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Boundary Feedback Stabilization of the

Boussinesq system with mixed boundary conditions

Mythily Ramaswamy∗, Jean-Pierre Raymond†, Arnab Roy∗

Abstract

We study the feedback stabilization of the Boussinesq system in a two dimensional do-
main, with mixed boundary conditions. After ascertaining the precise loss of regularity of the
solution in such models, we prove first Green’s formulas for functions belonging to weighted
Sobolev spaces and then correctly define the underlying control system. This provides a
rigorous mathematical framework for models studied in the engineering literature. We prove
the stabilizability by extending to the linearized Boussinesq system a local Carleman esti-
mate already established for the Oseen system. Then we determine a feedback control law
able to stabilize the linearized system around the stationary solution, with any prescribed
exponential decay rate, and able to stabilize locally the nonlinear system.

Key words. Boussinesq system, mixed boundary conditions, boundary Feedback Stabiliza-
tion, finite dimensional controllers, fractional Sobolev spaces.
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1 Introduction

In the recent years, there has been a considerable interest in feedback stabilization of fluid flows
around stationary solutions. However most of the works focus on either Dirichlet or Neumann
boundary conditions on the entire boundary. Mixed boundary conditions do arise naturally in
applications, for example, in energy efficient building structures.

In this paper, we would like to establish rigorous stabilization results for the Boussinesq
system, around a stationary solution, by feedback controls of finite dimension, for geometrical
domains and boundary conditions including models studied numerically in [1]. Stabilization
problems for the Navier–Stokes system with mixed boundary conditions are already studied
in [2]. Those results could be extended without major difficulties to the Boussinesq system. But
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in [2], only the case of a right angle junction between Dirichlet and Neumann boundary condi-
tions is considered. Therefore the results obtained in [2] cannot be applied to the geometrical
configurations studied in [1].

The goal of this paper is to fill this gap. An extension of the results of [2] is not obvious.
Indeed the analysis of such control systems relies on fine regularity results and on Green’s
formulas to characterize adjoint operators. These Green’s formulas, which are known for velocity
fields and temperatures with H3/2+ε spatial regularity with ε > 0, may be wrong for H3/2−ε

spatial regularity when ε > 0 (see [3]). In addition to that, the H3/2−ε spatial regularity with
ε > 0 that we have for the models considered here, is not sufficient to deal with the nonlinear
term of the control Navier–Stokes equations. This is why a careful analysis of these difficulties
is carried out in the present paper. The main idea to overcome the drawbacks linked to the loss
of regularity is to work with weighted Sobolev spaces. The analysis of the stationary case can
be handled with results proved in [4] for the Laplace and Stokes equations separately, but the
approach proposed in the present paper is totally new both for the analysis and for the control
of such instationary systems, even for the case of the Navier–Stokes system alone.

The precise assumptions on Ω are stated in Section 2.1. Its boundary Γ = ∂Ω is split as
follows Γ = Γw ∪ Γc ∪ Γn, where Γw, Γc and Γn are relatively open subsets in Γ, two by
two disjoint. An example of domain satisfying the assumptions stated in Section 2.1 is given in
Fig. 1. The control Boussinesq system satisfied by the temperature τ , the fluid velocity u and

w
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Γ

Γ
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w

Figure 1: Rectangular domain with inflow and outflow boundary condition.

pressure q is

∂τ

∂t
− κ∆τ + u · ∇τ = fs in Q, τ(0) = τ0 in Ω,

τ = gτ,s + θc on Σc ,
∂τ

∂n
= 0 on Σ \ Σc ,

∂u

∂t
+ (u · ∇)u − div σ(u, q) = β τ , div u = 0 in Q,

u = 0 on Σw, u = gu,s + vc on Σc, σ(u, q)n = 0 on Σn,

Πu(0) = Πu0,

(1.1)

where κ is the thermal diffusivity, ν is the fluid viscosity, σ(u, q) = ν(∇u + (∇u)T )− qI is the
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Cauchy stress tensor, fs, gτ,s and gu,s are stationary data, Q = Ω × (0,∞), Σ = Γ × (0,∞),
Σn = Γn × (0,∞), Σw = Γw × (0,∞), Σc = Γc × (0,∞), θc and vc are control functions,
β ∈ L∞(Ω;R2), and Π is the Leray projector introduced in Section 2.2.

Let (τs,us, qs) be a solution to the stationary Boussinesq system

−κ∆τs + us · ∇τs = fs in Ω,

τs = gτ,s on Γc,
∂τs
∂n

= 0 on Γ \ Γc,

(us · ∇)us − div(σ(us, qs)) = β τs, div us = 0 in Ω,

us = gu,s on Γc, us = 0 on Γw, σ(us, qs)n = 0 on Γn.

(1.2)

We assume that (τ,u, q) is an unstable solution for the instationary Boussinesq system (1.1).
Our goal is to stabilize system (1.1) in a neighborhood of the stationary solution (τs,us, qs) at
a given decay rate ω, by finite dimensional boundary controls in the form

θc(x, t) =
N∑
i=1

fi(t)gθ,i(x) and vc(x, t) =
N∑
i=1

fi(t)gv,i(x). (1.3)

The functions gi = (gθ,i,gv,i)
T are localized in Γc, and they play the role of actuators. They have

to be chosen in order to satisfy some stabilizability properties. The function f = (fi)1≤i≤N ∈
L2(0,∞;RN ) is the control variable. In order to determine the control f in feedback form, we
write below the system satisfied by (θ,v, p) = (τ − τs,u− us, q − qs):

∂θ

∂t
− κ∆θ + us · ∇θ + v · ∇τs + v · ∇θ = 0 in Q,

θ = θc on Σc,
∂θ

∂n
= 0 on Σ \ Σc, θ(0) = θ0 in Ω,

∂v

∂t
− div σ(v, p) + (us · ∇)v + (v · ∇)us + (v · ∇)v = β θ in Q,

div v = 0 in Q, v = vc on Σc, v = 0 on Σw,

σ(v, p)n = 0 on Σn, Πv(0) = Πv0 in Ω,

(1.4)

where θ0 = τ0 − τs and v0 = u0 − us. The linearized system around the steady state solution
(τs,us, qs) is given by

∂θ

∂t
− κ∆θ + us · ∇θ + v · ∇τs = 0 in Q,

θ = θc on Σc,
∂θ

∂n
= 0 on Σ \ Σc, θ(0) = θ0 in Ω,

∂v

∂t
− div σ(v, p) + (us · ∇)v + (v · ∇)us = β θ, div v = 0 in Q,

v = vc on Σc, v = 0 on Σw, σ(v, p)n = 0 on Σn,

Πv(0) = Πv0 in Ω.

(1.5)

The main issues that we have to deal with are

– obtaining regularity results for the linearized system, for the closed-loop homogeneous and
nonhomogeneous linearized systems,
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– writing the linearized system as a control system,

– studying the stabilizability of the control system, and determining stabilizing feedback control
laws,

– studying the stability of the closed-loop nonlinear system.

Let us address successively these issues. In Section 3, by using the variational formulation
of the stationary Boussinesq system, we define the Boussinesq operator (A, D(A)) in Z =
L2(Ω)×V0

n,Γd
(Ω), where V0

n,Γd
(Ω) = {v ∈ L2(Ω;R2) | div v = 0 in Ω, v ·n = 0 on Γd} and Γd =

Γw ∪Γc (see Section 2.1). The control operator B is defined in Section 3.5, and in Section 4, we
show that the linearized system (1.5) satisfied by z = (θ,Πv)T can be written in the form

z′ = Az + Bf , z(0) = z0,

and that (I − Π)v satisfies an algebraic equation. This representation is essential to apply
the stabilizability Hautus test. We also need the precise characterization of the adjoint oper-
ators A∗, B∗. This is obtained by using Green’s formulas and regularity results for functions
belonging to D(A) and to D(A∗). In particular, we prove in Section 3 that

D(A) ⊂ H2
δ (Ω)×H2

δ (Ω;R2) and D(A∗) ⊂ H2
δ (Ω)×H2

δ (Ω;R2),

where H2
δ (Ω)×H2

δ (Ω;R2) is a weighted Sobolev space introduced in Section 2.1. We emphasize
that these regularity results are obtained by using the mixed (variational) formulation of the
stationary Boussinesq system, the Green’s formulas are obtained by using the PDE formulation
of this system and the variational formulation is used in writing the PDE in operator form. That
is why we show the equivalence between these three formulations. Due to the loss of regularity
induced by the Dirichlet–Neumann, Neumann–Neumann and Dirichlet–Dirichlet junctions, the
analysis is more tricky.

Stabilizability results may be deduced from null controllability results. Local boundary con-
trollability to trajectories of the Boussinesq system is established in [5], [6], [7]. See also [8],
for additional results of local exact controllability to the trajectories of the Boussinesq systems
with interior controls. But all these controllability results are for Dirichlet conditions for both
velocity and temperature and when the boundary of the domain is regular. As far as we know,
there are no similar controllability or stabilizability results in the case of mixed boundary condi-
tions and the analysis of our problem is more delicate. Here, adapting to the Boussinesq system
the approach used in [9] for the Oseen system, we prove in Appendix a local Carleman estimate
for the adjoint stationary Boussinesq system. Using this result, we prove that the control sys-
tem corresponding to (1.5) is stabilizable. Then the feedback control law is defined as in [10]
or [2]. The regularity of solutions to the nonhomogeneous linearized closed loop system is also
established in Section 5.

In particular, we show in Section 5.3 that if the initial condition (θ0,v0) belongs to Hε(Ω)×
Vε
n,Γd

(Ω), where Vε
n,Γd

(Ω) = V0
n,Γd

(Ω) ∩Hε(Ω;R2), and if the right hand side of the nonhomo-

geneous linearized closed-loop system belongs to L2(0,∞;H−1+ε
Γc

(Ω))×L2(0,∞; H−1+ε
Γd

(Ω)), for
ε ∈ (0, 1/2), then the solution to the closed-loop linearized system belongs to the Hilbert space

X =
(
L2(0,∞; D((λ0I −A)

1
2

+ ε
2 )) ∩H

1
2

+ ε
2 (0,∞; Z)

)
+H1(0,∞;H

3
2
−ε(Ω)×H

3
2
−ε(Ω)).
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In Section 6, we carefully estimate the nonlinear terms v · ∇θ and (v · ∇) v in order to show,
via a fixed point method, that the closed-loop nonlinear system (6.1) admits a unique solution
in some ball of X. More precisely we prove the following theorem in Section 6.2.

Theorem 1.1. Let ε belong to (0, 1/2). For a given ω > 0, there exist a family of actuators

gi = (gθ,i,gv,i) ∈ H3/2
00 (Γc)×H

3/2
00 (Γc) explicitly given in (5.5), a constant µ0 > 0 and a constant

C0 > 0 such that if µ ∈ (0, µ0) and if ‖(θ0,v0)‖Hε(Ω)×Vε
n,Γd

(Ω) ≤ C0 µ, then the system (6.1)

admits a unique solution in the ball Bµ =
{

(θ, v) ∈ X : ‖eωt(θ,v)‖X ≤ µ
}

, and it satisfies

‖(θ(t),v(t))‖Hε(Ω)×Hε(Ω) ≤ Ce−ωt,

where C depends on ‖θ0‖Hε(Ω) and ‖v0‖Hε(Ω).

For the definition of the spaces H
3/2
00 (Γc) and H

3/2
00 (Γc) see Section 2.1.

Therefore, our paper provides a rigorous framework for models studied in [1]. Let us mention
some additional references linked to our paper. The idea of using finite dimensional controllers
for the stabilization of linear parabolic systems goes back to [11]. The stabilization of the
Navier–Stokes system by means of finite dimensional feedback controllers is obtained in [12], in
the case of an internal control. The case of a boundary control is studied in [13], [10], [14]. See
also additional results in [15], under the more restrictive assumption that the unstable spectrum
of the linearized operator is semi-simple.

2 Preliminaries

2.1 Functional framework and assumptions

We set L2(Ω) = H0(Ω;R2), Hs(Ω) = Hs(Ω;R2), ∀ s > 0 and the same notation conventions will

be used for trace spaces. We denote by H
1/2
00 (Γc) (respectively H

3/2
00 (Γc)) the subset of functions

belonging to H1/2(Γc) (respectively H3/2(Γc)) whose extension by 0 to the whole boundary Γ

belongs to H1/2(Γ) (respectively H3/2(Γ)). A similar definition is valid for H
1/2
00 (Γd). Now we

introduce the spaces

V1
Γd

(Ω) = {v ∈ H1(Ω) | div v = 0 in Ω, v = 0 on Γd },

V0
n,Γd

(Ω) is the closure of V1
Γd

(Ω) in L2(Ω),

H1
Γn

(Ω) =
{
p ∈ H1(Ω) | p = 0 on Γn

}
, Z = L2(Ω)×V0

n,Γd
(Ω).

