit k → ∞ easily establishes limk→∞(uk)TRuk = SOL(Cx∞, D)T

RSOL (Cx∞, D). Finally, we postpone the identification of the matrices Ej after our
description of the structure of SOL(Cx,D) that immediately follows this proof.

It is well known that the graph of the set-valued LCP solution map SD : q 	→
SOL(q,D) is the union of finitely many polyhedra in ℜm; this property is the basis
for proving the upper Lipschitz continuity of this map used in the above proof. For
the purpose of introducing a closed graph that plays the role of Gr SOL ′

LCS, which is
not available in the non-P case, we first define certain subsets of the polyhedra that
compose the graph Gr SOLCD. The derivation below is closely related to the devel-
opment in [39, section 5.1] where we have identified a “linear Newton approximation”
for the single-valued map BSOL(Cx,D).

For every vector x ∈ ℜn, let L(x) be the (necessarily nonempty) family of pairs
of index subsets α and J of {1, . . . ,m} such that (a) α ⊆ J , (b) the columns of DJα

are linearly independent, and (c) there exists u ∈ SOL(Cx,D) such that supp(u) ⊆ α
and J ⊆ {i : (Cx + Du)i = 0}, where supp(u) ≡ {i : ui > 0} is the support of
the vector u. Here, we adopt the convention that an empty set of vectors is linearly
independent; under this convention, if 0 ∈ SOL(Cx,D), then L(x) includes all pairs
(∅,J ) for all subsets J ⊆ {i : (Cx)i = 0}. For a given pair (α,J ) in L(x), by (b),
the solution u in (c) is unique and given by

uα = −
[
(DJα )T DJα

]−1
(DJα )TCJ•x, uᾱ = 0,(3.21)

where ᾱ is the complement of α in {1, . . . ,m}. Notice that the converse is not true;
namely, for a given solution u ∈ SOL(Cx,D), it is possible for multiple pairs (α,J )
in L(x) to give rise to the same u, via (3.21). Define the set-valued map

GCD : x 	→ GCD(x) ≡

{(
−
[
(DJα)TDJα

]−1
(DJα)TCJ•x

0

)
: (α,J ) ∈ L(x)

}
.

Clearly, Gr GCD ⊆ Gr SOLCD. It is easily seen that Gr GCD is a cone in ℜn+m;
subsequently, we will show that it is closed. Like the LCP solution graph, Gr GCD

is not necessarily convex. In general, Gr GCD is a proper subset of Gr SOLCD; for
instance, if D is a singular matrix, then any positive vector that is a solution of the
LCP (Cx,D) is not an element of the former graph. Moreover, due to the finite
number of index sets, a positive constant ρG > 0 exists such that

sup{ ‖u ‖ : u ∈ GCD(x) } ≤ ρG ‖x ‖ ∀x ∈ ℜn.(3.22)

For any matrix W ∈ ℜp×m, define the family

TW (x) ≡
{
−W•α

[
(DJα)TDJα

]−1
(DJα)TCJ• : (α,J ) ∈ L(x)

}
,
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where, by convention, we define W•α[(DJα)TDJα]−1(DJα)TCJ• to be the zero ma-
trix if α = ∅. In general,

{Ex : E ∈ TW (x) } ⊆ WSOL(Cx,D)

with equality holding if WSOL(Cx,D) is a singleton. Suppose that WSOL(Cx,D)
is a singleton for all x ∈ ℜn. It then follows that the piecewise linear map hW (x) ≡
WSOL(Cx,D) is B-differentiable everywhere on ℜn. Thus the directional derivative
h ′
W (x; v) of hW at x along the direction v is well defined and, according to standard

theory [49], is an element of the set {Ev : E ∈ AW (x)}, where AW (x) ≡ {E : Ex =
hW (x)} is the set of active pieces of hW at x. The following result sharpens this
representation of h ′

W (x; v) by restricting to the pieces in TW (x), which is clearly a
subfamily of AW (x).

Proposition 3.9. Let W ∈ ℜp×m be such that WSOL(Cx,D) is a singleton for
all x ∈ ℜn. For the piecewise linear function hW (x) ≡ WSOL(Cx,D), it holds that
h ′
W (x; v) ∈ {Ev : E ∈ TW (x)} for all x and v in ℜn.

Proof. For each τ > 0, hW (x+τv) = Eτ (x+τv), where, for any pair of index sets
(ατ ,Jτ ) in L(x+τv), Eτ ≡ −W•ατ

[(DJτατ
)TDJτατ

]−1(DJτατ
)TCJτ•. Thus we have

(a) ατ ⊆ Jτ , (b) the columns of DJτατ
are linearly independent, and (c) there exists

uτ ∈ SOL(C(x+τv), D) such that supp(uτ ) ⊆ ατ and Jτ ⊆ {i : [C(x+τv)+Duτ ]i =
0}. In fact, uτ is given by (3.21),

uτ
ατ

= −
[
(DJτατ

)TDJτατ

]−1
(DJτατ

)TCJτ•(x + τv), uτ
ᾱτ

= 0,

where ᾱτ is the complement of ατ in {1, . . . ,m}. Let {τk} be an arbitrary sequence
of positive scalars converging to zero for which there exists a pair (α∞,J∞) such that
(ατk ,Jτk) = (α∞,J∞) for all k (there must be at least one such sequence for every
pair (x, v) because there are only finitely many pairs of index sets). The corresponding
sequence of solutions {uτk} converges to a vector, say, u∞, which must be a solution
of the LCP (Cx,D), by the continuity of the latter solution with respect to Cx.
Moreover, for all k sufficiently large, we have

supp(u∞) ⊆ supp(uτk) ⊆ α∞ ⊆ J∞ ⊆ {i : (Cx + Du∞)i = 0}

by a simple limiting argument. Thus the pair (α∞,J∞) belongs to L(x) and Eτk ∈
TW (x) for all k sufficiently large. Writing E∞ ≡ Eτk for all such k, we have

hW (x + τkv) − hW (x) = Eτk(x + τkv) − E∞x = τk E
∞v,

from which we obtain h ′
W (x; v) = E∞v, where E∞ ∈ TW (x), as desired.

Dealing with a symmetric matrix, the next result completes the proof of Propo-
sition 3.8. For a symmetric m × m matrix R, define the finite family of symmetric
matrices T̂R(x) ⊂ ℜn×n:

{
− (CJ•)

TDJα

[
(DJα)TDJα

]−1
Rαα

[
(DJα)TDJα

]−1
(DJα)T CJ• : (α,J ) ∈ L(x)

}
.

Proposition 3.10. Let R ∈ ℜm×m be symmetric such that RSOL(Cx,D) is a

singleton for all x ∈ ℜn. For the piecewise quadratic function ĥR(x) ≡ SOL(Cx,D)T

RSOL(Cx,D), it holds that

(a) ĥR(x) = xT Êx for all Ê ∈ T̂R(x);

(b) ĥ ′
R(x; v) ∈ {2xT Êv : Ê ∈ T̂R(x)} for all x and v in ℜn.
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Proof. It suffices to prove part (b). As a piecewise quadratic function, the direc-

tional derivative ĥ ′
R(x; v) exists. For each τ > 0, ĥR(x+ τv) = (x+ τv)T Êτ (x+ τv),

where

Êτ ≡ (CJτ•)
TDJτατ

[
(DJτατ

)TDJτατ

]−1
Rατατ

[
(DJτατ

)TDJτατ

]−1
(DJτατ

)TCJτ•

for any pair of index sets (ατ ,Jτ ) ∈ L(x + τv). As in the proof of Proposition 3.9,
we can take a sequence of positive scalars {τk} converging to zero and a fixed pair
(α∞,J∞) such that (ατk ,Jτk) = (α∞,J∞) for all k. It is now easy to complete the
proof.

We apply the above results to the singled-valued function:

V̂ (x) ≡ V (x,SOL(Cx,D)) =xTPx + 2xTQSOL(Cx,D) + SOL(Cx,D)TRSOL(Cx,D),

assuming that QSOL(Cx,D) and RSOL(Cx,D) are both singletons for all x ∈ ℜn.

