Clémentine Courtès 
  
Emmanuel Franck 
  
Linear stability of a vectorial kinetic relaxation scheme with a central velocity

Keywords: linear stability, von Neumann analysis, kinetic relaxation, semi-Lagrangian method, implicit splitting scheme, eigenvalues. 1 Introduction

This article deals with the linear stability of an implicit vectorial kinetic relaxation scheme with a central velocity used to solve numerically some multi-scale hyperbolic systems.

between numerical schemes mainly comes from the numerical processing of the advection part. It may be treated, for example, by an Exact discrete Transport, as in [START_REF] Graille | Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method[END_REF] or by a Semi-Lagrangian method as in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF], which has the advantage to avoid matrices storage and CFL condition. The properties of such a numerical scheme are detailed in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF], particularly for the consistency. The stability analysis is much more difficult and is rather sketchy. The aim of this current paper is precisely to review all results on that stability property. For simplicity, we restrict our study to the notion of linear stability (or L 2 -stability). Note that other notions of stability such as entropic one is briefly discussed in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF]. The outline of the current paper is constructed as follow. Section 2 gathers the notations of the splitting scheme associated to the vectorial kinetic relaxation model with a central velocity. Section 3 is a brief reminder of the notion of L 2 -stability. This linear stability issue is raised in Section 4 for a Semi-Lagrangian method for the advection part and in Section 5 for an Exact discrete Transport method.

The vectorial kinetic relaxation scheme

Let us consider a 1D linear hyperbolic system ∂ t U + ∂ x F (U ) = 0, with U (t, x) ∈ R N . The flux F is assumed to be linear : F (U ) = AU with the square matrix A ∈ M N (R) . The kinetic relaxation representation. By following the notations introduced in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF], a fixed set of velocities {λ -, λ 0 , λ + } with λ -< λ 0 < λ + is associated to each of the N components of U . Then, U is considered as a macroscopic moment of a kinetic distribution function f ∈ R 3N , which satisfies the following kinetic relaxation equation

∂ t f + Λ∂ x f = 1 ε (f eq (U ) -f ) . (1) 
According to the choice of the advection speeds set, we decompose f such as f = f -, f 0 , f + t , with

f j = (f j,k ) k∈{1,...,N } ∈ R N for j ∈ {-, 0, +}.
The left hand side of (1) consists on the advection part with the diagonal matrix Λ = diag (λ -Id, λ 0 Id, λ + Id) , which contains all the advection speeds (Id is the N -identity matrix). The right hand side of (1) consists on the BGK relaxation part with ε > 0 the relaxation parameter and f eq = (f eq -, f eq 0 , f eq + ) t the equilibrium vector, which is a function of U and which satisfies some consistency properties. In order to determine f eq -, f eq 0 and f eq + , we perform the decentered flux vector splitting detailed in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF]. It consists to decompose the hyperbolic flux F into three parts, which commute each other:

F (U ) = F - 0 (U ) + F + 0 (U ) + λ 0 U .
In the linear case, the hyperbolic flux F writes F (U ) = AU with A a diagonalizable square matrix (because F is hyperbolic) and the previous decomposition is also linear: there exist two commuting diagonalizable square matrices A ± 0 such that

AU = A - 0 U + A + 0 U + λ 0 U . (2) 
Decomposition (2) together with U = j∈{-,0,+} f j (since U is the macroscopic moment of f ) enable to define each f eq j for j ∈ {-, 0, +} as follow, where Id is the identity matrix, (for more details, see [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF])

               f eq -(U ) = - 1 λ 0 -λ - A - 0 f -+ f 0 + f + , f eq 0 (U ) = Id - 1 λ + -λ 0 A + 0 - 1 λ 0 -λ - A - 0 f -+ f 0 + f + , f eq + (U ) = 1 λ + -λ 0 A + 0 f -+ f 0 + f + . (3) 
The numerical scheme. As in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF], we fix ∆t > 0 and ∆x > 0 the time and space steps and denote f n = f n j,k j∈{-,0,+},k∈{1,...,N }

the distribution vector at time t n = n∆t ∈ [0, T ]. The numerical scheme chosen to discretize (1) is the following splitting scheme:

f n+1 = R ε (∆t, ∆x, θ) • T (∆t, ∆x)f n .
For convenient, we denote f * = T (∆t, ∆x)f n .

