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Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues

Federica Bubba, Benoît Perthame, Camille Pouchol, Markus Schmidtchen

Introduction

Models of living tissues lead to the following evolution system that we consider in one space dimension, x ∈ R, t ≥ 0,

           ∂n (1) γ ∂t = ∂ ∂x ( n (1) γ ∂p γ ∂x ) + n (1) γ F 1 (p γ ) + n (2) γ G 1 (p γ ), ∂n (2) γ ∂t = ∂ ∂x ( n (2) γ ∂p γ ∂x ) + n (1) γ F 2 (p γ ) + n (2) γ G 2 (p γ ), (1) 
where the pressure p γ is given by the law of state [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF] p γ := ( n γ ) γ , γ > 1, n γ := n (1) γ + n (2) γ . We equip this system with nonnegative initial data with compact support ( 3)

n (i) γ (0, x) = n (i) γ,init (x) ∈ L 1 (R), i = 1, 2.
Here n [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] γ , n [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF] γ denote the population densities, while F i , G i model the reaction or growth phenomena, which are assumed to depend exclusively on the pressure p γ according to the observations in [START_REF] Byrne | Individual-based and continuum models of growing cell populations: a comparison[END_REF][START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF]. Throughout, we will call G 1 and F 2 the cross-reaction terms. The purpose of our analysis is to study the Hele-Shaw limit for the solutions n [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] γ and n

(2) γ of system [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] and the pressure, namely their convergence when γ tends to +∞. We establish both the compactness argument in order to pass to the limit in the nonlinear terms and the limiting equations satisfied by the pressure and the densities.

Motivation and earlier works. Compressible mechanical models such as [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] and variants have become ubiquitous in mathematical biology with applications in modelling living tissues and tumour growth, among others. In the latter instance, n [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] γ and n [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF] γ represent the cancer cells and quiescent or healthy cells, respectively, with different growth rates, and possible transitions from a state to the other. A question which arises here is to know as to whether segregation effects occur between two or more species in the absence of cross-reaction terms [START_REF] Bresch | Computational modeling of solid tumor growth: the avascular stage[END_REF][START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF][START_REF] Preziosi | A review of mathematical models for the formation of vascular networks[END_REF]. Models of this type have been attracting attention for many decades, starting with epidemiological models, cf. [START_REF] Busenberg | Epidemic models with spatial spread due to population migration[END_REF]. In its current form, however in the absence of any reaction terms, Eq. (1) was proposed in the seminal paper by [START_REF] Morton E Gurtin | A note on interacting populations that disperse to avoid crowding[END_REF] and an existence and segregation theory was given in a series of papers, see [START_REF] Bertsch | On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities[END_REF] and the references therein. Reaction terms were added and studied later, the existence and segregation of solutions was established; see [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF][START_REF] Bertsch | A nonlinear parabolichyperbolic system for contact inhibition of cell-growth[END_REF]. Quite recently, the no-vacuum assumption on the initial data could be removed and thus the existence of (segregated) solutions on bounded intervals for a wider class of initial data could be shown using tools from optimal transportation; see [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]. A little later, another existence result in higher dimensions was proposed in [START_REF] Gwiazda | A two species hyperbolicparabolic model of tissue growth[END_REF] by establishing strong compactness of the pressure gradient using a Aronson-Bénilan type estimate without commenting on segregation results which are, however, expected to be true; see the general argument in Section 5. Taking the incompressible limit γ → +∞ has attracted attention in the past in the onespecies case, say, if n

(2) γ = 0, ∂n γ ∂t = ∂ ∂x ( n γ ∂p γ ∂x ) + n γ F 1 (p γ ).
The motivation for such asymptotics in cancer modelling is to bridge the gap between the mechanical, compressible model, [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF], and a commonly used different class of incompressible models, see the survey papers [START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF][START_REF] Roose | Mathematical models of avascular tumour growth: a review[END_REF]. A major mathematical interest is the relation to geometric models. These are the so-called Hele-Shaw models, where the evolution of the tumour is described through the movement of the free boundary of a domain Ω(t) occupied by the tumour. In these models, the total cell density can take up only the values 0 and 1, where 1 corresponds to the tumour. Such results have been obtained successively in [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF] and followed by several others [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF][START_REF] Motsch | From short-range repulsion to Hele-Shaw problem in a model of tumor growth[END_REF][START_REF] Perthame | Derivation of a hele-shaw type system from a cell model with active motion[END_REF], for a different pressure law. The typical result is that the pressure p γ and the density n γ converge strongly to the limits p ∞ , n ∞ that satisfy the so-called complementarity relation (in the distributional sense):

(4) p ∞ ( ∂ 2 p ∞ ∂x 2 + F 1 (p ∞ ) ) = 0,
together with the weak form of the Hele-Shaw free boundary problem

   ∂n ∞ ∂t = ∂ ∂x ( n ∞ ∂p ∞ ∂x ) + n ∞ F 1 (p ∞ ), p ∞ (1 -n ∞ ) = 0. (5) 
A remarkable property is the uniqueness of the solution despite the weak relation between n ∞ and p ∞ . The compressible model and the Hele-Shaw description of a tumour are linked through the set Ω(t) := {x, p ∞ (t, x) > 0} which coincides a.e. with the set {n ∞ = 1} and may therefore be considered as the tumour; see, e.g., [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF]. Notice that the above approach to incompressible limit is not the only one. Methods based on viscosity solutions are also well-established for these growth problems [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF][START_REF] Kim | Uniform convergence for the incompressible limit of a tumor growth model[END_REF][START_REF] Inwon | Free boundary problems for tumor growth: a viscosity solutions approach[END_REF]. One can also mention that the incompressible limit is also called "congestion" in crowd-motion, and a recent approach is based on optimal transportation arguments [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Maury | Congestion-driven dendritic growth[END_REF][START_REF] Maury | Handling congestion in crowd motion modeling[END_REF]. The evolution of solutions to system (1) and the corresponding pressure are shown, for two values of γ, in Figure 1. Functions are

F 1 (p) = (1 -p K ), with K = 3, G 2 (p) = (1 -p) and G 1 (p) = F 2 (p) = (1 -p) + . In this case, n (1)
γ (tumour cells, red line) is the population with the greatest carrying capacity K and it invades the other one (host cells, blue line). In Figure 2, the parameters are γ = 5, F 1 (p) = 2(1 -p) and G 2 (p) = (1 -p), there are no cross-reaction terms, and we let the total density vanish in some parts of the domain. The two densities are initially segregated and remain so (see [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF] and Section 5).

Specific difficulties.

Two kinds of discontinuities of different natures arise in the two cell population model. The first type is on the total cell density n ∞ , as in the single cell type model, generating a free boundary moving with the Stefan condition v = -∂p∞ ∂x . The second type are internal jumps on n (i) ∞ keeping n ∞ continuous and thus only bounded variation is expected; cf. e.g. [START_REF] Bertsch | A nonlinear parabolichyperbolic system for contact inhibition of cell-growth[END_REF][START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF] and references therein. They are a major hurdle because they strongly constrain the possible a priori estimates. Also, they are naturally related to the important segregation property mentioned earlier. Note that the paper [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF], for a different pressure law, provides a deep understanding of the internal layer dynamics in the incompressible limit when the initial data is assumed to be initially segregated with a single contact point. This has the advantage of directly applying regularity results of [START_REF] Bertsch | A free boundary problem arising in a simplified tumour growth model of contact inhibition[END_REF]. 1) and corresponding pressure in the presence of vacuum. The system is initialised with two indicator functions with supports at a positive distance. The densities remain segregated, in agreement with known results on segregated solutions (see, e.g., [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]).

In this present work, we do not rely on this type of regularity. Our analysis is of a different nature being based on the regularity obtained by an Aronson-Bénilan type estimate which is related to the method in [START_REF] Gwiazda | A two species hyperbolicparabolic model of tissue growth[END_REF]. Our approach also provides two notable extensions, the cross-reaction terms and general initial data encompassing both overlap and vacuum.

Aronson-Bénilan type estimate seems necessary. In the one species case it provides uniform L 1 estimates on ∆p γ which are needed to establish the complementarity relation. They face two issues in the present context. Firstly, the correct quantity has to be manipulated since ∆p γ is not enough, and the need to find the appropriate functional is standard, see [START_REF] Lu | Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds[END_REF]. Secondly, these estimates using an upper bound by the comparison principle are not adapted to systems and here we merely work in L 1 for the positive part of the appropriate functional. They additionally provide estimates useful in the absence of good regularity for the population fractions c

(i) γ := n (i)
γ /n γ , which come up naturally when writing the equation satisfied by the total population:

∂n γ ∂t = ∂ ∂x ( n γ ∂p γ ∂x ) + n γ c (1) γ F (p γ ) + n γ c (2) γ G(p γ ),
where we used the short-hand notation

F := F 1 + F 2 , and G := G 1 + G 2 .
The equation for the pressure also involves the fractions and reads

∂p γ ∂t = ∂p γ ∂x 2 + γp γ [ ∂ 2 p γ ∂x 2 + R ] , R := c (1) γ F (p γ ) + c (2) γ G(p γ ).
Even for a fixed γ, the population fractions are ambiguously defined whenever n γ = 0, a scenario that typically occurs in segregation. We shall see that the population fractions do not have a well-posed limit equation, at least with the available regularity results. We also emphasise that this problem adds up to the more classical difficulties arising from the system structure, namely that comparison principles are not available since the interaction is neither competitive nor cooperative.

