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A model is developed for analyzing mechanical systems with a pair of bodies with 
topological changes in their kinematic constraints. It is built upon the concept of a 
Poincare map rather than following the traditional methods of differential equations. 
The model provides a set of well-defined and naturally-discrete equations of motion 
and is capable of giving physical insights of dynamic characteristics of deadbeat 
convergence of multiple collisions and periodic or chaotic responses. The devel­
opment of a dynamic model and a local stability analysis are presented. 

1 Introduction 

Topological changes in a mechanical system often occur 
when kinematic constraints of the system vary with time. The 
changes are bound to produce jump discontinuities in the mo­
tions of bodies in the system, leaving to impulsive reaction and 
control forces. Examples can be found in the fields of robotics 
and machine dynamics. Clearances in machine joints and link­
ages may lead to highly nonlinear or chaotic processes. For a 
robotic manipulation system for object acquisition, a robot 
usually interacts through physical contact with an object being 
manipulated. The object is free to move in a certain range, 
before being fully controlled by the robot. In both cases the 
dynamic system being considered undergoes changes in its de­
grees of freedom, often accompanied by changes in its topol­
ogy. This paper is concerned with dynamic characteristics of 
systems with time-varying topologies. Particularly, it focuses 
on the dynamics of repeated collisions in a system of two planar 
objects, one of which is under active control. 

Since kinematic constraints of a mechanical system generally 
couple dynamics of its individual bodies, a topological change 
in the constraints causes changes in the dynamic equations of 
motion. The dynamic equations are generally of the following 
form 

Mij=f(q,q,t) + ¢J(q)"A 
¢ (q,t) �0 

where q = [qi> Q2, . . •  , Qn]T consists of n generalized coor­
dinates and "A is the Lagrange multiplier vector. The inequality 
equations describe the kinematic constraints and the differ­
ential equations are of second order. Exact closed form so­
lutions for these equations cannot be found, except for simple 
systems. Hence, numerical methods must be employed. 

Investigations of these systems have generally used so called 
"fitting" methods, in which the equations of motion are ex­
plicitly expressed between times at which discontinuous events, 
usually collisions, occur. The discontinuities are treated as 

boundary conditions to fit into the continuous equations of 
motion to account for the changes (Wehage and Haug, 1982; 
Haug, Wu, and Yang, 1986). These methods require two tasks, 
automatically to predict the constraint changes and numerically 
to integrate the differential equations (Gilmore and Cipra, 
1987). Unfortunately, both tasks have many difficulties and 
the numerical computation is time-consuming. Furthermore, 
these methods can only be used to show the system dynamics 
for a specific initial condition. They are not able to anticipate 
the general dynamic characteristics of the system such as sta­
bility and regions of stability in a state space. 

For systems with small relative distance between the bodies 
of constraint change, specific methods have been developed 
to analyze system dynamics (Haines, 1980). An impact pair 
model was used to determine specific design parameters of 
linkages with clearance and intermittent motion mechanisms 
(Dubowsky and Freudenstein, 197 1; Lee and Wang, 1983). It 
is also used to show dynamic response of systems of harmonic 
excitation (Guckenheimer and Holmes, 1983; Heiman, Bajaj, 
and Sherman, 1988). However, as opposed to a general anal­
ysis, these methods are intended for their particular applica­
tions. 

A general approach presented in Zhuravlev ( 1978) has also 
used the impact damper model. It uses a technique of non­
smooth transformation of generalized coordinates to eliminate 
the discontinuities in the velocities of bodies with constraint 
changes. The approach is suited for ideal conservative systems 
and for some special dissipative systems. It has been expressed 
in the canonical forms and applied to the analysis of motion 
of a solid of smooth boundary bouncing on a frictionless plane 
( Ivanov and Markeev, 1984). It is demonstrated that the method 
is effective to show general properties of system dynamics, 
such as stability of harmonic and subharmonic motions. Un­
fortunately, it is difficult to generalize this approach to general 
mechanical systems with damping and friction, since the energy 
conservation principle essentially underlines the nonsmooth 
transformation technique used in the method. In an asymptotic 
analysis presented in Nagaev ( 197 1), the dynamic description 
is focused on the events of the discontinuities and equations 
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Fig. 1 The physical system of an impact pair 

of motion are formulated as return maps of the modern theory 
of dynamical systems. However, the method is applicable to 
approximate asymptotic behavior only. Both approaches uti­
lize a key property originally observed by Appell ( 1909) con­
cerning changes of system momentum. The approach presented 
in this paper follows the same observation. 

Of particular interest and concern of the present work is the 
dynamic study of systems in which the topological changes are 
due to physical contact and collision among a pair of bodies. 
One reason attributing to this is the need for a general method 
which could overcome the problem of discontinuity in rep­
resenting the system dynamics and is efficient for numerical 
computation. Another motivation for the effort is the impli­
cation of the method for applications in the field of robotics. 
Many robotic manipulation tasks require physical interaction 
of a robot end-effector and the manipulated object. In the 
presence of collision, the system intermittently changes its char­
acteristics in response to the actions of the robot. These changes 
result in difficulties to predict the motions of the object and 
the collisions raise a large bandwidth of the dynamics to be 
observed by a sensory-driven feedback control system (Buhler, 
Koditschek, and Kindlmann, 1989). A more general method 
is needed for planning strategies to control the system dynam­
ics. This is essentially important for challenging robotic tasks 
requiring catching, throwing, and juggling. Such a method is 
also of general interest in the practice of automatic design of 
mechanical part feeders and assembly systems (Boothroyd, 
Redford, and Murch, 1972; Mason, 1986; Peshkin and Sand­
erson, 1988). 