• The transport step, named T (∆t, ∆x), may be either a Semi-Lagrangian scheme (SL hereafter), defined by

f * j,k (x) = I ∆x f n j,k (x -λ j ∆t), ∀j ∈ {-, 0, +} and ∀k ∈ {1, .., N }, (4) 
where, for any g : R → R, I ∆x (g) is a piecewise polynomial interpolation of the values taken by g on the mesh points, or an Exact discrete Transport scheme (ET hereafter), defined by I ∆x = Id (the identity map) f * j,k (x) = f n j,k (x -λ j ∆t), ∀j ∈ {-, 0, +} and ∀k ∈ {1, .., N }.
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Remark 1. Assuming an Exact discrete Transport scheme, as Relation ( 5), leads to a CFL condition since it makes λ j ∆t ∆x be an integer, for all j ∈ {-, 0, +}.

• The relaxation step, named R ε (∆t, ∆x, θ), consists on a θ-scheme, with θ ∈ [ 1 2 , 1], defined by [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF], it may be rewritten in the form:

f n+1 -f * ∆t = θ f eq (U n+1 )-f n+1 ε + (1 -θ) f eq (U * )-f * ε . Since U n+1 = U * during the relaxation step, cf
f n+1 = f * + ω (f eq (U * ) -f * ) with ω = ∆t ε + θ∆t ∈ [0, 2]. (6) 
The final numerical scheme is thus obtained by combining ( 4)-( 6) for the Semi-Lagrangian choice (or ( 5)-( 6) for the Exact discrete Transport choice).

Linear stability

We restrict our study to a linear (or L 2 ) stability, by a von Neumann analysis.

A review of L 2 -stability

Let G be the amplification matrix of a one-step linear scheme (S) : f n+1 = G(∆t, ∆x)f n . We recall the notion of L 2 -stability in the following definition.

Definition 3.1. The scheme (S) is L 2 -stable if there exists a constant K > 0 such that, for all ∆t and ∆x small enough (and possibly satisfying a CFL condition), for all n ≥ 0 such that n∆t ≤ T , one has

||f n+1 || 2 ≤ (1 + K∆t)||f n || 2 .
In terms of amplification matrix, the L 2 -stability notion translates into the following necessary and sufficient condition : ρ ([G(∆t, ∆x)] * G(∆t, ∆x)) ≤ 1 + K∆t, with, for a square matrix G, ρ(G) the spectral radius of G and G * the adjoint matrix of G. This necessary and sufficient condition is not always easy to verify so we focus only to the sufficient condition of the following proposition.

Proposition 1. Sufficient condition : In space Fourier variables f n (ξ) with ξ ∈ [0, 2π ∆x ], a sufficient condition to ensure the L 2 -stability is as follow:

sup ξ∈[0, 2π ∆x ] ρ (G(∆t, ξ)) < 1, or sup ξ∈[0, 2π ∆x ]
ρ (G(∆t, ξ)) = 1 and the eigenvalues of G(∆t, ξ) with modulus equal to 1 are simple.

Amplification matrix for the vectorial kinetic relaxation scheme

To deal with the L 2 -stability, we have to first compute the amplification matrix.