Main results. Our aim is to prove convergence for n

(1) γ , n (2) 
γ , n γ and p γ on R × (0, T ), for all T > 0, and to state the limit equations which extend (4)-( 5) to two species. As is usual for these equations of porous medium type, the solution to (1) remains compactly supported for all times whenever the initial data are (which we will assume throughout); see [START_REF] Luis | The porous medium equation: mathematical theory[END_REF]. Then, the standard idea to deal with the lack of regularity coming from c

(1) γ , c (2)
γ and the free boundary, is to shift the initial data as follows

n (i) 0,ε (x) = n (i) 0 (x) + ε.
After such a regularisation, we prove that the density n γ,ε can no longer vanish, which implies that the quotients c (at the ε level) is satisfied in the strong sense. We also recover the classical feature that uniform upper bounds hold for both densities and for the pressure. Building on this, we are in the position to prove several a priori estimates required to obtain enough compactness to pass to the incompressible limit and prove the complementarity relation. The key estimate is concerned with

∂ 2 pγ
∂x 2 , as it happens to be crucial to get compactness for ∂pγ ∂x . For this, we will adapt an argument introduced for the porous medium equation by Aronson&Bénilan [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF]. The following step is to pass to the limit ε → 0, γ → +∞ to obtain the complementarity relation and the limit equations. In doing so, we do not obtain equations for the c

(i)
∞ , but we make sure that the defining relations c

(i) γ,ε n γ,ε = n (i)
γ,ε remain true at the limit on {n ∞ > 0}. The resulting theorem is our main result and is stated informally below.

Theorem 1.1 (Complementarity relation).

With the assumptions of Section 2.1, we may pass to the limit in Eq. [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF] to obtain the complementarity relation

p ∞ [ ∂ 2 p ∞ ∂x 2 + n (1) ∞ F (p ∞ ) + n (2) ∞ G(p ∞ ) ] = 0. ( 6 
)
Here n (i)

∞ , i = 1, 2 and p ∞ weakly satisfy the equations, with n ∞ = n (1) ∞ + n (2) ∞ , (7) 
             ∂n (1) ∞ ∂t = ∂ ∂x ( n (1) ∞ ∂p ∞ ∂x ) + n (1) ∞ F 1 (p ∞ ) + n (2) ∞ G 1 (p ∞ ), ∂n (2) ∞ ∂t = ∂ ∂x ( n (2) ∞ ∂p ∞ ∂x ) + n (1) ∞ F 2 (p ∞ ) + n (2) ∞ G 2 (p ∞ ), 0 = p ∞ (1 -n ∞ ).
We also establish that segregation is preserved at the limit in the absence of cross-reactions:

if initially n (1)
∞ n

(2) ∞ = 0, it remains true for all further times. Finally and although we do not use them here, we derive some energy estimates which are gathered in Appendix B for the sake of completeness. Note that the equality in [START_REF] Busenberg | Epidemic models with spatial spread due to population migration[END_REF] holds both in the distributional sense and, for a.e. t > 0, pointwise in x because we establish that p ∞ is continuous in space and ∂ 2 p∞ ∂x 2 is a bounded measure.

Outline of the paper. The rest of this paper is organised as follows. In Section 2 we first set up the problem and state the assumptions on the reaction terms as well as the initial data, and explain why we are handling compactly supported solutions. We then introduce the regularisation by ε and prove that the total density is bounded away from 0. Section 3 is devoted to deriving all a priori estimates necessary for compactness. Section 4 is dedicated to the incompressible limit, culminating in Theorem 1.1. We then tackle the problem of segregation in Section 5, where the analysis is complemented by numerical simulations showing the behaviour of solutions as γ → ∞ and the propagation of segregation. We conclude the paper with Section 6, reiterating the strategy we have employed and its limitation raising several open questions.

Preliminaries and regularisation

We introduce the assumptions we need in the study of system (1)-(3) when γ tends to ∞.

2.1. Assumptions and initial data. Definition 2.1 (Feasible data). We say that the growth functions

F i , G i , i = 1, 2 are feasible if they satisfy (i) F i , G i ∈ C 1 b (R + , R), i = 1, 2, ( 
ii) for any p ≥ 0 there holds

F ′ 1 (p), G ′ 2 (p) < 0, as well as F ′ 2 (p), G ′ 1 (p) ≤ 0, ( 
iii) there exists P H > 0 such that for all p ≥ P H :

F 1 (p), G 2 (p) ≤ 0,
as well as F 2 (p), G 1 (p) = 0, (iv) there holds

F (0) = G(0)
. Throughout the paper we refer to P H as the homeostatic pressure.

In the definition above, C 1 b (R + , R) is the space of C 1 (R + , R) functions with bounded derivatives. The last equality is technical but instrumental for the Aronson-Bénilan estimates, as in [START_REF] Gwiazda | A two species hyperbolicparabolic model of tissue growth[END_REF][Theorem 2] about the stability of weak solutions with respect to the initial data, even though it is not used in the existence result of [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF].

We now gather the assumptions made on the initial data. First, we assume that the initial conditions are compactly supported in some Ω 0 independent of γ, namely [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF] supp

( n (i) γ,init ) ⊂ Ω 0 .
We define the regularised initial data for ε > 0 as

n (i) γ,ε,init = n (i)
γ,init + ε on R, i = 1, 2, and we make the following set of assumptions regarding how the initial data and γ, ε are related. Definition 2.2 (Well-prepared initial data). We say the initial data are well prepared if there exist n

(1) ∞,init , n (2) ∞,init in L 1 (Ω 0 ), ε 0 > 0 and C > 0 independent of both γ > 1 and ε ≤ ε 0 , such that for i = 1, 2, and all γ > 1, ε ≤ ε 0 there holds p γ,ε 0 (0) ≤ P H , lim γ→+∞ n (i) γ,init -n (i) ∞,init L 1 (Ω 0 ) = 0, ∂n (i) γ,init ∂x L 1 (Ω 0 ) ≤ C, ( 9 
)
∂ 2 p γ,ε ∂x 2 (0) L 1 (Ω 0 ) ≤ C, (10) n (i) γ,ε,init n (1) γ,ε,init + n (2) γ,ε,init BV(Ω 0 ) ≤ C. (11)
The first set of conditions ( 9) is standard and allows to recover a density at time 0 when passing to the incompressible limit. The second condition [START_REF] Dambrine | A congestion model for cell migration[END_REF] is technical and will be required when deriving some a priori estimates in Section 4. The last set of conditions [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF] appears rather technical at first glance, but it is a natural assumption, cf. also [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF], as it allows us to handle the points where both initial densities vanish, i.e., vacuum or the absence of any species. Assuming feasible data, well-prepared and compactly supported initial conditions (8), we know from [START_REF] Gwiazda | A two species hyperbolicparabolic model of tissue growth[END_REF][Theorem 3], that system (1) admits a global weak solution n

(1) γ , n (2) γ , p ∈ L ∞ (R × (0, T ))
, for all T > 0. More precisely, the pressure is shown to satisfy

∂p γ ∂x ∈ L 2 (R × (0, T )), ∂ 2 p γ ∂x 2 ∈ L ∞ (0, T ; L 1 (R)),
and the weak solutions are to be understood in the following sense: for all

ϕ ∈ C 1 comp (R × (0, T )), i = 1, 2 (12) ∫ T 0 ∫ R [ -n (i) γ ∂ϕ ∂t + n (i) γ ∂p γ ∂x ∂ϕ ∂x - ( n (1) γ F i (p γ ) + n (2) γ G i (p γ ) ) ϕ ] dxdt = ∫ R n (i) γ,init ϕ(0) dx.

Compact support.

Let us start by a few remarks on notation. Throughout we write

|x| + := { x, x > 0, 0, x ≤ 0, as well as |x| -:= { -x, x < 0, 0, x ≥ 0,
in order to denote the positive part of x ∈ R and the negative part of x, respectively. In particular note that then x = |x| + -|x| -and |x| = |x| + + |x| -. In the same fashion we define the positive sign and negative sign

sign + (x) := { 1, x > 0, 0, x ≤ 0, as well as sign -(x) := { -1, x < 0, 0, x ≥ 0. Note in particular that x • sign ± (x) = |x| ± .
Before regularising, we prove that solutions are compactly supported for all times, a result which requires checking that our assumptions ensure that both densities remain nonnegative.