From the above definition of V0
n,Γd

(Ω), it follows that, for all v ∈ V0
n,Γd

(Ω), v · n|Γd = 0 as

element in (H
1/2
00 (Γd))

′.

For ε ∈ [0, 1/2), we define the spaces H−1+ε
Γc

(Ω) as the dual space of H1−ε
Γc

(Ω) with respect

to L2(Ω) and H−1+ε
Γd

(Ω) as the dual space of H1−ε
Γd

(Ω) with respect to L2(Ω).

Throughout the paper, the following assumptions are assumed to be satisfied.
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(H1) For the two dimensional domain Ω, the boundary Γ is split in the form Γ =
Ns⋃
i=1

Γi, where

each Γi is a submanifold of class C2 and the boundary condition on Γi for the fluid velocity (or
temperature) is only of one type, either Dirichlet or Neumann.

(H2) The set of junction points between these submanifolds is J = {Jk | j = 1, · · · , NJ}. For
each vertex Jk ∈ J , there exists rk > 0 such that {x ∈ R2 | dist(x, Jk) ≤ rk} ∩ Γ is the union of
two segments.

(H3) If Γi ∩ Γj = {Jk}, for some 1 ≤ i, j ≤ Ns and some 1 ≤ k ≤ NJ , the angle at Jk interior
to Ω is at most π if it corresponds to a Dirichlet–Neumann junction, and it is strictly less than
2π otherwise.

(H4) The control zone Γc corresponds to one of the submanifolds of the family (Γi)1≤i≤Ns . We
assume that Γc is of class C3.

(H5) The solution (τs,us, qs) of the stationary problem (1.2) belongs to H1+ε0(Ω)×H1+ε0(Ω)×
Hε0(Ω) and (τs,us)|Ωc,ε ∈ H2+ε0(Ωc,ε) × H2+ε0(Ωc,ε) for all ε > 0 and some ε0 > 0, where
Ωc,ε = {x ∈ Ω | dist(x,Γ \ Γc) > ε}.

In our work, we need weighted Sobolev spaces for further analysis. For all −1 < δ < 1,
s ∈ N, we introduce Hs

δ (Ω;R2), the closure of C∞(Ω) in the norms

‖v‖2Hs
δ (Ω;R2) =

∑
|α|≤s

∫
Ω
r2δ|∂αv|2,

where r stands for the distance to J , α = (α1, α2) ∈ N2 denotes a two-index, |α| = α1 + α2

and ∂α denotes the corresponding partial differential operator. We denote the weighted Sobolev
spaces as

L2
δ(Ω) = H0

δ (Ω;R2) and Hs
δ(Ω) = Hs

δ (Ω;R2), ∀ s > 0.

Note that, following [16], we can also define the space Hs
δ (Ω) when s > 0 is not an integer. We

also recall that [16, Theorem 3]

Hs
δ (Ω) ↪→ Hs−δ(Ω) for all s ≥ δ ≥ 0,

and the trace operator γ0 is continuous from H2
δ (Ω) into H3/2−δ(Γ) for all 0 < δ < 3/2. We also

introduce the following time-dependent weighted Sobolev space

H2,1
δ (Ω) = L2(0, T ; H2

δ(Ω)) ∩H1(0, T ; L2(Ω)).

2.2 Some useful results

The orthogonal projection in L2(Ω) onto V0
n,Γd

(Ω) is denoted by Π. The following result can be
proved as in [2, Lemma 2.2]:

Lemma 2.1. We have the following orthogonal decomposition

L2(Ω) = V0
n,Γd

(Ω)⊕∇H1
Γn(Ω).
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The orthogonal projection Π from L2(Ω) to V0
n,Γd

(Ω) is defined by

Πu = u−∇q1 −∇q2, where
q1 ∈ H1

0 (Ω), ∆q1 = div u in Ω,

q2 ∈ H1
Γn(Ω), ∆q2 = 0 in Ω,

∂q2

∂n
= (u−∇q1) · n on Γd.

We have introduced weighted Sobolev spaces in order to study the regularity of solutions to
the following elliptic equations

λ0θ − κ∆θ = f in Ω, θ = 0 on Γc,
∂θ

∂n
= 0 on Γ \ Γc, (2.1)

and
λ0v − div σ(v, p) = h in Ω,

div v = 0 in Ω, v = 0 on Γd, σ(v, p)n = 0 on Γn,
(2.2)

where λ0 ≥ 0, f ∈ L2(Ω), and h ∈ L2(Ω). It is well known that equation (2.1) admits a unique
solution θ in H1(Ω), and that the system (2.2) admits a unique solution (v, p) ∈ H1(Ω)×L2(Ω).
Under the assumptions made on Γ in Section 2.1, we can prove the following proposition.

Proposition 2.2. The solution θ ∈ H1(Ω) to equation (2.1) belongs to H2
δ (Ω) and satisfies

‖θ‖H2
δ (Ω) ≤ Cδ‖f‖L2(Ω),

for all δ ∈ (1/2, 1). The solution (v, p) ∈ H1(Ω) × L2(Ω) to system (2.2) belongs to H2
δ(Ω) ×

H1
δ (Ω) for all δ ∈ (1/2, 1), and it satisfies

‖v‖H2
δ(Ω) + ‖p‖H1

δ (Ω) ≤ Cδ‖h‖L2(Ω).

Proof. Since the angle of junctions between Dirichlet–Neumann (respectively Neumann–Neumann
and Dirichlet–Dirichlet) is less than or equal to π (respectively less than 2π), the regularity for θ
follows from [4, Theorem 6.4.6], and the regularity for (v, p) follows from [4, Theorem 9.4.5].

The existence result for stationary Navier–Stokes equation for polyhedral domain is given in
[4, Theorem 11.2.1]. We can adapt this idea to establish the existence and regularity result for
nonlinear stationary Boussinesq system (1.2).

Theorem 2.3. Let fs ∈ H−1
Γc

, (gτ,s,gu,s) ∈ H1/2
00 (Γc)×H

1/2
00 (Γc). There exist constants ε1 > 0

and C1 > 0 such that if

‖(gτ,s,gu,s)‖H1/2(Γc)×H1/2(Γc)
+ ‖fs‖H−1

Γc
(Ω) ≤ C1ε1, (2.3)

then the problem (1.2) admits a solution in the ball

Bε1 =
{

(τ,u, q) ∈ H1(Ω)×H1(Ω)× L2(Ω) : ‖(τ,u, q)‖H1(Ω)×H1(Ω)×L2(Ω) ≤ ε1

}
.

If moreover fs ∈ L2(Ω), (gτ,s,gu,s) ∈ H
3/2
00 (Γc) × H

3/2
00 (Γc), then (τ,u, q) ∈ H1+ε0(Ω) ×

H1+ε0(Ω)×Hε0(Ω), for some ε0 > 0.
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3 Stationary linearized system

To define the different operators involved in the Boussinesq system, we first consider the following
stationary equation

λ0θ − κ∆θ + us · ∇θ + v · ∇τs = f in Ω,

θ = θc on Γc,
∂θ

∂n
= 0 on Γ \ Γc,

λ0v − div σ(v, p) + (us · ∇)v + (v · ∇)us − β θ = h in Ω,

div v = 0 in Ω,

v = vc on Γc, v = 0 on Γw, σ(v, p)n = 0 on Γn,

(3.1)

where λ0 > 0 is chosen later on, vc ∈ H
3/2
00 (Γc), θc ∈ H3/2

00 (Γc), and (f,h) ∈ L2(Ω)× L2(Ω).

Definition 3.1. Let δ belong to (1/2, 1). A triplet (θ,v, p) ∈ H2
δ (Ω) × H2

δ(Ω) × H1
δ (Ω) is a

solution to (3.1) iff the equations (3.1)1, (3.1)3, (3.1)4 are satisfied in the sense of distributions,
and (3.1)2 and (3.1)5 are satisfied in the sense of traces.

To prove the existence and uniqueness of solution to system (3.1), via the mixed (variational)
formulation, we introduce the continuous bilinear form on H1(Ω)×H1(Ω) defined by

a((θ,v), (ξ,φ)) =

∫
Ω

(λ0θξ + κ∇θ · ∇ξ + (us · ∇θ)ξ + (v · ∇τs)ξ) dx

+

∫
Ω

(λ0v · φ + 2νDv : Dφ + [(us · ∇)v + (v · ∇)us] · φ− θβ · φ) dx,

where Dv = 1
2(∇v + (∇v)T ), and the continuous linear form on H1(Ω)× L2(Ω) defined by

b(φ, p) =

∫
Ω
p divφ dx.

The mixed formulation for system (3.1) is

Find (θ,v, p) ∈ H1(Ω)×H1(Ω)× L2(Ω) such that

θ = θc on Γc and v = vc on Γc, v = 0 on Γw,

a((θ,v), (ξ,φ))− b(φ, p) =

∫
Ω

(fξ + h · φ)

for all (ξ,φ) ∈ H1
Γc

(Ω)×H1
Γd

(Ω),

b(v, ψ) = 0 for all ψ ∈ L2(Ω).

(3.2)

The variational formulation for system (3.1) is

Find (θ,v) ∈ H1(Ω)×V1(Ω) such that

θ = θc on Γc and v = vc on Γc, v = 0 on Γw,

a((θ,v), (ξ,φ)) =

∫
Ω

(fξ + h · φ) ∀ (ξ,φ) ∈ H1
Γc(Ω)×V1

Γd
(Ω).

(3.3)

The mixed formulation (3.2) will be used to analyze the regularity of solutions to equation (3.1),
while the variational formulation (3.3) will be used to write equation (3.1) in an operator form.
Later we will prove the equivalence of these formulations and of Definition 3.1.
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3.1 Homogeneous boundary conditions

Proposition 3.2. There exists λ0 > 0 depending only on κ, ν,us, τs and β such that, for all
(θ,v) ∈ H1

Γc
(Ω)×V1

Γd
(Ω), we have

a((θ,v), (θ,v)) ≥ 1

2
min(κ, 2ν)‖(θ,v)‖2H1

Γc
(Ω)×V1

Γd
(Ω). (3.4)

Proof. The proposition is a direct consequence of classical majorizations combined with Korn’s
and Young’s inequalities.

Consider the linearized stationary Boussinesq system with homogeneous boundary conditions

λ0θ − κ∆θ + us · ∇θ + v · ∇τs = f in Ω,

θ = 0 on Γc,
∂θ

∂n
= 0 on Γ \ Γc,

λ0v − div σ(v, p) + (us · ∇)v + (v · ∇)us − β θ = h in Ω,

div v = 0 in Ω, v = 0 on Γd, σ(v, p) n = 0 on Γn.

(3.5)

Proposition 3.3. Let λ0 be large so that (3.4) holds. Let (f,h) belong to L2(Ω) × L2(Ω) and
assume that θc = 0, vc = 0. The variational formulation (3.3) admits a unique solution (θ,v).

The mixed formulation (3.2) admits a unique solution (θ,v, p). This solution belongs to
H2
δ (Ω)×H2

δ(Ω)×H1
δ (Ω) for all δ ∈ (1/2, 1), and we have

‖θ‖H2
δ (Ω) + ‖v‖H2

δ(Ω) + ‖p‖H1
δ (Ω) ≤ Cδ

(
‖f‖L2(Ω) + ‖h‖L2(Ω)

)
. (3.6)

Proof. The existence and uniqueness of (θ,v, p) belonging to H1
Γc

(Ω)×V1
Γd

(Ω)×L2(Ω) follows
from the Lax–Milgram Lemma and from the surjectivity of the divergence map as in [4, Theorem
9.1.5]. To prove the regularity, we can write (3.5) in the form

λ0v − div σ(v, p) = h + βθ − (us · ∇)v − (v · ∇)us in Ω,

div v = 0 in Ω, v = 0 on Γd, σ(v, p)n = 0 on Γn,

λ0θ − κ∆θ = f − us · ∇θ − v · ∇τs in Ω, θ = 0 on Γc,

∂θ

∂n
= 0 on Γ \ Γc.