Reformulation of the relaxation step in the linear case. Since A - 0 and A + 0 commute and are both diagonalizable, they are diagonalizable in the same basis to obtain

A ± 0 = B 0 D ± 0 B -1 0 with D ± 0 the diagonal matrices D ± 0 = diag λ k (A ± 0 ) k∈{1,.
.,N } and B 0 an invertible matrix. The diagonal term λ k (A ± 0 ) corresponds to the k th eigenvalue of A ± 0 . Relaxation step ( 6) is thus rewritten under the following bloc matrices form:

  f n+1 - f n+1 0 f n+1 +   = B 0 R ε (∆t, ω)B -1 0   f * - f * 0 f * +   (7) 
with

B 0 = diag(B 0 , B 0 , B 0 ), B -1 0 = diag(B -1 0 , B -1 0 , B -1 0
) and R ε (∆t, ω) the relaxation amplification matrix defined by blocs by

R ε (∆t, ω) = diag(Id, Id, Id) + ω Rε (∆t), with Rε (∆t) =     -1 λ 0 -λ -D - 0 -Id -1 λ 0 -λ -D - 0 -1 λ 0 -λ -D - 0 Id - 1 λ + -λ 0 D + 0 - 1 λ 0 -λ -D - 0 -1 λ + -λ 0 D + 0 + 1 λ 0 -λ -D - 0 Id - 1 λ + -λ 0 D + 0 - 1 λ 0 -λ -D - 0 1 λ + -λ 0 D + 0 1 λ + -λ 0 D + 0 1 λ + -λ 0 D + 0 -Id     .
Fourier analysis. We introduce the Fourier variable (in space)

f n in L 2 ([0, 2π ∆x ]) defined by f n (ξ) = x∈{mesh points} f n (x)e ixξ , ∀ξ ∈ [0, 2π ∆x ]
. With this Fourier decomposition, transport step of the scheme rewrites :

   f * -(ξ) f * 0 (ξ) f * + (ξ)    =   T -(∆t, ξ) 0 T 0 (∆t, ξ) 0 T + (∆t, ξ)      f n -(ξ) f n 0 (ξ) f n + (ξ)    , with • T j (∆t, ξ) = T SL j (∆t, ξ
) the amplification factor of the Semi-Lagrangian scheme (4), • or T j (∆t, ξ) = e iλ j ∆tξ Id in the case of an Exact discrete Transport scheme [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF].

Since relaxation step does not depend on the space, Relation ( 7) is also true with f n+1 (resp. f * ) instead of f n+1 (resp. f * ).

Eventually, the total amplification matrix is equal to

G(∆t, ξ, ε, ω) = B 0 R ε (∆t, ω)B -1 0   T -(∆t, ξ) 0 T 0 (∆t, ξ) 0 T + (∆t, ξ)   , (8) 
with T j (∆t, ξ) = T SL j (∆t, ξ) for the scheme (4)-( 6), or with T j (∆t, ξ) = e iλ j ∆tξ Id for the scheme ( 5)-( 6), for j ∈ {-, 0, +}.

Linear stability for the Semi-Lagrangian step

Let us ensure our first linear stability result. Proposition 2. Let the hyperbolic flux F be linear and be decomposed into F (U ) = AU = A - 0 U + A + 0 U + λ 0 U , with A + 0 and A - 0 two commuting and diagonalizable matrices. The numerical scheme (4)-( 6) with the advection speeds set {λ -, λ 0 , λ + } N , with λ -< λ 0 < λ + and equilibrium (3) is L 2 -stable on the following conditions :

• ω ∈ [0, 1],
• Id -

1 λ + -λ 0 A + 0 -1 λ 0 -λ -A - 0
is a positive semidefinite matrix,

• A + 0 (resp. A - 0 ) is a positive (resp. negative) semidefinite matrix.

Remark 2. Note that here a matrix is said to be positive semidefinite (resp. negative semidefinite) if all its eigenvalues are nonnegative (resp. nonpositive).

Remark 3. Sufficient conditions which involve in Proposition 2 are exactly the same as the ones required for the entropy stability property, proved in [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF].

To prove Proposition 2, we follow the main guidelines of [START_REF] Graille | Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme as a relaxation method[END_REF] which suggest to study the Gershgorin discs of the amplification matrix, for more details see [START_REF] Serre | Matrices: Theory and Applications[END_REF].

Definition 4.1. Let G = (g ij ) i,j ∈ M N (C) be a complex square matrix. The k th -Gershgorin disc corresponds to the disc D k = {z ∈ C, |g kk -z| ≤ j =k |g jk |}, for k ∈ {1, ..., N }.
Theorem 4.2 (Gershgorin's theorem). Let G = (g ij ) i,j ∈ M N (C) be a complex square matrix. Every eigenvalue of G belongs at least to one Gershgorin disc of G.