The purpose of the investigation is to develop a method 
capable of elucidating the motion characteristics that are due 
to time-varying topologies. It is hoped that the result of the 
investigation would provide not only a general dynamic model 
and efficient computational schemes, but also a deeper un­
derstanding of the dynamic characteristics. In the author's 
opinion, the deeper physical insight has not been well reported 
in the literature and is much needed for system analysis and 
simulation. 

2 Tbe Model of Physical System 

The mechanical system to be studied is shown in Fig. 1, 
which consists of two bodies: a body with strictly convex shape 
moving in the vertical plane under applied force F and torque 
T, and a massive plane plate with a specified vertical displace­
ment. The plate is in theory equivalent to a solid half-space. 
The model is called an impact pair. It is a simplified version 
of many typical mechanical connections and robotic manip­
ulation systems. Because of its simplicity, it has been taken as 
one of the most frequently used basic models for the inves­
tigation of mechanical systems with clearances (Haines, 1980). 
In spite of its simplicity, the model exhibits the typical behavior 
which is found in systems containing time-varying kinematic 
constraints. By studying this model, we shall present a new 
approach which would shed light on the overall system be­
havior and gain more physical insight into features of system 
dynamics. We study the system without contact friction first. 
Then we discuss the generalization of our approach to frictional 
systems. 

The moving body of mass, m, is subject to applied forces 

(e.g., gravity) and comes into contact with the massive object. 
In the classical theory of rigid body mechanics, its linear and 
angular velocities undergo jump discontinuities upon colliding 
the massive body. Energy loss resulting from any impact is 
modeled by the coefficient of restitution, e, so that the com­
ponent of relative velocity along the contact normal1 before
and after impact are related by 

v+ = -ev-
This is known as Newton's law. 

The physical contacts may repeat many times, leading to a 
finite or an infinite number of collisions. With a contact the 
system admits one topology; without a contact it exhibits a 
different topology. The topology varies as a sequence of col­
lisions take place. We derive analytical equations to describe 
the system dynamics in the following section. 

3 Discrete Time Formulation 

In order to characterize the system dynamics it is important 
to recognize that the topological changes may cease at a mo­
ment in a period of time of interest. The object stops bouncing 
relative to the massive object and the two objects remain con­
tinuous contact afterwards. When such a situation occurs, the 
object retains a continuous motion and the velocity discontin­
uities no longer exist. Hence, the system dynamics can be 
described by differential equations with algebraic constraints 
and studied using the methods developed for this class of 
systems (Gear and Petzold, 1984). We refer to the phase of 
motion before the qualitative change as the intermittent phase, 
and to the phase after as continuous phase. 

Therefore, it is desirable that a method for systems with 
topological changes is not only able to provide a well-suited 
characterization of motions with multiple collisions, but is also 
able to identify the conditions for a convergence of the to­
pological changes. This is of great practical interest in control 
and planning of robotic manipulation where initially a se­
quence of collisions are often inevitable but are desired to be 
eliminated in the course of manipulation. The goal of this 
section is to develop such a method. 

3.1 An Example: A Dropped Tennis Ball. Before car­
rying out our approach, let's examine a simple example. Con­
sider a system where a tennis ball is dropped onto a floor. The 
example appears trivial and may be found in any dynamics 
textbook; however, it provides a nice illustration of the features 
of interest. The tennis ball loses mechanical energy at every 
collision with the floor. At collision n, the impact is governed 
by Newton's law v,i = -ev;; where Vn is the vertical velocity
of the tennis ball at the collision, the superscripts - and + 
denote the instants just before and just after the collision, and 
e is the coefficient of restitution. At the next collision (n + 
1), the velocity of the ball is given as v;;+ 1 = -v,i, since
mechanical energy is conserved between collisions. Hence, we 
obtain a difference equation for the consecutive collisions: 

( 1) 

and the elapsed time between the two successive collisions is 
Tn = -2ev;; !g where g is the gravity acceleration. These equa­
tions show that the velocity exponentially decreases as the 
number of bounces increases, and the process of bouncing 
ceases after a finite time when the number of bounces n ap­
proaches infinity. The total elapsed time T from first impact 
to the end is the sum of the intervals, 

"' 2eV T= h 7n=(1-e) n�! g 

1If one of the contact points is a vertex, the contact normal is defined as the 

normal of the other body's surface. We do not consider the case of two vertices 
in contact. 
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(a) (b) 
Fig. 2 The system of the object of smooth geometry and the plane 
surface 

where V is the magnitude of the initial approaching velocity 
v! . After the interval T, the ball will be at rest on the floor.

