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This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.

Introduction

The efficient numerical treatment of boundary integral equations using adaptive mesh refinement procedures has been extensively investigated for the numerical solution of homogeneous elliptic problems in unbounded domains [START_REF] Carstensen | Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes[END_REF][START_REF] Carstensen | A posteriori error estimates for boundary element methods[END_REF]. See [START_REF] Gwinner | Advanced Boundary Element Methods -Treatment of Boundary Value, Transmission and Contact Problems[END_REF] for a recent exposition.

In this article we investigate the extension of the a posteriori error analysis and adaptive mesh refinement procedures to initial-boundary value problems for the wave equation, formulated as boundary integral equations in the time-domain [START_REF] Costabel | Time-dependent problems with the boundary integral equation method[END_REF][START_REF] Sayas | Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map[END_REF]. We prove a reliable a posteriori error estimate of residual type for a large class of conforming discretizations. It is efficient for a time-domain boundary element method on a globally quasi-uniform mesh. The error estimate defines an adaptive mesh refinement procedure, which recovers the convergence rates known for time-independent screen problems.

There has been recent interest in the solution of such problems on adapted meshes. Similar to the elliptic case, singularities of the solution may appear at singular points of the boundary, as discussed in [START_REF] Kokotov | The Neumann problem for the wave equation in a cone[END_REF][START_REF] Kokotov | Diffraction on a cone: The asymptotics of solutions near the vertex[END_REF][START_REF] Plamenevskiǐ | On the Dirichlet problem for the wave equation in a cylinder with edges[END_REF], and in trapping regions. Time-independent graded meshes have been shown to recover quasi-optimal convergence rates for edge and corner singularities [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF]. First steps towards time-adaptivity are due to Sauter and Veit [START_REF] Sauter | Adaptive Time Discretization for Retarded Potentials[END_REF] in 2 dimensions, and also convolution quadrature methods with graded, non-adaptively chosen time steps have been studied, for example in [START_REF] Sauter | Convolution quadrature for the wave equation with impedance boundary conditions[END_REF]. Gläfke [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF] showed first results towards space-time refinements in 2 dimensions, and in unpublished work Abboud uses ZZ error indicators for computations with space-adaptive mesh refinements for screen problems.

To describe the main results, we consider the wave equation

∂ 2
t u -∆u = 0 , u = 0 for t ≤ 0 , in the complement of a polyhedral domain or screen Ω ⊂ R d , with an emphasis on the challenging case d = 3. On the boundary Γ = ∂Ω both Dirichlet and acoustic boundary conditions, u = f , respectively ∂ ν u -α∂ t u = f , are considered. Here f is given, ν is the outer unit normal vector to Γ, and 0 < α, α -1 ∈ L ∞ (Γ). Following Bamberger and Ha Duong [START_REF] Bamberger | Formulation variationnelle espace-temps pour le calcul par potentiel retard de la diffraction d'une onde acoustique[END_REF], we recast the boundary problem as a time dependent boundary integral equation. The Dirichlet problem is equivalent to a hyperbolic variant of Symm's integral equation:

Vφ(t, x) = R + ×Γ
G(tτ, x, y)φ(τ, y) dτ ds y = f (t, x) .

(

) 1 
Here φ is sought in a space-time anisotropic Sobolev space H 1 σ (R + , H -1 2 (Γ)), and G is a fundamental solution of the wave equation, G(ts, x, y) = H(ts -|x -y|)

2π (t -s) 2 + |x -y| 2 in 2d, (2) 
G(ts, x, y) = δ(ts -|x -y|) 4π|x -y| in 3d.

(

) 3 
Here H is the Heaviside function and δ the Dirac distribution. Our results apply, in particular, to a Galerkin discretization of the weak form of (1) in a subspace V ⊂ H 1 σ (R + , H -1 2 (Γ)),

Theorem A: Let φ ∈ H 1 σ (R + , H -1 2 (Γ)) be the solution to (4), and let φ h,∆t ∈ H

1 σ (R + , H -1 2 (Γ)) such that R = ∂ t f -V∂ t φ h,∆t ∈ H 0 σ (R + , H 1 (Γ)). Then φ -φ h,∆t 2 0,-1 2 ,Γ, * i,∆ max{∆t, h ∆ } R 2 0,1,[t i ,t i+1 )×∆ . (5) 
Let Γ be closed and polyhedral. For a globally quasi-uniform mesh on Γ, let V = W 0 h,∆t the tensor product of cubic splines in time with piecewise constant functions in space. If φ h,∆t ∈ V is a Galerkin solution of (4) in V and φ ∈ H 2 σ (R + , H -1 2 (Γ)), then

max{∆t, h} R 2 0,1-ǫ,Γ φ -φ h,∆t 2 2,-1 2 ,Γ . (6) 
The upper bound [START_REF] Carstensen | A posteriori error estimates for boundary element methods[END_REF] is obtained in Corollary 4.5, the lower bound [START_REF] Carstensen | A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation[END_REF] in Theorems 5.1 and 6.1. Our numerical results illustrate the a posteriori error estimate of Theorem A for time-domain boundary elements based on [START_REF] Carstensen | Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind[END_REF], but the estimate also applies, for example, to convolution quadrature methods [START_REF] Sayas | Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map[END_REF].

Note the loss of time derivatives between the upper and lower bound of the error, in the first Sobolev index. The loss is well-known for error estimates for hyperbolic problems [START_REF] Duong | On retarded potential boundary integral equations and their discretizations[END_REF]. Our arguments generalize to give reliable a posteriori estimates for the acoustic boundary problem, see Section 3.2.

The residual error estimate from Theorem A is used to define adaptive mesh refinements in space, based on the four steps Solve, Estimate, Mark, Refine. Numerical experiments confirm the efficiency and reliability of the estimate in examples. For screen problems they recover the convergence rates known for elliptic problems. This work builds on the numerical analysis of adaptive boundary element methods for the Laplace equation, both for Symm's integral equation and the hypersingular equation [START_REF] Carstensen | Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes[END_REF][START_REF] Carstensen | A posteriori error estimates for boundary element methods[END_REF][START_REF] Carstensen | A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation[END_REF][START_REF] Carstensen | Residual-based a posteriori error estimate for hypersingular equation on surfaces[END_REF]. Work on different types of error indicators in the time-independent case includes ZZ [START_REF] Carstensen | Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind[END_REF] and Faermann indicators [START_REF] Faermann | Local a-posteriori error indicators for the Galerkin discretization of boundary integral equations[END_REF][START_REF] Faermann | Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. II. The three-dimensional case[END_REF]. We also mention [START_REF] Wendland | Adaptive boundary element methods for strongly elliptic integral equations[END_REF] for an earlier approach. A comparison of different indicators in the time-domain will be the subject of future research.

Structure of this article: Section 2 recalls the boundary integral operators associated to the wave equation as well as their mapping properties between suitable space-time anisotropic Sobolev spaces. The Sobolev spaces are discretized using tensor products of piecewise polynomials in space and time. Section 3 presents a corresponding space-time discretization for the formulation of the Dirichlet problem in terms of the single layer operator and derives a reliable a posteriori error estimate for globally quasi-uniform meshes, using a canonical approach which will readily adapt to other settings. A second subsection analyzes an acoustic boundary problem, a system of equations involving in addition the double layer, adjoint double layer and hypersingular operators. Section 4 then localizes the space-time Sobolev norm to derive the general upper estimate for the Dirichlet problem in Theorem A. The upper estimates are complemented by a lower bound for the error of a Galerkin approximation on globally quasi-uniform meshes in Section 5. The final step of this proof is a lower bound for the best approximation in Section 6. Section 7 discusses some algorithmic properties of the implementation, before numerical experiments are used to confirm the theoretical results in Section 8.

Preliminaries and discretization

In addition to the single layer operator V, for acoustic boundary problems we require its normal derivative K ′ , the double layer operator K and hypersingular operator W for x ∈ Γ, t > 0:

Vϕ(t, x) = R + ×Γ G(t -τ, x, y) ϕ(τ, y) dτ ds y , (7) 
Kϕ(t, x) = R + ×Γ ∂G ∂n y (t -τ, x, y) ϕ(τ, y) dτ ds y , (8) 
K ′ ϕ(t, x) = R + ×Γ ∂G ∂n x (t -τ, x, y) ϕ(τ, y) dτ ds y , (9) 
Wϕ(t, x) = R + ×Γ ∂ 2 G ∂n x ∂n y (t -τ, x, y) ϕ(τ, y) dτ ds y . (10) 
Space-time anisotropic Sobolev spaces on the boundary Γ provide a convenient setting to study the mapping properties of layer potentials. See [START_REF] Duong | On retarded potential boundary integral equations and their discretizations[END_REF][START_REF] Gimperlein | A priori error estimates for a time-dependent boundary element method for the acoustic wave equation in a half-space[END_REF] for a detailed exposition. To define them, if ∂Γ = ∅, first extend Γ to a closed, orientable Lipschitz manifold Γ.