Proof of Proposition 2. As the Semi-Lagrangian step is unconditionally stable [START_REF] Charles | Enhanced convergence estimates for semi-Lagrangian schemes. Application to the Vlasov-Poisson equation[END_REF], we may omit the Semi-Lagrangian amplification factors T SL j (∆t, ξ) for j ∈ {-, 0, +} in our study. It only remains to consider eigenvalues of R ε (∆t, ω).

Let λ be an eigenvalue of R ε (∆t, ω) = (r ε,ij ) i,j∈{1,...,3N } . According to Theorem 4.2, there exists k ∈ {1, ..., 3N } such that |r ε, kk -λ| ≤ j = k |r ε,j k|. Then by a triangular inequality, |λ| ≤ |r ε, kk -λ| + |r ε, kk| ≤ 3N j=1 |r ε,j k|. However, one has

• for k ∈ {1, ..., N } 3N j=1 |r ε,j k| = 1 -ω λk(A - 0 ) λ 0 -λ - -ω + ω -ω λk(A + 0 ) λ + -λ 0 - λk(A - 0 ) λ 0 -λ - + ω λk(A + 0 ) λ + -λ 0 , • for k ∈ {N + 1, ..., 2N } 3N j=1 |r ε,j k| = -ω λk(A - 0 ) λ 0 -λ - + 1 -ω + ω 1 - λk(A + 0 ) λ + -λ 0 - λk(A - 0 ) λ 0 -λ - + ω λk(A + 0 ) λ + -λ 0 , • for k ∈ {2N + 1, ..., 3N } 3N j=1 |r ε,j k| = -ω λk(A - 0 ) λ 0 -λ - + ω -ω λk(A + 0 ) λ + -λ 0 - λk(A - 0 ) λ 0 -λ - + 1 + ω λk(A + 0 ) λ + -λ 0 -ω .
Hypotheses of Proposition 2 enable to remove modulus in the previous relations and to obtain for all k ∈ {1, ..., 3N }, 3N j=1 |r ε,j k| = 1. Hence, all eigenvalues of R ε (∆t, ω) have a modulus smaller than 1 which implies the L 2 -stability of the numerical scheme ( 4)-( 6).

Example 1.

Here is a non-exhaustive list of flux decompositions which enable to obtain a L 2 -stable scheme for scalar case when F (u) = au = a - 0 u + a + 0 u + λ 0 u: • (Rusanov) We choose λ -≤ min(0, a), λ 0 = 0 and max(0, a) ≤ λ + and we define a

+ 0 = λ + a-λ - λ + -λ - and a - 0 = -λ - a-λ + λ + -λ -.
A particular Rusanov decomposition consists to choose -λ -= λ + = |a|. • (Upwind) We choose λ -≤ min(λ 0 , a) and max(λ 0 , a) ≤ λ + and we define a + 0 = 1 a>λ 0 (a -λ 0 ) and a - 0 = 1 a<λ 0 (a -λ 0 ), with 1 the indicator function.

• (Lax-Wendroff) We choose -λ -= λ + = λ > 0 with √ α|a| ≤ λ ≤ α|a| and λ 0 = 0 and we define a ± 0 = 1 2 a ± α a 2 λ with α ∈ [1, 2].
For more details about these flux decompositions, we refer the readers to [START_REF] Coulette | Vectorial kinetic relaxation model with central velocity. Application to implicit relaxation schemes[END_REF].

Remark 4. Proposition 2 is also valid for the scheme ( 5)-( 6) (with an Exact discrete Transport step). However, the following section improves those results.

