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Introduction

A popular approach to identify groups or clusters within data is via a parametric finite mixture model [START_REF] Fruwirth-Schnatter | Finite Mixture and Markov Switching Models[END_REF]. While the vast majority of work on such mixtures has been based on Gaussian mixture models (see e.g. [START_REF] Fraley | Model-Based Clustering, Discriminant Analysis, and Density Estimation[END_REF]. In many applications the tails of Gaussian distributions are shorter than appropriate and the Gaussian shape is not suitable for highly asymmetric data. A natural extension to the Gaussian case is to consider families of distributions which can be represented as location and scale Gaussian mixtures of the form,

p(y; µ, Σ, β, θ) = ∞ 0 N M (y; µ + wβΣ, wΣ) f W (w; θ) dw, (1) 
where N M ( . ; µ + wβΣ, wΣ) denotes the M -dimensional Gaussian distribution with mean µ + wβΣ and covariance wΣ and f W is the probability distribution of a univariate positive variable W referred to hereafter as the weight variable.

The parameter β is an additional M -dimensional vector parameter for skewness.

When β = 0 and W -1 follows a Gamma distribution G(ν/2, ν/2) i.e. f W is an Inverse Gamma distribution invG(ν/2, ν/2) where ν denotes the degrees of freedom, we recover the well known multivariate t-distribution [START_REF] Kotz | Multivariate t Distributions and their Applications[END_REF]. The weight variable W in this case effectively acts to govern the tail behaviour of the distributional form from light tails (ν → ∞) to heavy tails (ν → 0) depending on the value of ν.

In the more general case of, for example, allowing β = 0 and f W being a Generalised Inverse Gaussian (GIG) distribution, we recover the family of Generalised Hyperbolic (GH) distributions [START_REF] Barndorff-Nielsen | Normal inverse Gaussian distributions and stochastic volatility modelling[END_REF] which is able to represent a particularly large number of distributional forms.

Due to the flexibility of the GH family, recent interest has focussed on applications for mixture models and factor analysis [START_REF] Browne | A mixture of generalized hyperbolic distributions[END_REF][START_REF] Tortora | A mixture of generalized hyperbolic factor analyzers[END_REF]. For mixture model applications, semi-parametric or nonparametric approaches can also be used. However, to maintain tractability or identifiability in a multivariate setting, most approaches appear to restrict the type of dependence structures between the coordinates of the multidimensional variable. Typically, conditional independence (on the mixture components) is assumed in (Benaglia et al., 2009a,b) while a Gaussian copula is used in [START_REF] Chang | Clustering with mixtures of log-concave distributions[END_REF].

For applied problems, the most popular form of the GH family appears to be the Normal Inverse Gaussian (NIG) distribution [START_REF] Barndorff-Nielsen | Normal variance-mean mixtures and z Distributions[END_REF][START_REF] Protassov | EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions[END_REF][START_REF] Karlis | Model-based clustering with non-elliptically contoured distributions[END_REF]. The NIG distribution has been used extensively in financial applications, see [START_REF] Protassov | EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions[END_REF]; [START_REF] Barndorff-Nielsen | Normal inverse Gaussian distributions and stochastic volatility modelling[END_REF] or [START_REF] Aas | Risk estimation using the multivariate normal inverse Gaussian distribution[END_REF]; [START_REF] Aas | The generalised hyperbolic skew Student's tdistribution[END_REF] and references therein, but also in geoscience and signal processing [START_REF] Gjerde | Positioning and Position Error of Petroleum Wells[END_REF][START_REF] Oigard | The multivariate normal inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data[END_REF]. Another popular distributional form allowing for skewness and heavy or light tails includes different forms of the multivariate skew-t.

As presented by Lee and McLachlan (2013c), most formulations adopt either a restricted or unrestricted characterization. Unrestricted forms include the proposals and implementations of [START_REF] Sahu | A new class of multivariate skew distributions with applications to Bayesian regression models[END_REF]; Lee and McLachlan (2014b); [START_REF] Lin | Robust mixture modelling using multivariate skew-t distribution[END_REF] while restricted forms include that of [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution[END_REF]; [START_REF] Basso | Robust mixture modelling based on scale mixtures of skew-normal distributions[END_REF]; [START_REF] Branco | A general class of multivariate skew-elliptical distributions[END_REF]; [START_REF] Cabral | Multivariate mixture modelling using skew-normal independent distributions[END_REF]; [START_REF] Pyne | Automated high-dimensional flow cytometric flow analysis[END_REF]. In more recent work, Lee and McLachlan (2014a) pointed out that both restricted an unrestricted characterizations could be unified under a more general formulation referred to as Canonical fundamental skew-t distribution.

Alternative distributional forms include those based on scale mixtures of skewnormal distributions such as in Vilca et al. (2014a) and [START_REF] Lin | Flexible mixture modelling using the multivariate skew-t-normal distribution[END_REF]. In the bivariate case, this includes extensions to the Birnbaum-Saunders distribution (Vilca et al., 2014b).

Although the above approaches provide for great flexibility in modelling data of highly asymmetric and heavy tailed form, they assume f W to be a univariate distribution and hence each dimension is governed by the same amount of tailweight. There have been various approaches to address this issue in the statistics literature for both symmetric and asymmetric distributional forms but most of them suffer either from the non-existence of a closed-form pdf or from a difficult generalization to more than two dimensions (see [START_REF] Forbes | A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: Application to robust clustering[END_REF] for more detailed references).