Since us ∈ H1+ε0(Ω), we have (h + βθ − (us · ∇)v − (v · ∇)us) ∈ L2(Ω). From Proposi-
tion 2.2, it follows that (v, p) ∈ H2

δ(Ω) × H1
δ (Ω). As (us, τs) ∈ H1+ε0(Ω) × H1+ε0(Ω), we

have (f − us · ∇θ − v · ∇τs) ∈ L2(Ω). From Proposition 2.2, it follows that θ ∈ H2
δ (Ω).

3.2 Green’s formulas

Now we state Green’s formulas for the temperature and velocity separately.
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Theorem 3.4. Let δ belong to (1/2, 1), and ε be positive. Let us set Γc,ε = {x ∈ Γ | dist(x,Γc) <
ε}, and let us define

H1
Γc,ε(Ω) =

{
θ ∈ H1

Γc | θ|Γc,ε = 0
}
.

For all θ ∈ H2
δ (Ω) and for all ξ ∈ H1

Γc,ε
(Ω), we have

〈ξ,∆θ〉L2
−δ(Ω),L2

δ(Ω) = −
∫

Ω
∇θ · ∇ξ +

∫
Γ\Γc,ε

ξ
∂θ

∂n
. (3.7)

If in addition
∂θ

∂n
∈ L2(Γ \ Γc), then

〈ξ,∆θ〉L2
−δ(Ω),L2

δ(Ω) = −
∫

Ω
∇θ · ∇ξ +

∫
Γ\Γc

ξ
∂θ

∂n
, for all ξ ∈ H1

Γc(Ω). (3.8)

Proof. Let us first notice that with the help of Hardy’s inequality ([4, page 223])∫
Ω

r−2δ|u|2 dx ≤ C
∫
Ω

r2(1−δ)|∇u|2 dx,

we have H1
Γc

(Ω) ⊂ L2
−δ(Ω), for δ ∈ (1/2, 1). The Green’s formula (3.7) can be first proved for

θ ∈ C∞(Ω) and ξ ∈ C∞(Ω) ∩ H1
Γc,ε

(Ω). Next the theorem follows from the density of C∞(Ω)

in H2
δ (Ω) and that of C∞(Ω) ∩H1

Γc,ε
(Ω) in H1

Γc,ε
(Ω). The second Green’s formula (3.8) can be

proved by using the density of H1
Γc,ε

(Ω) into H1
Γc

(Ω).

Theorem 3.5. Let δ belong to (1/2, 1), and ε be positive. Let us set Γd,ε = {x ∈ Γ|dist(x,Γd) < ε},
and let us define

H1
Γd,ε

(Ω) =
{
v ∈ H1

Γd
| v|Γd,ε = 0

}
.

For all (v, p) ∈ H2
δ(Ω)×H1

δ (Ω) and for all φ ∈ H1
Γd,ε

(Ω), we have

〈φ, div σ(v, p)〉L2
−δ(Ω),L2

δ(Ω) = −2ν

∫
Ω
Dv : Dφ +

∫
Ω
p divφ +

∫
Γ\Γd,ε

σ(v, p)n · φ. (3.9)

If in addition σ(v, p)n ∈ L2(Γn), then we have

〈φ, div σ(v, p)〉L2
−δ(Ω),L2

δ(Ω) = −2ν

∫
Ω
Dv : Dφ +

∫
Ω
p divφ +

∫
Γn

σ(v, p)n · φ, (3.10)

for all φ ∈ H1
Γd

(Ω).

Proof. The Green’s formula (3.10) can be first proved for (v, p) ∈ C∞(Ω) × C∞(Ω) and φ ∈
C∞(Ω)∩H1

Γd,ε
(Ω). Next (3.10) follows from the density of C∞(Ω) in H2

δ(Ω), of C∞(Ω)∩H1
Γd,ε

(Ω)

in H1
Γd,ε

(Ω), and of C∞(Ω) in H1
δ (Ω). The second Green’s formula (3.9) follows from the density

of H1
Γd,ε

(Ω) into H1
Γd

(Ω).

These Green’s formulas are used to establish the equivalence between Definition 3.1, mixed
formulation (3.2), and variational formulation (3.3).
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Theorem 3.6. Let λ0 be large so that (3.4) holds. Let (f,h) belong to L2(Ω) × L2(Ω), and
assume that θc = 0, vc = 0.

(1) A triplet (θ,v, p) ∈ H2
δ (Ω) × H2

δ(Ω) × H1
δ (Ω) is a solution to (3.5) in the sense of

Definition 3.1 if and only if (θ,v, p) is a solution to the mixed formulation (3.2).

(2) If (θ,v, p) is a solution to the mixed formulation (3.2), then (θ,v) is a solution to the
variational formulation (3.3).

(3) If (θ,v) is a solution to the variational formulation (3.3), then there exists p ∈ L2(Ω)
such that (θ,v, p) is a solution to the mixed formulation (3.2).

Proof. (1) Let (θ,v, p) ∈ H2
δ (Ω) ×H2

δ(Ω) × H1
δ (Ω) be solution of equation (3.5). Multiplying

(3.5)1 by ξ ∈ H1
Γc

(Ω) and (3.5)3 by φ ∈ H1
Γd

(Ω) and using the Green’s formulas (3.8)–(3.10),
we obtain the mixed variational formulation.

Conversely, assume that (θ,v, p) ∈ H2
δ (Ω) ×H2

δ(Ω) ×H1
δ (Ω) satisfies the mixed variational

formulation (3.2) with θc = 0 and vc = 0. By using the Green’s formulas (3.8)–(3.10) successively
with test functions (ξ,0) and (0,φ) for ξ ∈ C∞c (Ω) and φ ∈ C∞c (Ω;R2) in (3.2), we can prove
that (θ,v, p) satisfies (3.5)1 and (3.5)3 in the sense of distributions.

Now, by using equation (3.5)1, (3.7) and the mixed formulation (3.2) with (ξ,0), ξ ∈
H1

Γc,ε
(Ω), we obtain ∫

Γ\Γc,ε

∂θ

∂n
ξ = 0, ∀ ξ ∈ H1

Γc,ε(Ω). (3.11)

Thus
∂θ

∂n
= 0 on Γ \ Γc,ε. Since this is true for all ε > 0, we conclude that

∂θ

∂n
= 0 on Γ \ Γc.

With similar arguments, we can also recover the boundary condition σ(v, p)n = 0 on Γn.

(2) It is very easy to see that if we choose (ξ,φ) ∈ H1
Γc

(Ω)×V1
Γd

(Ω) in (3.2), then we obtain
the variational formulation (3.3).

(3) This follows from the uniqueness of solution (θ,v) to the variational formulation (3.3)
and the uniqueness of (θ,v, p) to the mixed formulation (3.2) proved in Proposition 3.3.

We define the unbounded operator (A, D(A)) in Z by

D(A) = {(θ,v) ∈ H1
Γc

(Ω)×V1
Γd

(Ω) | (ξ,φ) 7→ a((θ,v), (ξ,φ)) is

continuous in Z}, and

〈(λ0I −A)(θ,v), (ξ,φ)〉Z = a((θ,v), (ξ,φ))

for all (θ,v) ∈ D(A), (ξ,φ) ∈ H1
Γc

(Ω)×V1
Γd

(Ω).

Theorem 3.7. The operator (A, D(A)) is the infinitesimal generator of a strongly continuous
analytic semigroup on Z, and its resolvent is compact.

Proof. Using the coercivity of the bilinear form a((θ,v), (θ,v)) in H1
Γc

(Ω)×V1
Γd

(Ω), we conclude
from [17, Theorem 2.12, page 115] that (A, D(A)) generates an analytic semigroup on Z. From
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Proposition 3.3, it follows that (λ0I − A)−1 is bounded from Z into H1
Γc

(Ω) ×V1
Γd

(Ω). Since,

the imbedding from H1
Γc

(Ω)×V1
Γd

(Ω) into Z is compact, the resolvent of A is compact in Z.

3.3 Adjoint problem

Let us introduce the adjoint equation

λ0ξ − κ∆ξ − us · ∇ξ − β · φ = f in Ω,

ξ = 0 on Γc, κ
∂ξ

∂n
+ (us · n)ξ = 0 on Γ \ Γc,

λ0φ− div σ(φ, ψ)− (us · ∇)φ + (∇us)
Tφ + (∇τs)T ξ = h in Ω,

divφ = 0 in Ω, φ = 0 on Γd, σ(φ, ψ)n + (us · n)φ = 0 on Γn,

(3.12)

where (f,h) ∈ L2(Ω)× L2(Ω). We define the following bilinear form a# and the linear form `,
on H1

Γc
(Ω)×V1

Γd
(Ω), by

a#((ξ,φ), (θ,v)) =

∫
Ω

(λ0ξθ + κ∇ξ · ∇θ − (us · ∇ξ)θ − (β · φ)θ) dx

+

∫
Ω

(
λ0φ · v + 2νDφ : Dv − ((us · ∇)φ) · v + (∇us)

T φ · v + (∇τs)T ξ · v
)
dx

+

∫
Γ\Γc

(us · n)ξθ dx+

∫
Γn

v · (us · n)φ dx,

`(θ,v) =

∫
Ω

(fθ + h · v) .

The mixed (variational) formulation for equation (3.12) is defined by

Find (ξ,φ, ψ) ∈ H1
Γc

(Ω)×H1
Γd

(Ω)× L2(Ω) such that

a#((ξ,φ), (θ,v))− b(v, ψ) = `(θ,v) ∀ (θ,v) ∈ H1
Γc(Ω)×H1

Γd
(Ω),

b(φ, p) = 0 for all p ∈ L2(Ω).

(3.13)

We can prove that the mixed formulation (3.13) admits a unique solution (ξ,φ, ψ) ∈ H2
δ (Ω) ×

H2
δ(Ω) ×H1

δ (Ω) for all δ ∈ (1
2 , 1), as in Proposition 3.3. Associated with a#, we introduce the

operator (A#, D(A#)) defined by

D(A#) = {(ξ,φ) ∈ H1
Γc

(Ω)×V1
Γd

(Ω) | (θ,v) 7→ a#((ξ,φ), (θ,v)) is

continuous in Z},

and
〈
(λ0I −A#)(ξ,φ), (θ,v)

〉
Z

= a#((ξ,φ), (θ,v)) for all (ξ,φ) ∈ D(A#) and (θ,v) ∈ H1
Γc

(Ω)×
V1

Γd
(Ω). Let (A∗, D(A∗)) be the adjoint of (A, D(A)). Since a#((ξ,φ), (θ,v)) = a((θ,v),

(ξ,φ)), for all (ξ,φ) and all (θ,v) belonging to H1
Γc

(Ω)×V1
Γd

(Ω), we have D(A∗) = D(A#) and

A∗ = A#.

Let λ0 be fixed so that (3.4) holds. Let us analyze the fractional powers of the domain of
the operator A and its adjoint A∗ used later on.

Theorem 3.8. We have
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D((λ0I −A)
1
2 ) = H1

Γc(Ω)×V1
Γd

(Ω), D((λ0I −A∗)
1
2 ) = H1

Γc(Ω)×V1
Γd

(Ω),

(D((λ0I −A∗)
1
2 ))′ = H−1

Γc
(Ω)×V−1

Γd
(Ω).

(3.14)

Furthermore, for ε ∈ (0, 1
2),

(D((λ0I −A∗)1/2−ε/2))′ = [L2(Ω), H−1
Γc

(Ω)]1−ε × [V0
n,Γd

(Ω),V−1
Γd

(Ω)]1−ε

= H−1+ε
Γc

(Ω)×
(
H−1+ε

Γd
(Ω) ∩V−1

Γd
(Ω)
)
,

(3.15)

D((λ0I −A)1/2+ε/2) ⊂
(
H1

Γc(Ω) ∩H1+η(ε)(Ω)
)
×
(
V1

Γd
(Ω) ∩H1+η(ε)(Ω)

)
, (3.16)

where η(ε) =
(
ε
2 − ε

2
)
.

Proof. Step 1. Proof of (3.14). The first and second identities in (3.14) follow by adapting the
proof from [2, Theorem 2.13] to our case. For that it is sufficient to establish

[H1
Γc(Ω)×V1

Γd
(Ω), H−1

Γc
(Ω)×V−1

Γd
(Ω)]1/2 = Z, (3.17)

and to show that (λ0I −A) is a closed maximal monotone operator in H−1
Γc

(Ω)×V−1
Γd

(Ω). The
last identity of (3.14) follows by duality arguments.

Step 2. Proof of (3.15). Now using (3.14), for ε ∈ (0, 1/2), we have

D((λ0I −A∗)1/2−ε/2) = [H1
Γc(Ω)×V1

Γd
(Ω), L2(Ω)×V0

n,Γd
(Ω)]ε.