From this example we see that the system dynamics is de­
scribed by the discrete representation of the linear difference 
Eq. ( 1). The intermittent and continuous phases are also quite 
distinguishable. The behavior of the system in the continuous 
phase, for this example, is very simple and is governed by a 
static force balance relation. Similar to this example, the ve­
locities of the convex body in the general system considered 
suffer discontinuities at collisions, foiling conventional dif­
ferential equation approaches. Instead of looking for the con­
tinuous time history of motion of the system, we shall seek 
the system state at discrete times, more specifically at a se­
quence of collision events. In what follows, we shall carry out 
a theoretical development of the difference equation approach 
and show that this approach enables us to overcome the draw­
backs of discontinuities. 

3.2 Poincare Maps. The discrete time formulation is ob­
tained through the mathematical theory of dynamical systems 
originally proposed by Poincare (Guckenheimer and Holmes, 
1983). For an Nth-order continuous-time system, the theory 
replaces the original system with an (N - l)th-order discrete­
time system called Poincare map. The replacement reduces the 
system order and naturally bridges the gap between continuous­
time and discrete-time systems. 

In practice, the Poincare map is often derived by setting a 
hypersurface of (N - 1) dimension in a state space. If the 
hypersurface is chosen properly, then the state trajectories will 
repeatedly intersect it. A Poincare map is defined by evolution 
of the (N - 1) variables x at the intersection. Instead of using 
the continuous trajectory, one can study the system dynamics 
using the evolution equation 

x(n+ 1)=f(x(n) ), nan integer 

One can also go back to the differential equations to obtain 
the full continuous time history of the original system if needed. 

In order to construct a hypersurface to obtain a correspond­
ing Poincare map f, one must have a general knowledge of 
the system behavior beforehand so that the state trajectories 
indeed cross the hypersurface. Unfortunately, there is no sys­
tematic method for this construction, although some computer 
programs provide helpful tools (Parker and Chua, 1987). In 
general, for a given system of differential equations, the func­
tion f is difficult to determine or it can only be determined 
approximately (Guckenheimer and Holmes, 1983). For our 
system, however, we can obtain an exact function f, relying 
on the insight of system behavior. Note that a collision takes 
place when the two bodies come into a contact and that the 
bodies will move apart from each other after the collision, 
provided the convexity that we assumed. If the collision re­
peatedly occurs, the evolution of collision events could be used 
to characterize system dynamics. If the collisions cease to exist, 
the bodies either keep in constant contact or are separated, 

0

Fig. 3 An example Poincare surface 

eliminating the changes in system topology. In this case, the 
Poincare map for the evolution no longer exists. Therefore, 
by studying the existence of the Poincare map, we are able to 
obtain the conditions for qualitative changes in system dy­
namics. Hence, the Poincare map is a natural choice. 

3.3 Quasi-Coordinates and Velocity Discontinuities. In 
order to seek the state of system at a sequence of collisions, 
we need to express the geometric conditions of collision ex­
plicitly. We will limit ourselves to the case of single point 
contact between the object and the plane surface to avoid the 
difficulties of multiple point contact. The assumption is sat­
isfied if the object has a strictly convex shape. The geometric 
condition for collision can be obtained through a quasi-co­

ordinate u1 which is the minimum distance between a pair of 
points on the geometric boundaries of the object and the plane 
surface, shown in Fig. 2. Note that these points are not fixed 
relative to the objects themselves if the bouncing object is in 
motion. This coordinate explicitly determines whether or not 
the object is in contact with the surface. When they are in 
contact, u1 = 0; otherwise u1 > 0. In the (x, y) coordinate
system embedded in the plane surface, the quasi-coordinate is 
defined by 

uJ(t) =y(t) -h(8(t)) (2) 

where, for the case of the plane surface, y is the coordinate 
of the center of mass of the object, and h(8) is the projection 
of the distance from the center of mass to the point of the 
object boundary on they axis. Note that h(8) is a function of 
the orientation 8 of the object relative to the surface only, and 
is independent of the displacements of the object in both x 
and y directions in this case. 

The coordinate u1 can be directly used for defining the Poin­
care map as U1 = 0 defines the hypersurface 

y-h(8)=0 (3) 

For a system shown in Fig. 3, the hypersurface is plotted in 
the space of coordinates (8, y J. This space is also called the 
configuration space as it was introduced by Lozano-Perez 
( 1983) in the domain of motion planning for robotics. In fact, 
the hypersurface defined here is the configuration space bound­
ary of the two bodies. Conceptually, the relative motion of 
the bodies is described in the configuration space by the motion 
of a point, which represents their relative kinematic configu­
rations, relatively bouncing over the configuration space 
boundary. This provides a different point of view to look at 
the time-varying topologies. 

We must also take into account the velocity discontinuities. 
For the rigid-body model (Section 2), the velocity discontin­
uities take place instantaneously and the object displacements 
remain unchanged during a collision. In other words, in the 
state space these discontinuities always occur when a trajectory 
intersects the hypersurface, and the state jumps from one point 
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Fig. 4 Velocity jumps on the Poincare hypersurface 

to another point both on the hypersurface. This leaves two 
sets of state of intersection on the hypersurface: one for pre­
collision (t;;, x (t,�)) and the other for post-collision ( t,i, x (t,i )),
with n being an integer and x as independent state variable 
vector, shown in Fig. 4. Therefore, two different Poincare 
maps can be defined: (1) C governs the discrete trajectory 
of pre-collision state variables 

x- (n+ 1)=f-(x- (n))

where x- is an augmented pre-collision state vector, possibly
including variable t,, and (2) r+ of post-collision state vari­
ables 

In this paper we arbitrarily choose the post-collision map, and 
the set of state vector and the Poincare map are simply denoted 
as x and f unless they are particularly specified otherwise. 