Under this assumption, V̂ (x) = V (x,GCD(x)) is piecewise quadratic and

V̂ ′(x; v) = 2xTPv + 2vTQSOL(Cx,D) + 2xTEQv + 2xT ÊRv,

where EQ ≡ −Q•α

[
(DJα)TDJα

]−1
(DJα)TCJ• ∈ TQ(x) and

ÊR ≡ (CJ• )TDJα

[
(DJα )TDJα

]−1
Rαα

[
(DJα )TDJα

]−1
(DJα )TCJ• ∈ T̂R(x)

for some pair (α,J ) ∈ L(x); note that we can choose the same pair (α,J ) for
the directional derivatives of QSOL(Cx,D) and SOL(Cx,D)TRSOL(Cx,D) because
(cf. the proofs of Propositions 3.9 and 3.10) both derivatives were derived from
SOL(C(x+τv), D) corresponding to the same v. Since QSOL(Cx,D) = EQx, we have

V̂ ′(x; v) = 2xT [P +EQ +(EQ)T + ÊR]v. Note that the matrix P +EQ +(EQ)T + ÊR

is symmetric. With ϕx0(t) ≡ V̂ (x(t, x0)), we have

ϕ ′
x0(t+) = V̂ ′(x(t, x0); ẋ(t, x0))

= 2x(t, x0)T
[
P + EQ

t + (EQ
t )T + ÊR

t

] (
Ax(t, x0) + BSOL(Cx(t, x0), D)

)
,

where the equality in the second line is by a simple substitution, and for each t > 0,

EQ
t ≡ −Q•αt

(DαtJt
DJtαt

)−1DαtJt
CJt• ∈ TQ(x(t, x0)),

and

ÊR
t ≡ (CJt•)

TDJtαt

[
(DJtαt

)TDJtαt

]−1
Rαtαt

[
(DJtαt

)TDJtαt

]−1

×(DJtαt
)TCJt• ∈ T̂R(x(t, x0))

for some pair (αt,Jt) ∈ L(x(t, x0)). Corresponding to any such pair of index sets,
letting z(t, x0) ≡ (x(t, x0), u(t, x0), v(t, x0)),
(
uαt

(t, x0)

uᾱt
(t, x0)

)
≡

(
−
[
(DJtαt

)TDJtαt

]−1
(DJtαt

)TCJt•x(t, x0)

0

)
∈ GrGCD(x(t, x0)),

(
vαt

(t, x0)

vᾱt
(t, x0)

)

≡

(
−
[
(DJtαt

)TDJtαt

]−1
(DJtαt

)TCJt•(Ax(t, x0) + BSOL(Cx(t, x0), D))

0

)
,
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where ᾱt is the complement of αt in {1, . . . ,m}, we obtain

Qu(t, x0) = EQ
t x(t, x0), Bu(t, x0) = BSOL(Cx(t, x0), D),

x(t, x0)T ÊR
t (Ax(t, x0) + BSOL(Cx(t, x0), D)) = u(t, x0)TRv(t, x0),

x(t, x0)TEQ
t (Ax(t, x0) + BSOL(Cx(t, x0), D)) = x(t, x0)TQv(t, x0),

and ϕ ′
x0(t+) = z(t, x0)TNz(t, x0), where N is the same matrix defined by (3.6). Note

that a constant ρĜ > 0 exists satisfying

‖ v(t, x0) ‖ ≤ ρĜ ‖ (x(t, x0), u(t, x0)) ‖ ∀ (t, x0) ∈ [ 0,∞ ) ×ℜn.(3.23)

Augmenting the map GCD, define

ĜLCS : x

	→

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

−
[
(DJα )TDJα

]−1
(DJα )TCJ•x

0

−
[
(DJα)TDJα

]−1
(DJα)TCJ•(Ax + BSOL(Cx,D))

0

⎞
⎟⎟⎟⎟⎟⎠

: (α,J ) ∈ L(x)

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Note that the pair (u(t, x0), v(t, x0)) defined above belongs to ĜLCS(x(t, x0)) ⊂ ℜ2m.

In what follows, we let z(t, x0) denote any triple in Gr ĜLCS such that ϕ ′
x0(t+) =

z(t, x0)TNz(t, x0). We next show that the two graphs Gr GCD and Gr ĜLCS are
closed.

Proposition 3.11. Both maps GCD and ĜLCS have closed graphs.
Proof. We prove the claim only for ĜLCS. Let {xk} be a sequence converging to

x∞. For each k, let (αk,Jk) ∈ L(xk) be such that

lim
k→∞

⎛
⎜⎜⎜⎜⎝

−
[
(DJkαk

)TDJkαk

]−1
(DJkαk

)TCJk•x
k

0

−
[
(DJkαk

)TDJkαk

]−1
(DJkαk

)TCJk•(Axk + BSOL(Cxk, D))

0

⎞
⎟⎟⎟⎟⎠

exists. As in the proof of Proposition 3.9, there exist an infinite subset κ of {1, 2, . . . }
and a pair (α∞,J∞) ∈ L(x∞) such that (αk,Jk) = (α∞,J∞) for all k ∈ κ. Since
BSOL(Cx,D) is continuous in x, the displayed limit is therefore equal to

⎛
⎜⎜⎜⎜⎝

−
[
(DJ∞α∞

)TDJ∞α∞

]−1
(DJ∞α∞

)TCJ∞•x
∞

0

−
[
(DJ∞α∞

)TDJ∞α∞

]−1
(DJ∞α∞

)TCJ∞•(Ax∞ + BSOL(Cx∞, D))

0

⎞
⎟⎟⎟⎟⎠

.

The closedness of the graph Gr ĜLCS follows.
The above discussion makes it clear that the LCS (2.1) is related to a “linear

selectionable DI”; see Smirnov [52, section 8.2]. Nevertheless, there are significant
differences between the two kinds of systems; such differences therefore dismiss the
applicability of the stability results in the cited reference to the LCS. If x(t) is a
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solution of (2.1), then ẋ(t) ∈ A(x(t)), where the set-valued map A : ℜn → ℜn is given
by

A(x) ≡ {(A + E)x : E ∈ TB(x)},

with the family TB(x) being finite and dependent on the state. In contrast, in order

for the DI ẋ(t) ∈ Â(x(t)) to be linear selectionable, there must exist a constant convex

compact set M of real n×n matrices such that Â(x) ≡ {Mx : M ∈ M}. Clearly, there

are noticeable differences between the two sets A(x) and Â(x); for instance, the latter
is always convex, whereas the former consists of only finitely many vectors. In fact,
linear selectionable DIs are like hybrid systems with “state independent switchings”
[23], and the LCS is a hybrid system with state-triggered switchings.

The following result extends Theorem 3.1 to a non-P matrix D. The same proof
applies.

Theorem 3.12. Suppose that BSOL(Cx,D) is a singleton for all x ∈ ℜn. As-
sume further matrices P , Q, and R, with P and R symmetric, exist such that

(A1) QSOL(Cx,D) and RSOL(Cx,D) are singletons for all x ∈ ℜn;
(A2) M is strictly copositive on Gr GCD.

Let z(t, x0) denote any triple in Gr ĜLCS such that ϕ ′
x0(t+) = z(t, x0)TNz(t, x0). The

following four statements hold for the equilibrium xe = 0 of (2.1).

(a) If −N is copositive on Gr ĜLCS, then xe is linearly bounded stable.

(b) If −N is strictly copositive on cl Gr ĜLCS, then xe is exponentially stable.

(c) If −N is copositive on Gr ĜLCS and (3.8) holds, then xe is asymptotically
stable.

(d) If −N is copositive-plus on Gr ĜLCS and (3.9) holds, then xe is asymptotically
stable.

Complementing Corollary 3.4, the next result is a specialization of the above
theorem to a passive LCS.

Corollary 3.13. Assume that SOL(Cx,D) �= ∅ for all x ∈ ℜn and that (D +
DT )u = 0 ⇒ Bu = 0. If the quadruple (A,B,C,D) is passive with a passifying matrix
K such that the only vector x for which

[
ATK + KA KB•α − (Cα• )T

(B•α )TK − Cα• −Dαα − (Dαα )T

][
I

−
[
(DJα)TDJα

]−1
(DJα)TCJ•

]
x = 0

for some pair (α,J ) ∈ L(x) is the zero vector, then xe = 0 is an asymptotically stable
equilibrium of the LCS (2.1).

Proof. Since D is positive semidefinite, the assumption (D+DT )u = 0 ⇒ Bu = 0
implies that BSOL(Cx,D) is a singleton for all x ∈ ℜn. The remaining proof is similar
to that of part (b) of Corollary 3.4 and is not repeated.

4. An inhomogeneous extension. The stability results in the last section can
be extended to a “generalized LCS” [38], which has exactly the same structure as the
LCS except that the nonnegative orthant is replaced by an arbitrary polyhedral cone
and its dual. Such an extension is significant because the generalized LCS is a much
broader class of nonsmooth dynamical system than the LCS; for instance, it includes
the case of a mixed LCP to be satisfied by the algebraic variable and also the case of
more general linear constraints on the latter variable than nonnegativity. The gener-
alized LCS also arises from the approximation of inhomogeneous (cf. Corollary 4.6)
and nonlinear systems (see section 5). All the piecewise linearity properties that we
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have employed for the LCP have known extensions to the generalized LCP defined
over a polyhedral cone. Based on these extended LCP results, we can easily generalize
the Lyapunov stability theory to the generalized LCS without difficulty. The reason
we have chosen to focus on the LCS is because this is a fundamental system in its
own right with important applications in diverse fields.