Proposition 1 (Nonnegativity of n

(1) γ and n

(2) γ ). There holds, for all t ≥ 0,

n (1) γ (t, x) ≥ 0 and n (2) γ (t, x) ≥ 0.
Proof. Dealing with a model as the porous medium equation, we can multiply the first equation in (1) by sign -

( n (1) γ ) , to obtain ∂ ∂t n (1) γ - - ∂ ∂x ( n (1) γ - ∂p γ ∂x ) = n (1) γ - F 1 (p γ ) + n (2) γ G 1 (p γ )sign - ( n (1) γ ) ,
by Lemma A.1 and Remark 6. Observe now that

n (2) γ G 1 (p γ ) sign - ( n (1) γ ) = ( n (2) γ + -n (2) γ - ) G 1 (p γ ) sign - ( n (1)

γ

) .

Since G 1 (•) ≥ 0, by Definition 2.1 we may write

n (2) γ G 1 (p γ ) sign - ( n (1) γ ) ≤ -sign - ( n (1) γ ) n (2) γ - G 1 (p γ ) ≤ G 1 (0) n (2) γ - ,
where the last line is due to the fact that G 1 is decreasing in its argument, by Definition 2.1. Thus, we may conclude

∂ ∂t n (1) γ - - ∂ ∂x ( n (1) γ - ∂p γ ∂x ) ≤ n (1) γ - F 1 (p γ ) + G 1 (0) n (2) γ - .
A similar computation for the second species yields

∂ ∂t n (2) γ - - ∂ ∂x ( n (2) γ - ∂p γ ∂x ) ≤ F 2 (0) n (1) γ - + G 2 (p γ ) n (2)
γ -, whence, upon adding both and integrating the sum in space, we obtain

d dt ∫ R ( n (1) γ - + n (2) γ - ) dx ≤ C ∫ R ( n (1) γ - + n (2) γ - ) dx,
where C only depends on the L ∞ -bounds of

F i , G i , i = 1, 2. Applying Gronwall's lemma gives ∫ R ( n (1) γ - + n (2) γ - ) dx ≤ 0,
and, thus, n

(1)

γ (t, x) ≥ 0 and n (2) γ (t, x) ≥ 0 for all t ≥ 0.
We can now prove that solutions of (1) are compactly supported for all times.

Proposition 2. For all T > 0, there exists an open set Ω independent of γ such that,

supp (p γ (t)) ⊂ Ω, ∀t ∈ [0, T ].
Proof. We note that we may write the pressure equation as

∂p γ ∂t = ∂p γ ∂x 2 + γp γ ∂ 2 p γ ∂x 2 + γn γ-1 γ ( n (1) γ F (p γ ) + n (2) γ G(p γ )
) ,

and at this stage we do not need to use the fractions c

(1)

γ , c (2) γ . Since n (1) γ , n (2) 
γ ≥ 0, we have n

(1) γ F (p γ ) + n (2) γ G(p γ ) ≤ (n (1) γ + n (2) γ ) max(F (p γ ), G(p γ )) = n γ max(F (p γ ), G(p γ )). We infer ∂p γ ∂t ≤ ∂p γ ∂x 2 + γp γ ∂ 2 p γ ∂x 2 + γn γ-1 γ n γ max(F (p γ ), G(p γ )) = ∂p γ ∂x 2 + γp γ ∂ 2 p γ ∂x 2 + γp γ max(F (p γ ), G(p γ )).
Therefore p γ is a subsolution of the equation satisfied with reaction function max(F, G). For this equation, it is well known that compactly supported initial data leads to a compactly supported solution for all times [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF].

We may without loss of generality assume that Ω = (-L, L) for some L > 0, and we define the set Q T := Ω × (0, T ). We fix these arbitrary parameters T and L.

Regularisation and strong solutions.

As explained above, the regularisation step is purely technical, yet necessary, for the rigorous derivation of the a priori estimates in the subsequent section.

Regularised equations. We denote by n

(1) γ,ε , n (2) 
γ,ε the solutions of the system when the initial data are the regularised ones:

n (i) γ,ε,init = n (i) γ,init + ε, i = 1, 2 for ε > 0. From now on, we consider the system            ∂n (1) γ,ε ∂t = ∂ ∂x ( n (1) γ,ε ∂p γ,ε ∂x ) + n (1) γ,ε F 1 (p γ,ε ) + n (2) γ,ε G 1 (p γ,ε ), ∂n (2) γ,ε ∂t = ∂ ∂x ( n (2) γ,ε ∂p γ,ε ∂x ) + n (1) γ,ε F 2 (p γ,ε ) + n (2) γ,ε G 2 (p γ,ε ), (13) 
with, as before,

p γ,ε = n γ γ,ε with n γ,ε = n (1) γ,ε + n (2)
γ,ε . The regularised total density n γ,ε satisfies the equation

∂n γ,ε ∂t = ∂ ∂x ( n γ,ε ∂p γ,ε ∂x ) + n γ,ε c (1) γ,ε F (p γ,ε ) + n γ,ε c (2) γ,ε G(p γ,ε ), (14) 
which we endow with homogeneous Neumann boundary conditions

∂n γ,ε ∂x (t, x) = 0, x = ±L.
Thanks to [START_REF] Gwiazda | A two species hyperbolicparabolic model of tissue growth[END_REF][Theorem 2], as ε → 0, there is convergence of solutions of the regularised system towards those of the original one. More precisely, n

(i) γ,ε converges to n (i) γ in L ∞ (Q T )- w⋆ for i = 1, 2, n γ,ε , p γ,ε converge to n γ , p γ , in L q (Q T ), 1 ≤ q < ∞. Moreover, ∂ x p γ,ε strongly converges to ∂ x p γ in L 2 (Q T ).
As we shall now prove, the regularised total density is positive. This allows us to define the quotients c γ,ε . On the other hand, the positivity ensures that n γ,ε is a strong solution of [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF]. In fact, the regularisation allows us to get rid of the degenerate parabolicity of the equation, and then solutions are classical [START_REF] Luis | The porous medium equation: mathematical theory[END_REF][Theorem 3.1]. Finally, the associated pressure satisfies, in the strong sense,

∂p γ,ε ∂t = ∂p γ,ε ∂x 2 + γp γ,ε [ ∂ 2 p γ,ε ∂x 2 + R γ,ε ] . ( 15 
)
From now on, we keep the regularisation parameter ε > 0 in the statement of all propositions and theorems below while dropping it in the proofs to allow for an improved readability.

Positivity for the density. We now build a subsolution for the equation on n γ,ε . A difficulty is that we cannot hope to derive any general comparison result at the level of the system. For that reason, the control from below relies on the observation that, thanks to the definition of p γ , ( 14) can be rewritten in a porous medium equation form:

(16) ∂n γ,ε ∂t - γ γ + 1 ∂ 2 ∂x 2 ( n γ+1 γ,ε ) = n γ,ε R γ,ε .
Proposition 3 (Positivity for the density n γ,ε ). The solution to [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF] satisfies

n γ,ε ≥ n γ := 2εe -R∞t > 0, for t ∈ (0, T ], where R ∞ > 0 is a L ∞ bound for |R γ,ε |.
Proof. We have chosen n γ so that

∂n γ ∂t = -R ∞ n γ and n γ (0) = 2ε ≤ n γ (0).
Subtracting the equations for n γ and n γ we get ∂ ∂t

( n γ -n γ ) - γ γ + 1 ∂ 2 ∂x 2 ( n γ+1 γ -n γ+1 γ ) = -R ∞ n γ -n γ R.
Multiplying by sign + (n γ -n γ ) and using that sign

+ (n γ+1 γ -n γ+1 γ ) = sign + (n γ -n γ ), we arrive at ∂ ∂t n γ -n γ + - γ γ + 1 ∂ 2 ∂x 2 n γ+1 γ -n γ+1 γ + ≤ ( -R ∞ n γ -n γ R ) sign + (n γ -n γ ).
We now observe that we can write

-R ∞ n γ -n γ R = n γ (-R ∞ -R) + R ( n γ -n γ ) .
Using that the quantity -R ∞ -R is always negative thanks to the definition of R ∞ , we obtain

∂ ∂t n γ -n γ + - γ γ + 1 ∂ 2 ∂x 2 n γ+1 γ -n γ+1 γ + ≤ R n γ -n γ + . Integrating in space yieds d dt ∫ Ω n γ -n γ + dx ≤ R ∞ ∫ Ω n γ -n γ + dx,
which, thanks to Gronwall's lemma and the hypothesis on initial conditions, implies that a.e. n γ (t, x) ≥ n γ (t, x) for t ∈ (0, T ].