An alternative approach [START_REF] Schmidt | Multivariate distribution models with generalized hyperbolic margins[END_REF], which takes advantage of the property that Generalised Hyperbolic distributions are closed under affinelinear transformations, derives independent GH marginals but estimation of parameters appears to be restricted to density estimation, and not formally generalisable to estimation settings for a broad range of applications (e.g. clustering, regression, etc.). A more general approach outside of the GH distribution setting is outlined in (Ferreira and Steel, 2007b,a) with a particular focus on regression models using a Bayesian framework.

In this paper, we build upon the multiple scaled framework of [START_REF] Forbes | A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: Application to robust clustering[END_REF] to provide a much wider variety of distributional forms, allowing different tail and skewness behavior in each dimension of the variable space with arbitrary correlation between dimensions. A similar approach to ours has been undertaken in (as yet) unpublished work (Tortora et al., 2014b;[START_REF] Franczak | Mixtures of skewed distributions with hypercube contours[END_REF]. The latter work focusses on Laplace distributions while the former introduces the Coalesced GH distribution as a mixture of a standard GH and a multiple scaled GH distribution. This multiple scaled distribution is derived using a different parameterization and with constraints on the parameters. Both measures are undertaken to ensure identifiability but has the disadvantage of limiting the type of tail behaviors able to be modelled and results in a very different performance in terms of clustering as illustrated in Section 4.

The paper is outlined as follows. Section 2 presents the proposed new family of multiple scaled GH (and NIG) distributions. In Section 3, details are outlined for maximum likelihood estimation of the parameters for the multiple scaled NIG distribution via the EM algorithm. In Section 4 we explore the performance of the approach on simulated and real data sets in the context of clustering.

Section 5 concludes with a discussion and areas for further research.

Multiple scaled Generalised Hyperbolic distributions

In this section we outline further details of the standard (single weight) multivariate GH distribution and then the proposed multiple scaled GH distribution.

Multivariate Generalised Hyperbolic distribution

As mentioned previously the Generalised Hyperbolic distribution can be represented in terms of a location and scale Gaussian mixture (1). Using notation equivalent to that of Barndorff-Nielsen (1997) Section 7 and[START_REF] Protassov | EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions[END_REF], the multivariate GH density takes the following form

GH(y; µ, Σ, β, λ, γ, δ) = ∞ 0 N M (y; µ + wΣβ, wΣ) GIG(w; λ, γ, δ)dw = (2π) -M/2 |Σ| -1/2 γ δ λ q(y) α λ-M 2 K λ-M 2 (q(y)α) × (K λ (δγ)) -1 exp(β T (y -µ)) , (2) 
where |Σ| denotes the determinant of Σ, δ > 0, and q(y) and α are positive and given by

q(y) 2 = δ 2 + (y -µ) T Σ -1 (y -µ) , (3) 
γ 2 = α 2 -β T Σβ ≧ 0 . (4) 
The parameters β and µ are column vectors of length M (M × 1 vector), K r (x) is the modified Bessel function of the third kind of order r evaluated at x (see Appendix in [START_REF] Jorgensen | Statistical Properties of the Generalized Inverse Gaussian Distribution[END_REF]), and GIG(w; λ, γ, δ) is the density function of the GIG distribution which depends on three parameters,

GIG(w; λ, γ, δ) = γ δ λ w λ-1 2K λ (δγ) exp(- 1 2 (δ 2 /w + γ 2 w)) . (5) 
An alternative (hierarchical) representation of the multivariate GH distribution (which is useful for simulation) is

Y |W = w ∼ N M (µ + wΣβ, wΣ) , W ∼ GIG(λ, γ, δ) . (6) 
By setting λ = -1/2 in the GIG distribution we recover the Inverse Gaussian (IG) distribution IG(w; γ, δ), which (when used as the mixing distribution) leads to the NIG distribution (see section B of the Supplementary Materials for details).

Using the parameterisation of [START_REF] Barndorff-Nielsen | Normal inverse Gaussian distributions and stochastic volatility modelling[END_REF], an identifiability issue arises as the densities GH(µ, Σ, β, λ, γ, δ) and GH(µ, k 2 Σ, β, λ, kγ, δ/k) are identical for any k > 0. For the estimation of parameters, this problem can be solved by constraining the determinant of Σ to be 1.

Multiple Scaled Generalised Hyperbolic distribution (MSGH)

Following the same approach as in [START_REF] Forbes | A new family of multivariate heavy-tailed distributions with variable marginal amounts of tailweight: Application to robust clustering[END_REF], the standard location and scale representation (1) is generalised into a multiple scale version

p(y; µ, D, A, β, θ) = ∞ 0 . . . ∞ 0 N M (y; µ + D∆ w AD T β, D∆ w AD T ) × f w (w 1 . . . w M ; θ) dw 1 . . . dw M , (7) 
where Σ = DAD T with D the matrix of eigenvectors of Σ, A a diagonal matrix with the corresponding eigenvalues and ∆ w = diag(w 1 , . . . w M ). The weights are assumed independent:

f w (w 1 . . . , w M ; θ) = f W1 (w 1 ; θ 1 ) . . . f WM (w M ; θ M ).
If we set f Wm (w m ) to a GIG distribution GIG(w m ; λ m , γ m , δ m ), it follows that our generalization (MSGH) of the multivariate GH distribution with λ =