Instead of presenting the details of the extended stability results, which will not
involve significantly new ideas, we present below a Lyapunov stability theory for an
inhomogeneous differential affine system, via a reduction to an equivalent homoge-
neous system. At the end of the section, we introduce a general reduction approach
that paves the way to the treatment of differential nonlinear systems that is the topic
of section 5.

Consider the following inhomogeneous LCS with D being a P-matrix:

ẋ = p + Ax + Bu,

0 ≤ u ⊥ q + Cx + Du ≥ 0,

x(0) = x0,

(4.1)

where p ∈ ℜn and q ∈ ℜm are constant vectors and the other matrices are defined in
the same way as before. To avoid triviality, we assume throughout that (p, q) �= 0.
By the P-property of the matrix D, we deduce that the unique solution u(x) to the
LCP (q + Cx,D) is globally Lipschitz continuous in x; hence, for any x0 ∈ ℜn, there
exists a unique continuously differentiable solution x(t, x0) for all t ≥ 0 satisfying
ẋ = p+Ax+Bu(x) and x(0) = x0. Since the right-hand side of the latter ODE is not
positively homogeneous in x, the solution x(t, ·) is no longer positively homogeneous
in the initial condition. Therefore, the local asymptotic/exponential stability of an
equilibrium of (4.1) does not imply its global asymptotic/exponential stability. Such
an equilibrium is a vector xe ∈ ℜn such that 0 = p + Axe + Bu(xe). In order to
analyze the stability of such a vector xe, let

αe ≡ { i : ue
i > 0 = ( q + Cxe + Due )i },

βe ≡ { i : ue
i = 0 = ( q + Cxe + Due )i },

γe ≡ { i : ue
i = 0 < ( q + Cxe + Due )i }

be the three fundamental index sets corresponding to the pair (xe, ue), where ue ≡
u(xe) and define the matrices

Â ≡ A−B•αe
(Dαeαe

)−1Cαe•, B̂•βe
≡ B•βe

−B•αe
(Dαeαe

)−1Dαeβe
,

Ĉβe• ≡ Cβe• −Dβeαe
(Dαeαe

)−1Cαe•, D̂βeβe
≡ Dβeβe

−Dβeαe
(Dαeαe

)−1Dαeβe
.

We say that xe is an isolated zero of the equation 0 = p+Ax+Bu(x) if a neighborhood
of xe exists within which xe is the only zero of the equation. A similar definition
applies to the “isolatedness” of the pair (xe, ue) in part (b) of the proposition below.

Proposition 4.1. Let D be a P-matrix. The following three statements are
equivalent.

(a) xe is an isolated zero of the equation 0 = p + Ax + Bu(x);
(b) the pair (xe, ue) is an isolated solution of the mixed LCP in the variables

(x, u) ∈ ℜn+m:

0 = p + Ax + Bu,

0 ≤ u ⊥ q + Cx + Du ≥ 0;
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(c) the following homogeneous mixed LCP has a unique solution (z, v) = (0, 0):

0 = Âz + B̂•βe
v,

0 ≤ v ⊥ Ĉβe•z + D̂βeβe
v ≥ 0.

Any one of the above three conditions is necessary for xe to be an asymptotically stable
equilibrium of (4.1).

Proof. (a) ⇔ (b). Clearly (a) implies (b). The converse holds by the P-property
of D.

(b) ⇔ (c). This follows from [15, Corollary 3.3.9] and the fact that Dαeαe
is

nonsingular.
To see that any one of the three conditions (a)–(c) is necessary for xe to be an

asymptotically stable equilibrium of (4.1), assume for the sake of contradiction that
there exists a sequence {xk} of zeros of the equation 0 = p + Ax + Bu(x) such that
xk �= xe for all k and limk→∞ xk = xe. Each such zero xk, for k sufficiently large,
defines a stationary trajectory xk(t, xk) = xk for all t ≥ 0 that violates the asymptotic
stability of xe.

Next we show that the stability (resp., asymptotic/exponential stability) of the
equilibrium xe of the inhomogeneous LCS (4.1) is equivalent to the linearly bounded
stability (resp., global asymptotic/exponential stability) of the equilibrium z = 0 of
the homogeneous LCS

ż = Âz + B̂•βe
v,

0 ≤ v ⊥ Ĉβe•z + D̂βeβe
v ≥ 0,

(4.2)

which has a C1 solution trajectory z(t, z0) for every initial condition z0 = z(0). Via
this equivalence, the results in the previous sections can then be applied to yield suf-
ficient conditions for the respective stability properties to hold for the inhomogeneous
LCS (4.1).

Proposition 4.2. Let D be a P-matrix. The equilibrium xe of the LCS (4.1) is
stable (resp., asymptotically/exponentially stable) if and only if ze = 0 is a linearly
boundedly stable (resp., global asymptotically/exponentially stable) equilibrium of the
homogeneous LCS (4.2).

Proof. Sufficiency. Suppose that ze = 0 is a linearly boundedly stable equilibrium
of the homogeneous LCS (4.2). Hence there exists a constant η > 0 such that for all
solution trajectory z(t, z0) of (4.2) satisfying z(0, z0) = z0, it holds that ‖z(t, z0)‖ ≤
η‖z0‖ for all (t, z0) ∈ [0,∞) × ℜn. We need to show that for every ε > 0, a constant
δε > 0 exists such that for all ‖x0 − xe‖ < δε ⇒ lim supt≥0 ‖x(t, x0) − xe‖ < ε. The
proof lies in showing that for x0 sufficiently close to xe, the trajectory ẑ(t, z0) ≡
x(t, x0) − xe, which has ẑ(0, z0) = x0 − xe ≡ z0, is a solution of the homogeneous
LCS (4.2). Once the latter claim is established, the stability of xe follows; so do the
asymptotic and exponential stability. To prove the claim, let x0 be given and let
(z(t, z0), v(t, z0)) be the unique solution trajectory of (4.2) satisfying z(0, z0) = z0;
it suffices to show that for all x0 sufficiently close to xe, ẑ(t, z0) = z(t, z0) for all
t ≥ 0. We do this by producing a suitable trajectory û(t, x0) such that the pair
(z(t, z0) + xe, û(t, x0)) satisfies (4.1); by the uniqueness of the solution to the latter
LCS, we then deduce ẑ(t, z0) = z(t, z0) for all t ≥ 0 as desired. In turn, to produce
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the û(t, x0) trajectory, let ûβe
(t, x0) ≡ v(t, z0), ûγe

(t, x0) ≡ 0, and

ûαe
(t, x0) ≡ −(Dαeαe

)−1
[
qαe

+ Cαe•(z(t, z
0) + xe) + Dαeβe

ûβe
(t, x0)

]

= ue
αe

− (Dαeαe
)−1
[
Cαe•z(t, z

0) + Dαeβe
v(t, x0)

]
.

We have

qβe
+ Cβe•(z(t, z

0) + xe) + Dβeαe
ûαe

(t, x0) + Dβeβe
ûβe

(t, x0)

= Ĉβe•z(t, z
0) + D̂βeβe

v(t, z0)

and

qγe
+ Cγe•(z(t, z

0) + xe) + Dγeαe
ûαe

(t, x0) + Dγeβe
ûβe

(t, x0)

= qγe
+ Cγe•x

e + Dγeαe
ue
αe

+ Ĉγe•z(t, z
0) + D̂γeβe

v(t, x0),

where Ĉγe• ≡ Cγe• − Dγeαe
(Dαeαe

)−1Cαe• and D̂γeβe
≡ Dγeβe

− (Dαeαe
)−1Dαeβe

.
Note that both ue

αe
and qγe

+ Cγe•x
e + Dγeαe

ue
αe

are positive. Being the Schur

complement of a P-matrix, D̂βeβe
is itself a P-matrix. Hence there exists a constant

Lv > 0 such that

‖ v(t, z0)‖ ≤ Lv ‖ z(t, z
0) ‖ ≤ Lv η ‖ z

0 ‖ ∀ t ≥ 0,

where the second inequality is by the linearly bounded stability of the equilibrium
ze = 0 for the homogeneous LCS (4.2). Consequently, provided that x0 is sufficiently
close to xe, or equivalently, that z0 is sufficiently close to the origin, ûαe

(t, x0) and
qγe

+ Cγe•(z(t, z
0) + xe) + Dγeαe

ûαe
(t, x0) + Dγeβe

ûβe
(t, x0) remain positive for all

t ≥ 0. Hence for all such x0, û(t, x0) ∈ SOL(q + C(z(t, z0) + xe), D) for all t ≥ 0.
Since 0 = p+Axe+Bue = p+Axe+B•αe

ue
αe

= p+Axe−B•αe
(Dαeαe

)−1Cαe•x
e,

we have

d(z(t, z0) + xe)

dt
= Âz(t, z0) + B̂v(t, z0)

= [A−B•αe
(Dαeαe

)−1Cαe• ]z(t, z0)

+ [B•βe
−B•αe

(Dαeαe
)−1Dαeβe

]v(t, z0)

= p + A( z(t, z0) + xe) + Bû(t, x0).