Remark 1. More generally, the previous result shows that for every nonnegative n γ and nγ that satisfy respectively

∂n γ ∂t - γ γ + 1 ∂ 2 n γ+1 γ ∂x 2 ≤ -R ∞ n γ , ∂ nγ ∂t - γ γ + 1 ∂ 2 nγ+1 γ ∂x 2 ≥ R ∞ nγ , with R ∞ > 0 as in Proposition 3, we have a.e. in Q T n γ (t, x) ≤ n γ (t, x) ≤ nγ (t, x).
Proposition 4 (Uniform bounds for n γ,ε and p γ,ε ). The solution of [START_REF] Hecht | Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint[END_REF], satisfies for a.e.

(t, x) ∈ Q T 0 < n γ,ε (t, x) ≤ P 1/γ H and 0 < p γ,ε (t, x) ≤ P H . Proof. From Proposition 3, it is clear that p γ = (n γ ) γ > 0.
As for the L ∞ bounds, we set n H = (P H ) 1/γ and observe that, for every 

0 ≤ ζ, ξ ≤ 1, 0 ≥ n H (ζF (P H ) + ξG(P H )) ,
∂ ∂t (n γ -n H ) - γ γ + 1 ∂ 2 ∂x 2 ( n γ+1 γ -n γ+1 H ) = R (n γ -n H ) + n H [ c (1) γ (F (p) -F (P H )) + c (2) γ (G(p) -G(P H ))
] .

Multiplying by sign + (n γ -n H ) and observing that

(F (p γ ) -F (P H )) sign + (n γ -n H ), (G(p γ ) -G(P H )) sign + (n γ -n H ) ≤ 0 thanks to Definition 2.1, we get ∂ ∂t |n γ -n H | + - γ γ + 1 ∂ 2 ∂x 2 n γ+1 γ -n γ+1 H + ≤ R |n γ -n H | + .
Integrating in space and using Gronwall's lemma, we obtain

d dt ∫ Ω |n γ -n H | + dx ≤ C ∫ Ω |n γ -n H | + dx,
which implies n γ (t, x) ≤ n H and p γ (t, x) ≤ P H for every t ∈ (0, T ] since it holds initially by (9).

Equations for the fractions.

Let us examine the equations satisfied by the concentrations 0 ≤ c

(i) γ,ε = n (i) γ,ε /n γ,ε ≤ 1 for i = 1, 2.
Thanks to the positivity of n γ,ε these quantities are well defined. Deriving the equations they satisfy then also requires the smoothness of n γ,ε . By ( 1) and ( 14), they formally satisfy

∂c (1) γ,ε ∂t = 1 n γ,ε ( ∂n (1) γ,ε ∂t - n (1) γ,ε n γ,ε ∂n γ,ε ∂t ) = 1 n γ,ε ∂ ∂x ( n (1)
γ,ε ∂p γ,ε ∂x

) + c (1) γ,ε F 1 (p γ,ε ) + c (2) γ,ε G 1 (p γ,ε ) - c (1) γ,ε n γ,ε ∂ ∂x ( n γ,ε ∂p γ,ε ∂x ) - ( c (1) γ,ε ) 2 F (p γ,ε ) -c (1) γ,ε c (2) γ,ε G(p γ,ε ).
Thus, observing that

1 n γ,ε ∂ ∂x ( n (1) γ,ε ∂p γ,ε ∂x ) - c (1) γ,ε n γ,ε ∂ ∂x ( n γ,ε ∂p γ,ε ∂x ) = ∂c (1) γ,ε ∂x ∂p γ,ε ∂x ,
we derive the two equations for c

(1)

γ,ε and c

(2)
γ,ε :

∂c (1) γ,ε ∂t = ∂c (1) γ,ε ∂x ∂p γ,ε ∂x + c (1) γ,ε F 1 (p γ,ε ) + c (2) γ,ε G 1 (p γ,ε ) - ( c (1) γ,ε ) 2 F (p γ,ε ) -c (1) γ,ε c (2) γ,ε G(p γ,ε ), (17) ∂c 
(2) γ,ε ∂t = ∂c (2) γ,ε ∂x ∂p γ,ε ∂x + c (1) γ,ε F 2 (p γ,ε ) + c (2) γ,ε G 2 (p γ,ε ) - ( c (2) γ,ε ) 2 G(p γ,ε ) -c (1) γ,ε c (2) γ,ε F (p γ,ε ). ( 18 
)
Note that these equations are to be understood in the weak sense. For c [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] γ,ε , for example, it is given by (1) γ,ε ∂ϕ ∂t + c (1) γ,ε ∂p γ,ε ∂x ∂ϕ ∂x + c (1) γ,ε

∫ T 0 ∫ Ω [ -c
∂ 2 p γ,ε ∂x 2 ϕ - ( c (1) γ,ε F 1 (p γ,ε ) + c (2) γ,ε G 1 (p γ,ε ) - ( c (1) γ,ε ) 2 F (p γ,ε ) -c (1) γ,ε c (2) γ,ε G(p γ,ε ) ) ϕ ] dxdt = ∫ Ω c (1) γ,ε (0) ϕ(0) dx.
They are obtained by choosing ϕ/n γ,ε as a test function in the weak formulation [START_REF] Morton E Gurtin | A note on interacting populations that disperse to avoid crowding[END_REF] of the equations for n

(1)
γ,ε and n

(2)
γ,ε , with ϕ smooth and compactly supported in Ω. This choice of test function is made possible by the smoothness of n γ,ε .

A Priori Estimates

Throughout, C will denote a constant independent of γ and ε (but which might depend on T ), which may also change from line to line. This section is dedicated to proving the following a priori estimates. The last estimate involves [START_REF] Lowengrub | Nonlinear modelling of cancer: bridging the gap between cells and tumours[END_REF] w γ,ε :=

∂ 2 p γ,ε ∂x 2 + R γ,ε . Theorem 3.1 (A Priori Estimates). ∫ T 0 ∫ Ω ∂p γ,ε ∂x 2 dxdt ≤ C, ( 20 
)
sup 0≤t≤T ∫ Ω ( ∂c (i) γ,ε ∂x + ∂n (i) γ,ε ∂x ) dx ≤ C, i = 1, 2, (21) γ ∫ T 0 ∫ Ω p γ,ε |w γ,ε |dxdt ≤ C, sup 0≤t≤T ∫ Ω |w γ,ε | -dx ≤ C. ( 22 
)
The proof of the theorem is split into several results that are proven below in chronological order. [START_REF] Lu | Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds[END_REF]). We integrate the equation for the pressure, Eq. ( 15), in space to obtain

Proof. (Estimate

d dt ∫ Ω p γ dx - ∫ Ω ( ∂p γ ∂x 2 + γp γ ∂ 2 p γ ∂x 2 ) dx = γ ∫ Ω p γ Rdx.
An integration by parts in the second-order term yields 

d dt ∫ Ω p γ dx + (γ -1) ∫ Ω ∂p γ ∂x 2 dx = γ ∫ Ω p γ Rdx,
∫ T 0 ∫ Ω ∂p γ ∂x 2 dxdt = γ ∫ T 0 ∫ Ω p γ R dxdt -∥p γ (T )∥ L 1 (Ω) + ∥p γ (0)∥ L 1 (Ω) ≤ Cγ,
as p γ and R are bounded in L ∞ (Q T ) uniformly in γ and ε. We conclude by dividing by γ to obtain the desired estimate. [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]). We begin by considering the equation for c [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] γ in Eq. [START_REF] Inwon | Free boundary problems for tumor growth: a viscosity solutions approach[END_REF]. Upon differentiation in space, there holds

Proof. (Estimate

∂ ∂t ∂c (1) γ ∂x = ∂ ∂x ( ∂c (1) γ ∂x ∂p γ ∂x ) + ∂c (1) γ ∂x F 1 (p γ ) + ∂c (2) γ ∂x G 1 (p γ ) -2c (1) γ ∂c (1) γ ∂x F (p γ ) -c (2) γ ∂c (1) γ ∂x G(p γ ) -c (1) γ ∂c (2) γ ∂x G(p γ ) + ∂p γ ∂x ( c (1) γ F ′ 1 (p γ ) + c (2) γ G ′ 1 (p γ ) -(c (1) γ ) 2 F ′ (p γ ) -c (1) γ c (2) γ G ′ (p γ )
) .