[λ 1 , . . . , λ M ] T ,γ = [γ 1 , . . . , γ M ] T and δ = [δ 1 , . . . , δ M ] T as M -dimensional vec- tors is: MSGH(y; µ, D, A, β, λ, γ, δ) = (2π) -M/2 M m=1 |A m | -1/2 γ m δ m λm q m (y) α m λm-1/2 K λm-1/2 (q m (y)α m ) × (K λm (δ m γ m )) -1 exp([D T (y -µ)] m [D T β] m ) , (8) 
with

α 2 m = γ 2 m + A m [D T β] 2 m and q m (y) 2 = δ 2 m + A -1 m [D T (y -µ)] 2 m . Alternatively, with w = [w 1 , . . . , w M ] T we can define it as Y |W = w ∼ N M (µ + D∆ w AD T β, D∆ w AD T ) , W ∼ GIG(λ 1 , γ 1 , δ 1 ) ⊗ • • • ⊗ GIG(λ M , γ M , δ M ), (9) 
where notation ⊗ means that the W components are independent. If we set f Wm (w m ) to an Inverse Gaussian distribution IG(w m ; γ m , δ m ), it follows that our generalization (MSNIG) of the multivariate NIG distribution is:

MSN IG(y; µ, D, A, β, γ, δ) = M m=1 δ m exp(δ m γ m + [D T (y -µ)] m [D T β] m ) × α m πq m K 1 (α m q m (y)) , ( 10 
) with α 2 m = γ 2 m + A m [D T β] 2 m , q m (y) 2 = δ 2 m + A -1 m [D T (y -µ)] 2 m and K 1 is the modified Bessel function of order 1.
It is interesting to note that the multiple scaled GH distribution allows potentially each dimension to follow a particular case of the GH distribution family.

For example, in a bivariate setting

Y = [Y 1 , Y 2 ] T , the variate Y 1 could follow a hyperboloid distribution (λ 1 =0) and Y 2 a NIG distribution (λ 2 = -1/2).

Identifiability issues

In contrast to the standard multivariate GH distribution, constraining the determinant of A to be 1 is not enough to ensure identifiability in the MSGH case. Indeed, assuming the determinant

|A| = 1, if we set A ′ , δ ′ , γ ′ so that A ′ m = k 2 m A m , δ ′ m = δ m /k m and γ ′ m = k m γ m , for all values k 1 . . . k m satis- fying M m=1 k 2 m = 1, it follows that the determinant |A ′ | = 1 and that the MSGH(y, µ, D, A ′ , β, λ, γ ′ , δ ′ ) and MSGH(y, µ, D, A, β, λ, γ, δ) expressions are equal.
Identifiability can be guaranteed by adding that all δ m 's (or equivalently all γ m 's) are equal. In practice, we will therefore assume that for all m = 1 . . . M , δ m = δ.

Some properties of the multiple scaled GH distributions

The MSGH distribution (as defined in ( 8)) provides for very flexible distributional forms. For illustration, in the bivariate case, several contour plots of the multiple scaled NIG (MSNIG), i.e. for all m, λ m = -1/2, are shown in Figure 1 and compared with the standard multivariate NIG. In this two-dimensional set- Moments of the MSGH distribution can be obtained using the moments of the GIG distribution (see [START_REF] Jorgensen | Statistical Properties of the Generalized Inverse Gaussian Distribution[END_REF]

, i.e., if W follows a GIG(λ, γ, δ) distribution, for all r ∈ Z + , E[W r ] = δ γ r K λ+r (δγ) K λ (δγ) . ( 11 
)
It follows from representation (9) that when Y follows a MSGH distribution,

E[Y] = E[E[Y|W]] = µ + DE[∆ w ]AD T β = µ + D diag δ m γ m K λm+1 (δ m γ m ) K λm (δ m γ m ) AD T β, (12) 
where for short, we denoted by diag(u m ) the M -dimensional diagonal matrix whose diagonal components are {u 1 , . . . , u M }.

For the covariance matrix, we obtain,

Var[Y] =E[Var[Y|W]] + Var[E[Y|W]] =DE[∆ W ]AD T + DA Var[∆ W D T β]AD T =D diag δ m A m γ m K λm+1 (δ m γ m ) K λm (δ m γ m ) 1 + δ m γ m [D T β] 2 m A m (13) × K λm+2 (δ m γ m ) K λm+1 (δ m γ m ) - K λm+1 (δ m γ m ) K λm (δ m γ m ) D T
For details of the mean and variance for the MSNIG distribution see section B of the Supplementary Materials.