By duality, we get the first identity in (3.15). To get the second identity in (3.15), as in [2,
Lemma 2.12], we first note that

V0
n,Γd

(Ω) = L2(Ω) ∩V−1
Γd

(Ω).

Then, for ε ∈ (0, 1/2), we can write

[V0
n,Γd

(Ω),V−1
Γd

(Ω)]1−ε = [L2(Ω) ∩V−1
Γd

(Ω),H−1
Γd

(Ω) ∩V−1
Γd

(Ω)]1−ε

= [L2(Ω),H−1
Γd

(Ω)]1−ε ∩V−1
Γd

(Ω) = H−1+ε
Γd

(Ω) ∩V−1
Γd

(Ω).

(3.18)

We also have
[L2(Ω), H−1

Γc
(Ω)]1−ε = H−1+ε

Γc
(Ω).

Combining both the results yields the second identity in (3.15).

Step 3. Proof of (3.16). Let us denote by (θ,v) the solution to the equation

(λ0I −A)(θ,v) = (f,h). (3.19)

Let ε ∈ (0, 1/2) be fixed. We know that λ0I−A is an isomorphism from (D((λ0I−A∗)1/2−ε/2))′

into D((λ0I −A)1/2+ε/2). Thus we have the following estimate

‖(f,h)‖(D((λ0I−A∗)1/2−ε/2))′ ≤ C‖(θ,v)‖D((λ0I−A)1/2+ε/2). (3.20)
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Notice further that the solution mapping from (f,h) to (θ,v) is continuous from H−1
Γc

(Ω) ×
V−1

Γd
(Ω) into H1

Γc
(Ω) × V1

Γd
(Ω) and also from Z into (H3/2−ε(Ω) ∩ H1

Γc
(Ω)) × (H3/2−ε(Ω) ∩

V1
Γd

(Ω)). Thus by interpolation, it is also continuous from (D((λ0I−A∗))1/2−ε/2)′ = [L2(Ω)×
V0
n,Γd

(Ω), H−1
Γc

(Ω)×V−1
Γd

(Ω)]1−ε into

[ll][(H3/2−ε(Ω) ∩H1
Γc(Ω))× (H3/2−ε(Ω) ∩V1

Γd
(Ω)), H1

Γc ×V1
Γd

]1−ε

= (H1+η(ε)(Ω) ∩H1
Γc(Ω))× (H1+η(ε)(Ω) ∩V1

Γd
(Ω)),

where η(ε) = ε
2 − ε

2. Thus we have

‖(θ,v)‖H1+η(ε)×H1+η(ε) ≤ C‖(f,h)‖(D((λ0I−A∗))1/2−ε/2)′ .

This continuity result, with estimate (3.20), gives the last inclusion in (3.16).

3.4 Nonhomogeneous boundary conditions

We now want to prove the existence of a solution (θ,v, p) of the mixed formulation for the
system (3.1) with nonhomogeneous boundary condition.

Theorem 3.9. Assume that (f,h) belongs to L2(Ω)× L2(Ω) and (θc,vc) belongs to H
1
2
00(Γc)×

H
1
2
00(Γc). Then, the mixed formulation (3.2) admits a unique solution (θ,v, p).

Moreover, if (θc,vc) belongs to H
3
2
00(Γc) × H

3
2
00(Γc), then this solution belongs to H2

δ (Ω) ×
H2
δ(Ω)×H1

δ (Ω) for all δ ∈ (1
2 , 1), and it satisfies

[ll]‖θ‖H2
δ (Ω) + ‖v‖H2

δ(Ω) + ‖p‖H1
δ (Ω)

≤ Cδ
(
‖f‖L2(Ω) + ‖h‖L2(Ω) + ‖θc‖

H
3
2 (Γc)

+ ‖vc‖
H

3
2 (Γc)

)
. (3.21)

Proof. The uniqueness follows from the uniqueness result stated in Proposition 3.3. To prove
the existence of solution, we first consider the equation

λ0θ̂ − κ∆θ̂ = f in Ω, θ̂ = θc on Γc,
∂θ̂

∂n
= 0 on Γ \ Γc,

λ0v̂ − div σ(v̂, p̂)− β θ̂ = h in Ω,

div v̂ = 0 in Ω, v̂ = 0 on Γc, v̂ = 0 on Γw, σ(v̂, p̂)n = 0 on Γn.

(3.22)

The equation for θ̂ is decoupled from the equation for (v̂, p̂), thus we can apply results already

existing in the literature for each equation separately. Since θc ∈ H
3
2
00(Γc), from [4, Theorem

6.4.6], it follows that system (3.22)1–(3.22)2 admits a unique solution θ̂ ∈ H1(Ω), and that

this solution belongs to H2
δ (Ω) for all δ ∈ (1

2 , 1). Since vc ∈ H
3
2
00(Γc), from [4, Theorem 9.1.5,

Theorem 9.4.5], it follows that system (3.22)3–(3.22)4 admits a unique solution (v̂, p̂) ∈ V1(Ω)×
L2(Ω), and that this solution belongs to H2

δ(Ω)×H1
δ (Ω) for all δ ∈ (1/2, 1).
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We look for a solution (θ,v, p) to the mixed formulation (3.2) of the form (θ,v, p) =
(θ̂, v̂, p̂) + (θ̃, ṽ, p̃). Thus, (θ̃, ṽ, p̃) must satisfy

λ0θ̃ − κ∆θ̃ + us.∇θ̃ + ṽ.∇τs = −us · ∇θ̂ − v̂ · ∇τs in Ω,

θ̃ = 0 on Γc,
∂θ̃

∂n
= 0 on Γ \ Γc,

λ0ṽ − div σ(ṽ, p̃) + (us.∇)ṽ + (ṽ.∇)us − β θ̃1 =

−(us.∇)v̂ + (v̂ · ∇)us in Ω,

div ṽ = 0 in Ω, ṽ = 0 on Γc, ṽ = 0 on Γw, σ(ṽ, p̃) n = 0 on Γn.

(3.23)

Since the right hand side in (3.23)1 (respectively (3.23)4) belongs to L2(Ω) (respectively L2(Ω)),
from Proposition 3.3, it follows that this system has a unique solution belonging to H2

δ (Ω) ×
H2
δ(Ω)×H1

δ (Ω) for all δ ∈ (1
2 , 1).

Remark 3.10. We can prove the equivalence of the three formulations for the solution as before,

even when (f,h) belong to L2(Ω) × L2(Ω) and (θc,vc) belongs to H
1
2
00(Γc) ×H

1
2
00(Γc) by using

Theorem 3.9.

3.5 Rewriting equation (3.1) in the operator form

We define the Dirichlet operators G ∈ L(H
1/2
00 (Γc) × H

1/2
00 (Γc), H

1(Ω) × H1(Ω)) and Gp ∈
L(H

1/2
00 (Γc)×H

1/2
00 (Γc), L

2(Ω)) by

G(θc,vc) = (Gθ(θc,vc), Gv(θc,vc))
T = (θ,v)T , Gp(θc,vc) = p, (3.24)

where (θ,v, p) satisfies equation (3.1) with (f,h) = (0,0).

Due to Theorem 3.9, the operatorsG andGp are continuous linear operators from (H
3/2
00 (Γc)×

H
3/2
00 (Γc)) into (H2

δ (Ω)×H2
δ(Ω)) and from (H

3/2
00 (Γc)×H

3/2
00 (Γc)) into H1

δ (Ω) respectively.

We can extend the operator A to an unbounded operator Ã with domain D(Ã) = L2(Ω)×
V0
n(Ω) in (D(A∗))′, in order that (Ã, D(Ã)) is the infinitesimal generator of an analytic semi-

group on (D(A∗))′, with compact resolvent. Later on, we shall denote this extension by A.

Theorem 3.11. Let (θc,vc) ∈ H3/2
00 (Γc)×H

3/2
00 (Γc). Let us set

B(θc,vc) = (λ0I −A)Π̃G(θc,vc), (3.25)

where G is defined in 3.24 and Π̃ =

(
Id 0
0 Π

)
. The operator B belongs to L(H

3/2
00 (Γc)) ×

H
3/2
00 (Γc)), (D(A∗))′).

If a triplet (θ,v, p) ∈ H2
δ (Ω)×H2

δ(Ω)×H1
δ (Ω) is a solution to (3.1), then (θ,v) satisfies

(λ0I −A)(θ,Πv)T −B(θc,vc)
T = (f,Πh)T in (D(A)∗)′,

(I −Π)v =
∑N

i=1 fi(I −Π)Gv(θc,vc).
(3.26)

Conversely, if (θ,v) ∈ H2
δ (Ω) ×H2

δ(Ω) satisfies (3.26), then there exists a unique p ∈ H1
δ (Ω)

such that (θ,v, p) ∈ H2
δ (Ω)×H2

δ(Ω)×H1
δ (Ω) is a solution to (3.1).
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Proof. Since G is continuous from (H
3/2
00 (Γc) ×H

3/2
00 (Γc)) into (H2

δ (Ω) ×H2
δ(Ω)), it is obvious

that B ∈ L(H
3/2
00 (Γc))×H

3/2
00 (Γc)), (D(A∗))′).

If (θ,v, p) satisfies equation (3.1), then we can write

(θ,v, p) = (θ̃, ṽ, p̃) + (θ̂, v̂, p̂),

where (θ̃, ṽ, p̃) is the solution to (3.5) and (θ̂, v̂, p̂) is the solution to (3.1) with (f,h) = (0,0).
Then we obtain

(λ0I −A)(θ̃,Πṽ)T = (f,Πh)T , (3.27)

and
(θ̂, v̂)T = G(θc,vc)

T implies (λ0I −A)(θ̂,Πv̂)T = B(θc,vc)
T (3.28)

From (3.27) and (3.28), we obtain (3.26).

The proof of the converse statement is based on the decomposition (θ,v) = (θ̃, ṽ) + (θ̂, v̂) and
on Theorem 3.6-(3). It is left to the reader.

When (θc,vc) is in the form (1.3), it is convenient to introduce the operator B ∈ L(RN ,
(D(A∗))′) defined by

Bf =

N∑
i=1

fiB(gθ,i,gv,i). (3.29)

Thus we can rewrite (3.26)1 as

(λ0I −A)(θ,Πv)T − Bf = (f,Πh) in (D(A)∗)′. (3.30)

In order to compute the adjoint of the control operator, we now prove a Green’s formula
between the solution (G(θc,vc), Gp(θc,vc)) to the nonhomogeneous boundary value problem
(3.1) with (θc,vc) as boundary condition and solution (ξ,φ, ψ) to equation (3.12). Before proving
that we need one technical lemma about the existence of normal derivative in suitable space.

Lemma 3.12. Let Ω be a bounded open subset of R2 satisfying assumptions (H1)–(H4). Let us
define

E1(Ω) =
{
ξ ∈ H2−δ(Ω) | ∆ξ ∈ L2(Ω)

}
,

E2(Ω) =
{

[v] ∈ H1−δ(Ω;R2×2) | div[v] ∈ L2(Ω)
}
,

where [v] is a (2× 2) matrix and the divergence is taken line by line. Then

(1) The linear mapping γ1 : ξ 7→ ∂ξ

∂n
is continuous from E1(Ω) into H1/2−δ(Γ).

(2) The linear mapping γn : [v] 7→ [v]n is continuous from E2(Ω) into H1/2−δ(Γ).

Proof. Let us set E(Ω) =
{
ξ ∈ H1(Ω) | ∆ξ ∈ L2(Ω)

}
. We know that γ1 ∈ L(E(Ω), H−1/2(Γ))

[18, Chapter VII, Lemma 1, page 381] and γ1 ∈ L(H2(Ω), H1/2(Γ)) [19, Theorem III.2.23, page
158]. Thus by interpolation, it follows that γ1 is also bounded from E1(Ω) into H1/2−δ(Γ), since
[E(Ω), H2(Ω)]1−δ = E1(Ω) and [H−1/2(Γ), H1/2(Γ)]1−δ = H1/2−δ(Γ).

The proof for γn is similar.
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Theorem 3.13. Let Ω be a bounded open subset of R2 satisfying assumptions (H1) − (H4).

Let 1/2 < δ < 1. Assume that (θc,vc) belongs to (H
3/2
00 (Γc) ×H

3/2
00 (Γc)). Let (ĝ, ĝ) belong to

L2(Γ \ Γc)× L2(Γn).