Multiplying this equation by sign( ∂c (1) γ ∂x ) and using Lemma A.1 and Remark 6, we obtain ∂ ∂t ∂c [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] 

γ ∂x ≤ ∂ ∂x ( ∂c (1) γ ∂x p γ ) + ∂c (1) γ ∂x ( F 1 (p γ ) -2c (1) γ F (p γ ) -c (2) γ G(p γ ) ) + ∂c (2) γ ∂x ( G 1 (p γ ) -c (1) γ G(p γ )
) sign

( ∂c (1) γ ∂x ) + ∂p γ ∂x ( c (1) γ F ′ 1 (p γ ) + c (2) γ G ′ 1 (p γ ) -(c (1) γ ) 2 F ′ (p γ ) -c (1) γ c (2) γ G ′ (p γ )
) sign

( ∂c (1) γ ∂x ) ≤ ∂ ∂x ( ∂c (1) γ ∂x p γ ) + C ∂c (1) γ ∂x + C ∂c (2) γ ∂x + C ∂p γ ∂x ,
where the constants are independent of γ and ε and only depend on the L ∞ -bounds on F i , G i , as well as on the fact that 0 ≤ c

(i) γ ≤ 1, i = 1, 2.
Upon integrating in space we get

d dt ∫ Ω ∂c (1) γ ∂x dx ≤ C ∫ Ω ( ∂c (1) γ ∂x + ∂c (2) γ ∂x ) dx + C ∫ Ω ∂p γ ∂x dx,
where the first term has vanished as it was an exact derivative and the boundary terms vanish by the homogeneous Neumann boundary conditions.

Performing the same manipulations on the equation for c

(2)

γ and summing both, we finally get

d dt ∫ Ω ( ∂c (1) γ ∂x + ∂c (2) γ ∂x ) dx ≤ C ∫ Ω ( ∂c (1) γ ∂x + ∂c (2) γ ∂x ) dx + C ∫ Ω ∂p γ ∂x dx.
By setting

ψ(t) := ∫ Ω ( ∂c (1) γ ∂x + ∂c (2) γ ∂x ) dx,
the previous inequality reads

ψ ′ (t) ≤ Cψ(t) + C ∫ Ω ∂p γ ∂x dx.
An application of Gronwall's lemma yields

ψ(t) ≤ Cψ(0)e Ct + C ∫ t 0 ∫ Ω e C(t-s) ∂p γ ∂x dxds.
From the uniform L 2 (Q T )-bounds on ∂pγ ∂x , we conclude that ψ(t) ≤ Cψ(0) + C.

At this stage let us emphasise that none of the constants depends on γ or ε. Finally, the term ψ(0) is bounded by the assumptions on the initial data, cf. Eq. [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF].

For the densities n

(1) γ , n (2)
γ , we start by estimating the total density n γ . We differentiate Eq. ( 14) w.r.t. x, which yields ∂ ∂t

( ∂n γ ∂x ) = ∂ 2 ∂x 2 ( n γ ∂p γ ∂x ) + n γ ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) + ∂n γ ∂x ( c (1) γ F (p γ ) + c (2) γ G(p γ ) ) + ∂p γ ∂x n γ ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ )
) .

Using 

∂ ∂t ∂n γ ∂x ≤ γ ∂ 2 ∂x 2 ( p γ ∂n γ ∂x ) + n γ ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) sign ( ∂n γ ∂x ) + ∂n γ ∂x ( c (1) γ F (p γ ) + c (2) γ G(p γ ) ) + ∂p γ ∂x n γ ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ )
) .

Upon integrating in space and using the zero Neumann boundary conditions, we get

d dt ∫ Ω ∂n γ ∂x dx ≤ C ∫ Ω ( ∂c (1) γ ∂x + ∂c (2) γ ∂x + ∂n γ ∂x + ∂p γ ∂x ) dx,
where the constant C > 0 only depends on the L ∞ -bounds of n γ , as well as F i , G i and

F ′ i , G ′ i , for i = 1, 2.
Using the BV -bounds from above we may further write d dt

∫ Ω ∂n γ ∂x dx ≤ C + C ∫ Ω ∂n γ ∂x dx + ∫ Ω ∂p γ ∂x dx.
Proceeding as before, we conclude that n γ is uniformly bounded in BV , cf. Definition 2.2, Eq. [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF]. To see that it provides the required BV estimates for n

(1)

γ , n (2) 
γ , we notice that the equality n

(i) γ = c (i) γ n γ leads to ∂n (i) γ ∂x = c (i) γ ∂n γ ∂x + n γ ∂c (i) γ ∂x for i = 1, 2.
The BV bounds for n γ and c

(1) γ and c

(2)

γ together with the boundedness of n γ then imply the result and conclude the proof. [START_REF] Maury | Congestion-driven dendritic growth[END_REF]). For ease on notations, we set R = c

Proof. (Estimate

(1) γ F (p γ ) + c (2)
γ G(p γ ), as before, and we recall that R is bounded in L ∞ (Q T ). Using Eqs. ( 15) and ( 17), we want to differentiate the quantity w γ in time. We obtain

∂w γ ∂t = ∂ ∂t ∂ 2 p γ ∂x 2 I 1 + ∂R ∂t I 2 .
We shall address both terms individually beginning with I 2 .

I 2 = ∂ ∂t ( c (1) γ F (p γ ) + c (2) γ G(p γ ) ) = ∂c (1) γ ∂t F (p γ ) + ∂c (2) γ ∂t G(p γ ) I 2,1 + ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) ∂p γ ∂t I 2,2
.

Using the equations for c (i) γ , Eq. ( 17), we obtain

I 2,1 = F (p γ ) ( ∂c (1) γ ∂x ∂p γ ∂x + c (1) γ F 1 (p γ ) + c (2) γ G 1 (p γ ) - ( c (1) γ ) 2 F (p γ ) -c (1) γ c (2) γ G(p γ ) ) + G(p γ ) ( ∂c (2) γ ∂x ∂p γ ∂x + c (1) γ F 2 (p γ ) + c (2) γ G 2 (p γ ) - ( c (2) γ ) 2 G(p γ ) -c (1) γ c (2) γ F (p γ ) ) = ∂p γ ∂x ( F (p γ ) ∂c (1) γ ∂x + G(p γ ) ∂c (2) γ ∂x ) + S 2 ,
where we introduced

S 2 = F (p γ ) ( c (1) γ F 1 (p γ ) + c (2) γ G 1 (p γ ) - ( c (1) γ ) 2 F (p γ ) -c (1) γ c (2) γ G(p γ ) ) + G(p γ ) ( c (1) γ F 2 (p γ ) + c (2) γ G 2 (p γ ) - ( c (2) γ ) 2 G(p γ ) -c (1) γ c (2) γ F (p γ ) ) , ( 23 
)
as a short hand. Similarly, we may use the equation for p γ to obtain

I 2,2 = ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) γp γ w γ + S 1 ,
where

S 1 = ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) ∂p γ ∂x 2 .
Now, recall that I 2 = I 2,1 + I 2,2 so that

I 2 = γp γ w γ ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) + ∂p γ ∂x ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) + S 1 + S 2 . ( 24 
)
Recalling the pressure equation, Eq. ( 15), we obtain

I 1 = ∂ 2 ∂x 2 ( ∂p γ ∂x 2 + γp γ w γ ) = 2 ∂ ∂x ( ∂p γ ∂x ∂ 2 p γ ∂x 2 ) + γ ∂ 2 ∂x 2 (p γ w γ ) = 2 ∂ ∂x ( ∂p γ ∂x w γ - ∂p γ ∂x R ) + γ ∂ 2 ∂x 2 (p γ w γ ) = 2 ∂ ∂x ( ∂p γ ∂x w γ ) + γ ∂ 2 ∂x 2 (p γ w γ ) -2 ∂ ∂x ( ∂p γ ∂x R ) I 1,1 . ( 25 
)
Let us note that

I 1,1 = ∂ ∂x ( ∂p γ ∂x R ) = ∂ 2 p γ ∂x 2 R + ∂p γ ∂x ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) + S 1 = (w γ -R)R + ∂p γ ∂x ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) + S 1 ,
having used the fact that w γ = ∂ 2 pγ ∂x 2 + R. Combining the estimates on the pressure-related term, Eq. ( 25), with the reaction-related terms, Eq. ( 24), we obtain

∂w γ ∂t = γ [ ∂ 2 ∂x 2 (p γ w γ ) + p γ w γ ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) ] + 2 ∂ ∂x ( ∂p γ ∂x w γ ) -2(w γ -R)R - ∂p γ ∂x ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) -S 1 + S 2 . ( 26 
)
We now note that S 1 ≤ 0 since F and G are decreasing functions, cf. Definition 2.1. Moreover |S 2 | ≤ C, since all the terms in Eq. ( 23) are uniformly bounded in γ and ε. Thus we may write

S 2 ≥ -|S 2 | ≥ -C whence ∂w γ ∂t ≥ γ [ ∂ 2 ∂x 2 (p γ w γ ) + p γ w γ ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) ] + 2 ∂ ∂x ( ∂p γ ∂x w γ ) -2w γ R - ∂p γ ∂x ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) -C.
Multiplying by sign -(w γ ) yields

∂ ∂t |w γ | -≤ γ [ ∂ 2 ∂x 2 ( p γ |w γ | - ) + p γ |w γ | - ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) ] + 2 ∂ ∂x ( ∂p γ ∂x |w γ | - ) -2 |w γ | -R + ∂p γ ∂x ( ∂c (1) γ ∂x F (p γ ) + ∂c (2) γ ∂x G(p γ ) ) {wγ ≤0} + C,
where we used Lemma A.1 and Remark 6. Using the L ∞ -bounds on the growth terms we estimate the right-hand side further