The concept of quasi-coordinate is well known for its special 
properties in dynamic analysis (Appell, 1909; Neimark and 
Fufaev, 1972). The time derivative of a quasi-coordinate is 
usually a linear function of the derivatives of generalized co­
ordinates of Lagrange. Our choice of the quasi-coordinate u1 
has one particular advantage. It allows us to directly apply 
Newton's law of impact to determine the velocity discontinuity 
in u1 as 

(4) 

where e is the coefficient of the restitution (Section 2) and u 1 
is given as 

ul(t)=.YUJ-h'(e)iJU) <h'=dhlde) (5) 

If we assume smooth geometric boundaries of the objects, then 
u 1 (t), which is also called quasi-velocity, has the same order
of continuity as y (t) and () (t). 

In addition to the quasi-coordinate ul> we take the angular 
orientation of the object () as the second independent coor­
dinate. For the frictionless system, there is no tangential impact 
force, and the collision has no changes in relative motion in 
the tangential direction. �herefore, we need to express an ad­
ditional velocity jump in (). In the frictionless case, its expres­
sion is given as (Goldsmith, 1960), 

. + . h'(()) . + . -

e u  )-e(r)=-
h'

2
(())+p

2 (ul (t )-u� (t ) )  (6)

Recall that for our system the Poincare map is a function 
f to express the state variables right after the n + 1 collision, 
in terms of their values right after the previous collision n. 
This evolution can be decomposed as two parts: a mapping f1
from the post-collision state at t,i to the next pre-collision state 
at t,� + 1 and then a mapping f2 from the pre-collision state to
the post-collision state at t;i+ I> namely, 

(7) 

using the notation for a composite function. The function fz 
in fact represents the evaluation of the velocity discontinuities 
at collision n + 1, which h&ve been described above. Function 
f1 remains to be derived. 

3.4 Difference-Algebraic Equations. The system dy­
namic equations in the relative coordinate system (y, ()) are 
given as 

mji ( t) = m ( Y1 ( t) -Yz ( t)) = Fy ( t) -mji2 ( t) + jy ( t) (8) 

mp20(t) = T(t) -h' (())jy(t) (9) 

where jy is the impulsive force at y direction, Fy is the com­
ponent of acting force in y direction, Tis the acting torque, 
and y1 and Yz are the absolute displacements of the object and
the plane surface, separately. Note that the impulsive force fY 
exists only when an impact occurs. When there is no impact, 
jy = 0. Since we assume the second object of plane boundary 
to have a relative large mass, y2 and y2 are considered to be 
continuous at a collision. We also have the following kinematic 
relationships: 

ii1 <tl =ji(t) -h'OUl -h" iJ2
(t)

.Y <t> = u1 u> + h '<e> iJ u> 
(10) 

(11) 

We now examine the function fl> which is obtained by in­
tegrating system equations from t;i to t,�+ 1• Let's consider the 
motion of body at time t between two successive collisions at 
f11 and tn+ 1• The displacement and velocity of the coordinates
u1 and e are given as, taking those at t;i as initial conditions,

U 1 (t) = U 1 (t,i) + [' U1 (t)dt (12) J,+ ll 

eu>=e(t;i)+ r' iJ(t)dtJ,+ ll 

(13) 

(14) 

(15) 

After substituting the above kinematic and dynamic equations 
into them, the expressions become 

utCt>=.Y<tl-h' <eu>>iJu> 

=y(t,i)+ r (Ql(t)-jiz(t))dt-h'(()(t))
In 

= u1 (t;i)-(h' (e (t))- h' (e (t;i))) iJ (t,i) 

(16) 

Ut(t)=y(t)-h(()(t)) 

= y ( t,i) + y (t;i) (t-t;i) 
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8(t )=8(t: )+0(t: )(t-t;i )+ L(L Q2(t)dt)dt
ll ll 

where 

=eu: > + e u,; > u-t: > + L ( L Q2(t )dt)dt 
n n 

T(t ) 
Q2(t ) =--2 mp 

(17) 

(18) 

(19 ) 

We evaluate these equations at t = t,�+l and, for clarity, we 
drop superscripts + and - for the continuous quantities, t, 
u" e, Y2, and Y2· We then obtain 

u1 (t;;+ d = u1 (t,i )-(h' (BUn+ 1 ) )

(22) 

(23) 

Up to this point, we have accomplished the derivations for 
the function f 1, expressing the state at t,� + 1 in terms of the state
at t;;-. Using the expressions for the velocity discontinuities in 
Eqs. (4) and (6), the entire Poincare function is ready to be 
completed. Noting that at the collisions the kinematic con­
straint requires that 

U1 (t11) = U1 Un+ 1) = 0
and using a convention that variable n representing the time 
instant right after collision n at t;;- and that r(n) representing 
the time interval between the collisions n and n + 1, we obtain 

the system equations in terms of the variables u" u" e' e' t' 
and r, for the case e > 0, 

u1(n+1)=0 (24)

u1 (n + 1 )  = - e [u 1 (n)- [h' (8 (n + 1 ))- h' ( e (n) )J e ( n )