As can be seen from ( 13), the variance of the MSGH takes a slightly complicated form with some dependency on the skewness parameter β. This dependency is also present in the variance, recalled below, of the standard multivariate GH as given in (2), 

(g) (h) (i)
a) β = [2, 2] T , γ = [1, 1] T , (b) β = [0, 5] T , γ = [2, 2] T , (c)β = [0, -5] T , γ = [2, 2] T and (d) β = [0, -5] T , γ = [2, 10] T . The (e,f) panels correspond to Σ = I2 with (e) β = [-2, 2] T , γ = [1, 1] T , (f) β = [0, -5] T , γ = [1, 1] T .
Bottom panels: contour plots of various multiple scaled (solid lines) and standard (red dashed lines) GH distributions all with

Σ = I2, β = [1, 1] T , γ = [2, 2] T , δ = [1, 1] T and (g) λ = [-1/2, 2] T , (h) λ = [-2, 2] T , (i) λ = [2, -1/2] T . Var[Y GH ] = δ γ K λ+1 (δγ) K λ (δγ) Σ + δ 2 γ 2 K λ+2 (δγ) K λ (δγ) - K 2 λ+1 (δγ) K 2 λ (δγ) Σβ T βΣ . ( 14 
)
In both expressions ( 13) and ( 14), the skewness parameter β affects the correlation structure. This is not always the case. As noted by [START_REF] Sahu | A new class of multivariate skew distributions with applications to Bayesian regression models[END_REF],

in their unrestricted characterization of the skew-t distribution, the skewness parameter does not affect the correlation structure. In their case, the skewness parameter acts only on the diagonal elements of the covariance matrix.

A notable difference between the covariance structure of the MSGH and the standard GH is that in the case of a diagonal scale matrix Σ, variates of the MSGH are independent of each other. Interestingly, this is not the case for the standard multivariate GH where the same latent factor W is shared across dimensions, and this effectively acts to induce some degree of dependency between dimensions (although they may be uncorrelated). A similar situation arises in the case of other distributions with shared latent factors, for example the standard t-distribution. As mentioned previously, in the MSGH case the latent factor W is allowed to vary independently across dimensions.

In terms of the marginals of the MSGH distribution, they are easy to sample from but computing their pdfs involves, in general, numerical integration. Details are given in section D of the Supplementary Materials.

Maximum likelihood estimation of parameters

In this section, we outline an EM approach to estimate the parameters of the MSNIG distribution as it appears to be the most popular case of the GH family. As noted also by [START_REF] Protassov | EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions[END_REF][START_REF] Barndorff-Nielsen | Normal inverse Gaussian distributions and stochastic volatility modelling[END_REF], for the GH distribution it can be very difficult to show a significant difference between different values of λ due to the flatness of the likelihood and computational difficulties arise in some cases where the likelihood can be infinite. For these reasons we outline the particular case of allowing all λ m 's to be fixed but we note that it is relatively straightforward to extend our proposed approach to the more general case. Also for identifiability reasons, we set all δ m 's to the same δ value so that the parameters to estimate in the MSNIG case are Ψ = {µ, D, A, β, γ, δ}

with |A| = 1.
Estimation of most of the parameters for the MSNIG distribution is relatively straightforward but the separate estimation of D and A requires an additional minimization algorithm based on the Flury and Gautschi algorithm [START_REF] Flury | Common Principal Components in K Groups[END_REF][START_REF] Flury | An Algorithm for Simultaneous Orthogonal Transformation of Several Positive Definite Symmetric Matrices to Nearly Diagonal Form[END_REF].

Let us consider an i.i.d sample y = {y 1 , . . . , y N } of the MSNIG distribution defined in (10). As in the standard NIG distribution case [START_REF] Karlis | An EM type algorithm for maximum likelihood estimation of the normal inverse Gaussian distribution[END_REF], a convenient computational advantage of the EM approach is to view the weights as an additional missing variable W . The observed data y are seen as being incomplete and additional missing weight variables W 1 . . . W N with for i ∈ {1 . . . N }, W i = [W i1 . . . W iM ] T are introduced. These weights are defined so that ∀i ∈ {1 . . . N }:

Y i |W i = w i ∼ N M (µ + D∆ wi AD T β, D∆ wi AD T ) , (15) 
and

W i ∼ IG(γ 1 , δ) ⊗ • • • ⊗ IG(γ M , δ) ,
where ∆ wi = diag(w i1 , . . . , w iM ) .

As a way of circumventing the restriction that the determinant |A| = 1 in the M-step, representation (15) above can be rewritten equivalently as,

Y i |W i = w i ∼ N M (µ + D∆ wi D T β, D∆ wi ÃD T ) , (16) 
W i ∼ IG(γ 1 , 1) ⊗ • • • ⊗ IG(γ M , 1) ,
where à = δ 2 A, β = D ÃD T β, γ = δ γ and à is now a general (positive definite) diagonal matrix. Note that in the location term in the definition above ( 16), D∆ wi D T β = D∆ wi ÃD T β.

E step

At iteration (r) with ψ (r) being the current parameter value, the E-step leads to the computation for all i = 1, . . . , N , of the missing variables posterior distributions p(w i |y i ; ψ (r) ). It consists then of calculating p(w i |y i ; ψ (r) ) ∝ p(y i |w i ; ψ (r) )p(w i ; ψ (r) ) which can be shown (see Appendix of [START_REF] Karlis | Model-based clustering with non-elliptically contoured distributions[END_REF] to follow a GIG distribution (see definition ( 5)). In our case, and assuming the W i 's are independent we have,

p(w i |y i ; ψ (r) ) = M m=1 GIG(w im ; -1, α(r) m , φ (r) im ), (17) 
where

φ (r) im = 1 + [D (r)T (y i -µ (r) )] 2 (m) Ã(r) m , α(r) m = γ(r)2 m + [D (r)T β(r) ] 2 m Ã(r) m .
As all moments of a GIG distribution exist (see ( 11)), it follows that we have closed form expressions for the following quantities needed in the E-step,

s (r) im = E[W im |y i ; ψ (r) ] = φ (r) im K 0 (φ (r) im α(r) m ) α(r) m K -1 (φ (r) im α(r) m ) , t (r) im = E[W -1 im |y i ; ψ (r) ] = α(r) m K -2 (φ (r) im α(r) m ) φ (r) im K -1 (φ (r) im α(r) m )
.