∂ ∂t |w γ | -≤ γ [ ∂ 2 ∂x 2 ( p γ |w γ | - ) + p γ |w γ | - ( c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ) ] + 2 ∂ ∂x ( ∂p γ ∂x |w γ | - ) + C |w γ | -+ C ∂p γ ∂x ( ∂c (1) γ ∂x + ∂c (2) γ ∂x ) + C. ( 27 
)
Finally we note that

c (1) γ F ′ (p γ ) + c (2) γ G ′ (p γ ) ≤ max(F ′ (p γ ), G ′ (p γ )) ≤ -C < 0, since c (1)
γ + c

(2) γ = 1, which is why Eq. ( 27) can be further estimated and we obtain

∂ ∂t |w γ | -≤ γ [ ∂ 2 ∂x 2 ( p γ |w γ | - ) -Cp γ |w γ | - ] + 2 ∂ ∂x ( ∂p γ ∂x |w γ | - ) + C |w γ | - + C ∂p γ ∂x ( ∂c (1) γ ∂x + ∂c (2) γ ∂x ) + C.
Then, integrating in space yields

d dt ∫ Ω |w γ | -dx ≤ -Cγ ∫ Ω p γ |w γ | -dx + C ∫ Ω |w γ | -dx + C ∂p γ ∂x L ∞ (Ω) + C, ( 28 
)
where we used the BV -estimates on the c (i) γ 's [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]. Next we show that the L ∞ -norm of ∂pγ ∂x can be estimated in terms of |w γ | -. First, due to Sobolev's embedding theorem in one dimension, we have

∂p γ ∂x L ∞ (Ω) ≤ ∂ 2 p γ ∂x 2 L 1 (Ω) ≤ ∫ Ω (|w γ | + |R|) dx = ∫ Ω (w γ + 2|w γ | -+ |R|) dx ≤ ∫ Ω ( ∂ 2 p γ ∂x 2 + 2|R| + 2|w γ | - ) dx.
Thus we have

∂p γ ∂x L ∞ (Ω) ≤ C + C ∫ Ω |w γ | -dx. ( 29 
)
Using Eq. ( 29) in Eq. ( 28) we get

d dt ∫ Ω |w γ | -dx ≤ -Cγ ∫ Ω |w γ | -dx + C ∫ Ω |w γ | -dx + C.
The above equation and the Gronwall lemma yield the first estimate of ( 22), provided that we can bound ∥w γ (0)∥ L 1 (Ω) independently of γ, ε, which in turn requires a L 1 (Ω) estimate for ∂ 2 pγ ∂x 2 (0). Such an estimate is provided by [START_REF] Dambrine | A congestion model for cell migration[END_REF]. Moreover, recalling [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF], we also get

γ ∫ T 0 ∫ Ω p γ |w γ | -dx ≤ C. ( 30 
)
From Eq. ( 15), we easily infer

γ ∫ T 0 ∫ Ω p γ w γ dx = ∫ T 0 ∫ Ω ( ∂p γ ∂t - ∂p γ ∂x 2 ) dx ≤ ∥p γ (T )∥ L 1 (Ω) -∥p γ (0)∥ L 1 (Ω) ≤ C.
The above inequality, together with [START_REF] Ranft | Fluidization of tissues by cell division and apoptosis[END_REF], completes the proof since it provides the required estimate for γ

∫ T 0 ∫ Ω p γ |w γ |.
Among byproducts of the previous proof, we highlight the following estimates on ∂pγ ∂x , ∂ 2 pγ ∂x 2 , which will be useful for the proof of the main results.

Corollary 1. There holds

∂p γ,ε ∂x L ∞ (Ω)
≤ C, as well as

∂ 2 p γ,ε ∂x 2 L 1 (Ω) ≤ C.

Proof of the main results

This section is dedicated to passing to the incompressible limit γ → +∞. As before, we assume that the functions F i , G i are feasible, that the initial data is well-prepared and that the initial data is compactly supported, i.e., [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF].

Theorem 4.1 (Strong compactness of the pressure). Let 1 ≤ q < ∞ be arbitrary. Then there exists a function p ∞ ∈ L ∞ (Q T ) such that, upon extraction of a sub-family, there holds

p γ -→ p ∞ , ( 31 
)
pointwise and strongly in L q (Q T ).

Proof. For a given sequence (u γ ) γ defined on (0, T ) × Ω and bounded in L 1 (Q T ), we recall that if we control both the time shifts and space shifts as follows

∫ T -h 0 ∫ Ω |u γ (t + h, x + a) -u γ (t, x)| → 0, (32) 
as (h, a) → (0, 0), independently of γ, then (u γ ) γ has compact closure in L 1 (Q T ) by the Fréchet-Kolmogorov compactness theorem. This is of course true if the following stronger estimate holds:

∫ T 0 ∫ Ω (|∂ t u γ | + |∂ x u γ |) dxdt ≤ C. (33) Finally, if furthermore (u γ ) γ is (uniformly in γ) in L ∞ (Q T ), then it is also compact in L q (Q T )
for any 1 ≤ q < ∞, after applying Lebesgue's dominated convergence theorem. This general result is crucial in passing to the limit γ → +∞ and will use it in this proof, abusively referring to it as the Fréchet-Kolmogorov Theorem. From the estimates of Theorem 3.1, we clearly have

∫ T 0 ∫ Ω ∂p γ ∂t dxdt ≤ ∫ T 0 ∫ Ω ( ∂p γ ∂x 2 + γp γ |w γ | ) dxdt ≤ C.
Thanks to the compactness assumption, we have the required bound:

∫ T 0 ∫ Ω (|∂ t p γ | + |∂ x p γ |) dxdt ≤ C, (34) 
from which strong convergence in L 1 (Q T ) follows. Note that this convergence holds even pointwise after possibly passing to another sub-sequence. Finally, since p γ ≤ P H , this bound also holds at the limit. Theorem 4.2 (Complementarity formula). We may pass to the limit in Eq. [START_REF] Kim | Porous medium equation to Hele-Shaw flow with general initial density[END_REF] to obtain the complementarity relation

p ∞ [ ∂ 2 p ∞ ∂x 2 + n (1) ∞ F (p ∞ ) + n (2) ∞ G(p ∞ ) ] = 0, (35) in D ′ (Q T ), where n (i) ∞ , i = 1, 2 and p ∞ weakly satisfy the equations (36)              ∂n (1) ∞ ∂t = ∂ ∂x ( n (1) ∞ ∂p ∞ ∂x ) + n (1) ∞ F 1 (p ∞ ) + n (2) ∞ G 1 (p ∞ ), ∂n (2) ∞ ∂t = ∂ ∂x ( n (2) ∞ ∂p ∞ ∂x ) + n (1) ∞ F 2 (p ∞ ) + n (2) ∞ G 2 (p ∞ ), 0 = p ∞ (1 -n ∞ ) = 0 a.e., starting from n (i) ∞ (0) = n (i) ∞,init , i = 1, 2, where n ∞ = n (1) ∞ + n (2)
∞ . Before we begin the proof of the complementarity formula in the incompressible limit, we recall some properties of mollifiers and convolutions.

Remark 2 (Properties of mollifiers). We set

φ(x) := { 0, |x| ≥ 1, M exp ( -1 1-|x| 2 ) , |x| < 1,
and recall that φ ∈ C ∞ c (R) is a nonnegative, symmetric function. We choose M so that φ has mass one. Furthermore, we define the Dirac sequence (φ δ ) δ>0 by

φ δ (x) = δ -1 φ ( δ -1 x ) .
Then, there holds, for any function f ∈ W 1,q (Ω) (with

K := ∫ R |x|φ(x) dx) ∥f ⋆ φ δ -f ∥ L q (Ω) ≤ K∥f ′ ∥ L q (Ω) δ.
Moreover the derivative is given by

φ ′ δ (x) = -2 δ -1 x [1 -(δ -1 x) 2 ] 2 φ δ (x), whence ∥φ δ (x)∥ L 1 (Ω) ≤ Cδ -1 .
We have now gathered all information necessary for passing to the limit in the pressure equation, Eq. ( 15).