For all θ ∈ H2
δ (Ω) satisfying θ = θc on Γc,

∂θ

∂n
= 0 on Γ\Γc, and for all ξ ∈ H2

δ (Ω)∩H1
Γc

(Ω)

satisfying ∂ξ
∂n = ĝ on Γ \ Γc, we have

〈ξ,∆θ〉L2
−δ(Ω),L2

δ(Ω) − 〈θ,∆ξ〉L2
−δ(Ω),L2

δ(Ω)

= −
〈
∂ξ

∂n
, θc

〉
H1/2−δ(Γc),Hδ−1/2(Γc)

−
∫

Γ\Γc
ĝθ.

(3.31)

For all (v, p) ∈ H2
δ(Ω) × H1

δ (Ω) satisfying div v = 0 in Ω, v = vc on Γc, v = 0 on Γw,

σ(v, p)n = 0 on Γn and for all (φ, ψ) ∈
(
H2
δ(Ω) ∩V1

Γd
(Ω)
)
× H1

δ (Ω) satisfying σ(φ, ψ)n = ĝ

on Γn, we have

〈φ,div σ(v, p)〉L2
−δ(Ω),L2

δ(Ω) − 〈v div σ(φ, ψ)〉L2
−δ(Ω),L2

δ(Ω)

= −〈σ(φ, ψ)n,vc〉H1/2−δ(Γc),Hδ−1/2(Γc)
−
∫

Γn

ĝ · v.
(3.32)

Proof. Step 1. Proof of (3.31). Since θ belongs to H2
δ (Ω) and

∂θ

∂n
= 0 on Γ \ Γc and ξ ∈

H2
δ (Ω) ∩H1

Γc
(Ω), from Theorem 3.4, it follows that

〈ξ,∆θ〉L2
−δ(Ω),L2

δ(Ω) = −
∫

Ω
∇θ · ∇ξ. (3.33)

For (θk)k ⊂ C∞(Ω) and (ξk)k ⊂ C∞(Ω), we have∫
Ω
θk∆ξk = −

∫
Ω
∇θk · ∇ξk +

∫
Γ
θk
∂ξk

∂n
. (3.34)

By density of C∞(Ω) inH2
δ (Ω), passing to the limit when k tends to infinity and using Lemma 3.12,

we obtain

〈θ,∆ξ〉L2
−δ(Ω),L2

δ(Ω) = −
∫

Ω
∇θ · ∇ξ +

〈
∂ξ

∂n
, θ

〉
H1/2−δ(Γ),Hδ−1/2(Γ)

. (3.35)

Since 〈
∂ξ

∂n
, θ

〉
H1/2−δ(Γ),Hδ−1/2(Γ)

=

〈
∂ξ

∂n
, θ

〉
H1/2−δ(Γc),Hδ−1/2(Γc)

+

〈
∂ξ

∂n
, θ

〉
H1/2−δ(Γ\Γc),Hδ−1/2(Γ\Γc)

=

〈
∂ξ

∂n
, θ

〉
H1/2−δ(Γ),Hδ−1/2(Γ)

+

∫
Γ\Γc

ĝθ,

the proof of (3.31) is complete.

Step 2. Proof of (3.32). As (v, p) ∈ H2
δ(Ω) × H1

δ (Ω) satisfies σ(v, p)n = 0 on Γn and
φ ∈ H2

δ(Ω) ∩V1
Γd

(Ω), by using Theorem 3.5, we obtain
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〈φ, div σ(v, p)〉L2
−δ(Ω),L2

δ(Ω) = −2ν

∫
Ω
Dv : Dφ dx. (3.36)

For a sequence (vk, pk)k ⊂ C∞(Ω) × C∞(Ω) and a sequence (φk, ψk) ∈ C∞(Ω) × C∞(Ω). We
have ∫

Ω
vk · div σ(φk, ψk) = −2ν

∫
Ω
Dvk : Dφk +

∫
Ω
ψm div vk +

∫
Γ
σ(φk, ψk)n · vk. (3.37)

By density of C∞(Ω) × C∞(Ω) in H2
δ(Ω)×H1

δ (Ω), passing to the limit as k → ∞, using
Lemma 3.12, we obtain

〈v div σ(φ, ψ)〉L2
−δ(Ω),L2

δ(Ω)

= −2ν

∫
Ω
Dv : Dφ +

∫
Ω
ψ div v + 〈σ(φ, ψ)n,v〉H1/2−δ(Γ),Hδ−1/2(Γ) .

We can proceed as in Step 1 to complete the proof of (3.32).

The Green’s formula (3.31)–(3.32) in Theorem 3.13 is needed to characterize the adjoint of
the operator B.

Proposition 3.14. The adjoint of the control operator B ∈ L(RN , (D(A∗))′) is the operator
B∗ ∈ L(D(A∗),RN ) defined by

〈f ,B∗(ξ,φ)〉RN =

N∑
i=1

∫
Γc

fi

(
−κgθ,i

∂ξ

∂n
− gv,i · σ(φ, ψ)n

)
, (3.38)

for all (ξ,φ) ∈ D(A∗). Furthermore, the adjoint of B ∈ L(H
3/2
00 (Γc) × H

3/2
00 (Γc), (D(A∗))′),

belongs to L(D(A∗), (H3/2
00 (Γc)×H

3/2
00 (Γc)

′) and is defined by

〈(θc,vc), B∗(ξ,φ)〉 =

∫
Γc

−κ ∂ξ
∂n
θc − σ(φ, ψ)n · vc, (3.39)

for all (ξ,φ) ∈ D(A∗) and all (θc,vc) ∈ (H
3/2
00 (Γc)×H

3/2
00 (Γc)).

Proof. We know that (λ0I −A∗) is an isomorphism from D(A∗) to L2(Ω)×V0
n,Γd

(Ω). Thus for

all (ξ,φ) ∈ D(A∗), there exists (f,h) ∈ L2(Ω)×V0
n,Γd

(Ω) such that (λ0I −A∗)(ξ,φ) = (f,h).

For all (ξ,φ) ∈ D(A∗):

〈Bf , (ξ,φ)〉(D(A∗))′,D(A∗) =
N∑
i=1

fi 〈B(gθ,i,gv,i), (ξ,φ)〉(D(A∗))′,D(A∗)

=

N∑
i=1

fi

〈
(λ0I −A)Π̃G(gθ,i,gv,i), (ξ,φ)

〉
(D(A∗))′,D(A∗)

=
〈
G(θc,vc), Π̃(λ0I −A∗)(ξ,φ)

〉
L2(Ω)×L2(Ω)

= 〈(θ,v), (f,h)〉L2(Ω)×L2(Ω) =

∫
Ω
θf +

∫
Ω

v · h.
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Now with the help of equation (3.12) and Green’s formula (3.31), we obtain∫
Ω
θf =

∫
Ω
θ (λ0ξ − κ∆ξ − us · ∇ξ − β · φ)

=

∫
Ω
λ0θξ − κ

∫
Ω
ξ∆θ − κ

∫
Γc

θc
∂ξ

∂n
+

∫
Γ\Γc

θ(us · n)ξ +

∫
Ω

(us · ∇θ)ξ

−
∫

Γ\Γc
θ(us · n)ξ −

∫
Ω
βθ · φ

= −κ
∫

Γc

θc

(
∂ξ

∂n

)
−
∫

Ω
βθ · φ−

∫
Ω

(v · ∇τs)ξ.

Similarly, by using equation (3.12) and Green’s formula (3.32), we have∫
Ω

v · h = −
∫

Γc

vc · σ(φ, ψ)n +

∫
Ω
βθ · φ +

∫
Ω

(∇τs)T ξ · v.

Hence, we obtain

〈Bf , (ξ,φ)〉(D(A∗))′,D(A∗) = −κ
∫

Γc

θc

(
∂ξ

∂n

)
−
∫

Ω
βθ · φ−

∫
Ω

(v · ∇τs)ξ

−
∫

Γc

vc · σ(φ, ψ)n +

∫
Ω
βθ · φ +

∫
Ω

(∇τs)T ξ · v

=

N∑
i=1

∫
Γc

fi

(
−κgθ,i

∂ξ

∂n
− gv,i · σ(φ, ψ)n

)
.

4 Instationary linearized Boussinesq system

Definition 4.1. A triplet (θ,v, p) ∈ H2,1
δ (Ω)×H2,1

δ (Ω)×L2(0, T ;H1
δ (Ω)) is a solution to (1.5)

if the equations (1.5)1, (1.5)4 are satisfied in the sense of distributions and (1.5)2, (1.5)5 are
satisfied in the sense of traces.

Theorem 4.2. Assume that (θc,vc) ∈ [L2(0, T ;H
3/2
00 (Γc)) ∩ H1(0, T ;L2(Γc))] × [L2(0, T ;

H
3/2
00 (Γc)) ∩H1(0, T ; L2(Γc))] and (θ0,v0) ∈ L2(Ω) ×V0

n,Γd
(Ω). A triplet (θ,v, p) ∈ H2,1

δ (Ω) ×
H2,1
δ (Ω)× L2(0, T ;H1

δ (Ω)) is a solution to (1.5) iff (θ,v) satisfies

(θ′,Πv′)T = A(θ,Πv)T + Bf in (0, T ), (θ(0),Πv(0)) = (θ0,v0),

(I −Π)v =
∑N

i=1 fi(I −Π)Gv(gθ,i,gv,i),
(4.1)

where Gv is to the second component of the operator G = (Gθ, Gv)T .

Proof. The result follows from Theorem 3.11 with (f,h) = (θ′,Πv′).

Remark 4.3. We can write evolution equation (4.1)1 in the following form

z′ = Az + Bf , z(0) = (θ0,v0)T = z0, (4.2)
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where B ∈ L(RN , (D(A)∗)′). Actually, as in [2, Theorem 3.2], we can show that

(λ0I −A)−γB ∈ L(RN , Z) for any
3

4
< γ < 1. (4.3)

Using this result, we can easily verify that if z0 ∈ Z, equation (4.2) admits a unique weak solution
in L2(0, T ;Z).

5 Stabilization of the linearized system

Since (A, D(A)) is the infinitesimal generator of an analytic semigroup on Z with compact
resolvent, the spectrum Σ of A is contained in a sector of the form Sa,ϑ = {λ ∈ C | |arg(λ−a)| >
ϑ > π/2} and it consists entirely of isolated eigenvalues of finite multiplicity [20, Chap. 3,
Theorem 6.29, p. 187]. Thus, for a given ω > 0, the eigenvalues of A, repeated according to
their geometric multiplicity, can be ordered in the following manner

· · · ≤ ReλNu+1 < −ω < ReλNu ≤ ReλNu−1 ≤ · · · ≤ Reλ1. (5.1)

If the above inequalities satisfied by −ω are not strict, without loss of generality we can increase
ω to have strict inequalities. We introduce the set of indices Iu = {1, · · · , Nu}. We have the
following decomposition of Z:

Z = Zu ⊕ Zs, Z = Z∗u ⊕ Z∗s , (5.2)

where Zu is the space generated by
⋃
j∈Iu GR(λj) and Z∗u the space generated by

⋃
j∈Iu G

∗
R(λj).

Here we denote by GR(λj), the real generalized eigenspace for A, that is to say the space
generated by Re(GC(λj)) ∪ Im(GC(λj)).

5.1 Stabilizability of the linearized system

In order to stabilize the system

z′ = (A+ ωI)z + Bf , (5.3)

we want to first fix the family of functions {gi}. For that we consider the adjoint eigenvalue
problem for λi ∈ Iu:

λiξ − κ∆ξ − us · ∇ξ − β · φ = 0 in Ω,

ξ = 0 on Γc, κ
∂ξ

∂n
+ (us · n)ξ = 0 on Γ \ Γc,

λiφ − div σ(φ, ψ)− (us · ∇)φ + (∇us)
Tφ + (∇τs)T ξ = 0 in Ω,

divφ = 0 in Ω, φ = 0 on Γd, σ(φ, ψ)n + (us · n)φ = 0 on Γn.