Note that equivalently K -1 = K 1 and K -2 = K 2 . The Bessel function can be numerically evaluated in most statistical packages. All computations in this paper were undertaken using R [START_REF] Team | R: A language and environment for statistical computing[END_REF].

M step

For the updating of ψ, the M-step consists of two independent steps for (µ, D, Ã, β) and γ,

(µ, D, Ã, β) (r+1) = arg max µ,D,A,β N i=1 E[log p(y i , |W i ; µ, D, Ã, β)|y i , ψ (r) ] (18) = arg max µ,D,A,β N i=1 - 1 2 log| Ã| - 1 2 (y i -µ -DS (r) i D T β) T × D Ã-1 T (r) i D T (y i -µ -DS (r) i D T β) , and 
γ(r+1) = arg max γ N i=1 M m=1 E[log p(W im ; γm , 1)|y i , ψ (r) ] (19) = arg max γ N i=1 M m=1 γm - 1 2 γ2 m s (r) im ) ,
where

T (r) i = diag(t (r) i1 , . . . , t (r) 
iM ) and

S (r) i = diag(s (r) i1 , . . . , s (r) 
iM ) and ignoring constants.

The optimization of these steps leads to the following update equations.

Updating µ. It follows from ( 18) that for fixed D and A (ignoring constants)

µ (r+1) = arg min µ N i=1 (y i -µ-DS (r) i D T β) T D Ã-1 T (r) i D T (y i -µ-DS (r) i D T β) , (20) 
which by fixing D to the current estimation D (r) , leads to

µ (r+1) = N i=1 T (r) i D (r)T N -N ( N i=1 S (r) i ) -1 -1 × N i=1 T (r) i D (r)T y i N - N i=1 y i ( N i=1 S (r) i ) -1 .
Updating β. To update β we have to minimize the following quantity,

β(r+1) = arg min β N i=1 (y i -µ-DS (r) i D T β) T D Ã-1 T (r) i D T (y i -µ-DS (r) i D T β) , (21) 
which by fixing D and µ to their current estimations D (r) and µ (r+1) , leads to

β(r+1) = D (r) ( N i=1 S (r) i ) -1 D (r)T N i=1 (y i -µ (r+1) ) .
Updating D. Using the equality x T Sx = trace(Sxx T ) for any matrix S, it follows that for fixed à and µ, D is obtained by minimizing

D (r+1) = arg min D N i=1 trace(DT (r) i Ã(r)-1 D T V i ) + N i=1 trace(DS (r) i Ã(r)-1 D T B i ) -2 N i=1 trace(D Ã(r)-1 D T C i ) ,
where

V i = (y i -µ (r+1) )(y i -µ (r+1) ) T , B i = β(r+1) β(r+1)T , C i = (y i - µ (r+1) ) β(r+1)T .
Using current values µ (r+1) , β (r+1) and Ã(r) , the parameter D can be updated using an algorithm derived from Flury and Gautschi (see [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]) which is outlined in section E of the Supplementary Materials.

Although not considered in this work, in a model-based clustering context, additional information for an efficient implementation can be found in [START_REF] Lin | Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition[END_REF].

Updating Ã. To update à we have to minimize the following quantity (See section F of the Supplementary Materials).

Ã(r+1) = arg min à trace(( N i=1 M i ) Ã-1 ) + N log à ,
where r+1) and M i is a symmetric positive definite matrix. Using a corollary found in [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF] (See section F of the Supplementary Materials) and by setting D and µ to their current estimations D (r+1) and µ (r+1) we find for all m,

M i = T (r)1/2 i D (r+1)T V i D (r+1) T (r)1/2 i +S (r)1/2 i D (r+1)T B i D (r+1) S (r)1/2 i - D (r+1)T (C i + C T i )D (
Ã(r+1) m = 1 N N i=1 [D (r+1)T (y i -µ (r+1) )] 2 m t (r) im + [D (r+1)T β(r+1) ] 2 m s (r) im (22) -2[D (r+1)T (y i -µ (r+1) )] m [D (r+1)T β(r+1) ] m .
Updating γ. It follows from ( 19) that to update γ we have to minimize, γ(r+1)

m = arg min γ N i=1 M m=1 1 2 γ2 m s (r) im -γm ) , (23) 
which for all m = 1, . . . , M leads to γ(r+1)

m = N N i=1 s (r) im .
Updating constrained γ. Similar updating equations can be easily derived when γ is assumed to be equal for several dimensions. If we assume that for all m, γm = γ then

γ(r+1) = N M N i=1 M m=1 s (r) im .
It is also quite easy to extend the above equation to the case where γ is assumed to be equal for only some of the dimensions. For either case, model choice criteria could be used to justify the appropriateness of the assumed parameter space for γ.

Eventually, to transform the estimated parameters back to their original form we can take

δ = | Ã| 1 2M , γ m = γm /δ, β = D Ã-1 D T β and A = Ã/| Ã| 1/M .