((n+l) 
+ J Ql(t )dt-[y2(t(n+1 ))-y2(t(n ) )] l(n) 

((11+1) 

J
-h' (8(n+ 1)) J Q2(t )dt 1(11) 

rl(n+l) ( 
B(n+ 1 )=8(n ) + 8 (n)r(n ) + J J Q2(s )dsdt 1(11) 1(11) 

(25) 

(26) 

((II+ I) 
+ J Q2 (t )dt (27) 1(11) 

t(n+1)=t(n )+r(n ) (28) 

and 
11(11+ I) 

I
I 

J J Q1 (s )dsdt+ y2(t(n ) )r(n) 1(11) /(11) 
- fY2 (t(n + 1))- Y2 (t(n ) )] + [u1 (n ) + h' (B(n ) )  iJ (n )]r(n ) 

-[h(8(n+1))-h(8(n ) )] = O  (29) 

The difference Eqs. (24)-(28) can be rewritten into explicit 
difference equations. Moreover, the system is nonautonomous 
since the variable t ( n )  is explicitly in the equations. We may 
ignore variable u1 (n ) since Eq. (24) always defines the Poincare 
section and u1 (n ) = 0. Instead of using u1 (n), we introduce 
t(n) as a state variable. Then the equations can be rearranged 
to become an autonomous system of the difference-algebraic 
equations of t_he augmented state variable x ( n )  
[t(n)u1(n)8(n )8 (n )]T in a vector form:

x (n + 1 )  = f(x (n ) ,r(n ) ,g(x (n ) ,r(n ) ) )  (30) 
¢(x(n),r(n),g(x(n ),r(n ) ) )  = 0  (31) 

where r(n ) is the elapsed time from t(n ) to t(n + 1) and g 
represents the applied forces on the object and the absolute 
motions of the plane surface. The vector Eq. (30) represents 
the difference Eqs. (25)-(28), while the scalar Eq. (31) defines 
the algebraic Eq. (29). 

Functions f and¢ are continuous and differentiable. Hence, 
through the application of the Poincare's method, we have 
obtained a well-defined discrete formulation. This develop­
ment will enable us to apply conventional techniques to analyze 
the system dynamic characteristics without any problems of 
discontinuity. 

4 Stability Analysis 

The difference-algebraic equations derived above are highly 
nonlinear, and it is difficult to find exact solutions except for 
simple systems. However, the behavior of solutions for arbi­
trary initial conditions as n � oo can be characterized by the 
local stability of equilibrium states (also called fixed points), 
and the global regions of their stability. The local property 
shall provide some insights into the dynamic features of the 
system, whereas the global analysis shows the overall behavior 
of the nonlinear systems. In this section, we discuss the fixed 
points and their stability. The global analysis and the numerical 
simulation are presented in Wang (199 3). 

The characteristics of dynamic behavior is related to the 
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Fig. 5 Discrete trajectories and fixed points 

properties of function g which represents the applied forces 
and the motion of the massive plane object. We shall refer to 
it as the driving junction. Stability of system response to the 
driving function is the major concern of this section. This is 
of practical significance, as discussed in Wang ( 1989b) to the 
development of control strategies for manipulation tasks in 
some dynamic environments. We study the general case of 
dissipative system (0 < e < 1). For a perfectly plastic system 
(e = 0), the problem becomes trivial and after the first collision
the object usually continuously contacts the surface; for a 
perfectly elastic system (e = 1), the collisions become con­
servative and the system exhibits special dynamic behavior 
(Wang, 1989a). 

4.1 Equilibrium State and Fixed Point. Our difference­
algebraic equations are in the semi-explicit form with the ex­
plicit first order vector difference Eq. (30) and the scalar Eq. 
(31). The system is analogous to the system of differential­
algebraic equations of continuous time model discussed in Gear 
and Petzold ( 1984). We may regard the variable 7(n) as an 
intermediate variable since it does not possess an evolution, 
and the algebraic Eq. (31) as a constraint on the intermediate 
variable. Thus, the system is determinate because the number 
of intermediate variables is equal to the number of constraints 
(Gear and Petzold, 1984). 

A fixed point x* satisfies 

x* = f(x* ,7* ,g(x* ,7*)) (32) 
<f>(x*/,g(x*,7*))=0 (33) 

and the associated time t * = t( oo) as n � oo could be either
finite or infinite, depending on whether E117(n) converges. 

Let's at this moment exclude possible periodic equilibrium 
states, for which both harmonic and subharmonic motions 
must be considered. Then we find the fixed points for this 
system 

and correspondingly 

* * x1 = t = constant

x; = u� =0

x; = o* = constant 

* . • x4 = 8 =constant

7* =0 
These fixed points are not isolated. In a sub-state space of 
variables x2, x3, and x4, the fixed points are connected and 
consist of the plane x2 = 0 (Fig. 5). Every point on the plane
is a state of equilibrium, representing the state of zero relative 
normal velocity at the contact point and of arbitrary relative 
angular position and velocity. 