On Γ one defines the usual Sobolev spaces of supported distributions:

H s (Γ) = {u ∈ H s ( Γ) : supp u ⊂ Γ} , s ∈ R . Furthermore, H s (Γ) is the quotient space H s ( Γ)/ H s ( Γ \ Γ).
To write down an explicit family of Sobolev norms, introduce a partition of unity α i subordinate to a covering of Γ by open sets B i . For diffeomorphisms ϕ i mapping each B i into the unit cube ⊂ R n , a family of Sobolev norms is induced from R n , with parameter ω ∈ C \ {0}:

||u|| s,ω, Γ = p i=1 R n (|ω| 2 + |ξ| 2 ) s |F (α i u) • ϕ -1 i (ξ)| 2 dξ 1 2
.

The norms for different ω ∈ C \ {0} are equivalent and F denotes the Fourier transform. They induce norms on H s (Γ), ||u|| s,ω,Γ = inf v∈ H s ( Γ\Γ) ||u + v|| s,ω, Γ and on H s (Γ), ||u|| s,ω,Γ, * = ||e + u|| s,ω, Γ . We write H s ω (Γ) for H s (Γ), respectively H s ω (Γ) for H s (Γ), when a norm with a specific ω is fixed. e + extends the distribution u by 0 from Γ to Γ. As the norm ||u|| s,ω,Γ, * corresponds to extension by zero, while ||u|| s,ω,Γ allows extension by an arbitrary v, ||u|| s,ω,Γ, * is stronger than ||u|| s,ω,Γ . Like in the time-independent case the norms are not equivalent whenever s ∈ 1 2 + Z [START_REF] Gwinner | Advanced Boundary Element Methods -Treatment of Boundary Value, Transmission and Contact Problems[END_REF]. We now define a class of space-time anisotropic Sobolev spaces: Definition 2.1. For σ > 0 and r, s ∈ R define .

H r σ (R + , H s (Γ)) = {u ∈ D ′ + (H s (Γ)) : e -σt u ∈ S ′ + (H s (Γ)) and ||u|| r,s,σ,Γ < ∞} , H r σ (R + , H s (Γ)) = {u ∈ D ′ + ( H s (Γ)) : e -σt u ∈ S ′ + ( H s (Γ))
They are Hilbert spaces, and we note that the basic case r = s = 0 is the weighted L 2 -space with scalar product u, v σ := ∞ 0 e -2σt Γ uvds x dt. Because Γ is Lipschitz, like in the case of standard Sobolev spaces these spaces are independent of the choice of α i and ϕ i when |s| ≤ 1. Using variational arguments, precise mapping properties are well-known for the layer potentials between Sobolev spaces related to the energy: Theorem 2.2 ( [START_REF] Gimperlein | A priori error estimates for a time-dependent boundary element method for the acoustic wave equation in a half-space[END_REF]). The following operators are continuous for r ∈ R:

V : H r+1 σ (R + , H -1 2 (Γ)) → H r σ (R + , H 1 2 (Γ)) , K ′ : H r+1 σ (R + , H -1 2 (Γ)) → H r σ (R + , H -1 2 (Γ)) , K : H r+1 σ (R + , H 1 2 (Γ)) → H r σ (R + , H 1 2 (Γ)) , W : H r+1 σ (R + , H 1 2 (Γ)) → H r σ (R + , H -1 2 (Γ)) .
More generally, outside the energy spaces one has: [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF]). The following operators are continuous for r ∈ R, s ∈ (-1 2 , 1 2 ):

Theorem 2.3 ([
V : H r+1 σ (R + , H -1 2 +s (Γ)) → H r σ (R + , H 1 2 +s (Γ)) , K ′ : H r+2 σ (R + , H -1 2 +s (Γ)) → H r σ (R + , H -1 2 +s (Γ)) , K : H r+2 σ (R + , H 1 2 +s (Γ)) → H r σ (R + , H 1 2 +s (Γ)) , W : H r+3 σ (R + , H 1 2 +s (Γ)) → H r σ (R + , H -1 2 +s (Γ)) .
For simplicity, we will use here a hypersurface composed of N s triangular facets such that Γ = ∪ Ns i=1 T i , each element T i is closed with int(T i ) = ∅, and for distinct T i , T j ⊂ Γ the intersection int(T i ) ∩ int(T j ) = ∅.

For the time discretization we consider a uniform decomposition of the time interval R + into subintervals I n = [t n-1 , t n ) with time step |I n | = ∆t, such that t n = n∆t, n = 0, 1, . . . . We choose a basis {ϕ p j } of the space V p h of piecewise polynomial functions of degree p in space (continuous if p ≥ 1) and a basis {β j,q } of the space V q ∆t of piecewise polynomial functions of degree of q in time (continuous and vanishing at t = 0 if q ≥ 1). In addition to V q ∆t we also require the space W ∆t ⊂ V 3 ∆t of cubic splines. We denote the finite temporal mesh

{[0, t 1 ), [t 1 , t 2 ), • • • , [t Nt-1 , t Nt )} by T T , the spatial mesh {T 1 , • • • , T Ns } for Γ by T S .
We consider the tensor product of the approximation spaces in space and time, V p h and V q ∆t , associated to the space-time mesh T S,T = T S × T T , and we write

V p,q h,∆t = V p h ⊗ V q ∆t .
We consider the orthogonal projections Π ∆t from L 2 (R + ) to V q ∆t , resp. Π h from L 2 (Γ) to V p h . See [START_REF] Gimperlein | A priori error estimates for a time-dependent boundary element method for the acoustic wave equation in a half-space[END_REF] for a discussion of their properties and those of their composition Π h,∆t . Furthermore, we define W p h,∆t = V p h ⊗ W ∆t . One obtains as in Proposition 3.54 of [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF]:

Lemma 2.4. Let f ∈ H r σ (R + , H m (Γ)∩ H s (Γ)), 0 < m ≤ q + 1, 0 < r ≤ p + 1, s ≤ r, |l| ≤ 1 2 such that ls ≥ 0. Then if l, s ≤ 0 f -Π h • Π ∆t f s,l,Γ ≤ C(h α + (∆t) β )||f || r,m,Γ , where α = min{m -l, m -m(l+s) m+r }, β = min{m + r -(l + s), m + r -m+r m l}. If l, s > 0, β = m + r -(l + s).
For the lower bounds, we further require an auxiliary projection P h,∆t from H

2 (R + , H -1 (Γ)) into the space of ansatz functions ⊆ H 2 (R + , L 2 (Γ)) such that P h,∆t is H 2 (R + , L 2 (Γ))-stable.
For the construction of P h,∆t = P ∆t Q * h we use a projection P ∆t on the space of cubic splines W ∆t ⊂ V 3 ∆t in time and a Galerkin projection Q * h in space. More precisely, we consider the projection

Q h : L 2 (Γ) → V p h defined as follows: For φ ∈ L 2 (Γ), we let Q h φ ∈ V p
h be the unique solution to the variational problem 

Q h φ, ψ h = φ, ψ h for all ψ h ∈ V p h . Q h is bounded on L 2 (Γ) and self-adjoint, Q h = Q * h . Therefore, if Q h restricts to a bounded operator on H s ω (Γ), Q h = Q * h extends
Q h φ s,ω,Γ ≤ C φ s,ω,Γ .
For all φ ∈ H -s ω (Γ), we have:

Q h φ -s,ω,Γ, * ≤ C φ -s,ω,Γ, * .
Proof. For the first assertion we note that it is clear for s = 0. We show it for s = 1, and the case for general s ∈ [0, 1] follows from interpolation.