Mixture of multiple scaled NIG distributions

The previous results can be extended to cover the case of K-component mixture of MSNIG distributions. With the usual notation for the proportions

π = {π 1 , . . . , π K } and ψ k = {µ k , D k , A k , β k , γ k , δ k } for k = 1 . . . K, we con- sider, p(y; φ) = K k=1 π k MSN IG(y; µ k , D k , A k , β k , γ k , δ k ) ,
where k indicates the kth component of the mixture and φ = {π, ψ} with ψ = {ψ 1 , . . . ψ K } the mixture parameters. Details on the EM framework are given in section G of the Supplementary Materials.

As the results of the EM algorithm can be particularly sensitive to initial values [START_REF] Karlis | Choosing initial values for the EM algorithm for finite mixtures[END_REF], for the results to follow we used a number of approaches to generate different initial values for parameters, including the use of random partitions, k-means and trimmed k-means (Garcia-Escudero and Gordaliza, 1999). Often the most successful strategy found was by estimating µ k , D k and A k using the results from a trimmed k-means clustering (with

β k = 0) and setting γ km = δ k = 1 for all k = 1 . . . K and m = 1 . . . M .
The computational speed of the EM algorithm for the MSNIG distribution is comparable to the standard NIG case with the exception that the update of D can be slow for high dimensional applications as the Flury and Gautschi algorithm involves sequentially updating every pair of column vectors of D. [START_REF] Branco | A general class of multivariate skew-elliptical distributions[END_REF][START_REF] Cabral | Multivariate mixture modelling using skew-normal independent distributions[END_REF][START_REF] Pyne | Automated high-dimensional flow cytometric flow analysis[END_REF]. Estimation of the parameters for these distributions was undertaken using the R package mixsmsn [START_REF] Cabral | Multivariate mixture modelling using skew-normal independent distributions[END_REF] and for the unrestricted skew-t case using R code available on: http://www.maths.uq.edu.au/ gjm/mix soft/EMMIX-skew/index.html. Also available on CRAN, R package EMMIXuskew (Lee and McLachlan, 2013a).

Dey

We also show the results obtained with the mixture of coalesced GH distributions described in (Tortora et al., 2014b) and implemented in the R package

MixGHD available on the CRAN (Tortora et al., 2014a). The so-called coalesced GH distribution is a mixture of two distributions, a standard GH and a multiple scaled GH distributions. Although their definitions of the GIG and GH distributions are equivalent to ours, the resulting formula for the multiple scaled GH distribution (eq. ( 19) in Tortora et al. (2014b)) is different. Moreover, we provide an exact EM algorithm for inference which is not the case for the algorithm provided in (Tortora et al., 2014b). For comparison, we ran the Section J of our Supplementary Materials (See also the clearly worse likelihood and BIC values reported in Table 1). The reason for this is twofold. First, as mentioned in the introduction, the formula defining the multiple scaled GH distribution in Tortora et al. (2014b) is not equivalent to ours. Further, the constraint imposed on the parameterization, namely δ = γ in our notation, makes their multiple scaled GH not as flexible, particularly in modeling different tail behaviors (γ parameter). Skew-t [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution[END_REF][START_REF] Basso | Robust mixture modelling based on scale mixtures of skew-normal distributions[END_REF][START_REF] Branco | A general class of multivariate skew-elliptical distributions[END_REF][START_REF] Cabral | Multivariate mixture modelling using skew-normal independent distributions[END_REF]Pyne et al., 2009) (c);and MSNIG (d). Likelihood values and estimates of the BIC for the different approaches are also provided in Table 1. As we can see from Figure 2 there is quite a difference in the goodness of fit between the approaches. In particular, we see a clear difference in the fitted results between the standard NIG and MSNIG with the latter providing a closer fit to the data. Similar results to the standard NIG are obtained for the restricted Skew-t (c) and Skew-normal [START_REF] Lachos | Likelihood based inference for skew normal independent mixed models[END_REF] (not shown) approaches. Note that in the mixsmsn package used, the Skew-t mixture is fitted with equal degree-of-freedom parameters for each component. Interestingly the fitted results of the unrestricted Skew-t (b) and the MSNIG (d) appear to be similar. BIC values for these two approaches are also similar (MSNIG = 47,266, unrestr. Skew-t = 47,140) but with more support for the unrestricted Skew-t. As suggested by Lee and McLachlan (2013b) a possible reason for the difference in the results between the unrestricted Skew-t and the skew-normal and Skew-t is the differing impact of the skewness parameter on the correlation structure. As mentioned previously, in the skew-t formulation of [START_REF] Sahu | A new class of multivariate skew distributions with applications to Bayesian regression models[END_REF] the skewness parameter acts only on diagonal elements of the covariance matrix and does not affect the correlation structure, which is not the case for the other formulations of the skew-t and skew-normal approaches. We now consider a second example to highlight further differences between the standard NIG and MSNIG in a clustering context using the same dataset.

In this example we look at a subset of the dataset containing the variables CD45 and CD4, which also appear to be highly multimodal and asymmetric in shape.

The fitted results from a mixture model with four components are shown in Figure 3 with contour lines representing the fitted density of each component (see also results in Table 1). From the fitted results we can see a better fit from the MSNIG (BIC = 33,219) compared to the standard NIG (BIC = 33,443).

The better fit appears to come from the increased flexibility of the MSNIG to represent non-elliptical shapes. The fitted results for the Skew-t and unrestr.