We have therefore verified all the required conditions for the pair (z(t, z0)+xe, û(t, x0))
to be a solution of (4.1). This establishes the sufficiency part of the proposition.

Necessity. Suppose that xe is a stable equilibrium of the LCS (4.1). We may
choose ε > 0 sufficiently small such that for all x satisfying ‖x − xe‖ < ε, we have
uαe

(x) > 0 and (q + Cx + Du(x))γe
> 0. Corresponding to such an ε, let δε > 0 be

such that ‖x0 − xe‖ < δε ⇒ ‖x(t, x0) − xe‖ < ε for all t ≥ 0. Consequently, for any
such x0, we have [q + Cx(t, x0) + Du(x(t, x0))]αe

= 0 and uγe
(x(t, x0)) = 0. Since

(q + Cxe + Due)αe
= 0, we deduce

Cαe•(x(t, x0) − xe) + Dαeαe
(u(x(t, x0)) − ue )αe

+ Dαeβe
uβe

(t, x0) = 0,

which yields

(u(x(t, x0)) − ue)αe
= −(Dαeαe

)−1
[
Cαe•(x(t, x0) − xe) + Dαeβe

uβe
(t, x0)

]
.(4.3)
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Substituting this and using (q + Cxe + Due)βe
= 0, we deduce

[ q + Cx(t, x0) + Du(x(t, x0)) ]βe
= Ĉβe•(x(t, x0) − xe) + D̂βeβe

uβe
(t, x0).

Hence uβe
(t, x0) satisfies

0 ≤ uβe
(t, x0) ⊥ Ĉβe•(x(t, x0) − xe) + D̂βeβe

uβe
(t, x0) ≥ 0

for all t ≥ 0. Furthermore,

d(x(t, x0) − xe)

dt
= p + Ax(t, x0) + Bu(x(t, x0))

= A(x(t, x0) − xe) + B•αe
(u(t, x0) − ue)αe

+ B•βe
uβe

(t, x0)

= Â(x(t, x0) − xe) + B̂•βe
uβe

(t, x0).

Therefore, by the uniqueness of the solution trajectory to (4.2), we deduce that
z(t, z0) ≡ x(t, x0)−xe is the unique solution trajectory satisfying (4.2) and z(0, z0) =
z0 ≡ x0 − xe, along with the auxiliary algebraic trajectory v(t, z0) ≡ uβe

(x(t, x0)).
Consequently, the stability, and thus the linearly bounded stability, of the equilibrium
ze = 0 for (4.2) follows readily; so do the global asymptotic and global exponential
stability, provided that the equilibrium xe is, respectively, asymptotically and expo-
nentially stable for (4.1).

An interesting special case occurs when xe is nondegenerate; i.e., when the index
set βe is empty. In this case, for all x sufficiently close to xe, the LCP (q + Cx,D) is
equivalent to a system of linear equations. As such, intuitively speaking, the stability
of xe can be established via classical system-theoretic results. A formal statement of
this assertion is presented below whose proof follows easily from Proposition 4.2.

Corollary 4.3. Let D be a P-matrix. Suppose that the equilibrium xe of the
LCS (4.1) is nondegenerate. The following statements are equivalent.

(a) xe is asymptotically stable;
(b) xe is exponentially stable;

(c) the matrix Â is negatively stable, i.e., there exists a symmetric positive definite

matrix K such that ÂTK + KÂ is negative definite.
Proof. If xe is nondegenerate, then the system (4.2) becomes the ODE: ż = Âz,

whose unique solution is given by z(t, z0) = etÂz0 for all t ≥ 0. The conclusion of the
corollary now follows from classical linear systems theory and Proposition 4.2.

The proof of Proposition 4.2 can be significantly simplified, and in fact, the propo-
sition itself can be extended considerably, by exploiting an approximation property of
a piecewise affine function. In spite of the generalization discussed below, the proof
given above is of interest for several reasons: one, it helps us to understand the gen-
eralized result; two, it expresses the reduced homogeneous system (4.2) in a form
that enables a direct application of the results in section 3, and three, this reduction
argument can be extended to a nonlinear complementarity system.

The following lemma is the cornerstone of the generalization of Proposition 4.2. It
extends an obvious global property of affine functions to a local property of piecewise
affine functions. For a proof of the lemma, see section 2.2.2 (particularly expression
(2.2)) in [49] and [15, Exercise 4.8.10].

Lemma 4.4 (Scholtes). () Let f : ℜn → ℜm be a piecewise affine function. For
every x ∈ ℜn, there exists a neighborhood Nx of x such that f(y) = f(x)+f ′(x; y−x)
for all y ∈ Nx.
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Notice that the directional derivative f ′(x; ·) is a piecewise linear function of the
second argument; in particular, it is positively homogeneous. In general, a piecewise
affine function is not differentiable. Thus the ODE ẋ = f(x) has a nonsmooth right-
hand side. The following result is the promised generalization of Proposition 4.2; the
proof is essentially an abstraction of that of the cited proposition.

Proposition 4.5. Let f : ℜn → ℜn be a piecewise affine function with f(xe) = 0.
The equilibrium xe is stable (resp., asymptotically/exponentially stable) for the ODE
ẋ = f(x) if and only if ze = 0 is a linearly boundedly stable (resp., asymptoti-
cally/exponentially stable) equilibrium of the ODE ż = f ′(xe; z).

Proof. Since f is piecewise affine on ℜn, it is globally Lipschitz continuous there.
Hence the initial-value ODE

ẋ = f(x), x(0) = x0(4.4)

has a unique solution x(t, x0) for all x0 ∈ ℜn. The same is true of the ODE

ż = f ′(xe; z), z(0) = z0(4.5)

for all z0 ∈ ℜn. Suppose that xe is a locally stable equilibrium of the ODE ẋ = f(x).
Let ε > 0 be such that f(x) = f ′(xe;x − xe) for all x satisfying ‖x − xe‖ < ε.
Corresponding to this ε, let δε > 0 be such that ‖x0 − xe‖ < δε ⇒ ‖x(t, x0)− xe‖ < ε
for all t ≥ 0. It follows that z(t, z0) ≡ x(t, x0) − xe is the unique solution trajectory
of (4.5) satisfying z(0, z0) = z0 ≡ x0 − xe. Hence ze = 0 is a linearly bounded stable
equilibrium of (4.5), by the positive homogeneity of f ′(xe; ·). The other assertions of
the proposition can be proved similarly.

Instead of showing how Proposition 4.2 is a special instance of Proposition 4.5,
we consider the more general inhomogeneous DAVI,

ẋ = p + Ax + Bu,

u ∈ SOL(K, q + Cx,D),
(4.6)

where K is a polyhedron in ℜm. We assume that the pair (K,D) is “coherently
oriented” [46, 15]. This condition is necessary and sufficient for the AVI (K, q̂,D) to
have a unique solution for all vectors q̂ ∈ ℜm; moreover, under this condition, such
a solution function is necessarily a piecewise affine function of q̂. Hence, letting u(x)
be the unique element of SOL(K, q + Cx,D), the DAVI (4.6) is equivalent to the
ODE with a piecewise affine right-hand side: ẋ = p+Ax+Bu(x). (Incidentally, this
equivalence remains valid if the coherent orientation of the pair (K,D) is weakened
to the condition that BSOL(K, q + Cx,D) is a singleton for all x ∈ ℜn; nevertheless
this weakening necessitates a modification of the following discussion about the direc-
tional derivatives, which becomes much more involved. For simplicity, we continue to
assume the coherent orientation condition.) If (K,D) is coherently oriented, then the
directional derivative u ′(x; dx) of the solution function u(x) along a direction dx ∈ ℜn

is the unique solution v to the generalized LCP

C(x) ∋ v ⊥ Cdx + Dv ∈ C(x)∗,

where C(x) is the “critical cone” of the AVI (K, q + Cx,D) at the solution u(x), and
C(x)∗ is the dual of C(x); specifically, C(x) ≡ T (K;u(x))∩ (q+Cx+Du(x))⊥, where
T (K;u(x)) denotes the tangent cone of K at u(x) ∈ K (as in convex analysis [47])
and the superscript denotes the orthogonal complement. It should be pointed out
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that both C(x) and its dual are polyhedral cones. For details of these results, we refer
the reader to [15, Volume I, section 4.3].

Applying Proposition 4.5 to the DAVI (4.6), we obtain the following result, which
requires no further proof.