Let Q h,1 : H 1 ω (Γ) → V p h ⊂ H 1 ω (Γ) defined by Q h,1 φ, ψ h 1,ω,Γ = φ, ψ h 1,ω,Γ for all ψ h ∈ V p h . By definition, Q h,1 is bounded on H 1 ω (Γ). We use the Aubin-Nitsche trick to show that φ -Q h,1 φ L 2 (Γ) h φ H 1 ω (Γ) . More precisely, if g ∈ L 2 (Γ) denote by φ g ∈ H 1 ω (Γ) the solution to the elliptic equation ψ, φ g 1,ω,Γ = g, ψ L 2 (Γ) , for all ψ ∈ H 1 ω (Γ) . By elliptic regularity φ g ∈ H 2 ω (Γ), with φ g 2,ω,Γ g L 2 (Γ) , as Γ does not have reentrant corners. We observe φ -Q h,1 φ L 2 (Γ) = sup 0 =g∈L 2 (Γ) g, φ -Q h,1 φ L 2 (Γ) g L 2 (Γ) = sup 0 =g∈L 2 (Γ) φ -Q h,1 φ, φ g 1,ω,Γ g L 2 (Γ) = sup 0 =g∈L 2 (Γ) inf 0 =ψ h ∈V p h φ -Q h,1 φ, φ g -ψ h 1,ω,Γ g L 2 (Γ) ≤ φ -Q h,1 φ 1,ω,Γ sup 0 =g∈L 2 (Γ) inf 0 =ψ h ∈V p h φ g -ψ h 1,ω,Γ g L 2 (Γ) . Because φ g ∈ H 2 ω (Γ), inf 0 =ψ h ∈V p h φ g -ψ h 1,ω,Γ h ∇ Γ φ g 1,ω,Γ h g L 2 (Γ) and φ -Q h,1 φ 1,ω,Γ φ 1,ω,Γ , we conclude φ -Q h,1 φ L 2 (Γ) h φ 1,ω,Γ .
Combining this with the triangle inequality, the inverse inequality and the already shown assertion when s = 0, we obtain the first assertion:

Q h φ 1,ω,Γ ≤ Q h,1 φ 1,ω,Γ + Q h φ -Q h,1 φ 1,ω,Γ φ 1,ω,Γ + h -1 Q h φ -Q h,1 φ L 2 (Γ) = φ 1,ω,Γ + h -1 Q h (φ -Q h,1 φ) L 2 (Γ) φ 1,ω,Γ + h -1 φ -Q h,1 φ L 2 (Γ) φ 1,ω,Γ .
The second assertion follows from the first one, with the same constant C. Indeed,

Q h φ -s,ω,Γ, * = sup 0 =ψ∈H s ω (Γ) Q h φ, ψ L 2 (Γ) ψ s,ω,Γ = sup 0 =ψ∈H s ω (Γ) φ, Q h ψ L 2 (Γ) ψ s,ω,Γ ≤ C φ -s,ω,Γ, * .
Using the Laplace transform to transfer the result into the time-domain, we obtain

Q h φ r,-s,Γ, * ≤ C φ r,-s,Γ, *
for s ∈ [0, 1] and all r. Further note that the interpolation operator P ∆t in time for cubic splines is continuous on H 2 functions. The continuity extends to H 2 (R + , H -s (Γ)). We conclude:

Lemma 2.6. Consider a quasi-uniform mesh, s ∈ [0, 1] and P h,∆t = P ∆t Q h . For all φ ∈ H 2 (R + , H -s (Γ)), we have

P h,∆t φ 2,-s,Γ, * ≤ C φ 2,-s,Γ, * .
The approximation properties of P h,∆t analogous to Lemma 2.4 follow as in [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF], Proposition 3.54.

A posteriori error estimates -reliability 3.1 Dirichlet problem

We recall the basic properties of the bilinear form

B D (φ, ψ) = R + Γ V∂ t φ(t, x) ψ(t, x) ds x d σ t of the Dirichlet problem.
As shown in [START_REF] Duong | On retarded potential boundary integral equations and their discretizations[END_REF], the bilinear form is continuous, and also weakly coercive:

Proposition 3.1. For every φ, ψ ∈ H 1 σ (R + , H -1 2 (Γ)
) there holds:

|B D (φ, ψ)| φ 1,-1 2 ,Γ, * ψ 1,-1 2 ,Γ, * and φ 2 0,-1 2 ,Γ, * B D (φ, φ).
We consider a conforming Galerkin discretization of the Dirichlet problem (4) in a subspace V ⊂ H 1 σ (R + , H -1 2 (Γ)), which reads as follows: Find φ h,∆t ∈ V such that

B D (φ h,∆t , ψ h,∆t ) = ∂ t f, ψ h,∆t , (11) 
for all ψ h,∆t ∈ V .

The well-posedness of the continuous and discretized problems are a basic consequence of Proposition 3.1:

Corollary 3.2. Let f ∈ H 2 σ (R + , H 1 2 (Γ)).
Then the Dirichlet problem (4) and its discretization [START_REF] Gimperlein | Adaptive time domain boundary element methods and engineering applications[END_REF] 

admit unique solutions φ ∈ H 1 σ (R + , H -1 2 (Γ)), φ h,∆t ∈ V , and the estimates φ 1,-1 2 ,Γ, * , φ h,∆t 1,-1 2 ,Γ, * f 2, 1 2 ,Γ hold.
We note the Galerkin orthogonality:

B D (φ -φ h,∆t , ψ h,∆t ) = 0 ∀ψ h,∆t ∈ V .
Using ideas going back to Carstensen [START_REF] Carstensen | Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes[END_REF] and Carstensen and Stephan [START_REF] Carstensen | A posteriori error estimates for boundary element methods[END_REF] for the boundary element method for elliptic problems, we obtain an a posteriori error estimate for the Galerkin solution to the Dirichlet problem on globally quasi-uniform meshes.

Theorem 3.3. Given V = V p,q h,∆t associated to a globally quasi-uniform discretization of Γ, let φ ∈ H 1 σ (R + , H -1 2 (Γ)), φ h,∆t ∈ V the solutions to (4), resp. (11). Assume that R = ∂ t f -V∂ t φ h,∆t ∈ H 0 σ (R + , H 1 (Γ)). Then φ -φ h,∆t 2 0,-1 2 ,Γ, * R 0,1,Γ ∆t ∂ t R 0,0,Γ + h • ∇R 0,0,Γ max{∆t, h}( ∂ t R 2 0,0,Γ + ∇R 2 0,0,Γ ) .
Proof of Theorem 3.3. We first note that for all ψ h,∆t ∈ V p,q h,∆t

φ -φ h,∆t 2 0,-1 2 ,Γ, * B D (φ -φ h,∆t , φ -φ h,∆t ) = R + Γ ∂ t f (φ -φ h,∆t ) ds x d σ t -B D (φ h,∆t , φ -φ h,∆t ) = R + Γ ∂ t f (φ -ψ h,∆t ) ds x d σ t -B D (φ h,∆t , φ -ψ h,∆t ) = R + Γ (∂ t f -V∂ t φ h,∆t )(φ -ψ h,∆t ) ds x d σ t .
The last term may be estimated by:

R + Γ (∂ t f -V φh,∆t )(φ -ψ h,∆t ) ds x d σ t ≤ R 0, 1 2 ,Γ φ -ψ h,∆t 0,- 1 2 , 
Γ, * . We use ψ h,∆t = φ h,∆t together with the interpolation inequality

R 2 0, 1 2 ,Γ ≤ R 0,0,Γ R 0,1,Γ .
As the residual is perpendicular to V p,q h,∆t ,

R 2 0,0,Γ = R, R = R, R -ψ h,∆t ≤ R 0,0,Γ R -ψ h,∆t 0,0,Γ
for all ψ h,∆t ∈ V p,q h,∆t , we obtain

R 0,0,Γ ≤ inf{ R -ψ h,∆t 0,0,Γ : ψ h,∆t ∈ V p,q h,∆t } .
Choosing ψ h,∆t = Π h,∆t R, based on the interpolation operator defined earlier, we obtain

R 0,0,Γ ∆t ∂ t R 0,0,Γ + h • ∇R 0,0,Γ .
The theorem follows.

Acoustic boundary problems

Recall the wave equation with inhomogeneous acoustic boundary conditions

∂ 2 t u -∆u = 0 on R + × Ω , ∂ ν u -α∂ t u = f on R + × Γ , u = 0 for t ≤ 0 .
For scattering problems f = -∂ ν u inc + α∂ t u inc is determined from an incoming wave u inc . For a finite or infinite time interval [0, T ] we introduce the bilinear form

a T ((ϕ, p), (ψ, q)) = T 0 Γ α φ ψ + 1 α pq + K ′ p ψ -Wϕ ψ + V ṗq -K φq ds x dt . (12) 
With

l(ψ, q) = T 0 Γ F ψ ds x dt + ∞ 0 Γ Gq α ds x dt , (13) 
where F = -2∂ ν u inc , G = 2α∂ t u inc , we consider the variational formulation for the wave equation in R 3 with acoustic boundary conditions on Γ:

Find (ϕ, p) ∈ H 1 ([0, T ], H 1 2 (Γ)) × H 1 ([0, T ], L 2 (Γ)) such that a T ((ϕ, p), (ψ, q)) = l(ψ, q) (14) for all (ψ, q) ∈ H 1 ([0, T ], H 1 2 (Γ)) × H 1 ([0, T ], L 2 (Γ)).
Note that σ may be set to 0 in the definition of the Sobolev spaces when T < ∞. The acoustic problem is equivalent to the wave equation with acoustic boundary conditions [START_REF] Duong | On retarded potential boundary integral equations and their discretizations[END_REF].