Skew-t are slightly better than for the standard NIG (BIC = 33,394 and 33,378,respectively). Similar results to the Skew-t are found for the Skew-normal (not shown).

Results using the MixGHD package as specified above are also shown in Figure 3 (e) and (d). The final results are not very satisfying although we checked that the algorithm started from a good initialization (see Figure 9 in the Supplementary Materials).

In section J of the Supplementary Materials, we also provide the results found using the MixGHD package when λ is set to -1/2, which corresponds to NIG distributions. The resulting MSNIG T F BM distribution (supplementary Figure 10) does not behave much better than its MSGH T F BM generalization. Also we observed (supplementary Figure 11) that the GH parameterization proposed in [START_REF] Browne | A mixture of generalized hyperbolic distributions[END_REF] provided results very close to the standard NIG distribution (Figure 2 (a) and Figure 3 (c)).

In section K of the Supplementary Materials we also compare the classification performance of the different approaches on a flow cytometry problem using lymphoma data where the true group labels are known (through manual gating). (Tortora et al., 2014b) and (f) Multiple scaled GH (Tortora et al., 2014b).

Conclusion

We have proposed a relatively simple way to extend location and scale mixture distributions, such as the multivariate generalised hyperbolic distribution (GH), to allow for different tail behaviour in each dimension. In contrast to existing approaches, the main advantages include closed form densities, the possibility of arbitrary correlation between dimensions and the applicability to high dimensional spaces. Various properties of the MSGH family are well defined and estimation of the parameters is also relatively straightforward using the familiar EM algorithm. Assessments of the performance of the proposed model on simulated and real data suggest that the extension provides a considerable degree of freedom and flexibility in modelling data of varying tail behaviour and directional shape.

For future research, parsimonious models could be considered using special decompositions of the scale matrix such as in the model-based clustering approach of [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF] and [START_REF] Fraley | Model-Based Clustering, Discriminant Analysis, and Density Estimation[END_REF], which would be straightforward to generalize to multiple scaled distributions (see [START_REF] O'hagan | Clustering with the multivariate Normal Inverse Gaussian distribution[END_REF] for mixtures of standard NIG distributions). Similarly, for very high dimensional data, other parsimonious models could also be considered with special modelling of the covariance matrix such as in the High Dimensional Data Clustering (HDDC) framework of [START_REF] Bouveyron | High dimensional data clustering[END_REF].

As it is natural in an EM setting, learning with missing observations could also be addressed following the work of [START_REF] Lin | On fast supervised learning for normal mixture models with missing information[END_REF]; [START_REF] Lin | Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition[END_REF]; [START_REF] Wang | Mixtures of common -factor analyzers for modeling highdimensional data with missing values[END_REF] with interesting applications including sound source separation and localization (e.g. [START_REF] Deleforge | Acoustic Space Learning for Sound-Source Separation and Localization on Binaural Manifolds[END_REF]).

Although we have illustrated the approach on clustering examples, the multiple scaled NIG is applicable to other contexts including, for example, regression modelling [START_REF] Young | Mixtures of Regressions with Predictor-Dependent Mixing Proportions[END_REF][START_REF] Hunter | Semiparametric Mixtures of Regressions[END_REF], outlier detection and modelling of spatial data [START_REF] Forbes | A Weighted Multi-Sequence Markov Model For Brain Lesion Segmentation[END_REF]. An R package for the proposed approach will also be available in the near future.

  ting, we use for D a parameterisation via an angle ξ so that D 11 = D 22 = cos ξ and D 21 = -D 12 = sin ξ, where D md denotes the (m, d) entry of matrix D. Similar to the standard NIG the parameter β measures asymmetry and its sign determines the type of skewness. For the standard NIG the contours are not necessarily elliptical and this is also the case with the MSNIG. In the case of the MSNIG additional flexibility is provided by allowing the parameter γ to be a vector of dimension M instead of a scalar. Keeping all δ m 's equal to the same δ, this vectorisation of γ effectively allows each dimension to be governed by different tail behaviour depending on the values of γ. The parameters γ and β govern the tail behaviour of the density with smaller values of γ implying heavier tails, and larger values lighter tails. Other multiple scaled and standard GH distributions are also illustrated in Figure 1. As shown in Figure 1(g,i), for different values of λ m the shape of the contours do not change significantly but larger values of λ m tend to produce heavier tails. This can also be seen from the tail behaviour analysis of the MSGH, which is similar to that of the GH with tails governed by a combined algebraic and exponential form. Details are given in section C of the Supplementary Materials.

Figure 1 :

 1 Figure 1: Top and middle panels: contour plots of bivariate MSNIG (λ1 = λ2 = -1/2) distributions (solid lines) with µ = [0, 0] T and δ = {1, 1}. The difference with the standard multivariate NIG (red dashed lines) is illustrated with univariate δ and γ values taken as the first respective component of the bivariate δ and γ. The (a-d) panels correspond to the same Σ built from A = diag(3/2, 2/3) and ξ = π/4 with (a) β = [2, 2] T , γ = [1, 1] T , (b) β = [0, 5] T , γ = [2, 2] T , (c)β = [0, -5] T , γ = [2, 2] T and (d) β = [0, -5] T , γ = [2, 10] T . The (e,f) panels correspond to Σ = I2 with (e) β = [-2, 2] T , γ = [1, 1] T , (f) β = [0, -5] T , γ = [1, 1] T .Bottom panels: contour plots of various multiple scaled (solid lines) and standard (red dashed lines) GH distributions all with Σ = I2, β = [1, 1] T , γ = [2, 2] T , δ = [1, 1] T and (g) λ = [-1/2, 2] T , (h) λ = [-2, 2] T , (i) λ = [2, -1/2] T .