4.2 Steady-State Solutions and Their Local Stabil­
ity. Having found the fixed point, we now study its local 
stability characteristics. Here, stability or instability will be 
taken in the sense of Lyapunov. The local stability of a fixed 
point x* is represented by that of the linearized system equa­
tions. Let z = [z1 z2 z3 z4]7 be the perturbation for the state

vector, and!; be the perturbation for variable 7(n), respec­
tively, 

x(n)=x*+z(n) 

7(n) =7* + !;(n) 
When discussing the local stability, the perturbation variables 
z and !; are assumed to be small, and when substituting these 
into Eqs. (30) and (31) and expanding their right-hand side 
functions around the fixed point x *, and 7 *, the nonlinear
terms in the Taylor series expansion are usually neglected. 
Thus, we obtain a system of linear equations: 

z(n+ 1)=Az(n) +b!;(n) 

c7z(n) +d!;(n) =0 

(34) 

(35) 

where the Jacobian matrix A has components 

1 0 0 0 
0 0 

0 
A= 

0 e 
0 Ci 

0 (3 0 
with 

-2x; 

and 

h' (x;) 
(3=-(1+e ) 2 '2 * p +h (XJ) 

* •• * I * * II * *2Ql(t )-Jl(t )-h (X3)Q2(t )-h (x3)X4 

b7 = [1 0 0 0] 
c7 = [0 1 0 0] 

if 

1 
* " * I * * II * *2 d=2 [QI(t )-Y2(t )-h (x3)Q2(t )-h (x3)x4 J�O

The stability of the solution z (n) = 0 for the linear system 
is completely determined by the matrix A. The stability criteria 
are discussed in many books on difference equations, for ex­
ample, (Bernussou, 1977). Here, we summarize some of rel­
evant results. 

(1) The solution for the linear system is asymptotically 
stable if and only if all the eigenvalues of A are of 
absolute values less than one. 

(2) The solution is not stable if one of the eigenvalues has 
absolute value greater than one. 

·(3) If there are eigenvalues whose absolute values are equal
to one and all other eigenvalues have absolute values 
less than one, then the linear system is stable when the 
eigenvalues of absolute values equal to one have in­
dependent eigenvectors. 

The third case in which at least one eigenvalue has absolute 
value equal to one is referred to as the critical case. For the 
critical case, the local stability for the linearized system cannot 
be directly carried over to its original nonlinear system. It 
usually requires higher order terms in the Taylor series to 
determine the local stability of the nonlinear system (Bemus­
sou, 1977). However, if the fixed point is not isolated, then 
we have a degenerate case, for which the stability characteristics 
for the linearized system may be used to evaluate the stability 
of the fixed point for the original nonlinear system. 

Eigenvalues of A are found by evaluating 

lt..I-AI =0 
The four eigenvalues are real 
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}q = e and A2 = A3 = A4 = 1 

and three of them are repeated eigenvalues with unit magni­
tude, but the multiple eigenvalue has linearly independent ei­
genvectors. Together with the first independent eigenvector 
associated with the eigenvalue 1\1 = e, these eigenvectors are 

v1=[0 1-e -Q! -{3]7 

V2=[1 0 0 0]7 

v3= [O o of 

V4=[0 0 0 1]7

Noting that the linearized system is in the critical case and 
that the fixed point is not isolated, we may directly find the 
solutions for the linearized system by carefully examining the 
structure of the linear equations: 

where 

2 c II z1(n) 
* 

e 
( 1-e) W 

Z2(n) = Ce11

2 II t(n) =- -. Ce
w 

* * •• * hI * Q ( *) h II ( *) *2 
0W = Ql (t ) -Y2 (t ) - (X3 ) 2 t - X3 X4 -;;!:. 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

and C is a constant to be determined from the initial conditions. 
In these solutions, the magnitudes of the variables z(n) and 

r<n) exponentially decay as n - oo. The sum E;:"r<n) of the 
intervals j(n) converges to a finite value. This means that in 
a finite time interval the discrete trajectory approaches the 
fixed point and the repeated collisions come to an end, although 
an infinite number of collisions take place. Then a continuous 
contact begins. These properties resemble those of the tennis 
ball system shown in Eq. ( 1), even though in addition to the 
bouncing motion z2 this system has angular motions z3 and z4• 

Since the first eigenvalue satisfies I A.11 = e <  1 and the mul­
tiple eigenvalue of magnitude equal to one has linearly inde­
pendent eigenvectors, the connected fixed point is the 
degenerate critical case. In a strict sense, the system is not 
asymptotically stable. For a trajectory S1 in the neighborhood 
of the fixed point, let us perturb the initial state x(O) slightly 
to its neighbor x(O) + ox(O). Then the new trajectory S2 starting
at the neighbor will not converge to the fixed point x* cor­
responding to the original trajectory. Instead, it converges to 
another fixed point x* + ox* in its vicinity (Fig. 5). The per­
turbation ox(O) in the initial state leads to the discrepancies 
ox* in the final state variables except for x; which approaches 
zero as n - oo despite the perturbation. 

The degeneracy of the critical fixed point is a result of the 
physical nature of the system. The system is of second order, 
but the energy storage and dissipation elements are not com­
pletely represented if we treat it as a mass-damper-spring sys­
tem. In fact, there is no spring-like element to resist the motion 
of the u1 coordinate. This leads to an extra degeneracy that is 
not reflected in the difference equations since the variable 
u1 (n) is ignored in the discrete formulation. Similarly, in co­
ordinate 0 both spring-like and damper-like elements do not 
exist. The system motion is essentially free in that coordinate, 
resulting in two more degrees of degeneracy. If we remove the 
only dissipative element by making the system perfectly elastic, 
then the fixed points and their local stability will change dra-

matically, causing the system to behave in a totally different 
manner (Wang, 1989a). 