Proof. We rewrite the equation for p γ and multiply by a test function in order to obtain

1 γ ∫ T 0 ∫ Ω ϕ(t, x) ( ∂p γ ∂t - ∂p γ ∂x 2 ) dxdt = ∫ T 0 ∫ Ω ϕ(t, x)p γ w γ dxdt.
From the bounds

∫ T 0 ∫ Ω ∂p γ ∂t dxdt ≤ C, ∫ T 0 ∫ Ω ∂p γ ∂x 2 dxdt ≤ C,
the left-hand side must converge to zero, meaning that

p γ w γ -→ 0, (37) 
in the distributional sense. It now remains to identify the limit. We write

∫ T 0 ∫ Ω ϕp γ w γ dx = ∫ T 0 ∫ Ω ϕp γ ∂ 2 p γ ∂x 2 dx + ∫ T 0 ∫ Ω ϕp γ ( c (1) γ F (p γ ) + c (2) γ G(p γ ) ) dx,
and we treat both terms independently. First term. For the first one, we write

p γ ∂ 2 p γ ∂x 2 = 1 2 ∂ 2 p 2 γ ∂x 2 - ( ∂p γ ∂x ) 2 , leading to ∫ T 0 ∫ Ω ϕp γ ∂ 2 p γ ∂x 2 dx = 1 2 ∫ T 0 ∫ Ω ∂ 2 ϕ ∂x 2 p 2 γ dx - ∫ T 0 ∫ Ω ϕ ∂p γ ∂x 2 dx.
We may pass to the limit in the first term by Theorem 4.1. The second term requires to analyse compactness for ∂pγ ∂x , a problem we again approach with the Fréchet-Kolmogorov Theorem as the main tool. Its space derivative is already controlled since, from Corollary 1,

sup 0≤t≤T ∂ 2 p γ ∂x 2 (t) L 1 (Ω) ≤ C.
For the time derivative we will use the Fréchet-Kolmogorov compactness method, we shall prove that, as h and tends to 0,

∫ T -h 0 ∫ Ω ∂p γ ∂x (t + h, x) - ∂p γ ∂x (t, x) dxdt → 0.
Let us continue with the analysis. For the ease of notations, we set

u h (t, x) := ∂p γ ∂x (t + h, x) - ∂p γ ∂x (t, x).
By comparing u to its mollified version, the triangular equality yields

∫ T -h 0 ∫ Ω |u h (t, x)| dxdt ≤ ∫ T -h 0 ∫ Ω |u h (t, x) -u h (t, •) * φ δ (x)| dxdt + ∫ T -h 0 ∫ Ω |u h (t, •) * φ δ (x)| dxdt. (38) 
Here, δ is a function (to be specified later on) of h tending to 0. By Remark 2, there holds

∫ T -h 0 ∫ Ω |u h (t, x)-u h (t, •) * φ δ (x)| dxdt ≤ Ch ∫ T -h 0 ∂ 2 p γ ∂x 2 (t + h) - ∂ 2 p γ ∂x 2 (t) L 1 (Ω)
dt ≤ Ch, thanks to Corollary 1. which proves that the right-hand side converges to zero as δ → 0, uniformly in γ. It suffices to show that the same result holds for the second integral. We write

∫ T -h 0 ∫ Ω |u h (t, •) * φ δ (x)| dxdt ≤ ∫ T -h 0 ∫ Ω |(p γ (t + h) -p γ (t)) ⋆ φ ′ δ (x)|dxdt,
after exchanging derivatives in the convolution. We now bound with the estimate on the derivative of the mollifier, cf. Remark 2:

∫ T -h 0 ∫ Ω |u h (t, •) ⋆ φ δ |dxdt ≤ ∫ T -h 0 ∫ Ω |φ ′ δ (y)|dy ∫ Ω |p γ (t + h, x) -p γ (t, x)| dxdt ≤ C δ ∫ T -h 0 ∫ Ω |p γ (t + h, x) -p γ (t, x)| dxdt ≤ C δ ∫ T -h 0 ∫ Ω ∫ t+h t ∂p γ ∂t (s, x)ds dxdt.
We rearrange the integrals and obtain

∫ T -h 0 ∫ Ω |u h (t, •) ⋆ φ δ |dxdt ≤ C δ ∫ Ω ∫ T -h 0 ∫ t+h t ∂p γ ∂t (s, x) dsdxdt = C δ ∫ Ω ∫ T s=0 ∫ min(T -h,s) t=max(0,s-h) ∂p γ ∂t (s, x) dt ds dx = C δ ∫ Ω ∫ T 0 (min(T -h, s) -max(0, s)) ∂p γ ∂t dsdx ≤ Ch δ ∫ Ω ∫ T 0 ∂p γ ∂t (s, x) ds dx.
Using the fact that ∂pγ ∂t is bounded in L 1 (0, T ; L 1 (Ω)) uniformly in γ, cf. (34), we obtain

∫ T -h 0 ∫ Ω |u h (t, •) ⋆ φ δ |dxdt ≤ C √ h,
having set δ = √ h. Thus we conclude that the entire right-hand side of Eq. ( 38) converge to zero as h → 0. Thus the time shifts are also controlled and we may infer the strong compactness of ∂pγ ∂x .

Second term. For the second term involving p γ (c

(1) γ F (p γ ) + c (2)
γ G(p γ )), we note that p γ (c (1) γ F (p γ ) + c (2) γ G(p γ )) = p 1-1/γ γ (n (1) γ F (p γ ) + n (2) γ G(p γ )).

Passing to the limit requires weak convergence of n

(1) γ and n

(2)

γ , since the strong convergence of the pressure would then allow us to pass to the limit in the second term, i.e.,

∫ T 0 ∫ Ω ϕp γ ( c (1) γ F (p γ ) + c (2) γ G(p γ ) ) dx → ∫ T 0 ∫ Ω ϕp ∞ ( n (1) ∞ F (p ∞ ) + n (2) ∞ G(p ∞ ) ) dx.
For the convergence of n

(1) γ , n (2) 
γ , we use the Fréchet-Kolmogorov Theorem. For the space derivative, the result is already provided by estimate [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF]. For the time derivative, it suffices to use the equation for the n (i) γ 's. We focus on n [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] γ and expand the divergence term to get ∂n [START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] 

γ ∂t = ∂n (1) γ ∂x ∂p γ ∂x + n (1) γ ∂ 2 p γ ∂x 2 + n (1) γ F 1 (p γ ) + n (2) γ G 1 (p γ ).
The two last terms are in L ∞ (Ω) while the two first terms are controlled in L 1 (Ω) thanks to Corollary 1. Consequently, we have strong convergence of the densities (n

(1) γ , n (2) γ ) to some (n (1) ∞ , n (2) ∞ ) in L 1 (Q T ). Limit equation for n (1) ∞ , n (2)
∞ . We aim at passing to the limit in

∂n (1) γ ∂t = ∂ ∂x ( n (1) γ ∂p γ ∂x ) + n (1) γ F 1 (p γ ) + n (2) γ G 1 (p γ ).
The reaction terms readily pass to the limit since p γ converges strongly and the n (i) γ 's also. For the divergence term, we use the same results and the strong convergence of ∂pγ ∂x established above. Initial condition. The limit Cauchy problem is completely identified with the initial condition n

(1) ∞,init , n (2)
∞,init , thanks to [START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF]. Other relations. Equation ( 36) is obtained by writing n γ p γ γ-1 γ = p γ , and using the convergences of p γ and n γ , respectively, to conclude. Note that similar arguments allow to prove the strong convergence of c

(1) γ , c (2) γ to some c (1) ∞ , c (2)
∞ . These limits will satisfy the relations

c (i) ∞ n ∞ = n (i) ∞ , c (i) ∞ p ∞ = n (i) ∞ p ∞ , i = 1, 2.
Remark 3. We again emphasise that the solutions of the regularised system converge to those of the original one as ε tends to 0. This proves that the limit system obtained by letting both ε tend to 0 and γ tend to +∞ is also the system obtained from the original one by letting γ tend to +∞.

Segregation property

In order to establish the preservation of the segregation property n (1) n (2) ≡ 0, we begin with extracting subsequences such that the initial population fractions pass to the limit γ → ∞, ε → 0. More precisely, we notice that upon extracting subsequences, there exist c

(1)

∞,init , c (2) 
∞,init ∈ L 1 (Ω 0 ) such that, as ε → 0, γ → ∞,

(39) c (i) γ,ε (0) → c (i) ∞,init in L 1 (Ω 0 ).
Indeed, Helly's selection theorem applies since the quotients are bounded both in L ∞ and in BV by assumption [START_REF] Degond | Incompressible limit of a continuum model of tissue growth for two cell populations[END_REF].

Our approach is then based on the observation that, in the absence of cross-reactions (F 2 = G 1 = 0), a direct manipulation shows that n γ c

(1) γ c

(2) γ satisfies the equation ( 40)

∂n γ c (1) γ c (2) γ ∂t = ∂ ∂x ( n γ c (1) γ c (2) γ ∂p γ ∂x ) + n γ c (1) γ c (2) γ ( c (2) γ F 1 (p γ ) + c (1) γ G 2 (p γ )
) .

If initially n γ c

(1) γ c

(2) γ = 0, any weak solution will propagate the segregation property. We explain below that we can pass to the limit in this equation in the weak sense. 