(5.4)

If (ξ,φ, ψ) is a non trivial solution to (5.4), we shall say that ψ is the pressure associated
with φ. We choose a family of eigenfunctions (ξi,φi)i∈Iu of the adjoint problem associated with
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the eigenvalue λi, for i ∈ Iu, such that Z∗u = span{Re(ξi,φi), Im(ξi,φi) | i ∈ Iu}. Following [2],
we set

W = span

[{(
Re

(
∂ξi
∂n

)
,Re (σ(φi, ψi)n))

)
| i ∈ Iu

}
∪

{(
Im

(
∂ξi
∂n

)
, Im (σ(φi, ψi)n))

)
| i ∈ Iu

}]
,

where ψi is the pressure associated with φi. Next, we choose in W , the functions g̃i =
(g̃θ,i, g̃v,i), 1 ≤ i ≤ N for some N , such that

span{g̃1, g̃2, ..., g̃N} = W, gi = mg̃i, (5.5)

where m is a smooth function with compact support in Γc such that m ≡ 1 in Γ̃c, a nonempty
open subset of Γc. Since the eigenfunctions of A∗ are smooth, at least H3 ×H3 away from the

junction points of Γc, we have gi ∈ H3/2
00 (Γc)×H

3/2
00 (Γc).

In the following theorem, we prove the stabilizability of the system using the above family

(gθ,i,gv,i)1≤i≤N ⊂ H3/2
00 (Γc)×H

3/2
00 (Γc).

Theorem 5.1. If the family (gθ,i,gv,i)1≤i≤N ⊂ H3/2
00 (Γc)×H

3/2
00 (Γc) is chosen as in (5.5), then

(A+ ωI,B) is stabilizable in Z.

Proof. Since condition (4.3) is satisfied, it is known that the pair (A+ ωI,B) in system (5.3) is
stabilizable in Z if the following Hautus condition is satisfied [17, Part III, Chapter 2, Proposition
3.4]:

Ker(λjI −A∗) ∩KerB∗ = {0} for all j = 1, 2, · · · , Nu. (5.6)

If (ξ,φ)T ∈ Ker(λjI − A∗) ∩ KerB∗, with j ∈ Iu, then (ξ,φ)T is a solution to (5.4) and
B∗(ξ,φ)T = 0. By using Proposition 3.14, we have

B∗
(
ξ
φ

)
=

(
−
∫

Γc

κmg̃θ,j Re

(
∂ξ

∂n

)
−
∫

Γc

mg̃v,j · Re (σ(φ, ψ)n)

−i
∫

Γc

κmg̃θ,j Im

(
∂ξ

∂n

)
−
∫

Γc

mg̃v,j · Im (σ(φ, ψ)n)

)N
j=1

.

Since B∗(ξ,φ)T = 0 and (g̃i)1≤i≤N form a basis for W , we deduce that∫
Γc

κm

∣∣∣∣ ∂ξ∂n
∣∣∣∣2 +

∫
Γc

m |σ(φ, ψ)n|2 = 0.

Since m ≡ 1 in Γ̃c, we obtain

∂ξ

∂n
= 0 on Γ̃c , σ(φ, ψ)n = 0 on Γ̃c.

With Theorem Appendix A.2, we can conclude that (ξ,φ) = (0,0). Hence (A + ωI,B) is
stabilizable in Z.
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5.2 Stabilization by finite dimensional feedback controls

In this Section, we look for the feedback stabilization of the pair (A + ωI,B) in Z. Let πu be
the projection onto Zu along Zs, πs = I − πu, and let us set

Au = πu(A+ ωI), As = πs(A+ ωI), Bu = πuB, Bs = πsB,

Buf =
∑N

i=1 fiBugi ∀ f = (f1, · · · , fN ) ∈ RN .

We consider the Riccati equation

Pu = P∗u > 0, PuAu +A∗uPu − PuBuB∗uPu = 0.

From [10, 2], it follows that (Au − BuB∗uPu) is exponentially stable on Zu.

Proposition 5.2. The operator K = −B∗P from Z to Rn, with P = π∗uPuπu ∈ L(Z), provides
a stabilizing feedback for (A+ ωI,B). Moreover, the operator A+ ωI − BB∗P with domain

D(A+ ωI − BB∗P) = {z ∈ Z | (A+ ωI − BB∗P)z ∈ Z}

is the infinitesimal generator of an analytic semigroup exponentially stable on Z.

Proof. We refer to [21].

5.3 Regularity of solutions to the closed loop system

Theorem 5.3. Let ε ∈ (0, 1
2). Assume that (θ0,v0) ∈ Hε(Ω) × Vε

n,Γd
(Ω), (f1, f2) ∈ L2(0,∞;

H−1+ε
Γc

(Ω)) × L2(0,∞; H−1+ε
Γd

(Ω)) and gi = (gθ,i,gv,i) ∈ H3/2
00 (Γc) ×H

3/2
00 (Γc) is chosen as in

(5.5), then the solution (θ,v) to following system:

∂θ

∂t
− κ∆θ + us · ∇θ + v · ∇τs − ωθ = f1 in Q∞ = Ω× (0,∞),

∂θ

∂n
= 0 on (Γ \ Γc)× (0,∞),

∂v

∂t
− div σ(v, p) + (us · ∇)v + (v · ∇)us − ωv − β θ = f2 in Q∞,

div v = 0 in Q∞, v = 0 on Γw × (0,∞), σ(v, p)n = 0 on Γn × (0,∞),

(θ,v)T = −
N∑
i=1

[
B∗uPuπu(θ,v)T

]
i
gi on Γc × (0,∞),

θ(0) = θ0 and Πv(0) = v0 in Ω ,

(5.7)

satisfies

‖(θ,v)‖
L2(0,∞;D((λ0I−A)

1
2 + ε

2 ))∩H
1
2 + ε

2 (0,∞;Z)+H1(0,∞;H
3
2−ε(Ω)×H

3
2−ε(Ω))

≤ C
(
‖(f1, f2)‖L2(0,∞;H−1+ε

Γc
(Ω))×L2(0,∞;H−1+ε

Γd
(Ω)) + ‖(θ0,v0)‖Hε(Ω)×Vε

n,Γd
(Ω)

)
. (5.8)
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Proof. Step 1. In the first step, our main aim is to prove that (θ,v) ∈ L2(0,∞;L2(Ω)×L2(Ω)).
We can write (θ,v) = (θu,vu) + (θs,vs) + (0, (I − Π)v) with (θu,vu)T = πu(θ,v)T , (θs,vs)

T =
πs(θ,v)T satisfy the following equations

(θ′u,v
′
u)T = (Au − BuB∗uPu) (θu,vu)T + πu(f1, f2)T ,

(θ′s,v
′
s)
T = As(θs,vs)T −

N∑
i=1

[
B∗uPuπu(θ,v)T

]
i
Bsgi + πs(f1, f2)T ,

(θu(0),vu(0))T = πu(θ0,v0)T , (θs(0),vs(0))T = πs(θ0,v0)T .

(5.9)

(Au − BuB∗uPu) is the infinitesimal generator of a stable, analytic semigroup on Zu. Observe that
the operator πu belongs to L((D(A∗))′, Zu) (see [10, Remark 3.9]). As Zu is finite dimensional,
we have Zu ⊂ D(A). Here πu(f1, f2)T ∈ L2(0,∞;D(A)) and πu(θ0,v0) ∈ D(A). Thus, we
have (θu,vu)T ∈ H1(0,∞;D(A)). The semigroup generated by As is analytic on Zs. Also
−
∑N

i=1

[
B∗uPuπu(θ,v)T

]
i
Bsgi + πs(f1, f2)T ∈ L2(0,∞; (D(A∗))′) and πs(θ0,v0)T ∈ L2(Ω) ×

V0
n(Ω). Thus by [17, theorem 2.2, page 208], we can conclude that (θs,vs) ∈ L2(0,∞;L2(Ω)×

L2(Ω)).

Step 2. The solution of equation (5.7) can be written as (θ,v, p) = (θ̃, ṽ, p̃) + (θ̂, v̂, p̂), where
(θ̃, ṽ, p̃) satisfies

λ0θ̃(t)− κ∆θ̃(t) + us · ∇θ̃(t) + ṽ(t) · ∇τs = 0 in Ω,

∂θ̃(t)

∂n
= 0 on Γ \ Γc,

λ0ṽ(t) − div σ(ṽ(t), q) + (us · ∇)ṽ(t) + (ṽ(t) · ∇)us − β θ̃(t) = 0 in Ω,

div ṽ(t) = 0 in Ω, ṽ(t) = 0 on Γw, σ(ṽ(t), p̃(t))n = 0 on Γn,

(θ̃(t), ṽ(t))T = −
N∑
i=1

[
B∗uPuπu(θ(t),v(t))T

]
i
gi on Γc,

(5.10)

and (θ̂, v̂, p̂) satisfies

∂θ̂

∂t
+ λ0θ̂ − κ∆θ̂ + us · ∇θ̂ + v̂ · ∇τs

= −∂θ̃
∂t

+ λ0θ̃ + λ0θ̂ + ωθ + f1 in Q,

θ̂(0) = θ0 − θ̃(0) in Ω, θ̂ = 0 on Γc,
∂θ̂

∂n
= 0 on Γ \ Γc,

∂v̂

∂t
+ λ0v̂ − div σ(v̂, p̂) + (us · ∇)v̂ + (v̂ · ∇)us − βθ̂

= −∂ṽ

∂t
+ λ0ṽ + λ0v̂ + ωv + f2 in Q,

div v̂ = 0 in Q,

v̂ = 0 on Γw, v̂ = 0 on Γc, σ(v̂, p̂)n = 0 on Γn,

v̂(0) = v0 −Πṽ(0) in Ω.

(5.11)

By applying Theorem 3.9, we have (θ̃, ṽ)T ∈ H1(0,∞;H
3
2
−ε(Ω) ×H

3
2
−ε(Ω)). It is easy to see
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that (θ̂, v̂)T ∈ L2(0,∞;L2(Ω)× L2(Ω)). −∂θ̃
∂t + λ0θ̃ + λ0θ̂ + ωθ + f1

Π
(
−∂ṽ
∂t + λ0ṽ + λ0v̂ + ωv + f2

) ∈ L2(0,∞; (D(λ0I −A∗)1/2−ε/2)′).

We also have

(θ0 − θ̃(0),v0 −Πṽ(0))T ∈ Hε(Ω)×Vε
n,Γd

(Ω) = D((λ0I −A)ε/2).

By [17, Theorem 2.2, page 208], we can conclude that:

(θ̂, v̂)T ∈ L2(0,∞; D((λ0I −A)
1
2

+ ε
2 )) ∩H

1
2

+ ε
2 (0,∞; Z),

with the estimate

‖(θ̂, v̂)‖
L2(0,∞;D((λ0I−A)

1
2 + ε

2 ))∩H
1
2 + ε

2 (0,∞;Z)

≤ C
(
‖(f1, f2)‖L2(0,∞;H−1+ε

Γc
(Ω))×L2(0,∞;H−1+ε

Γd
(Ω)) + ‖(θ0,v0)‖Hε(Ω)×Vε

n,Γd
(Ω)

)
.

6 Stabilization of full system

We apply the feedback control law as in Proposition 5.2 to system (1.4) and we obtain the
following closed loop system:

∂θ

∂t
− κ∆θ + us · ∇θ + v · ∇τs + v · ∇θ = 0 in Q,

∂θ

∂n
= 0 on Σ \ Σc,

∂v

∂t
− div σ(v, p) + (us · ∇)v + (v · ∇)us + (v · ∇)v − βθ = 0 in Q,

div v = 0 in Q, v = 0 on Σw, σ(v, p)n = 0 on Σn,

(θ,v)T = −
N∑
i=1

[
B∗uPuπu(θ,v)T

]
i
gi on Σc,

θ(0) = θ0 and Πv(0) = v0 in Ω.

(6.1)

Motivated by the regularity of the solution in Theorem 5.3 of the closed loop linearized system
(5.7), let us introduce the following spaces

X1 =L2(0,∞; D((λ0I −A)
1
2

+ ε
2 )) ∩H

1
2

+ ε
2 (0,∞; Z),

X2 =H1(0,∞;H
3
2
−ε(Ω)×H

3
2
−ε(Ω)),

and X = X1 +X2 equipped with the norm

‖a‖X = inf
a=a1+a2, a1∈X1, a2∈X2

(
‖a1‖2X1

+ ‖a2‖2X2

)1/2
. (6.2)
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6.1 Estimates of nonlinear terms

We first state the following lemma regarding the estimates of nonlinear terms.