Its discretization reads: Find

(ϕ h,∆t , p h,∆t ) ∈ V p 1 ,q 1 h,∆t × V p 2 ,q 2 h,∆t such that a T ((ϕ h,∆t , p h,∆t ), (ψ h,∆t , q h,∆t )) = l(ψ h,∆t , q h,∆t ) (15) 
for all (ψ h,∆t , q h,∆t ) ∈ V p 1 ,q 1 h,∆t × V p 2 ,q 2 h,∆t .

The following well-posedness holds:

Proposition 3.4. Let F ∈ H 2 ([0, T ], H -1 2 (Γ)), G ∈ H 1 ([0, T ], H 0 (Γ)).
Then the weak form [START_REF] Gimperlein | A priori error estimates for a time-dependent boundary element method for the acoustic wave equation in a half-space[END_REF] of the acoustic problem and its discretization [START_REF] Gimperlein | Time domain boundary element methods for the Neumann problem: Error estimates and acoustic problems[END_REF] 

admit unique solutions (ϕ, p) ∈ H 1 ([0, T ], H 1 2 (Γ)) × H 1 ([0, T ], L 2 (Γ)), resp. (ϕ h,∆t , p h,∆t ) ∈ V p 1 ,q 1 h,∆t × V p 2 ,q 2
h,∆t , which depend continuously on the data.

We specifically note that the bilinear form a T satisfies a (weaker) coercivity estimate:

p 2 0,0,Γ + φ 2 0,0,Γ a T ((ϕ, p), (ϕ, p)) .
This follows from Equation (64) of [START_REF] Duong | On retarded potential boundary integral equations and their discretizations[END_REF],

a T ((ϕ, p), (ϕ, p)) = 2E(T ) + T 0 Γ α(∂ t ϕ)(∂ t ϕ) + 1 α pq ds x dt ,
where 2 dx is the total energy at time T . We state a simple a posteriori estimate.

E(T ) = 1 2 R d \Ω (∂ t u) 2 + (∇u)
Theorem 3.5. Let (ϕ, p) ∈ H 1 ([0, T ], H 1 2 (Γ)) × H 1 ([0, T ], L 2 (Γ)
) be the solution to [START_REF] Gimperlein | A priori error estimates for a time-dependent boundary element method for the acoustic wave equation in a half-space[END_REF], (ϕ h,∆t , p h,∆t ) ∈ V p 1 ,q 1 h,∆t × V p 2 ,q 2 h,∆t the solution to the discretization [START_REF] Gimperlein | Time domain boundary element methods for the Neumann problem: Error estimates and acoustic problems[END_REF]. Assume that

R 1 = F -α φh,∆t + 2K ′ p h,∆t -2Wϕ h,∆t ∈ L 2 ([0, T ], L 2 (Γ)) , R 2 = G + α -1 p h,∆t + 2V ṗh,∆t -2K φh,∆t ∈ L 2 ([0, T ], L 2 (Γ)) .
Then pp h,∆t 0,0,Γ + φφh,∆t 0,0,Γ R 1 0,0,Γ + R 2 0,0,Γ .

Proof. For every (ψ h,∆t , q h,∆t ) ∈ V p 1 ,q 1 h,∆t × V p 2 ,q 2 h,∆t we have

p -p h,∆t 2 
0,0,Γ + φ -φh,∆t 2 0,0,Γ a T ((ϕ -ϕ h,∆t , p -p h,∆t ), (ϕ -ϕ h,∆t , p -p h,∆t )) = R 1 , φ -ψh,∆t + R 2 , p -q h,∆t ≤ R 1 0,0,Γ φ -ψh,∆t 0,0,Γ + R 2 0,0,Γ p -q h,∆t 0,0,Γ ≤ ( R 1 0,0,Γ + R 2 0,0,Γ )× ( p -q h,∆t 0,0,Γ + φ -ψh,∆t 0,0,Γ ) .
The assertion is obtained by choosing (ψ h,∆t , q h,∆t ) = (ϕ h,∆t , p h,∆t ).

Naturally, for a quasi-uniform discretization of Γ and under stronger assumptions on R 1 , R 2 we may obtain powers of h and ∆t on the right hand side by the following argument:

As in the proof of Theorem 3.3, R 1 , ˙ ψ h,∆t = R 2 , q h,∆t = 0 for all ( ψ h,∆t , q h,∆t ) ∈ V p 1 ,q 1 h,∆t × V p 2 ,q 2 h,∆t . Hence R 2 2 0,0,Γ = R 2 , R 2 = R 2 , R 2 -q h,∆t ≤ R 2 0,0,Γ R 2 -q h,∆t 0,0,Γ . Choosing q h,∆t = Π h,∆t R 2 yields R 2 0,0,Γ ∆t ∂ t R 2 0,0,Γ + h • ∇ Γ R 2 0,0,Γ + ∆t h • ∇ Γ ∂ t R 2 0,0,Γ provided R 2 ∈ H 1 ([0, T ], H 1 (Γ)). Assuming R 1 ∈ H 1 ([0, T ], H 1 (Γ)), we similarly have R 1 2 0,0,Γ = R 1 , R 1 = R 1 , R 1 - ˙ ψ h,∆t ≤ R 1 1 2 -s,0,Γ t 0 R 1 -ψ h,∆t 1 2 +s,0,Γ . Choosing ψ h,∆t = Π h,∆t t 0 R 1 and s = 1 2 results in R 1 0,0,Γ ∆t ∂ t R 1 0,0,Γ + h • ∇ Γ R 1 0,0,Γ + ∆t h • ∇ Γ ∂ t R 1 0,0,Γ .
Altogether, pp h,∆t 0,0,Γ + φφh,∆t 0,0,Γ + ϕϕ h,∆t 0,

1 2 ,Γ R 1 0,0,Γ + R 2 0,0,Γ 2 i=1 ∆t ∂ t R i 0,0,Γ + h • ∇R i 0,0,Γ + ∆t h • ∇∂ t R i 0,0,Γ .

Error estimates for general discretizations

This section generalizes the results for the single layer potential without any assumptions on the underlying meshes. We recall Lemma 3 in [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF]:

Lemma 4.1. Let f 1 , . . . , f n ∈ H r σ (R + , H s (Γ)), 0 ≤ s ≤ 1, r ≥ 0, such that f j f k = 0 for j = k.
Let ω j be the interior of the support of f j with ω j = supp f j . Then

n j=1 f j 2 r,s,Γ, * ≤ n j=1 f j 2 r,s,ω j , * .
The lemma will be applied to a finite partition of unity Φ given by non-negative Lipschitz functions {φ j } M j=1 on Γ such that M j=1 φ j = 1.

Definition 4.2. The overlap of the partition of unity Φ is defined as K(Φ) = max j card{k :

φ k φ j = 0}.
For a partition of unity associated to a triangulation, M tends to infinity as the mesh size decreases, while the overlap may be much smaller. We note a crucial observation from [START_REF] Carstensen | A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation[END_REF], Lemma 3.1: Lemma 4.3. Let Φ be a finite partition of unity of ∂Ω with overlap K(Φ). Then there exists a partition of {1, . . . , M } into K ≤ K(Φ) non-empty subsets M 1 , . . . , M K , such that

K j=1 M j = {1, . . . , M }, M j ∩ M k = ∅ if j = k
and for all l ∈ {1, . . . , K} and j, k ∈ M l with j = k, φ j φ k = 0 on [0, T ] × ∂Ω.

Similar to the partition of unity in space, associated to the decomposition of the time axis, R + = ∞ l=0 [l∆t, (l+1)∆t), we consider a partition of unity {ψ l } ∞ l=0 on R + , ∞ l=0 ψ l = 1. We may choose it so that ψ l is supported in the interval ((l -1

2 )∆t, (l + 3 2 )∆t), and therefore

ψ l ψ l ′ = 0 whenever l ∈ M 0 = 2N, l ′ ∈ M 1 = 2N + 1.
We obtain a partition of unity { ψ l,j = ψ l ⊗ φ j } l,j on R + × ∂Ω.

Theorem 4.4. Let Γ ′ ⊂ Γ be connected. and let Φ be a finite partition of unity with overlap K(Φ). Then for any f ∈ H r σ (R + , H s (Γ ′ )) and any 0 ≤ s ≤ 1, we have

f 2 r,s,Γ ′ , * ≤ 2K(Φ) ∞ l=0 M j=1 f ψ l,j 2(1-s) r,0,Γ ′ f ψ l,j 2s r,1,Γ ′ .
Proof. We show

f 2 r,s,Γ ′ , * ≤ 2K(Φ) ∞ l=0 M j=1 f ψ l,j 2 r,s,Γ ′ , * . (16) 
The assertion then follows from the interpolation estimate f ψ l,j r,s,Γ ′ , * f ψ l,j 1-s r,0,Γ ′ f ψ l,j s r,1,Γ ′ .