Linear stability for the Exact discrete Transport step

For simplicity, we focus only on the scalar linear case: ∂ t u + a∂ x u = 0 with u(t, x) ∈ R and a ∈ R, which implies B 0 = 1 in (8). The Exact discrete Transport step enables to improve sufficient conditions of Proposition 2, in particular in the range of admissible ω. Proposition 3. Let the scalar hyperbolic flux F be linear and be decomposed into F (u) = au = a - 0 u + a + 0 u + λ 0 u. The numerical scheme (5)-( 6) with the advection speeds set {λ -, λ 0 , λ + }, with λ -< λ 0 < λ + and equilibrium (3) is L 2 -stable on the following conditions :

• ω ∈ [0, 2],
• 1 -

a + 0 λ + -λ 0 - a - 0 λ 0 -λ -≥ 0, • a + 0 ≥ 0 and a - 0 ≤ 0,
• One of the three following equalities is satisfied :

a + 0 = 0 or a - 0 = 0 or 1 - a + 0 λ + -λ 0 - a - 0 λ 0 -λ -= 0.
Remark 5. As the scalar case is considered here, condition 1 -

a + 0 λ + -λ 0 - a - 0
λ 0 -λ -≥ 0 may be written in the simplest form: λ -≤ a ≤ λ + . In deed, in the scalar case,

1 - a + 0 λ+ -λ0 - a - 0 λ0 -λ- = λ+ -a λ+ -λ0 + a - 0 (λ+ -λ-) (λ+ -λ0)(λ0 -λ-) = a -λ- λ0 -λ- - a + 0 (λ+ -λ-) (λ+ -λ0)(λ0 -λ-) .
The nonnegativity of this quantity together with the hypotheses λ -< λ 0 < λ + , a + 0 ≥ 0 and a - 0 ≤ 0 implie that λ -≤ a ≤ λ + .

Instead of using Gershgorin discs to prove Proposition 3, we need a more specific tool to localize the eigenvalues and we use Rouché's theorem, as suggested in [START_REF] Rheinländer | Stability and multiscale analysis of an advective lattice Boltzmann scheme[END_REF]. a - 0 λ 0 -λ -. In the scalar case, the amplification matrix writes G(∆t, ξ, ε, ω)

=   1 -ωA - 0 -ω e iλ-∆tξ -ωA - 0 e iλ0∆tξ -ωA - 0 e iλ+∆tξ ω 1 -A + 0 -A - 0 e iλ-∆tξ 1 -ω A + 0 -A - 0 e iλ0∆tξ ω 1 -A + 0 -A - 0 e iλ+∆tξ ωA + 0 e iλ-∆tξ ωA + 0 e iλ0∆tξ 1 + ωA + 0 -ω e iλ+∆tξ   .
The characteristic polynomial of G is as follow:

χ(X) = µ 0 + µ 1 X + µ 2 X 2 -X 3 , with µ 0 = (1 -ω) 2 e i(λ + +λ 0 +λ -)∆tξ , µ 1 = (1 -ω) (-1 -ωA - 0 )e i(λ 0 +λ + )∆tξ + (-1 + ωA + 0 )e i(λ 0 +λ -)∆tξ +(-1 + ω(1 -A + 0 + A - 0 ))e i(λ + +λ -)∆tξ , µ 2 = (1 -ω + ωA + 0 )e iλ + ∆tξ + (1 -ω + ω(1 -A + 0 + A - 0 
))e iλ 0 ∆tξ + (1 -ω -ωA - 0 )e iλ -∆tξ . In the three particular studied cases, the previous characteristic polynomial writes

χ(X) = (1 -ω)e iν 1 ∆tξ -X χ(X), (9) 
where χ(X) = (1 -ω)e i(ν 2 +ν 3 )∆tξ -Xe

i ν 2 +ν 3 2 ∆tξ [(2 -ω) cos(Ξ) + iωη sin(Ξ)] + X 2 , with • Case a + 0 = 0 : ν 1 = λ + , ν 2 = λ 0 , ν 3 = λ -, Ξ = λ 0 -λ - 2 ∆tξ, η = 1 + 2 a - 0 λ 0 -λ -, • Case a - 0 = 0 : ν 1 = λ -, ν 2 = λ 0 , ν 3 = λ + , Ξ = λ 0 -λ + 2 ∆tξ, η = 1 -2 a + 0 λ + -λ 0 , • Case 1 - a + 0 λ + -λ 0 + a - 0 λ 0 -λ -= 0 : ν 1 = λ 0 , ν 2 = λ + , ν 3 = λ -, Ξ = λ + -λ - 2 ∆tξ, η = a + 0 λ + -λ 0 + a - 0 λ 0 -λ -.
Particular cases ω = 0 or ω = 2: In these two cases, the three roots are transparent: 