Lemma 6.1. Let ε ∈ (0, 1/2) and (ξ,φ) ∈ X. Then (φ · ∇)φ ∈ L2(0,∞; H−1+ε
Γd

(Ω)) and

(φ · ∇ξ) ∈ L2(0,∞;H−1+ε
Γc

(Ω)). Also, we have the following estimate:

‖(φ · ∇)φ‖L2(0,∞;H−1+ε
Γd

(Ω)) ≤ C‖(ξ,φ)‖2X , (6.3)

‖(φ · ∇ξ)‖L2(0,∞;H−1+ε
Γc

(Ω)) ≤ C‖(ξ,φ)‖2X . (6.4)

Moreover, if (ξ1,φ1), (ξ2,φ2) ∈ X, then we have the following estimate:

[ll]‖(φ1 · ∇ξ1)− (φ2 · ∇ξ2)‖L2(0,∞;H−1+ε
Γc

(Ω))

+ ‖(φ1 · ∇)φ1 − (φ2 · ∇)φ2‖L2(0,∞;H−1+ε
Γd

(Ω))

≤ C
(
‖(ξ1,φ1)‖X + ‖(ξ2,φ2)‖X

)
‖(ξ1,φ1)− (ξ2,φ2)‖X . (6.5)

Proof. Step 1. Proof of (6.3). We can write (ξ, φ) = (ξ1, φ1) + (ξ2, φ2), for any (ξ, φ) ∈ X
with (ξ1,φ1) ∈ X1, (ξ2,φ2) ∈ X2. Recall from Theorem 3.8 that

D((λ0I −A)
1
2

+ ε
2 ) ⊂

(
H1

Γc(Ω) ∩H1+ ε
2
−ε2(Ω)

)
×
(
V1

Γd
(Ω) ∩H1+ ε

2
−ε2(Ω)

)
.

Thus, we get:

ξ1 ∈ L2(0,∞; H1
Γc(Ω) ∩H1+ ε

2
−ε2(Ω)) ∩H

1
2

+ ε
2 (0,∞; L2(Ω)) ; (6.6)

φ1 ∈ L2(0,∞; V1
Γd

(Ω) ∩H1+ ε
2
−ε2(Ω)) ∩H

1
2

+ ε
2 (0,∞; V0

n,Γd
(Ω)) . (6.7)

Further,

ξ2 ∈ H1(0,∞; H
3
2
−ε(Ω)) and φ2 ∈ H1(0,∞; H

3
2
−ε(Ω)).

Now, consider

(φ · ∇)φ = (φ1 · ∇)φ1 + (φ1 · ∇)φ2 + (φ2 · ∇)φ1 + (φ2 · ∇)φ2. (6.8)

We are going to analyse each term separately.

If Ω satisfies cone property in Rn with n > 2s > 0, from [22, Theorem 7.57, Page 217] it follows
that

Hs(Ω) ↪→ Lr(Ω) for 2 ≤ r ≤ 2n

n− 2s
. (6.9)

Thus, we get H1−ε
Γd

(Ω) ↪→ L
2
ε (Ω). By duality, we have

L2(0,∞; L
2

2−ε (Ω)) ↪→ L2(0,∞; H−1+ε
Γd

(Ω)). (6.10)

Thus, it is enough to prove that (φ · ∇)φ ∈ L2(0,∞; L
2

2−ε (Ω)).
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Estimate of the first term of (6.8). As (ξ1,φ1) ∈ X1, by interpolating between the spaces

L2(0,∞; D((λ0I −A)
1
2

+ ε
2 )) and H

1
2

+ ε
2 (0,∞; Z), we obtain:

(ξ1,φ1) ∈ L∞(0,∞; D((λ0I −A)
ε
2 )) = L∞(0,∞; Hε(Ω)×Vε

Γd
(Ω))

↪→ L∞(0,∞; L
2

1−ε (Ω)× L
2

1−ε (Ω)),

where the last inclusion will follow from (6.9). Also from (6.7), we have:

∇φ1 ∈ L2(0,∞; H
ε
2
−ε2(Ω)) ↪→ L2(0,∞; L

4
2−ε+2ε2 (Ω)). (6.11)

As
(

1−ε
2 + 2−ε+2ε2

4

)
= 4−3ε+2ε2

4 , by applying Hölder’s inequality, we obtain

(φ1 · ∇)φ1 ∈ L2(0,∞; L
4

4−3ε+2ε2 (Ω)). (6.12)

It is immediate from 4−3ε+2ε2

4 < 2−ε
2 that:

(φ1 · ∇)φ1 ∈ L2(0,∞; L
2

2−ε (Ω)).

Moreover, from (6.10), (6.11), (6.12):

‖(φ1 · ∇)φ1‖L2(0,∞;H−1+ε(Ω)) ≤ C‖(φ1 · ∇)φ1‖
L2(0,∞;L

2
2−ε (Ω))

≤ C‖(φ1 · ∇)φ1‖
L2(0,∞;L

4
4−3ε+2ε2 (Ω))

≤ C‖φ1‖
L∞(0,∞;L

2
1−ε (Ω))

‖∇φ1‖
L2(0,∞;L

4
2−ε+2ε2 (Ω))

≤ C‖φ1‖L∞(0,∞;Vε
Γd

(Ω))‖φ1‖L2(0,∞;H1+ ε
2−ε

2
(Ω))

≤ C‖(ξ,φ)‖2X . (6.13)

Estimate of the second term of (6.8). We have already established that φ1 ∈ L∞(0,∞; L
2

1−ε (Ω)).

Also we know that φ2 ∈ H1(0,∞; H
3
2
−ε(Ω)). Again, (6.9) implies

∇φ2 ∈ H1(0,∞; H
1
2
−ε(Ω)) ↪→ H1(0,∞; L

4
2ε+1 (Ω)).

As
(

1−ε
2 + 1+2ε

4

)
= 3

4 < 2−ε
2 , we can conclude as before (φ1 · ∇)φ2 ∈ L2(0,∞; L

2
2−ε (Ω)) with

the estimate
‖(φ1 · ∇)φ2‖L2(0,∞;H−1+ε(Ω)) ≤ C‖(ξ,φ)‖2X . (6.14)

Estimate of the third term of (6.8). We have

φ2 ∈ H1(0,∞; H
3
2
−ε(Ω)) ↪→ L∞(((0,∞)× Ω);R2),

∇φ1 ∈ L2(0,∞; L
4

2−ε+2ε2 (Ω)) ↪→ L2(0,∞; L
2

2−ε (Ω)).

Thus, (φ2 · ∇)φ1 ∈ L2(0,∞; L
2

2−ε (Ω)) with the estimate

‖(φ2 · ∇)φ1‖L2(0,∞;H−1+ε(Ω)) ≤ C‖(ξ,φ)‖2X . (6.15)
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Estimate of the fourth term of (6.8). We already know that

φ2 ∈ H1(0,∞; H
3
2
−ε(Ω)) ↪→ L∞(((0,∞)× Ω);R2),

∇φ2 ∈ H1(0,∞; H
1
2
−ε(Ω)) ↪→ L∞(0,∞; L

4
2ε+1 (Ω)) ↪→ L∞(0,∞; L

2
2−ε (Ω)).

Hence, (φ2 · ∇)φ2 ∈ L2(0,∞; L
2

2−ε (Ω)) with the estimate

‖(φ2 · ∇)φ2‖L2(0,∞;H−1+ε(Ω)) ≤ C‖(ξ,φ)‖2X . (6.16)

Step 2. The proof of (6.4) is similar to the above one. For the Lipschitz estimates, if (ξ1,φ1), (ξ2,φ2) ∈
X, we have

‖(φ1 · ∇)φ1 − (φ2 · ∇)φ2‖L2(0,∞;H−1+ε
Γd

(Ω))

= ‖(φ1 · ∇)(φ1 − φ2) + ((φ1 − φ2) · ∇)φ2‖L2(0,∞;H−1+ε
Γd

(Ω)).

We can write (ξi, φi) = (ξi1, φ
i
1) + (ξi2, φ

i
2), for any (ξi, φi) ∈ X with (ξi1,φ

i
1) ∈ X1, (ξi2,φ

i
2) ∈

X2, for i = 1, 2. Using this splitting, we can decompose the terms (φ1 · ∇)(φ1 − φ2), ((φ1 −
φ2) · ∇)φ2 as in (6.8) and we can estimate these terms following the proof of (6.13)–(6.16) to
obtain (6.5).

6.2 Proof of the main result

Proof of Theorem 1.1. We want to stabilize (θ,v) with the prescribed exponential decay rate
e−ωt. So, we will make the following change of variables:

θ̂ = eωtθ, v̂ = eωtv and p̂ = eωtp. (6.17)

Then the system satisfied by (θ̂, v̂, p̂) is

∂θ̂

∂t
− ωθ̂ − κ∆θ̂ + us · ∇θ̂ + v̂ · ∇τs = −e−ωt

(
v̂ · ∇θ̂

)
in Q∞,

∂θ̂

∂n
= 0 on (Γ \ Γc)× (0,∞),

∂v̂

∂t
− ωv̂ − div σ (v̂, p̂) + (us · ∇)v̂ + (v̂ · ∇)us − β θ̂

= −e−ωt(v̂ · ∇)v̂ in Q∞,

div v̂ = 0 in Q∞, v̂ = 0 on Γw × (0,∞), σ(v̂, p̂)n = 0 on Γn × (0,∞),

(θ̂, v̂)T = −
N∑
i=1

e−ωt
[
B∗uPuπu(θ,v)T

]
i
gi on Γc × (0,∞),

θ̂(0) = θ0 and Πv̂(0) = v0 in Ω .

(6.18)

Thus it is enough to prove that equation (6.18) admits a unique solution in the ball B̂µ ={
(θ̂, v̂) ∈ X : ‖(θ̂, v̂)‖X ≤ µ

}
. We can define the mapping M on X, given by:

M : (ξ,φ) 7→ (θξ,φ,vξ,φ),
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where (θξ,φ,vξ,φ) will satisfy the following system:

∂θξ,φ
∂t

− ωθξ,φ − κ∆θξ,φ + us · ∇θξ,φ + vξ,φ · ∇τs
= −e−ωt (φ · ∇ξ) in Q∞,

∂θξ,φ
∂n

= 0 on (Γ \ Γc)× (0,∞),

∂vξ,φ
∂t
− ωvξ,φ − div σ (vξ,φ, pξ,φ) + (us · ∇)vξ,φ + (vξ,φ · ∇)us − β θξ,φ

= −e−ωt(φ · ∇)φ in Q∞,

div vξ,φ = 0 in Q∞,

vξ,φ = 0 on Γw × (0,∞), σ(vξ,φ, pξ,φ)n = 0 on Γn × (0,∞),

(θξ,φ,vξ,φ)T = −
N∑
i=1

e−ωt
[
B∗uPuπu(θξ,φ,vξ,φ)T

]
i
gi on Γc × (0,∞),

θξ,φ(0) = θ0 and Πvξ,φ(0) = v0 in Ω .

Our first aim is to show that M is a mapping from B̂µ to itself. Let ‖(ξ,φ)‖X ≤ µ. We set

µ0 =
1

4C2
, and C0 =

3

4C
. (6.19)

If (ξ,φ) ∈ B̂µ and 0 < µ < µ0, with Theorem 5.3 and Lemma 6.1, we obtain:

‖M(ξ,φ)‖X = ‖(θξ,φ,vξ,φ)‖X
≤ C

(
‖ (φ · ∇ξ) , (φ · ∇)φ‖L2(0,∞;H−1+ε

Γc
(Ω))×L2(0,∞;H−1+ε

Γd
(Ω)) + ‖(θ0,v0)‖Hε(Ω)×Vε

n,Γd
(Ω)

)
≤ C

(
‖(ξ,φ)‖2X + ‖(θ0,v0)‖Hε(Ω)×Vε

n,Γd
(Ω)

)
≤ C

(
Cµ2 + 3µ

4C

)
≤ µ.

If (ξ1,φ1), (ξ2,φ2) ∈ B̂µ, with Theorem 5.3 and (6.5), we have:

‖M(ξ1,φ1)−M(ξ2,φ2)‖X
≤ C‖

(
(φ1 · ∇ξ1), (φ1 · ∇)φ1

)
−
(
(φ2 · ∇)ξ2, (φ2 · ∇)φ2

)
‖L2(0,∞;H−1+ε

Γc
(Ω)×H−1+ε

Γd
(Ω))

≤ C2
(
‖(ξ1,φ1)‖X + ‖(ξ2,φ2)‖X

)
‖(ξ1,φ1)− (ξ2,φ2)‖X

≤ 2µC2‖(ξ1,φ1)− (ξ2,φ2)‖X .

Thus, if 0 < µ < µ0 and ‖(θ0,v0)‖Hε(Ω)×Vε
n,Γd

(Ω) ≤ C0µ, M is a strict contraction in B̂µ and

the system (6.18) admits a unique solution in B̂µ.