To show [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF], we consider a partition M 1 , . . . , M K as in Lemma 4.3. Then f = ∞ l=0 M j=1 ψ l,j f , so that

f 2 r,s,Γ ′ , * = 1 m=0 l∈ Mm K k=1 j∈M k ψ l,j f 2 r,s,Γ ′ , * ≤ 2K 1 m=0 K k=1 l∈ Mm j∈M k ψ l,j f 2 r,s,Γ ′ , * .
With Lemma 4.1 and I l = ((l -1)∆t, (l + 2)∆t),

l∈ Mm j∈M k ψ l,j f 2 r,s,Γ ′ , * ≤ j∈M k l∈ Mm ψ l,j f 2 r,s,ω j , * ≤ l∈ Mm j∈M k ψ l,j f 2 r,s,I l ×ω j , * , so that f 2 r,s,Γ ′ , * ≤ 2K 1 m=0 l∈ Mm K k=1 j∈M k ψ l,j f 2 r,s,I l ×ω j , * = 2K ∞ l=0 M j=1
ψ l,j f 2 r,s,I l ×ω j , * , which shows [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF].

Together with Friedrichs inequality

f ψ l,j r,1,Γ ′ σ ∇(f ψ l,j ) r,0,Γ ′ + ∂ t (f ψ l,j ) r,0,Γ ′ one obtains f ψ l,j 1-s r,0,Γ ′ f ψ l,j s r,1,Γ ′ σ d 2(1-s) j (1 + d 2 j ) s ∇(f ψ l,j ) 2 r,0,Γ ′ + ∂ t (f ψ l,j ) 2 r,0,Γ ′ .
Here d j = max{δ j , ∆t}, where δ j is the width of the support of φ j , defined as the smallest number such that the following is true: There exists a direction n ∈ R 3 , |n| = 1, such that for all x ∈ R 3 and for each plane H perpendicular to n with x ∈ H, the intersection supp φ j ∩ H is a Lipschitz curve of length ≤ δ j . We now use V∂ t (φφ h,∆t ) = R, the coercivity of V∂ t in Proposition 3.1, and Theorem 4.4 with s = 1 2 . The following a posteriori error estimate follows:

Corollary 4.5. Let φ ∈ H 1 σ (R + , H -1 2 (Γ)
) be the solution to (4), and let

φ h,∆t ∈ H 1 σ (R + , H -1 2 (Γ)) such that R = ∂ t f -V∂ t φ h,∆t ∈ H 0 σ (R + , H 1 (Γ)). Then φ-φ h,∆t 2 0,-1 2 ,Γ, * σ j δ j ∇R 2 0,0,I l ×∆ j + ∂ t R 2 0,0,I l ×∆ j ≃ l,∆ j max{∆t, h ∆ } R 2 0,1,I l ×∆ j .

Lower bounds

As for time-independent problems, for the discussion of lower bounds we restrict ourselves to globally quasi-uniform meshes.

Because of the different norms in the upper and lower bounds for B D in Proposition 3.1, the a posteriori estimate only satisfies a weak variant of efficiency: Provided φ ∈ H 2 σ (R + , H 0 (Γ)) we have for ε ∈ (0, 1):

max{∆t, h} -1-ε 2 φ -φ h,∆t 0,-1 2 ,Γ, * R 0,1-ε,Γ = V( φ -φh,∆t ) 0,1-ε,Γ φ -φ h,∆t 2,-ε,Γ ≤ φ -φ h,∆t 2,0,Γ .
A proof of the sharp estimate, ε = 0, would require sharp mapping properties of the layer potentials outside the energy spaces and will be pursued elsewhere.

As in the elliptic case, we aim to use the mapping properties of V together with approximation properties of the finite element spaces to recover the same spatial Sobolev index - 1 2 in the upper and lower estimates.

Theorem 5.1. Assume that R ∈ H 0 σ (R + , H 1 (Γ)) and that the ansatz functions V = W p h,∆t ⊂ H 2 σ (R + , H 0 (Γ)) ∩ V p,q h,∆t satisfy inf ψ h∆t ∈V φ -ψ h∆t 2,0,Γ ≃ max{h, ∆t} β (17) 
for some β > 0. Then for all ε ∈ (0, 1)

R 0,1-ε,Γ max{h -1 2 , (∆t) -1 2 } φ -φ h∆t 2,-1 2 ,Γ .
Remark 5.2. In Theorem 6.1 below, the hypothesis (17) is verified using the singular expansion of the solution φ at the edges and corners.

Proof of Theorem 5.1. The theorem partly follows the functional analytic approach of [START_REF] Carstensen | Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes[END_REF] for the time-independent case. We consider the following quantities: the error of the best approximation Π h,∆t φ of φ in

H 2 σ (R + , L 2 (Γ)), E(φ, h, ∆t) = φ -Π h,∆t φ 2,0,Γ ,
where E(φ, h, ∆t) ≃ max{h, ∆t} β by [START_REF] Gwinner | Advanced Boundary Element Methods -Treatment of Boundary Value, Transmission and Contact Problems[END_REF]; the relative error of best approximation,

F (φ, h, ∆t) = φ -Π h,∆t φ 2,-1,Γ φ -Π h,∆t φ 2,0,Γ ;
and the inverse inequality [START_REF] Glaefke | Adaptive Methods for Time Domain Boundary Integral Equations[END_REF] G(h, ∆t) = sup

ψ h∆t =0 ψ h∆t 2,0,Γ ψ h∆t 2,-1,Γ max{h -1 , ∆t -1 }.
Their analysis relies on the projection operator P h,∆t from Lemma 2.6. Note that F (φ, h, ∆t) max{h, ∆t}. Indeed because φ ∈ H 2 σ (R + , H 0 (Γ)), by duality and the approximation properties of Π h,∆t :

φ -Π h,∆t φ 2,-1,Γ = sup η φ -Π h,∆t φ, η -Π h,∆t η η -2,1,Γ max{h, ∆t} φ -Π h,∆t φ 2,0,Γ .
This uses the estimate η -Π h,∆t η -2,0,Γ max{h, ∆t} η -2,1,Γ .

From the beginning of this section, we recall

R 0,1-ε,Γ φ -φ h,∆t 2,0,Γ ≤ φ -Π H,∆T φ 2,0,Γ + Π H,∆T φ -φ h,∆t 2,0,Γ .
Note that the first term is φ -Π H,∆T φ 2,0,Γ = E(φ, H, ∆T ). For the second term we observe that

Π H,∆T φ -φ h,∆t 2,0,Γ = P H,∆T (Π H,∆T φ -φ h,∆t ) 2,0,Γ G(H, ∆T ) Π H,∆T φ -φ h,∆t 2,-1,Γ , so that Π H,∆T φ -φ h,∆t 2,0,Γ G(H, ∆T ) 1/2 Π H,∆T φ -φ h,∆t 2,-1 2 ,Γ . We conclude R 0,1-ε,Γ E(φ, H, ∆T ) + G(H, ∆T ) 1/2 Π H,∆T φ -φ h,∆t 2,-1 2 ,Γ . Further, Π H,∆T φ -φ h,∆t 2,-1 2 ,Γ ≤ Π H,∆T φ -φ 2,-1 2 ,Γ + φ -φ h,∆t 2,-1 2 ,Γ . From the definition of F and interpolation, Π H,∆T φ -φ 2,-1 2 ,Γ is bounded by F (φ, H, ∆T ) 1/2 Π H,∆T φ -φ 2,0,Γ = F (φ, H, ∆T ) 1/2 E(φ, H, ∆T ) . To sum up, φ -φ h,∆t 2,0,Γ E(φ, H, ∆T ) + G(H, ∆T ) 1/2 F (φ, H, ∆T ) 1/2 E(φ, h, ∆t) + G(H, ∆T ) 1/2 φ -φ h,∆t 2,-1 2 ,Γ ≤ E(φ, H, ∆T ) E(φ, h, ∆t) φ -φ h,∆t 2,0,Γ (1 + G(H, ∆T ) 1/2 F (φ, H, ∆T ) 1/2 ) + G(H, ∆T ) 1/2 φ -φ h,∆t 2,-1 2 ,Γ , or, with δ = E(φ,H,∆T ) E(φ,h,∆t) (1 + F (φ, H, ∆T ) 1/2 G(φ, H, ∆T ) 1/2 ) and a constant C, φ -φ h,∆t 2,0,Γ G(H, ∆T ) 1/2 1 -Cδ φ -φ h,∆t 2,-1 2 ,Γ . If δ = E(φ,H,∆T ) E(φ,h,∆t) (1 + F (φ, H, ∆T ) 1/2 G(φ, H, ∆T ) 1/2 ) < 1 2C , we obtain R 0,1-ε,Γ G(H, ∆T ) 1/2 φ -φ h∆t 2,-1 2 ,Γ .
Here H and ∆T are sufficiently small compared to h and ∆t, and it remains to choose them so that δ < 1 2C . Set H = ρh and ∆T = ρ∆t for ρ ∈ (0, 1). Using that

F (φ, ρh, ρ∆t)G(φ, ρh, ρ∆t) ≃ max{h, ∆t} min{h, ∆t}
is uniformly bounded in ρ ∈ (0, 1), so that it suffices to show that E(φ,ρh,ρ∆t) E(φ,h,∆t) → 0 as ρ tends to 0. This follows from [START_REF] Gwinner | Advanced Boundary Element Methods -Treatment of Boundary Value, Transmission and Contact Problems[END_REF].