Corollary 4.6. Let K be a polyhedron in ℜm. Suppose that the pair (K,D)
is coherently oriented. Let xe satisfy 0 = p + Axe + Bu(xe). The equilibrium xe

of (4.6) is stable (resp., asymptotically/exponentially stable) if and only if ze = 0 is
a linearly boundedly stable (resp., asymptotically/exponentially stable) equilibrium of
the differential complementarity system

ż = Az + Bv,

C(xe) ∋ v ⊥ Cz + Dv ∈ C(xe)∗,
(4.7)

where C(xe) ≡ T (K;u(xe)) ∩ (q + Cxe + u(xe))⊥.
As mentioned in the beginning of this section, it is possible to extend the Lya-

punov stability results for the LCS to the generalized LCS (4.7). Instead of repeating
the derivation, we proceed to the other major topic of this paper, to be addressed
in the next section. There, we establish a partial generalization of Proposition 4.2
and Corollary 4.6 that deals with the exponential stability of nonlinear systems; see
Propositions 5.7 and 5.10.

5. Exponential stability of nonlinear systems via a converse theorem.

So far our development has been restricted to systems with linear structures. In this
section, we extend our treatment to nonlinear systems via the so-called Lyapunov
indirect method of “first-order approximation.” The results in this section are of the
exponential stability type. Due to the nonsmoothness of the solution function to the
LCP/AVI, it seems difficult to develop an asymptotic stability theory for nonlinear
systems without relying on exponential stability.

The cornerstone of the extended treatment of nonlinear systems is a converse the-
orem for the exponential stability of an equilibrium to an ODE with a B-differentiable
right-hand side that is not F(réchet)-differentiable. In general, if the right-hand side
of the ODE is not F-differentiable, the solution map of the ODE is not a differentiable
function of the initial condition; nevertheless, the latter map remains B-differentiable,
provided that the right-hand function of the ODE is so. This is formally stated in the
following result whose proof can be found in the recent paper [39, Theorem 7].

Lemma 5.1. Suppose that for a given ξ ∈ ℜn, f is B-differentiable in a neigh-
borhood of a solution trajectory x(t, ξ) of the ODE (4.4) for t ∈ [0, T ]. For each
t ∈ [0, T ], the solution map x(t, ·) of the ODE (4.4) is B-differentiable at ξ; the direc-
tional derivative

x ′
ξ(t, ξ; η) ≡ lim

τ↓0

x(t, ξ + τη) − x(t, ξ)

τ

of x(t, ·) at ξ along the direction η is the unique solution y(t) to the variational equation
ẏ(t) = f ′(x(t, ξ); y(t)), y(0) = η.

The following result gives a necessary and sufficient condition for an equilibrium
of the ODE (4.4) to be exponentially stable in terms of the existence of a nonsmooth
Lyapunov function satisfying certain conditions. Since the latter function is not nec-
essarily differentiable, the result does not follow from standard system theory; see,
e.g., [28, Chapter 3]. Moreover, whereas the proof is inspired by that of Theorem
3.12 in the cited reference, some details are different as the Lyapunov function is not
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continuously differentiable. In particular, conditions (b) and (c) are normally stated
in terms of the F-derivatives of V ; here they are expressed in terms of directional
derivatives.

Theorem 5.2. Suppose that f is Lipschitz continuous in a neighborhood N0 of
the origin and that f(0) = 0. The following two statements hold.

(I) If there exist positive constants c1 < c2, and c3, a neighborhood N ⊆ N0 of
xe = 0, and a Lipschitz continuous and directionally differentiable function
V in N such that
(a) c1‖x

0‖2 ≤ V (x0) ≤ c2‖x
0‖2 for all x0 ∈ N ,

(b) V ′(x0; f(x0)) ≤ −c3‖x
0‖2 for all t ≥ 0 and all x0 ∈ N ,

then xe = 0 is an exponentially stable equilibrium of the ODE (4.4).
(II) Conversely, if xe = 0 is an exponentially stable equilibrium of the ODE (4.4)

and if f is additionally directionally differentiable in N0, then there exist
positive constants c1, c2, c3, and c4, a neighborhood N ⊆ N0 of xe = 0, and
a Lipschitz continuous and directionally differentiable function V in N such
that (a), (b), and (c) hold, where
(c) |V ′(x0; z)− V ′(x0; z ′)| ≤ c4‖x

0‖‖z− z ′‖ for all x0 ∈ N and all z, z ′ in
ℜn.

Proof. Without loss of generality, we take N to be an open ball centered at the
origin and with radius r > 0. We claim that under the assumption in (I), by defining
the neighborhood

N ′ ≡ { z ∈ ℜn : ‖ z ‖ ≤
√
c1/c2 r/2 },

a unique solution trajectory x(t, x0) exists satisfying the ODE (4.4) for all t ≥ 0
and all x0 ∈ N ′; moreover, ‖x(t, x0)‖ < r/2 for all such pairs (t, x0). Notice that
the existence and uniqueness of such a trajectory do not follow directly from basic
ODE theory because f is assumed to be Lipschitz continuous only in N0 and not
everywhere. Let x0 ∈ N ′; clearly ‖x0‖ < r/2 because c1 < c2. Hence there is a time
t0 > 0 such that the trajectory x(t, x0) exists and is unique for all t ∈ [0, t0]. We claim
that ‖x(t, x0)‖ < r/2 for all t in the domain of definition of the trajectory. Assume
for the sake of contradiction that there exists t̃ ∈ (0, t0] such that ‖x(t̃, x0)‖ = r/2
and that ‖x(t, x0)‖ < r/2 for all t ∈ [0, t̃ ). For all ε > 0 sufficiently small, we can
write

V (x(t̃, x0)) − V (x0) =

∫ t̃−ε

0

V ′(x(s, x0); f(x(s, x0))) ds

+

∫ t̃

t̃−ε

V ′(x(s, x0); f(x(s, x0))) ds < 0,

where the first summand in the right-hand side is nonpositive by (b) and the second
summand is negative because ‖x(s, x0)‖ is near r/2 > 0 for all s ∈ [t̃− ε, t̃]. Hence,

c1 ‖x(t̃, x0) ‖2 ≤ V (x(t̃, x0)) < V (x0) ≤ c2 ‖x
0 ‖2,

which implies ‖x(t̃, x0)‖2 < r2/4, which is a contradiction. Thus, ‖x(t, x0)‖ < r/2 for
all t ∈ [0, t0]. Let

t∗ ≡ sup{ t̄ ≥ t0 : the trajectory x(t, x0) exists, is unique,

and satisfies ‖x(t, x0)‖ < r/2 for all t ∈ [ 0, t̄ ] }.
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It follows that there exists ε > 0 such that for all t̃ ∈ [0, t∗), the trajectory x(t, x0) can
be continued beyond time t̃ for at least ε duration. Since ε is independent of t̃, we must
have t∗ = ∞. Hence, the trajectory x(t, x0) exists, is unique, and remains in N for all
t ≥ 0. By condition (b), the trajectory x(t, x0) must satisfy V ′(x(t, x0); f(x(t, x0))) ≤
−c3‖x(t, x0)‖2 for all t ≥ 0 and all x0 ∈ N ′. From this point on, we can follow
the same line of proof as in Theorem 3.1(b) to complete the proof of the exponential
stability of xe. This establishes part (I) of the theorem.

Conversely, to show (II), let N ⊆ N0 be a subneighborhood of the equilibrium
such that for some positive constants ν and κ, ‖x(t, x0)‖ ≤ κe−νt‖x0‖ for all t ≥ 0
and all x0 ∈ N and that x(t, x0) ∈ N0 for all such pairs (t, x0). Define

V (z) ≡

∫ T

0

x(τ, z)Tx(τ, z) dτ, z ∈ N ,

where the upper limit T > 0 will be determined later. It is clear that V is Lipschitz
continuous in N . To show that V is directionally differentiable, we need to show that
the limit

lim
τ↓0

V (z + τh) − V (z)

τ

exists for all h ∈ ℜn. We have

V (z + τh) − V (z) =

∫ T

0

[
(x(s, z + τh) − x(s, z) )T (x(s, z + τh) + x(s, z) )

]
ds.

By the Lipschitz property of x(τ, ·) and the exponential bound of x(τ, z), it follows
by the Lebesgue convergence theorem that we can interchange the integral with the
limit as τ ↓ 0 and obtain

lim
τ↓0

V (z + τh) − V (z)

τ
= 2

∫ T

0

x ′
ξ(s, z;h)Tx(s, z) ds,

where we have used Lemma 5.1 to justify the well-definedness of the directional deriva-
tive x ′

ξ(τ, z;h) (this is where the directional differentiability of f is needed). In par-
ticular, we have

V ′(x0; f(x0)) = 2

∫ T

0

x ′
ξ(s, x

0; f(x0))Tx(s, x0) ds.