In the solutions for the linear system (36)-(40), Z2(n) is the 
component of the relative velocity at the contact point along 
the common normal. It is evaluated at the moment of post­
collision, and must be non-negative, as is the elapsed time 
r< n). Therefore, it is evident that these solutions are feasible 
only for a negative w* and a positive constant C. This means 
that the conditions for successive collisions require that the 
object accelerate towards the surface in the course of the col­
lisions, since w* represents the relative acceleration of the 
object toward the plane surface. This condition is expressed 
as 

This condition has an intuitive meaning. If the object is 
placed on the surface of the massive object and remains in 
contact, then the object may have a rolling motion of angular 
velocity iJ {t). In order to maintain the contact, it is necessary 
that (Wang, 1989a) 

Q1 {t)- Y2 (t)- h 1 [0 (t)]Q2 (t)- h" [0 (t)] 0
2 (t) < 0

This suggests that the condition for local-stable convergence 
of a sequence of collisions to a continuous contact is identical 
to the condition for continuous rolling without separation. Of 
course, this result is not surprising. 

When W* > 0, the solutions of the linear equations give 
either negative time intervals T(n) or negative rebounding ve­
locities z2 ( n). The solutions for the latter attempt to represent 
the motion of the object coming from the inside of the massive 
half-space and moving towards the open half space. Once the 
object touches the boundary, it is bounced into the solid again. 
This is mirror-symmetric to the realistic situation that the ob­
ject can move only in the open half-space. The symmetry of 
the solutions reflects the fact that the equations only represent 
geometric boundaries, without a notion of solid occupied vol­
ume. This problem, called viability, can be resolved by simply 
discarding solutions of nonphysical significance. For general 
systems, special care may be required to accomplish this (Hei­
man et al., 1988). 

Moreover, there is a special case that we must take care of. 
When w* = 0, the second order terms in the Taylor series 
expansions are needed to determine stability. The following 
condition is required 

wu*> >0 

However, this condition guarantees that the collision process 
ceases as n - oo, but the object will not continue to keep 
contact with the surface afterwards. In fact, contact will break 
again just when the successive collisions are about to come to 
an end. This is because the relative acceleration W(t) between 
the object and the surface becomes positive after the moment 
t*, and the plane surface slows relative to the object. The 
contact cannot pull the object, and the object will leave the 
contact surface right after the moment. 

In summary, there are three possibilities at an equilibrium 
state, depending on the value of the relative acceleration w*: 
( 1) The equilibrium is unstable ( w* > 0) and it can never 
be reached; (2) The equilibrium is stable ( w* < 0). In this 
case, the bouncing motion becomes deadbeat in a finite time 
interval as an infinite number of collisions converge. The sta­
bility is called deadbeat stabiliW; (3) The equilibrium is mar­
ginally stable ( W* = 0 and W* > 0). These three cases are
illustrated in Fig. 6. 

4.3 Rate of Convergence. The rate of convergence of a 
stable equilibrium can be illustrated geometrically. For the 
noncritical case ( w* < 0), the asymptotic solutions are dom­
inated by the linearized system solutions or the first order 
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Fig. 6 Possible cases of repeated collisions 

expansions. Let us examine the elapsed time 7(n ). We have 
found its solution, Eq. (40) 

7(n ) =Ce" 
with a constant C. For a given initial value 7(0), there corre­
sponds a unique sequence 7(0), 7(1), 7(2), . . . . This sequence 
can be represented by an iteration process defined by 

7(n + 1) = e7(n ) 
which is described graphically using rectangular coordinates 
with axes 7(n )  and 7 (n + 1) by two straight lines defined by
7(n + 1) = 7(n ) and 7(n + 1) = eT(n ) as shown in Fig.
7(a). From the initial value 7(0) the sequence eventually ap­
proaches the origin, and the iteration process converges with 
the magnitude of the variable 7(n ) reduced by e for each 
iteration. 

For the critical case ( w* 
= 0), the approximated system

must involve the second-order expansions because the first 
order term w• vanishes. Generally it is cumbersome to derive
the second-order or higher-order expansions (Levy and Less­
man, 1961). In an asymptotic analysis for a closed related 
problem, Nagaev (1971) proposed the following form of series 
expansions 

"' 

X;(n ) = � "'x; (n )E"' for i= 1,3,4
m=O 

"' 

x2(n ) = � "'xz(n )E"'
m�2 

"' 

7 (n ) = � "'7(n )E"'
m=O 

and an addition series expansion for x 2 ( n )  
"' 

x2(n ) = � "'x2(n )E"'
m=l 

where E = Af." and A and 'A are constants.
Similarly, after substituting these expressions into the dif­

ference-algebraic equations and equating coefficients of like 
powers of e on both sides of the equations, we again obtain a 
set of first order difference equations for each order m of E"'. 
However, unlike the noncritical case, the equations are non­
linear and their solutions are polynomials of variable E = A f." 
instead, where the constant 'A is a positive root of the equation 

A3 + 2t-2-2eA-e= 0
The equation has a single positive root whose value is always 

�(n) � (n) (a) (b) 
Fig. 7 Convergence of variable r{n) 

greater than the coefficient of restitution e and less than 1 (e 
< A < 1). The solution for 7(n ) is

7 (n )  = Df." (f.>e ) 

where D is a constant. The iteration process 

7 (n+ l )=A7(n ) 

also converges. However, the rate of convergence is slower 
than that of the noncritical case since A is greater than e, Fig. 
7(b). We omit the fine details of the analysis and the reader 
is referred to Levy and Lessman (1961) and Nagaev (1971) for 
further discussions. 