Best approximation and lower bounds

In this section verify the hypothesis (17) in Theorem 5.1 for polyhedral domains, by proving upper and lower bounds for the best approximation of the solution to the wave equation with Dirichlet boundary conditions.

Let Ω be a polyhedral domain and u a solution to the wave equation in Ω:

∂ 2 t u(t, x) -∆u(t, x) = 0 in R + t × Ω x , (18) 
u(t, x) = g(t, x) on Γ = ∂Ω , (19) 
u(0, x) = ∂ t u(0, x) = 0 in Ω. ( 20 
)
The function u exhibits well-known singularities at non-smooth boundary points of the domain. Locally near an edge or a corner, Ω is of the form R + × K, where the base K ⊂ S 2 is a smooth or polygonal subset of the sphere. The solution may be decomposed into a leading part given by explicit singular functions plus less singular terms [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF][START_REF] Kokotov | The Neumann problem for the wave equation in a cone[END_REF][START_REF] Kokotov | Diffraction on a cone: The asymptotics of solutions near the vertex[END_REF][START_REF] Plamenevskiǐ | On the Dirichlet problem for the wave equation in a cylinder with edges[END_REF]. We refer to [START_REF] Kokotov | The Neumann problem for the wave equation in a cone[END_REF]Theorem 7.4 and Remark 7.5] for details in the case of the Neumann problem in a wedge, respectively [START_REF] Kokotov | Diffraction on a cone: The asymptotics of solutions near the vertex[END_REF]Theorem 4.1] for the Dirichlet problem in a cone and state the decomposition in terms of polar coordinates (r, θ) centered at the vertex (0, 0, 0):

u(t, x) = u 0 (t, r, θ) + χ(r)r λ a(t, θ) + χ(θ)b 1 (t, r)(sin(θ)) ν + χ( π 2 -θ)b 2 (t, r)(cos(θ)) ν , (21) 
∂ n u(t, x) = ψ 0 (t, r, θ) + χ(r)r λ-1 a(t, θ) + χ(θ)b 1 (t, r)r -1 (sin(θ)) -ν + χ( π 2 -θ)b 2 (t, r)r -1 (cos(θ)) -ν . ( 22 
)
Here, ν = π α , where α is the opening angle of the wedge, and λ = -1 2 + 1 4 + µ, where µ is the smallest eigenvalue of the Laplace-Beltrami operator with Dirichlet boundary conditions in the subdomain K of the sphere. χ, χ are cut-off functions and a, b j sufficiently regular. For generic problems the functions a, b 1 , b 2 are not identically zero.

From the representation formula, the wave equation translates into the boundary integral equation V φ = f , with f = (1 -K)g and solution φ = ∂ n u| Γ .

The main theorem concerning the approximation of φ is: Theorem 6.1. Assume that the coefficient functions a, b 1 , b 2 are not identically 0. Then E(φ, h, ∆t) ≃ max{h, ∆t} max{ν-1 2 ,λ} .

In particular, hypothesis (17) is satisfied. A similar result in the elliptic case was known if Γ is a curve, i.e. in dimension 2 [START_REF] Carstensen | Efficiency of a posteriori BEM-error estimates for first-kind integral equations on quasi-uniform meshes[END_REF].

The key step in the proof of Theorem 6.1 is to show the result for bilinear basis functions on a rectangular mesh. For simplicity of notation, we restrict to one boundary face of Γ and assume it is given by Q × {0} with corner of the domain at (0, 0, 0), where

Q = (0, 1) 2 = kl R kl , R kl = [x k-1 , x k ) × [x l-1 , x l ) and x k = kh.
Recall the following estimate from [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF]:

Lemma 6.2. Let -1 ≤ s ≤ 0, 0 ≤ r ≤ ρ ≤ p + 1, R = [0, h 1 ]×[0, h 2 ], u ∈ H ρ σ ([0, ∆t], H 1 (R)), Π p
t u the orthogonal projection onto piecewise polynomials in t of order p, and Π 0 x,y the orthogonal projection onto piecewise constant polynomials in space, Π 0

x,y u = 1

h 1 h 2 R
u(t, x, y)dy dx.

Then for U = Π p t Π 0 x,y u we have

u -U r,s,R, * (∆t) ρ-r max{h 1 , h 2 , ∆t} -s ∂ ρ t u L 2 ([0,∆t]×R) (23) 
+ max{h 1 , h 2 , ∆t} -s h 1 u x L 2 ([0,∆t]×R) + h 2 u y L 2 ([0,∆t]×R) . If u(t, x, y) = u 1 (t, x)u 2 (y), u 1 ∈ H ρ σ ([0, ∆t], H 1 ([0, h 1 ])), u 2 ∈ H 1 ([0, h 2 ]) then u -U r,s,R, * (∆t) ρ-r max{h 1 , ∆t} -s ∂ ρ t u L 2 ([0,∆t]×R) + h 1-s 1 u x L 2 ([0,∆t]×R) + h 1-s 2 u y L 2 ([0,∆t]×R) .
Proof of 6.1. We use the upper bound E(φ, h, ∆t) max{h, ∆t} max{ν-1 2 ,λ} and first approximate the corner singularity f = r λ-1 a(t, θ). Here a is a function in

H ρ σ (R + , H 1 ([0, π/2])): With p| R kl = Π p t Π 0
x,y f and Lemma 6.2 one obtains

f -p 2 0,0,Q N k,l=1 k+l =2 (∆t) 2ρ ∂ ρ t f 2 0,0,R + h 2 k f x 2 0,0,R kl + h 2 l f y 2 0,0,R kl + f -p 2 0,0,R 11 . (24) 
For k 2, l 2 the following estimate holds, with the zeta function ζ(s):

N k,l=2 h 2 k f x 2 0,0,R kl = N k=2 h 2 k ∞ 0 π/2 φ=0 w(t, θ) 2 dθ d σ t √ 2(k+1)h √ 2kh r 2λ-4 rdr ∞ k=2 h 2λ k 2λ-3 = ch 2λ ζ(3 -2λ) .
Here we have used

|f x (t, x, y)| r λ-2 w(t, θ) with w ∈ H ρ σ (R + , H 0 ([0, π/2])).
For k = 1, l > 1 (and analogously for k > 1, l = 1), in [START_REF] Petersdorff | Decompositions in edge and corner singularities for the solution of the Dirichlet problem of the Laplacian in a polyhedron[END_REF] we compute that

N l=2 h 2 1 f x 2 0,0,R 1l h 2 1 ∞ 0 h 1 x=0 1 y=0 |f x (t, x, y)| 2 dy dx d σ t h 2 1 ∞ 0 √ 2 r=h π/2 φ=0 a 2 (t, θ)dθ r 2λ-3 dr d σ t h 2 1 + h 2λ 1 .
Finally, in the corner k = 1, l = 1 the singular function

f ∈ H ρ σ (R + , H 0 (R 11 )), because λ > 0. Now f -p 0,0,R 11 f 0,0,R 11 ≃ h λ 1 .
We now consider the approximation of the edge singularities, which are of two types, fixing Q = [0, 1] 2 with singularity at the x-axis:

(i) f (t, x, y) = χ(x)b(t, x)y ν-1 with edge intensity factor b ∈ H ρ σ (R + , H 1 0 (R + )), (ii) f (t, x, y) = χ(x)b(t)x λ-ν y ν-1
with a corner singularity in the edge intensity factor.