By Lemma 5.1, x ′
ξ(s, x

0; f(x0)) is the unique function y(s) satisfying ẏ(s) = f ′(x(s, x0);

y(s)) and y(0) = f(x0). It is easy to verify that the function y(s) ≡ f(x(s, x0)) satisfies
the latter initial-value ODE because ẋ(s, x0) = f(x(s, x0)). Hence x ′

ξ(s, x
0; f(x0)) =

f(x(s, x0)); thus

V ′(x0; f(x0)) = 2

∫ T

0

f(x(τ, x0))Tx(τ, x0) dτ

= 2

∫ T

0

ẋ(τ, x0)Tx(τ, x0) dτ =
[
‖x(T, x0) ‖2 − ‖x0 ‖2

]

≤ −(1 − κ2 e−2νT ) ‖x0 ‖2.
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Choosing T ≡ (ln(2κ2))/(2ν), we deduce V ′(x0; f(x0)) ≤ −‖x0‖2/2. Hence (b) holds
with c3 ≡ 1/2. To prove (a), note that

V (z) ≤

∫ T

0

κ2 e−2ντ‖ z ‖2 dτ ≤
κ2

2ν

(
1 − e−2νT

)
‖ z ‖2.

Moreover, letting L > 0 be a Lipschitz constant of f in N , and by shrinking N if
necessary, we have ‖x(t, x0)‖ ≥ e−Lt‖x0‖ for all (t, x0) ∈ [0,∞) × N . Consequently,
we can deduce

V (z) ≥
1 − e−2LT

2L
‖ z ‖2 ∀ z ∈ N .

Hence (a) holds with appropriate positive constants c1 and c2. To prove (c), note that

V ′(x; z) − V ′(x; z ′) = lim
τ↓0

V (x + τz) − V (x + τz ′)

τ
.

Substituting the definition of the function V and taking absolute values, we deduce

|V ′(x0; z) − V ′(x0; z ′) |

≤

∫ T

0

lim
τ↓0

‖x(s, x0 + τz) − x(s, x0 + τz ′) ‖ ‖x(s, x0 + τz) + x(s, x0 + τz ′) ‖

τ
ds

≤ c4 ‖ z − z ′ ‖ ‖x0 ‖

for some constant c4 > 0, where we have used the Lipschitz continuity of the solution
map x(t, ·) and the finiteness of the time T .

We call a B-differentiable function V satisfying conditions (a), (b), and (c) in
Theorem 5.2 a B-differentiable Lyapunov function for the nonsmooth ODE (4.4) at its
equilibrium. An important consequence of Theorem 5.2 is the next perturbation result
pertaining to the persistence of the exponential stability property. Notice that while
the nominal function f is required to be B- (and thus directionally) differentiable,
the perturbed function g is required to be only locally Lipschitz continuous. This
observation is important as we see in the subsequent Corollary 5.5 that not requiring
the perturbed function g to be directionally differentiable has its benefit.

Corollary 5.3. Let f be Lipschitz continuous and directionally differentiable in
a neighborhood N0 of an equilibrium xe of f . Suppose that xe is exponentially stable
for the ODE (4.4). For every function g such that g(xe) = 0, g is Lipschitz continuous
in N0, and

lim
x→xe

f(x) − g(x)

‖x− xe ‖
= 0;(5.1)

xe is an exponentially stable equilibrium of the ODE: ẋ = g(x).
Proof. Without loss of generality, we may take xe = 0. Let V be a B-differentiable

Lyapunov function for the ODE (4.4). According to part (I) of Theorem 5.2 applied
to the function g, it suffices to show that a neighborhood N ′ ⊆ N and a constant
c ′
3 > 0 exist such that V ′(x0; g(x0)) ≤ −c ′

3‖x
0‖2 for all x0 ∈ N ′. By properties (b)

and (c) of V , we have

V ′(x0; g(x0)) = V ′(x0; f(x0)) + [V ′(x0; g(x0)) − V ′(x0; f(x0)) ]

≤ −c3 ‖x
0 ‖2 + c4 ‖x

0 ‖ ‖ f(x0) − g(x0) ‖

= −c3 ‖x
0 ‖2

(
1 −

c4
c3

‖ f(x0) − g(x0) ‖

‖x0 ‖

)
.
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By (5.1), the existence of N ′ and c ′
3 with the desired property is clear.

Remark 5.1. The limit condition (5.1) postulates that f and g are “first-order
approximations” of each other near xe. This condition, along with the directional
differentiability of f at xe, implies that the perturbed function g is directionally
differentiable at xe also, but not necessarily at other points.

We present a consequence of Corollary 5.3 that pertains to the ODE where the
right-hand side is a “composite nonsmooth” function of a particular kind. Specifically,
let f(x) ≡ Φ(x, u(x)), where Φ(x, y) is a B-differentiable function of two arguments
(x, y) ∈ ℜn+m and u(x) is a B-differentiable function of x. We first state a lemma
pertaining to the B-differentiability of such a function f .

Lemma 5.4. Let Φ : ℜn+m → ℜℓ be Lipschitz continuous in a neighborhood of
(x0, y0) ∈ ℜn+m. Suppose that Φ(·, y0) and Φ(x0, ·) are directionally (and thus B-)
differentiable at x0 and y0, respectively. If

lim
(x0,y0) �=(x,y)→(x0,y0)

Φ(x, y) − Φ(x0, y) − ( Φ(·, y0) ) ′(x0;x− x0)

‖x− x0 ‖
= 0,(5.2)

then Φ is directionally (and thus B-) differentiable at (x0, y0) and

Φ ′((x0, y0); (dx, dy)) = ( Φ(·, y0) ) ′(x0; dx) + ( Φ(x0, ·) ) ′(y0; dy).(5.3)

Thus, if u : ℜn → ℜm is B-differentiable at x0, then so is f(x) ≡ Φ(x, u(x)) and

f ′(x0; z) = ( Φ(·, u(x0)) ) ′(x0; z) + ( Φ(x0, ·)) ′(u(x0);u ′(x0; z)).

Proof. The B-differentiability of Φ at (x0, y0) and the directional derivative for-
mula (5.3) follow from [45]; see also [15, Exercise 3.7.4]. The B-differentiability of the
composite function f and the formula for its directional derivative f ′(x0; z) follow
from the chain rule of B-differentiation; see [15, Proposition 3.1.6].

Remark 5.2. The limit (5.2) is essential for (5.3) to hold; without the former, the
latter need not hold. See [15].

The next result formally establishes the above-mentioned consequence of Corol-
lary 5.3.

Corollary 5.5. Let u : ℜn → ℜm be B-differentiable at xe ∈ ℜn and let
Φ : ℜn+m → ℜn be Lipschitz continuous in a neighborhood of (xe, ue) ∈ ℜn+m, where
ue ≡ u(xe) and (xe, ue) satisfies Φ(xe, ue) = 0. Suppose that Φ(·, ue) and Φ(xe, ·) are
directionally differentiable at xe and ue, respectively, and that

lim
(xe,ue) �=(x,u)→(xe,ue)

Φ(x, u) − Φ(xe, u) − ( Φ(·, ue) ) ′(xe;x− xe)

‖x− xe ‖
= 0.

If the equilibrium xe is exponentially stable for the ODE (4.4), where f(x) ≡ Φ(x, u(x)),
then ze = 0 is an exponentially stable equilibrium of the homogeneous ODE ż =
(Φ(·, ue)) ′(xe; z) + (Φ(xe, ·)) ′(ue;u ′(xe; z)). The converse is valid if additionally the
right-hand side of the latter ODE is directionally differentiable in z.

Proof. We have

f(x) = f ′(xe;x− xe) + e(x) = (Φ(·, ue)) ′(xe;x− xe)

+(Φ(xe, ·)) ′(ue;u ′(xe;x− xe)) + e(x),

where limx→xe e(x)/‖x−xe‖ = 0. Since xe is locally exponentially stable for the ODE

(4.4) if and only if x̃e ≡ 0 is locally exponentially stable for the ODE ˙̃x = f(x̃ + xe),
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and since f(xe) = Φ(xe, ue) = 0, we have

lim
x̃→0

[ f(x̃ + xe) − ( Φ(·, ue) ) ′(xe; x̃) + ( Φ(xe, ·)) ′(ue;u ′(xe; x̃)) ]/‖ x̃ ‖ = 0,

and since the function z 	→ (Φ(·, ue)) ′(xe; z) + (Φ(xe, ·)) ′(ue;u ′(xe; z)) is positively
homogeneous and Lipschitz continuous, the first assertion of the corollary follows from
Corollary 5.3. So does the second.