  MixGHD package to fit two versions of the coalesced GH mixture. The first version corresponds to the most general model (denoted by Coalesced GH). In the second version, we fitted a mixture of multiple scaled GH distributions by setting the corresponding inner weights in the coalesced distributions to 0. This version is denoted by MSGH T F BM to distinguish it from our own MSGH distribution. Both results are different from the results obtained with our algorithm (see Figure 2 (e,f)) and do not provide realistic classification results as shown in

Figures 2

 2 Figures 2 (a) to (d) show the separate contour lines (of each component) from fitting mixtures of: standard NIG (Karlis and Santourian, 2009)(a); unrestricted Skew-t (Sahu et al., 2003; Lee and McLachlan, 2014b; Lin, 2010) (b);

  Coalesced GH (f) MSGH T F BM

Figure 2 :

 2 Figure 2: Lymphoma data, CD4 v. ZAP 70. Fitted contour lines for: (a) Standard NIG[START_REF] Karlis | Model-based clustering with non-elliptically contoured distributions[END_REF]; (b) Unrestricted Skew-t[START_REF] Sahu | A new class of multivariate skew distributions with applications to Bayesian regression models[END_REF]; (c) Skew-t[START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution[END_REF]; (d) Multiple scaled NIG; (e) Coalesced GH(Tortora et al., 2014b) and (f) Multiple scaled GH(Tortora et al., 2014b).

  Coalesced GH (f) MSGH T F BM

Figure 3 :

 3 Figure 3: Lymphoma data, CD45 v. CD4. Fitted contour lines for: (a) Skew-t; (b) Unrestricted Skew-t; (c) Standard NIG; (d) Multiple scaled NIG; (e) Coalesced GH(Tortora et al., 2014b) and (f) Multiple scaled GH(Tortora et al., 2014b).

Table 1 :

 1 Results for Lymphoma dataset (Par. is the number of parameters)

		Example 1 (CD4 v. ZAP	Example 2 (CD45 v.CD4)
	Model	Log-likelihood Par.	BIC	Log-likelihood Par.	BIC
	MSNIG	-23,545	19	47,266	-16,444	39	33,219
	NIG	-23,842	17	47,841	-16,573	35	33,443
	Skew-t (Unrestr.)	-23,492	17	47,140	-16,540	35	33,378
	Skew-t	-23,868	16	47,672	-16,561	32	33,394
	Skew-normal	-23,762	15	47,874	-16,573	31	33,410
	Coalesced GH	-24,477	43	49,350	-18,319	87	37,379
	MSGH T F BM	-24,754	23	49,720	-17,509	47	35,418

A more global approach to the update of D has been proposed recently by [START_REF] Browne | Orthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture models[END_REF] which has the potential to significantly speed up the computation time. [START_REF] Browne | Estimating common principal components in high dimensions[END_REF] have also proposed the use of majorization-minimization algorithms for the same purpose.

Applications of multiple scaled NIG distributions

In this section we present an application of the MSNIG distribution on a real dataset to demonstrate its flexibility in analyzing skewed multivariate data.

Additional results on simulated data and two more real datasets are reported in sections H, I and K of the Supplementary Materials where the performance of the MSNIG compares favourably to the standard NIG and other tested distributions (see section 4.1), with the MSNIG providing a better fit.

Lymphoma data

To illustrate some of the differences between the standard NIG and MSNIG we examine a clustering problem for a lymphoma dataset recently analysed by Lee and McLachlan (2013c). The data consists of a subset of data originally presented and collected by [START_REF] Maier | Allelic variant in ctla4 alters t cell phosphorylation patterns[END_REF]. In [START_REF] Maier | Allelic variant in ctla4 alters t cell phosphorylation patterns[END_REF] blood samples from 30 subjects were stained with four fluorophore-labeled antibodies against CD4, CD45RA, SLP 76(pY 128), and ZAP 70(pY 292) before and after an anti-CD3 stimulation. In the first example we will look at clustering a subset of the data containing the variables CD4 and ZAP 70 (Figure 2), which appear to be bimodal and display an asymmetric pattern. In particular, one of the modes appears to show both strong correlation between the two variables and substantial skewness. Of interest in this example is to compare the goodness of fit from fitting mixtures of standard NIG and MSNIG distributions. For comparison, we also present the results of fitting using mixtures of skew-normal [START_REF] Lachos | Likelihood based inference for skew normal independent mixed models[END_REF] and skew-t distributions using two types of formulation: the unrestricted characterization [START_REF] Sahu | A new class of multivariate skew distributions with applications to Bayesian regression models[END_REF]Lee and McLachlan, 2014b;[START_REF] Lin | Robust mixture modelling using multivariate skew-t distribution[END_REF] and the restricted one [START_REF] Azzalini | Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution[END_REF][START_REF] Basso | Robust mixture modelling based on scale mixtures of skew-normal distributions[END_REF][START_REF] Branco | A general class of multivariate skew-elliptical distributions[END_REF]