We have

f -p 2 0,0,Q N k,l=1 f -p 2 0,0,R kl . (25) 
First consider case (ii), where the time dependence factors out. Define 2 .

p 2 = 1 h 2 I * j-1 f 2 (y)dy, p 1 = 1 h 1 I j f 1 (x)dx, f 2 (y) = y ν-1 f 1 = x λ-ν where h = h 1 = h 2 , I j = [x j-1 , x j ] and I * k = [0, x k ]. Then one computes f 2 -p 2 2 L 2 (0,h) = (ν -1) 2 (1 + (ν -1) 2 )(2(ν -1) + 1) h 2(ν-1)+1 f 2 -p 2 2 L 2 (a,a+h) = a 2(ν-1)+1 η( h a ), a > 0, where η(δ) = (1 + δ) 2(ν-1)+1 -1 2(ν -1) + 1 - [(1 + δ) (ν-1) -1] 2 δ(1 + (ν -1)) 2 and δ > 0. With R * j = ∪ j-1 l=1 R jl = I j × I * j-1 , one notes f 2 -p 2 2 L 2 (I * j-1 ) p 1 2 L 2 (I j ) = h 2(ν-1)+1 (ν -1) 2 (1 + (ν -1) 2 )(2(ν -1) + 1) + j-1 l=1 ( x l h ) 2(ν-1)+1 η( h 2 x l ) x j x j-1 1 h 2 1 x j x j-1 x λ-ν dx 2 dx and x j x j-1 1 h 2 1 x j x j-1 x λ-ν dx 2 dx = x 2λ-2ν+1 j-1 x j-1 h [(1 + h x j-1 ) λ-ν+1 -1] 2 (λ -ν + 1) 2 . As η( h x l ) h 3 x 3 l and 1 δ [(1 + δ) λ-ν+1 -1] 2 (λ -ν + 1) 2 = 1 δ [(λ -ν + 1)δ + (λ -ν + 1)(λ -ν)δ 2 + O(δ 3 )] (λ -ν + 1) 2 = δ + (λ -ν + 1)δ 2 + O(δ 3 ) , we obtain N j=2 f 2 -p 2 2 L 2 (I * j-1 ) p 1 2 L 2 (I j ) = N j=2 h 2(ν-1)+1 [ (ν -1) 2 (1 + (ν -1) 2 )(2(ν -1) + 1) + j-1 l=1 ( x l h ) 2(ν-1)-2 ][(j -1)h] 2λ-2ν+1 (j -1)[(1 + 1 j-1 ) λ-ν+1 -1] 2 (λ -ν + 1)
The estimate

N j=2 f 2 -p 2 2 L 2 (I * j-1 ) p 1 2 L 2 (I j ) = c N j=2 h 2(ν-1)+1 (j -1) 2λ-2ν h 2λ-2ν+1 = h 2(ν-1)+1 h 2λ-2ν+1 N -1 k=1 k 2λ-2ν h 2λ
follows and may be integrated in time. Now consider

f 1 -p 1 2 L 2 (I j ) = x λ-ν -1 h I j x λ-ν dx 2 L 2 (I j ) = a 2(λ-ν)+1 η( h a ), a > 0 (λ-ν) (1+(λ-ν) 2 )(2(λ-ν)+1) h 2(λ-ν)+1 , a = 0 . For j ≥ 2 f 1 -p 1 2 L 2 (I j ) = x 2(λ-ν)+1 j h 2(λ-ν)+1 η h x j h 2(λ-ν)+1 = ( x j h ) 2(λ-ν)-2 h 2(λ-ν)+1 , f 2 2 L 2 (I * j-1 ) = x j-1 0 y 2ν-2 dy = x 2ν-1 j-1 ,
and

f 1 -p 1 2 L 2 (I j ) p 2 2 L 2 (I * j-1 ) = ( x j h ) 2(λ-ν)-2 ( x j-1 h ) 2ν-1 h 2(λ-ν)+1 h 2ν-1 ( x j h ) 2(λ-ν)-2+2ν-1 h 2(λ-ν)+1+2ν-1 . We have N j=2 f 1 -p 1 2 L 2 (I j ) f 2 2 L 2 (I * j-1 ) = c ∞ j=1 j 2(λ-ν)-2+2ν-1 h 2λ-2ν+1+2ν-1 = cζ(3 -2λ)h 2λ .
Again, this estimate may be integrated in time. We now consider case (i): f (t, x, y) = b(t, x)y ν-1 + (χ(x) -1)b(t, x)y ν-1 =:

f 1 + f 2 for ν > 1 2 and Q = [0, 1] 2 = I × I, with I = [0, 1]. Again we define q 1 = Π p t 1 0 b(t, x)dx, q 2 = 1 0 y ν-1 dy . Note that with f 2 (χ(x) -1)b(t, x)y ν-1 ∈ H 0 σ (R + , H 1 (Q)) we get f 2 -q 1 q 2 2 0,0,Q h 2 .
Since

y ν-1 -q 2 2 L 2 (I) ≃ h 2ν-1 , y ν-1 2 L 2 (I) ≤ c and b -q 1 2 0,0,I max{h, ∆t} 2 ∂ t b 2 0,0,I + ∂ x b 2 0,0,I , we have b(t, x)y ν-1 -q 1 (t, x)q 2 (y) 2 0,0,Q b 2 0,0,I , y ν-1 -q 2 2 L 2 (I) + y ν-1 2 L 2 (I) , b -q 1 2 0,0,I (26) 
h 2ν-1 + max{h, ∆t} 2 .
For the lower bound, we first consider the error in R 11 resulting from the corner singularity. There the error of approximation by a spatially constant function c is given by

a(t, θ)r λ-1 -c(t) 2 0,0,R 11 ∞ 0 h 0 π/2 0 r(a(t, θ)r λ-1 -c) 2 dθ drd σ t .
If a = 0, we may find a small intervall (θ 0δ, θ 0 + δ) on which a is nonzero for a time interval I. We estimate

a(t, θ)r λ-1 -c 2 0,0,R 11 I h 0 θ 0 +δ θ 0 -δ r(a(t, θ)r λ-1 -c) 2 dθ dr d σ t .
As a is a restriction of an eigenfunction of the Laplace-Beltrami operator, it is smooth, and up to higher order terms (h.o.t.) in h we compute

I h 0 θ 0 +δ θ 0 -δ r(a(t, θ)r λ-1 -c) 2 dθ dr = h 0 θ 0 +δ θ 0 -δ r(a(t, θ 0 )r λ-1 -c) 2 dθ dr d σ t + h.o.t. = 2δ I h 0 r(a(θ 0 )r λ-1 -c) 2 dr d σ t + h.o.t.
Now we may explicitly compute the infimum over c:

I h 0 r(a(t, θ 0 )r λ-1 -c) 2 dr ≥ C σ |I| min t∈I a(t, θ 0 ) 2 (λ -1) 2 2λ(λ + 1) 2 h 2λ .
This lower order bound for the error of order h λ matches with the upper bound from above.

An analogous argument for the regular edge intensity factor, case (i), shows that the inequality ( 26) is an equality up to higher order terms in h. We therefore obtain b(x)y ν-1q 1 (x)q 2 (y) 0,0,Q h ν-1 2 + h.o.t.

In a neighborhood of the edge or corner, the solution is given by its singular expansion, and the approximation error coincides with the approximation error for the singular functions,

Here, for every triangle △ and every time interval I n = [t n-1 , t n ] we define the partial error indicators

η △,∇ Γ (I n ) 2 = h △ tn t n-1 △ [∇ Γ ( ḟ -V φh,∆t )] 2 ds x dt , η △,∂t (I n ) 2 = ∆t tn t n-1 △ [∂ t ( ḟ -V φh,∆t )] 2 ds x dt .
The time integral is approximated by the trapezoidal rule, and the tangential gradient of a function F is computed as

∇ Γ F (t, x) = P Γ ∇F = ∇F (t, x) -ν(ν • ∇F (t, x))
with the outer unit normal vector ν to Γ, resp. the projection P Γ onto the tangent bundle of Γ.

To compute η △,∇ Γ from φh,∆t , we consider the gradient of V φh,∆t as a singular integral:

∇ Γ V φh,∆t (t, x) = -1 4π P Γ Γ (x -y) φh,∆t (t -|x -y|, y) |x -y| 3 + φh,∆t (t -|x -y|, y) |x -y| 2 ds y = -1 4π Nt m=1 Ns i=1 ϕ m i P Γ Γ ϕ i (y) β m (t -|x -y|) x -y |x -y| 3 + βm (t -|x -y|)
xy |x -y| 2 ds y .

Using the explicit form of β m , we obtain

∇ Γ V φh,∆t (t, x) = -1 4π Nt m=1 Ns i=1 ϕ m i t -t m-1 △t P Γ t-tm≤|x-y|≤t-t m-1 ξ i (y) x -y |x -y| 3 ds y - t -t m+1 △t P Γ t-t m+1 ≤|x-y|≤t-tm ξ i (y) x -y |x -y| 3 ds y .
The integrals are evaluated with a composite hp-graded quadrature, like the entries of the BEM matrix in [START_REF] Gimperlein | Adaptive time domain boundary element methods and engineering applications[END_REF]. See [START_REF] Gimperlein | Adaptive time domain boundary element methods and engineering applications[END_REF] for details.