We further specialize Corollary 5.5 to the case where Φ is F-differentiable and
u is piecewise smooth. Specifically, we say that a function Ψ : ℜn → ℜm is PC1

(piecewise C1) near a point x0 ∈ ℜn if there exist a neighborhood N of x0 and
finitely many C1 functions {f1, . . . , fk} near x0 for some positive integer k such that
Ψ(x) ∈ {f1(x), . . . , fk(x)} for all x ∈ N . Basic properties of the family of PC1

functions can be found in [49, 15]. In particular, it is known that a PC1 function
must be B-differentiable. Based on this remark, the result below does not require
further proof.

Corollary 5.6. Let u : ℜn → ℜm be PC1 near xe ∈ ℜn and let Φ : ℜn+m → ℜn

be F-differentiable in a neighborhood of (xe, ue) ∈ ℜn+m, where ue ≡ u(xe) and
(xe, ue) satisfies Φ(xe, ue) = 0. Let f(x) ≡ Φ(x, u(x)). The following statements are
equivalent.

(a) xe is an exponentially stable equilibrium of the ODE (4.4).
(b) The ODE (4.4) has a B-differentiable Lyapunov function at xe.
(c) ze = 0 is an exponentially stable equilibrium of the ODE

ż = JxΦ(xe, ue)z + JyΦ(xe, ue)u ′(xe; z).(5.4)

(d) The ODE (5.4) has a B-differentiable Lyapunov function at the origin.
It is interesting to compare Corollary 5.6 with Proposition 4.5. The corollary

pertains only to exponential stability, whereas the proposition deals with asymptotic
stability as well. The difference between the two results is that the former proposition
concerns a piecewise linear ODE, whereas the corollary concerns an ODE with a PC1

right-hand side, for which there is no such exact approximation result as Lemma 4.4.

5.1. Strongly regular DVIs. We wish to apply Corollary 5.6 to the following
differential variational inequality (DVI) [38]:

ẋ = F (x, u),

u ∈ SOL(K,H(x, ·)),
(5.5)

where K is a closed convex set in ℜm and F : ℜn+m → ℜn and H : ℜn+m → ℜm are
continuously differentiable functions in a neighborhood of a given pair (xe, ue) ∈ ℜn+m

that satisfies F (xe, ue) = 0 and ue ∈ SOL(K,H(xe, ·)), with the latter notation
meaning that ue is a solution of the variational inequality (VI) defined by the pair
(K,H(xe, ·)); i.e., ue ∈ K and

(u− ue )TH(xe, ue) ≥ 0 ∀u ∈ K.

The key assumption to be made here is that ue is a “strongly regular” solution of
the VI (K,H(xe, ·)). The latter is a well-known property in the theory of finite-
dimensional VIs/CPs; it was introduced by Robinson [43]; see also [15]. We have
employed this property in several recent studies of the DVI [39, 37] and will use
it here as the main setting to facilitate the application of the previous results in the
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stability analysis of the given equilibrium pair (xe, ue). Notice that we avoid assuming
the strong monotonicity of the function H(x, ·), which is unnecessarily restrictive in
general; see nevertheless the discussion about the functional evolutionary variational
inequality (5.8).

Under the strong regularity assumption, it follows that there exist neighborhoods
U of ue and V of xe, and a Lipschitz continuous function u : V → U such that for
every x ∈ V, u(x) is the unique solution of the VI (K,H(x, ·)) belonging to U and
u(xe) = ue. Without further restricting the set K, the VI solution map u(x) is not
necessarily directionally differentiable; nevertheless, for a large class of closed convex
sets K (such as a polyhedron), u(x) is a PC1 [36] (or a “semismooth” [40]) function
near xe. For these special sets, the DVI (5.5) is therefore, locally near the pair (xe, ue),
equivalent to an ODE with a composite nonsmooth right-hand side, ẋ = F (x, u(x)),
to which Corollary 5.5 is applicable. Before detailing this application, we make an
important remark regarding this approach. Namely, corresponding to a given xe ∈ ℜn,
there may be multiple vectors ue satisfying the above-mentioned properties, each of
which leads to a particular ODE that could be quite distinct from another. More
interestingly, xe may be exponentially stable with respect to one resulting ODE but
not to another. (This is illustrated in Example 5.1.) In other words, the “stability”
of xe is linked to the particular solution of the VI (K,H(xe, ·)). For future research,
it may be of interest to extend this individual ODE-based stability theory for the
nonlinear DVI (5.5) to a broader theory analogous to that for the LCS (2.1) or its
affine generalization, the DAVI (4.6), where we have relied on the key assumption that
BSOL(K, q +Cx,D) is a singleton for all x ∈ ℜn. In such affine cases, in spite of the
possible multiplicity of solutions to the AVIs (K, q+Cx,D), the singleton assumption,
or equivalently, the assumption of a unique C1 trajectory x(t, x0), leads to a unique
ODE with a piecewise linear (thus Lipschitz) right-hand side to which Definition 2.3
applies. Incidentally, there are multiple C1 x-trajectories in the example below.

Example 5.1. Consider the following nonlinear complementarity system (NCS):

ẋ = x(−1 + 2 sinu ),

0 ≤ u ⊥ (x + 1 )( 1 − sinu ) ≥ 0,
(5.6)

where x ∈ ℜ and u ∈ ℜ. It is clear that xe = 0 is an equilibrium. For any x > −1,
the solutions of the associated nonlinear complementarity problem (NCP) 0 ≤ u ⊥
(x + 1)(1 − sinu) ≥ 0 are u = 0 and u = (2k + 1/2)π for k ≥ 0. Each of these
solutions is strongly regular. The unique solution trajectory to (5.6) that is near the
pair (xe, ue) = (0, 0) initially is (x(t, x0), u(t, x0)) = (x0e−t, 0) for all t ≥ 0. The
equilibrium xe = 0 is clearly exponentially stable for the resulting ODE, which is
ẋ = −x. In contrast, the unique solution trajectory to (5.6) that is near the pair
(xe, ûe) = (0, π/2) initially is (x(t, x0), u(t, x0)) = (x0et, π/2) for all t ≥ 0. The same
equilibrium xe = 0 is clearly unstable for the resulting ODE, which is ẋ = x.

Returning to the general discussion, we fix an implicit VI solution function u(x)
as defined above. For simplicity, we focus on the case where K is a polyhedron. It
follows that u(x) is a PC1 function of x ∈ V. Let C(xe) ≡ T (K;u(xe)) ∩H(xe, ue)⊥

be the critical cone of the linearly constrained VI (K,H(xe, ·)). It is known that the
directional derivative u ′(xe; z) of the VI solution map u(x) along the direction z is
the unique solution v of the generalized LCP:

C(xe) ∋ v ⊥ JxH(xe, ue)z + JuH(xe, ue)v ∈ C(xe)∗.

Based on this characterization of the directional derivative, define the following gen-
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eralized LCS that extends (4.7) to the nonlinear case:

ż = JxF (xe, ue)z + JuF (xe, ue)v,

C(xe) ∋ v ⊥ JxH(xe, ue)z + JuH(xe, ue)v ∈ C(xe)∗.
(5.7)

Proposition 5.7. Let K be polyhedral and let F and H be C1 in a neighborhood
of the pair (xe, ue), where F (xe, ue) = 0 and ue is a strongly regular solution of the VI
(K,H(xe, ·)). Let V × U and u : V → U be, respectively, the neighborhood of (xe, ue)
and the solution map associated with the strong regularity of ue. The two statements
below are equivalent.

(a) xe is an exponentially stable equilibrium of the ODE: ẋ = F (x, u(x)).
(b) ze = 0 is an exponentially stable equilibrium of the generalized LCS (5.7).
Proof. This follows readily from Corollary 5.6.
We illustrate Proposition 5.7 with a functional evolutionary variational inequality

(FEVI) of the following kind:

ẋ = ΠK(x− Φ(x)) − x,(5.8)

where ΠK denotes the Euclidean projection onto the polyhedron K and Φ is a C1

function defined on ℜn. The equilibria of this DVI are precisely the solutions of
the finite-dimensional VI (K,Φ). Incidentally, there are other dynamical systems
whose equilibria are solutions of the VI. The above FEVI is different from the kind
of evolutionary variational problems studied in the literature of differential inclusions
which rely on a “generalized equation” formulation of the VI; see, e.g., [16]. A distinct
advantage of the FEVI (5.8) over the latter kind is that the solution trajectories of
(5.8) are all C1 because the right-hand side is a Lipschitz function of x, whereas those
based on the differential inclusion formulation need not be so. In addition, when
started at a vector in K, a trajectory of (5.8) will remain in K. The last assertion is
established in the result below.

Proposition 5.8. Let K be a closed convex set and Φ be Lipschitz continuous on
K. Let x(t, x0) denote the unique solution trajectory of (5.8) initiated at x(0) = x0.
If x0 ∈ K, then x(t, x0) ∈ K for all t ≥ 0.