A Unique Continuation for the Linearized Boussinesq System

We establish a unique continuation result for the linearized Boussinesq system, adapting the
local Carleman inequality proved in [9] for the Oseen equation. Such unique continuation result
for Oseen equation has been obtained earlier in [23]. However, the authors in [9] prove different
Carleman estimates than [23].
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Theorem Appendix A.1. Let O be a domain in R2, λ ∈ C, ω̃ be a non empty subset of
O such that dist(∂ω̃, ∂O) > 0. Assume that (τs,us) ∈ H2+ε0(O) ×H2+ε0(O). Let (ξ,φ, ψ) ∈
H2(O)×H2(O)×H1(O) be a solution to the following problem:

−β · φ−∆ξ − us · ∇ξ = λξ in O,
−∆φ− (us · ∇)φ + (∇us)

Tφ +∇ψ + (∇τs)T ξ = λφ in O,
divφ = 0 in O.

(A.1)

If ξ = 0, φ = 0 in ω̃, then φ = 0 = ξ in O and ψ ≡ constant in O.

Proof. This proof consists of mainly three steps. In the first step we construct a cut-off function
χ and we write equations satisfied by χφ, χξ, χψ. In the second step we establish some Carleman
estimates and in the final step we deduce the unique continuation for the Linearized Boussinesq
System.

Step 1. Equations for (χφ, χψ), χξ. Since φ = 0 = ξ in ω̃, ψ = constant in ω̃. Without loss of
generality, we may assume that ψ = 0 in ω̃. Let us set

O−ε = {x ∈ O | dist(x, ∂O) > ε}.

We choose ε > 0 sufficiently small to have dist(∂ω̃, ∂O−ε) > 0.

Let χ be a smooth, non-negative, cut-off function, with values in [0, 1], such that

χ(x) = 1 if x ∈ O−ε/2 and χ(x) = 0 if x ∈ O \ O−ε/4.

The equations satisfied by χφ and χξ are

−∆(χφ)− (us · ∇)(χφ) + (∇us)
T (χφ) +∇(χψ)− λ(χφ) = f ,

−∆(χξ)− us · ∇(χξ)− λ(χξ) = β · (χφ) + f2,
(A.2)

where f = f1 + (∇τs)T (χξ), f2 = −ξ∆χ− 2∇χ · ∇ξ − ξ(us · ∇χ) with

f1 = −φ∆χ− 2(∇φ)(∇χ) + φ(us · ∇χ) + ψ∇χ.

Also observe that supp(f1) ⊂ O−ε/4 \ O−ε/2 and supp(f2) ⊂ O−ε/4 \ O−ε/2.

Step 2. Carleman estimates. We introduce the function ϕτ (x) = eτd(x), where τ > 0 is a free
parameter and

• d(x) ∈ C2(O) function, with no critical points outside ω̃, i.e. inf
x∈O\ω̃ |∇d(x)| = k > 0,

• d(x) ≥ 1 on O, max
x∈O\O−ε/2

d(x) = d∗ < d1 = min
x∈O−ε

d(x).

Carleman estimate for (χφ, χψ). Observe that (χφ, χψ) ∈ H2
0(O)×H1

0 (O) with (χφ)|∂O = 0 =
∇ (χφ)|∂O and (χψ)|∂O = 0 = ∇ (χψ)|∂O. By using local Carleman inequality in [9, (A.9)] for
functions (χφ, χψ) ∈ H2

0(O)×H1
0 (O) satisfying (A.2)1, we obtain:
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There exist C > 0 and τ̂ > 1 such that for all τ > τ̂ , there exists ŝ(τ) such that for all s > ŝ(τ)

[ll]

∫
O

e2sϕτ (x)
(
|∇(χφ)|2 + s2τ2e2τd(x)|χφ|2 + sτ2eτd(x)|χψ − div(χφ)|2

)
dx

≤ C
∫
O

e2sϕτ (x)
(
seτd(x)|div(χφ)|2 + | − λ(χφ)−∆(χφ)− (us · ∇)(χφ)

+ (∇us)
T (χφ) +∇(χψ)|2

)
dx

≤ C
∫
O

e2sϕτ (x)
(
seτd(x)|div(χφ)|2 + |f1|2 + |χξ|2

)
dx, (A.3)

where C > 0 does not depend on φ, ψ. Here, we have used the fact that τs ∈ H2+ε0(O) in order
to have ∇τs ∈ L∞(O).

Carleman estimate for χξ. We use the Carleman estimate [24, Theorem 1.2] to equation (A.2)2.
Observe that χξ ∈ H1

0 (O) and χξ = 0 = ∇ (χξ) in ω̃.

There exist C > 0 and τ̂ > 1 such that for all τ > τ̂ , there exists ŝ(τ) such that for all s > ŝ(τ),

[ll]

∫
O

e2sϕτ (x)
[
|∇(χξ)|2 + s2τ2e2τd(x)|χξ|2

]
dx

≤ C
∫
O

e2sϕτ (x)s−1τ−2e−τd(x)
(
|f2|2 + |χφ|2

)
dx, (A.4)

where C > 0 does not depend on ξ.

Combined Carleman estimates. Now, by using the bound for χφ from (A.3), the estimate (A.4)
gives

[ll]

∫
O

e2sϕτ (x)
[
|∇(χξ)|2 + s2τ2e2τd(x)|χξ|2

]
dx

≤ C
∫
O

e2sϕτ (x)s−1τ−2e−τd(x)|f2|2 dx

+ C

∫
O

e2sϕτ (x)s−1τ−2
(
seτd(x)|div(χφ)|2 + |f1|2 + |χξ|2

)
dx. (A.5)

That implies

[ll]

∫
O

e2sϕτ (x)
[
|∇(χξ)|2 + (s2τ2e2τd(x) − Cs−1τ−2)|χξ|2

]
dx ≤

C

∫
O

e2sϕτ (x)s−1τ−2e−τd(x)|f2|2 dx+ C

∫
O

e2sϕτ (x)s−1τ−2
(
seτd(x)| div(χφ)|2 + |f1|2

)
dx.

(A.6)

By choosing s large enough, there exists C0 > 0 such that

(s2τ2e2τd(x) − Cs−1τ−2)|χξ|2 ≥ C0s
2τ2e2τd(x). (A.7)
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Thus, with the help of (A.7), estimate (A.6) becomes

[ll]

∫
O

e2sϕτ (x)
[
|∇(χξ)|2 + s2τ2e2τd(x)|χξ|2

]
dx ≤

C

∫
O

e2sϕτ (x)s−1τ−2e−τd(x)|f2|2 dx+ C

∫
O

e2sϕτ (x)s−1τ−2
(
seτd(x)| div(χφ)|2 + |f1|2

)
dx.

(A.8)

Now, by using the bound for χξ from (A.8), the estimate (A.3) gives

[ll]

∫
O

e2sϕτ (x)
(
|∇(χφ)|2 + s2τ2e2τd(x)|χφ|2 + sτ2eτd(x)|χψ − div(χφ)|2

)
dx ≤

C

∫
O

e2sϕτ (x)s−1τ−2e−τd(x)|f2|2 dx+ C

∫
O

e2sϕτ (x)s−1τ−2
(
seτd(x)| div(χφ)|2 + |f1|2

)
dx

+ C

∫
O

e2sϕτ (x)
(
seτd(x)| div(χφ)|2 + |f1|2

)
. (A.9)

Hence, we have

[ll]

∫
O

e2sϕτ (x)
(
|∇(χφ)|2 + s2τ2e2τd(x)|χφ|2 + sτ2eτd(x)|χψ − div(χφ)|2

)
dx

≤ C
∫
O

e2sϕτ (x)
(
|f1|2 + |f2|2

)
+ C

∫
O

e2sϕτ (x)seτd(x)|div(χφ)|2 dx

= C

∫
O

e2sϕτ (x)
(
|f1|2 + |f2|2

)
+ C

∫
O

e2sϕτ (x)seτd(x)|∇χ · φ|2 dx. (A.10)

In the last equality, we use the fact that div(χφ) = ∇χ · φ as divφ = 0.

Step 3. Unique Continuation. Observe that

f1 = f2 = ∇χ = 0 in O−ε/2. (A.11)

In virtue of estimate (A.9) and observation (A.11), we obtain

[ll]

∫
O−ε

e2sϕτ (x)
(
|∇(χφ)|2 + s2τ2e2τd(x)|χφ|2 + sτ2eτd(x)|χψ − div(χφ)|2

)
dx

≤ C
∫

O\O−ε/2

e2sϕτ (x)
(
|f1|2 + |f2|2

)
dx+ C

∫
O\O−ε/2

e2sϕτ (x)seτd(x)|∇χ · φ|2 dx. (A.12)

Recall that

d(x) ≥ 1, x ∈ O, max
x∈O\O−ε/2

d(x) = d∗ < d1 = min
x∈O−ε

d(x). (A.13)
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Hence, by using (A.13) and the fact that χ ≡ 1 in O−ε, estimate (A.12) gives∫
O−ε

(
|φ(x)|2 + |ψ(x)|2

)
≤ C exp[2s(eτd

∗ − eτd1)]s−1τ−2e−τd1

∫
O\O−ε/2

(
|f1|2 + |f2|2

)
dx

+C exp[2s(eτd
∗ − eτd1)]τ−2(eτd

∗−τd1)

∫
O\O−ε/2

|∇χ · φ|2 dx.

Since d∗ < d1, by taking s large enough, we obtain |φ(x)|2 + |ψ(x)|2 = 0 in O−ε. Hence,

φ(x) = 0 = ψ(x), in O−ε. (A.14)

Since, ε > 0 can be chosen arbitrarily small, we obtain

φ(x) = 0 = ψ(x), in O. (A.15)

Then by using equation (A.1), we can also conclude that ξ = 0 in O.

Theorem Appendix A.2. Suppose (τs,us) satisfies assumption (H5) in Section 2.1. For any
λj ∈ Σ with Reλj > −ω, if

λj ξ − κ∆ξ − us · ∇ξ − β · φ = 0 in Ω,

ξ = 0 on Γc, κ
∂ξ

∂n
+ (us · n)ξ = 0 on Γ \ Γc,

λj φ− div σ(φ, ψ)− (us · ∇)φ + (∇us)
Tφ + (∇τs)T ξ = 0 in Ω,

divφ = 0 in Ω, φ = 0 on Γd, σ(φ, ψ)n + (us · n)φ = 0 on Γn

and
∂ξ

∂n
= 0 on Γ̃c , σ(φ, ψ)n = 0 on Γ̃c,

(A.16)

then (ξ,φ) = (0, 0) in Ω.

Proof. Let Ωe be an extension of Ω such that Ω̂ = Ωe \ Ω satisfies ∂Ω̂ ∩ Γ = Γ̃c. We extend
(ξ,φ, ψ) by zero across the boundary Γ̃c onto Ω̂. For that, we set

φ̂ =

{
φ in Ω,

0 in Ω̂,
ψ̂ =

{
ψ in Ω,

0 in Ω̂,
ξ̂ =

{
ξ in Ω,

0 in Ω̂.

Recall that (τs,us)|Ωc,ε ∈ H2+ε0(Ωc,ε) ×H2+ε0(Ωc,ε) for all ε > 0 and for some ε0 > 0, where

Ωc,ε = {x ∈ Ω | dist(x,Γ \ Γc) > ε}. Now, we fix ε > 0 small enough so that Γ̃c ⊂ Γc,ε =
{x ∈ Γc | dist(x,Bd(Γc)) > ε}, where Bd(Γc) = Γc \ Γc is the relative boundary of Γc. We set
O = {x ∈ Ωe | dist(x, ∂Ωe) > ε}. We extend (τs,us) to O in such a way that this extension
(τ̂s, ûs) belongs toH2+ε0(O)×H2+ε0(O), see [18, Remark 5, Chapter IV, Page 117], [25, Theorem
5.4].

It is easy to see that the triplet (ξ̂, φ̂, ψ̂) ∈ H2(O)×H2(O)×H1(O) satisfies

−β̂ · φ̂− κ∆ξ̂ − ûs · ∇ξ̂ = λj ξ̂ in O

−ν∆φ̂− (ûs · ∇)φ̂ + (∇ûs)
T φ̂ +∇ψ̂ + (∇τ̂s)T ξ̂ = λjφ̂ in O

div φ̂ = 0 in O

φ̂ = 0 = ξ̂ in ω̃,

(A.17)
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where ω̃ is a subset of O. Now we are in the same situation as in equation (A.1). We can apply
Theorem Appendix A.1 to conclude that φ̂ = 0 = ξ̂ in O.
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