Numerical experiments

Example 1: We consider the Dirichlet problem Vφ = f on the unit sphere Γ = S 2 with the right hand side f (t, x, y, z) = sin(t) 5 x 2 and [0, T ] = [0, 2.5]. We use a discretization by linear ansatz and test functions in space and time. Γ is approximated by uniform meshes of 80, 320,1280, and 5120 triangles, and the time step ∆t is 0.4, 0.2, 0.1, resp. 0.05 for the respective meshes to keep ∆t h fixed. The numerical results are compared to the exact solution.

Figure 1 shows the convergence of the error φφ h,∆t in the energy norm as well as the L 2 error in the sound pressure and compares them to both residual and ZZ error indicators. The resulting convergence rates are similar: We obtain a convergence rate of 0.93 in energy norm, 0.97 in sound pressure, 0.9 in the residual error indicator, and 1.02 in the ZZ indicator. This illustrates the reliability and efficiency of both error indicators with respect to the energy norm and related quantities such as the sound pressure in an example with known exact solution. More precisely, the quotient of the error estimate and the energy error, the efficiency index, remains approximately constant at 0.025 as the number of degrees of freedom increases.

Example 2:

We consider the Dirichlet problem Vφ = f on the square screen Γ = [-0.5, 0.5] 2 × {0} with the right hand side f (t, x, y, z) = sin(t) 5 x 2 for times [0, 2.5]. Using a discretization by linear ansatz and test functions in space and time, we compare the error of a uniform discretization to the error of an adaptive series of meshes, steered by the residual error estimate. The time step is fixed at ∆t = 0.1, and the uniform meshes consist of 18, 288, 648, 1352, and 6050 triangles, while the adaptive refinements correspond to 36, 74, 164, 370, 784, 1676, 3485, and 7432 triangles.

Figure 2 shows the convergence of the error indicator and the error in the energy norm, for both the uniform and adaptive series of meshes. The convergence rate is approximately 0.48 for uniform refinements, compared to 0.77 for adaptive refinements. The convergence rate in the uniform case agrees with the theoretical prediction of 0.5 from [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF], and the adaptive convergence rate of 0.77 recovers the results for time-independent screen problems [START_REF] Carstensen | A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation[END_REF].

As in the elliptic case, the convergence rate of the adaptive refinements does not reach the optimal rate of 1.5 achieved with algebraically graded meshes, as demonstrated in [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF]. The optimal anisotropic graded meshes cannot be obtained by mesh refinements: While adaptive meshes are locally quasi-uniform, graded meshes involve arbitrarily thin triangles with shallow angles near the edges of the screen. A heuristic explanation for the substantially higher rates of (anisotropic) graded meshes is contained in [START_REF] Carstensen | Residual-based a posteriori error estimate for hypersingular equation on surfaces[END_REF]. Figure 4 shows the convergence of the error indicator and the error in the energy norm, for both the uniform and adaptive series of meshes. The convergence rate is approximately 0.49 for uniform refinements, compared to 0.78 for adaptive refinements, almost identical to the square screen in Example 2.

Figure 5 shows representative adaptive meshes, where the color scale highlights the residual-based indicator values for each element. As expected, mesh refinements concentrate in the two sharper corners of the triangle.

Example 4: We consider the Dirichlet problem Vφ = f on the triangle Γ with angles of 30, 60 and 90 degrees, as depicted in Figure 7. The right hand side is given by f (t, x, y, z) = sin(t) 5 , and we consider times [0, 2.5]. Using the discretization from Example 2, we compare the error on uniform meshes to the error of an adaptive series of meshes, steered by the residual error estimate. The time step is fixed at ∆t = 0.1.

Figure 6 shows the convergence of the error indicator and the error in the energy norm, for both the uniform and adaptive series of meshes. The convergence rate is approximately 0.448 for uniform refinements, compared to 0.65 for adaptive refinements. The rates are slightly reduced compared to Examples 2 and 3, possibly because the asymptotic regime only sets in for higher degrees of freedom because of the small angles of 30 degrees in the triangulation. From Experiments 2, 3 and 4 we conclude that the convergence rate is does not depend on the angles of the triangle, and therefore the corner singularity. The convergence rate of around 1 2 on uniform meshes matches the rate theoretically expected for the approximation of the edge singularity [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF], while the approximation error from the corner singularities is of higher order. The adaptive convergence rates of around 0.78 are compatible with the convergence rates of around 0.8 for the time-independent Laplace equation in [START_REF] Carstensen | A posteriori error estimate and h-adaptive algorithm on surfaces for Symm's integral equation[END_REF]. The rates are slightly reduced in Example 4, with angles of 30 degrees, possibly because of the 
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 1 Figure 1: Energy error, residual and ZZ error indicators for Dirichlet problem on Γ = S 2 , Example 1.
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 2 Figure 2: Energy error and residual error indicators for Dirichlet problem on Γ = [-0.5, 0.5] 2 × {0}, Example 2.

Figure 3

 3 Figure3shows representative adaptive meshes, where the color scale highlights the residual-based indicator values for each element. Mesh refinements concentrate at the left and right edges, where the right hand side is steep, and to a lesser extent also at the top and bottom edges.

Example 3 :

 3 We consider the Dirichlet problem Vφ = f on the triangle Γ with angles of 45, 45 and 90 degrees, as depicted in Figure5. The right hand side is given by f (t, x, y, z) = sin(t)5 , and we consider times [0, 2.5]. Using the discretization from Example 2, we compare the error on uniform meshes to the error of an adaptive series of meshes, steered by the residual error estimate. The time step is fixed at ∆t = 0.1.
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 3 Figure 3: Meshes 1, 2, 3 and 6 generated by adaptive refinements, Example 2.
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 4 Figure 4: Energy error and residual error indicators for Dirichlet problem isosceles triangle, Example 3.
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 5 Figure 5: Meshes 3, 5, 7 and 8 generated by adaptive refinements, Example 3.

Figure 7

 7 Figure 7 shows representative adaptive meshes, where the color scale highlights the residual-based indicator values for each element. As expected, mesh refinements concentrate in the corners according to their sharpness.
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 6 Figure 6: Energy error and residual error indicators for Dirichlet problem on 30-60-90 triangle, Example 4.

Figure 7 :

 7 Figure 7: Meshes 2, 5, 8 generated by adaptive refinements, Example 4.

  with the same norm to a bounded operator on H -s ω (Γ). If the triangulation is globally quasi-uniform, we show that Q h is a bounded operator on H 1

ω (Γ) with operator norm uniformly bounded in ω: Lemma 2.5. Assume that Γ does not have reentrant corners. Consider a globally quasiuniform mesh and s ∈ [0, 1]. For all φ ∈ H s ω (Γ), we have:
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b(t, x)y ν-1 , y λ-ν i ρ ν-1 , respectively a(t, θ)r λ-1 , up to lower order terms in h. We conclude that E(φ, h, ∆) = φ -Π h,∆t φ 2,0,Γ max{h, ∆t} min{ν-1 2 ,λ} + h.o.t. .

References [START_REF] Petersdorff | Randwertprobleme der Elastizitätstheorie für Polyeder-Singularitäten und Approximation mit Randelementmethoden[END_REF][START_REF] Petersdorff | Regularity of mixed boundary value problems in R 3 and boundary element methods on graded meshes[END_REF] show how to deduce approximation results for piecewise linear functions on triangular meshes from piecewise bilinear functions on rectangles. Altogether, the proof of Theorem 6.1 is complete.

Algorithmic details

The a posteriori error estimate from Theorem A leads to an adaptive mesh refinement procedure, based on the four steps:

The precise algorithm is given as follows:

Adaptive Algorithm: Input: Spatial mesh T = T 0 , refinement parameter θ ∈ (0, 1), tolerance ǫ > 0, data f .

1. Solve V φh,∆t = ḟ on T .

2. Compute the error indicators η(△) in each triangle △ ∈ T .

3. Find η max = max △ η(△).

Stop if

5. Mark all △ ∈ T with η(△ i ) > θη max .

6. Refine each marked triangle into 4 new triangles to obtain a new mesh T Choose ∆t such that ∆t ∆x ≤ 1 for all triangles. 7. Go to 1.

Output: Approximation of φ.

In the first step, we solve V φ = ḟ using the Galerkin discretization [START_REF] Gimperlein | Adaptive time domain boundary element methods and engineering applications[END_REF] 

where β m is the piecewise linear hat function in time associated to time t m ,

and ξ i is the piecewise linear hat function in space associated to node i. As a step towards adaptive mesh refinements in space-time, we here focus on timeintegrated error indicators as they are relevant for geometric singularities. As shown in [START_REF] Gimperlein | Boundary elements with mesh refinements for the wave equation[END_REF], for polyhedral meshes and screens time-independent graded meshes lead to quasioptimal convergence rates in spite of singularities of the solutions. The time-integrated error indicator for triangle △ is computed as