Proof. Considering (5.8) as an ODE with an inhomogeneous right-hand side, we
have

x(t, x0) = e−tx0 +

∫ t

0

e−(t−τ) ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ

= e−t x0 + ( 1 − e−t )

∫ t

0
eτ ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ

et − 1

= e−t x0 + ( 1 − e−t )

∫ t

0
eτ ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ

∫ t

0
eτ dτ

.(5.9)

Since x(t, x0) is well defined for all t, ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
is continuous in τ .

Hence, we can represent the integrals in (5.9) by Riemann sums:

I ≡

∫ t

0
eτ ΠK

(
x(τ, x0) − Φ(x(τ, x0))

)
dτ

∫ t

0
eτ dτ

= lim
k→∞

∑k
i=1 e

si ΠK

(
x(si, x

0) − Φ(x(si, x
0))
) t
k

∑k
i=1 e

si
t

k

,
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where si is any point in the subinterval [ (i−1)
k t, i

k t]. Since K is a convex set, the
vector

(
k∑

i=1

esi
t

k

)−1 [ k∑

i=1

esi ΠK

(
x(si, x

0) − Φ(x(si, x
0))
) t
k

]
,

which is a convex combination of vectors in K, belongs to K for all positive integers
k. By the closedness of K, it follows that the vector I, and thus x(t, x0), also belongs
to K.

The system (5.8) is a special DVI with F (x, u) ≡ u−x and H(x, u) ≡ u−x+Φ(x).
Since H(x, ·) is strongly monotone, the strong regularity condition holds trivially.
Moreover, by the chain rule of B-differentiation, we have, letting u(x) ≡ ΠK(x−Φ(x)),

u ′(x; z) = ΠC(z − JΦ(x)z),

where C ≡ T (K;u(x)) ∩ (u(x) − x + Φ(x))⊥ is the critical cone of the polyhedron K
at the projected vector u(x); see [15, Chapter 4]. Consequently, the first-order LCS
(5.7), which becomes ż = ΠC(z − JΦ(x)z) − z, is a functional evolutionary version
of the finite-dimensional generalized LCP C ∋ z ⊥ JΦ(x)z ∈ C∗ of the same kind as
(5.8). Notice that if x ∈ SOL(K,Φ) so that u(x) = x, then C = T (K,x) ∩ Φ(x)⊥

coincides with the critical cone of the VI (K,Φ) at the solution x.
Summarizing the above discussion and invoking Proposition 5.7, we obtain the

following result for the FEVI (5.8).
Corollary 5.9. Let K be a polyhedron and let Φ : ℜn → ℜn be C1. A solution

xe ∈ SOL(K,Φ) is exponentially stable for the FEVI (5.8) if and only if the origin is
an exponentially stable equilibrium for the linearized FEVI: ż = ΠC(z−JΦ(xe)z)− z,
where C ≡ T (K;xe) ∩ Φ(xe)⊥.

Next, we specialize Proposition 5.7 to the NCS

ẋ(t) = F (x(t), u(t)),

0 ≤ u(t) ⊥ H(x(t), u(t)) ≥ 0,
(5.10)

which is a special case of (5.5) with K = ℜm
+ . Let (xe, ue) be as specified above. The

strong regularity of ue can be characterized by introducing the three fundamental
index sets (αe, βe, γe) associated with the pair (xe, ue) (cf. the LCS with a P-matrix
in section 3):

αe = { i : ue
i > 0 = Hi(x

e, ue) },

βe = { i : ue
i = 0 = Hi(x

e, ue) },

γe = { i : ue
i = 0 < Hi(x

e, ue) }.

According to these sets, we can partition the (partial) Jacobian matrix JuH(xe, ue)
as follows:

JuH(xe, ue) ≡

⎡
⎢⎣

Juαe
Hαe

(xe, ue) Juβe
Hαe

(xe, ue) Juγe
Hαe

(xe, ue)

Juαe
Hβe

(xe, ue) Juβe
Hβe

(xe, ue) Juγe
Hβe

(xe, ue)

Juαe
Hγe

(xe, ue) Juβe
Hγe

(xe, ue) Juγe
Hγe

(xe, ue)

⎤
⎥⎦ ,

where Juα
Hβ denotes the matrix of partial derivatives [∂Hj/∂ui](i,j)∈α×β . It is known

that ue is a strongly regular solution of the NCP

0 ≤ u ⊥ H(xe, u) ≥ 0(5.11)
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if and only if (a) the principal submatrix Juαe
Hαe

(xe, ue) is nonsingular, and (b) the
Schur complement

D̂βeβe
≡ Juβe

Hβe
(xe, ue) − Juαe

Hβe
(xe, ue)

[
Juαe

Hαe
(xe, ue)

]−1
Juβe

Hαe
(xe, ue)

(5.12)

is a P-matrix. Moreover, for every z ∈ ℜn, the directional derivative u ′(xe; z) is the
unique vector û satisfying ûγe

= 0 and

JxHαe
(xe, ue)z + Jαe

Hαe
(xe, ue)ûαe

+ Jαe
Hβe

(xe, ue)ûβe
= 0,

0 ≤ ûβe
⊥ JxHβe

(xe, ue)z + Jβe
Hαe

(xe, ue)ûαe
+ Jβe

Hβe
(xe, ue)ûβe

≥ 0,

which, by the nonsingularity of Jαe
Hαe

(xe, ue), is equivalent to the standard LCP

0 ≤ ûβe
⊥ Ĉβe•z + D̂βeβe

ûβe
≥ 0,

where Ĉβe• ≡ JxHβe
(xe, ue)−Juαe

Hβe
(xe, ue)[Juαe

Hαe
(xe, ue) ]−1JxHαe

(xe, ue). De-
fine the matrices

Â ≡ JxF (xe, ue) − Juαe
F (xe, ue)[Juαe

Hαe
(xe, ue) ]−1JxHαe

(xe, ue),

B̂•βe
≡ Juβe

F (xe, ue) − Juαe
F (xe, ue)[Juαe

Hαe
(xe, ue) ]−1Juβe

Hαe
(xe, ue);

consider the homogeneous LCS where the algebraic variable involves only the βe-
components:

ż = Âz + B̂•βe
ûβe

,

0 ≤ ûβe
⊥ Ĉβe•z + D̂βeβe

ûβe
≥ 0.

(5.13)

The results in section 3 can surely be applied to (5.13) to yield sufficient conditions
for statement (b) of the following proposition to hold, whose proof follows readily
from Proposition 5.7.

Proposition 5.10. Let F and H be C1 in a neighborhood of the pair (xe, ue),
where F (xe, ue) = 0 and ue is a strongly regular solution of the NCP (5.11). Let
V × U and u : V → U be, respectively, the neighborhood of (xe, ue) and the solution
map associated with the strong regularity of ue. The following two statements are
equivalent.

(a) xe is an exponentially stable equilibrium of the ODE ẋ = F (x, u(x)).
(b) ze = 0 is an exponentially stable equilibrium of the homogeneous LCS (5.13).

6. Concluding remarks. Based on the combined tools of contemporary finite
dimensional LCPs and VIs/CPs and classical Lyapunov stability theory for smooth
dynamical systems, we have obtained many stability results for the LCS and its non-
linear generalizations. Part of the novelty of our analysis is the employment of a non-
traditional Lyapunov function in both the system state and the auxiliary algebraic
variable, which leads to a nondifferentiable Lyapunov function of the state alone. We
speculate that this approach might be useful in other contexts, such as in the con-
vergence analysis of iterative algorithms for solving finite-dimensional variational and
optimization problems.

The results in this paper have left open some questions that are worthy of further
investigation. Foremost among these is the question of whether asymptotic stability
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would imply exponential stability for an LCS satisfying the P-property. In this vein,
we recall [52, Lemma 8.2] which establishes such an implication for a linear selection-
able DI. Yet, as we have noted a few times, the DI result is not applicable to the
LCS. Nevertheless, the same implication may be valid for the LCS. Another interest-
ing question is the persistence of asymptotic stability of a B-differentiable differential
system under small perturbations; related to the latter question is whether there are
analogues of the results in subsection 5.1 for asymptotic stability. Finally, the authors
in [16] have established a very interesting necessary degree-theoretic condition for the
asymptotic stability of an evolutionary variational inequality. We feel that a further
degree-theoretic exploration of the LCS and the DVI is warranted.

Acknowledgment. We are grateful to two referees who have offered many con-
structive comments that have significantly improved the presentation of the paper.
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[9] M. K. Çamlıbel, W.P.M.H. Heemels, and J. M. Schumacher, On the controllability of

bimodal piecewise linear systems, in Hybrid Systems: Computation and Control, R. Alur
and G. J. Pappas, eds., Lecture Notes in Comput. Sci. 2993, Springer-Verlag, Berlin, 2004,
pp. 250–264.
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