5 Systems with Contact Friction 

In the presence of contact friction between the bodies, the 
Poincare hypersurface is defined the same as in the frictionless 
case, but the Poincare map becomes more complicated. During 
a collision a frictional impulse Px is generated along the com­
mon tangent of the contact points. If we adopt Coulomb's 
law of dry friction, the magnitude of the frictional impulse is 
related to the magnitude of normal impulse Py by a coefficient 
of friction l.t as follows 

The inequality relationship requires further conditions on con­
tact modes of impact to determine the exact value of the fric­
tional impulse. The derivations for these conditions are fairly 
complicated and lengthy, as presented in Wang (1989a); Wang 
and Mason (1992). Here, we only outline the results. A contact 
mode of impact describes how the tangential relative motion 
of the contact points changes during the collision. In the case 
of Coulomb's model, the contact points may slide relative to 
each other, or stick, or stick and then reversely slide. Accord­
ingly, there are three contact modes: sliding, sticking, and 
re versed sliding. Conditions for these contacts modes are the 
functions of the pre-collision system state variables. In general, 
the state space is divided into three regions, called contact 
regions, each corresponding to a contact mode. Once the con­
tact mode is identified, a unique solution to the impulse is 
determined (Wang and Mason, 1992). 

One may recall that the Poincare map consists of two parts: 
f1 and f2, Eq. (7). The former describes the motion of the
object free from the contact constraint and maps a post-col­
lision state to a pre-collision state of the next collision. The 
function f1 is unchanged for the frictional system, except for 
an additional set of equations for the motion in the x coor­
dinate. The second function f2 describes the changes in veloc­
ities at a collision and maps the pre-collision state into the 
post-collision state. These velocity discontinuities in the fric­
tional system are substantially different from those for the 
frictionless system derived in the previous section. Their an­
alytical expressions for each contact mode are different. There­
fore, the final difference-algebraic equations are of the form 
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x(n+l)= 

lfs(x(n) ,7(n) ,g(x(n) ,7(n))) for sliding contact 
fc(x(n),7(n),g(x(n),7(n))) for sticking contact 
f,(x ( n), 7( n) ,g(x ( n), 7( n))) for reversed sliding contact 

(42) 

and 

ct>(x ( n), 7 ( n) ,g(x ( n), 7 ( n)) ) = 0 (43) 

where the vector x is the augmented state variable vector as 
before but including x(n) and x(n). The exact expressions 
for these functions are described in Wang (l989a) but not 
presented here due to space limit. 

The mapping function f is defined by the functions fs, fc, 
and f, for each contact mode respectively and f is continuous 
but piecewise differentiable with respect to the state variables. 
In other words, the function has continuous derivatives inside 
each contact region (i.e., for each contact mode), and the 
derivatives approach finite values as any point on the boundary 
of each region is approached from its interior; but the values 
are different if the boundary point is approached from interiors 
of different regions which share the boundary. 

The piecewise differentiability result in more complexity for 
the local and global stability analysis. If the fixed point is in 
the interior of a contact region then the method of local analysis 
presented in Section 4 can be directly applied, and we would 
have similar results to those for the frictionless system. How­
ever, if the fixed point is on a boundary between contact 
regions, we must determine in which contact region to perform 
the local analysis. This depends on the interior of the contact 
region from which the discrete trajectory approaches the fixed 
point. Consequently, the results for that contact region should 
be applied. In the global analysis and numerical simulation 
(Wang, 1993), these factors do not cause any problems if the 
contact regions are borne in mind and carefully coded in nu­
merical programs. 

6 Conclusions 

Mechanical systems with a pair of bodies may establish a 
sequence of collisions. When the bodies contact and separate, 
the topology of system changes drastically. A model of impact 
pair has been developed to describe the system dynamics by a 
discrete time representation. A function of point mapping or 
a Poincare map is defined to explicitly describe an evolution 
process of the multiple collisions. The resulting difference­
algebraic equations are well-defined and suited for dynamic 
analysis and numerical simulation. A local stability analysis 
has shown physical insight to the deadbeat convergence of 
multiple collisions and the characteristics of the topological 
changes. The aspects of global analysis and numerical com­
putation are the subjects of another study (Wang, 1993). 

This paper is confined in the domain of planar bodies with 
one being represented by a massive plane surface. The pre­
sented approach, however, can be applied to a broader class 
of systems such as a system of objects both with curved bound­
aries as discussed in (Wang, 1989a). We have emphasized the 
deadbeat behavior of a series of collisions in the presence of 
material inelasticity and contact friction. It is possible that the 
system would exhibit periodical or chaotic responses to an 
excitation of the massive body. This will be discussed else­
where. 
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