e iν 1 ∆tξ , [cos(Ξ) ± i sin(Ξ)] e i ν 2 
: η = -ν 2 -2a+ν 3 ν 2 -ν 3 . Conditions λ -< λ 0 < λ + , λ -≤ a ≤ λ + , a - 0 ≤ 0 and a + 0 ≥ 0 imply that η ∈ [-1, 1]
. Thus, the square root 1 -η 2 sin 2 (Ξ) is well defined. If -1 < η < 1, the roots are simple since 1 -η 2 sin 2 (Ξ) = 0. Otherwise, the roots for ω = 2 simplify into -e iν 1 ∆tξ , e iν 2 ∆tξ , -e iν 3 ∆tξ if η = 1 and -e iν 1 ∆tξ , -e iν 2 ∆tξ , e iν 3 ∆tξ if η = -1.

To conclude with ω ∈ {0, 2}, all these roots have a modulus equal to 1 and are simple. General case ω ∈]0, 2[: Obviously, according to [START_REF] Serre | Matrices: Theory and Applications[END_REF], one of the three roots of χ is (1 -ω)e iν 1 ∆tξ which has a modulus strictly smaller than 1 if ω ∈]0, 2[. We have to determine the two other roots.

• If Ξ ≡ 0[π], χ writes χ± (X) := (1 -ω)e i(ν 2 +ν 3 )∆tξ ± [2 -ω]e All in all, each case of ω leads to three roots of χ with modulus strictly less than 1 or equal to 1 and simple. The L 2 -stability is thus a consequence of Proposition 1. 

Theorem 5 . 1 (

 51 Rouché's theorem). Let γ be a closed simple path in Ω ⊂ C and assume that γ has an interior. Let f and g be holomorphic (analytic) on Ω and |f (ζ) -g(ζ)| < |f (ζ)| for all ζ on γ. Then f and g have the same number of zeros in the interior of γ. Proof of Proposition 3. Let us define A + 0 = a + 0 λ + -λ 0 and A - 0 =

+ν 3 2 ∆tξ= e iν 1 ν 2 +ν 3 2 ∆tξ for ω = 2 .

 2122 ∆tξ , e iν 2 ∆tξ , e iν 3 ∆tξ for ω = 0 and -e iν 1 ∆tξ , ± 1 -η 2 sin 2 (Ξ) + iη sin(Ξ) e i Equality (2) in the scalar case enables to simplify η

i ν 2 +ν 3 2 ∆tξ X + X 2 .e i ν 2 +ν 3 2 ∆tξ

 222 The roots of χ-are(2-ω)±ω Computation of ψ on the unit circle. One has |ψ(e iθ )| = -[cos(Ξ) + iη sin(Ξ)] + e iθ = cos(Ξ) + iη sin(Ξ) -e Use of Rouché's theorem 5.1. One chooses the closed simple path γ be equal to the unit circle. Since ω ∈]0, 2[, one has | χ(e iθ ) -ψ(e iθ )| = |1 -ω||ψ(e iθ )| < |ψ(e iθ )| for all θ ∈ R. By Rouché's theorem 5.1, χ has the same number of roots in the open unit ball than ψ.

Example 2 .

 2 The three first flux decompositions of Example 1 satisfy hypotheses of Proposition 3. They are also satisfied by the Lax-Wendroff decomposition only with the extremal choice |a| = λ/α or |a| = λ/ √ α. (Note that the L 2 -stability may be proved by a directe computation with α = 1 and λ ≥ |a| in the particular choice ω = 1).
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