∞ (t) n (2) ∞ (t) = 0 a.e. in Q T .
Proof. Firstly, we pass to the limit in Equation (40). Then, writing n γ (0, •)c

(1) γ (0, •)c (2) γ (0, •) = n (1) γ (0, •)c (2)
γ (0, •), we can pass to the limit in the intial data since both terms are in L ∞ (Ω 0 ) and have a limit in L 1 (Ω 0 ). Applying the convergence results in Theorem 1.1, we can also pass to the limit in the weak form of Equation (40), see [START_REF] Morton E Gurtin | A note on interacting populations that disperse to avoid crowding[END_REF]. Therefore we obtain for u

= n ∞ c (1) ∞ c (2) ∞ , the equation (41)    ∂u ∂t = ∂ ∂x ( u ∂p ∞ ∂x ) + u ( c (2) ∞ F 1 (p ∞ ) + c (1) ∞ G 2 (p ∞ ) ) , u(0, •) = n ∞,init c (1) ∞,init c (2) 
∞,init ∈ L 1 (Ω 0 ). Secondly, we wish to show that u(t, •) = 0 when u(0, •) = 0. To do so, we use the definition of the weak form [START_REF] Morton E Gurtin | A note on interacting populations that disperse to avoid crowding[END_REF] with a compactly supported test function ϕ(t, x) which takes the value 1 on Q T and arrive to

d dt ∫ u(t, x)ϕ(t, x)dx ≤ ∥c (2) ∞ F 1 (p ∞ ) + c (1) ∞ G 2 (p ∞ )∥ ∞ ∫ u(t, x)ϕ(t, x)dx.
Using Gronwall's lemma, we conclude that ∫ u(t, x)ϕ(t, x)dx = ∫ Q T u(t, x)dx = 0 and thus u ≡ 0.

Remark 4. This proof of the segregation property can be adapted to more general solutions of (41) than those with compact support. Using test functions with a truncation parameter, we merely need u ≥ 0 be integrable and ∂p∞ ∂x be bounded.

Remark 5. The product

v := n (1) γ n (2) γ , is not well adapted because it solves ∂v ∂t = ∂ ∂x ( v ∂p γ ∂x ) + v ( F 1 (p γ ) + G 2 (p γ ) + ∂ 2 p γ ∂x 2
) . This is not a well defined equation in the limit, with the available regularity on p ∞ . Indeed,

∂ 2 pγ ∂x 2 is bounded in L 1 but ∂ 2 p∞
∂x 2 is just a measure at the limit [START_REF] Perthame | Derivation of a hele-shaw type system from a cell model with active motion[END_REF]. In other words, one cannot hope to derive the segregation property from the above equation on v.

Conclusions and open questions

We have established the incompressible limit of the two-species system (1) in one space dimension. The mathematical interest arises from vacuum states which generate a free boundary described by a Hele-Shaw type system. Our approach is based on an extension of the Aronson-Bénilan estimates which we use in an L 1 setting rather than using upper bounds as usually done. Any improvement in the method and the estimate itself could be of interest. There are three major difficulties to extend this estimate to higher dimension. Firstly, we work in BV as in [START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]. Secondly, some exchanges of derivatives cannot be performed in more than one dimension. Thirdly, we use that p γ is Lipschitz continuous (using Sobolev injections) which is crucial in estimates such as [START_REF] Perthame | The Hele-Shaw asymptotics for mechanical models of tumor growth[END_REF].

Several extensions could be of interest but require new ideas. The question of the regularity theory for the free boundary is completely open and faces the difficulty of weak estimates compared to the one species case in [START_REF] Mellet | A Hele-Shaw problem for tumor growth[END_REF]. Including drift terms is of interest in view of [START_REF] Craig | Congested aggregation via Newtonian interaction[END_REF][START_REF] Dambrine | A congestion model for cell migration[END_REF][START_REF] Richárd | Advection-diffusion equations with density constraints[END_REF]. Also including different mobilities for the two species as in [START_REF] Lorenzi | On interfaces between cell populations with different mobilities[END_REF] is an open question. 
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Appendix A. Variations of Krushkov

Here we present the rigorous argument for passing the negative part and the absolute value into derivatives in a conservation law

∂f ∂t = ∂ ∂x (af ) + ∂ 2 ∂x 2 (bf ) (42) 
with no-flux boundary conditions.

Lemma A.1. Assume a ∈ C 1 b (R, R) and b ∈ C 2 b (R, R + ). Let ϕ ∈ C 1 (R, R +
) be a twice differentiable function, and assume that f satisfies Eq. (42). Then there holds 42) by ϕ ′ ε (f ) yields the first statement after reversing some applications of the chain rules and algebraic simplifications. As for the second statement, we note that -aϕ ′′ ε (f )|∂ x f | 2 ≤ 0, independently of ε > 0. Moreover, due to the boundedness of ∂ x a + ∂ 2

∂ ∂t ϕ(f ) = ∂ ∂x (aϕ(f )) + ∂ 2 ∂x 2 (bϕ(f )) + ( ∂a ∂x + ∂ 2 b ∂x 2 ) [ f ϕ ′ (f ) -ϕ(f ) ] -aϕ ′′ (f ) ∂f ∂x 2 . Moreover, if (ϕ ε ) ε>0 is
x b we obtain

∂ ∂t ϕ ε (f ) ≤ ∂ ∂x (aϕ ε (f )) + ∂ 2 ∂x 2 (bϕ ε (f )) + C f ϕ ′ ε (f ) -ϕ ε (f ) ∞ .
Due to the uniformity of the approximation, the norm is of order ε and passing to the limit yields the second statement. Proof. The proof is straightforward and we give it here only for the reader's convenience. We compute

d dt ∫ Ω ϕ(f )dx = ∫ Ω ϕ ′ (f ) ∂ ∂x (af ) dx I 1 + ∫ Ω ϕ ′ (f ) ∂ 2 ∂x 2 (bf )dx I 2 .
We treat the advective term, I 1 , and the diffusion term, I 2 , separately. We have

I 1 = ∫ Ω ∂a ∂x ϕ ′ (f )f + a ∂ϕ(f ) ∂x dx = ∫ Ω ∂a ∂x [ ϕ ′ (f )f -ϕ(f ) ] dx + ∫ ∂Ω aϕ(f )dS x .
As for the second term we obtain

I 2 = ∫ Ω ϕ ′ (f )f ∂ 2 b ∂x 2 + 2 ∂b ∂x ∂ϕ(f ) ∂x + ϕ ′ (f )b ∂ 2 f ∂x 2 dx = ∫ Ω ϕ ′ (f )f ∂ 2 b ∂x 2 + ∂b ∂x ∂ϕ(f ) ∂x + ∂b ∂x ∂ϕ(f ) ∂x + ϕ ′ (f )b ∂ 2 f ∂x 2 dx = ∫ Ω [ ϕ ′ (f )f -ϕ(f ) ] ∂ 2 b ∂x 2 + ∂b ∂x ∂ϕ(f ) ∂x + ϕ ′ (f )b ∂ 2 f ∂x 2 dx + ∫ ∂Ω ∂b ∂x ϕ(f )dS x ,
by an integration by parts in the second term. Another integration by parts then yields 

I 2 = ∫ Ω [ ϕ ′ (f )f -ϕ(f ) ]
∫ Ω ϕ(f )dx ≤ C ϕ ′ (f )f -ϕ(f ) + ∫ ∂Ω aϕ(f ) + ∂ ∂x (bϕ(f )) dS x .
Finally, using the no flux condition we obtain

d dt ∫ Ω ϕ(f )dx ≤ C ϕ ′ (f )f -ϕ(f ) , ( 43 
)
which concludes the first part of the proof. For the second statement we simply note that the inequality is satisfied for any ε > 0. It is classical that the modulus, the positive part, and the negative part can be uniformly approximated such that the right-hand side of Eq. ( 43) is of order ε. Passing to the limit we obtain 
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 71 Figure 1. Comparison of evolution in time of solutions to system (1) (blue and red line) and the corresponding pressure (green line) for different values of γ: γ = 5 (upper panels) and γ = 40 (lower panels).
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 2 Figure 2. Solutions to[START_REF] Donald | Régularité des solutions de l'équation des milieux poreux dans R n[END_REF] and corresponding pressure in the presence of vacuum. The system is initialised with two indicator functions with supports at a positive distance. The densities remain segregated, in agreement with known results on segregated solutions (see, e.g.,[START_REF] Carrillo | Splitting schemes and segregation in reaction cross-diffusion systems[END_REF]).

  are well defined. Furthermore, the equation for n γ,ε

  thanks to the definition of P H . Thus, we can choose ζ = c (1) γ and ξ = c

  having used the fact that p γ ∂pγ ∂x vanishes at the boundary due to the Neumann boundary conditions. Finally, let us integrate in time to get (γ -1)

  n γ ∂pγ ∂x = γp γ ∂nγ ∂x for the first term in the right-hand side, multiplying by sign( ∂nγ ∂x ) = sign( ∂pγ ∂x ) and employing Lemma A.1 and Remark 6, we obtain

Theorem 5 . 1 (

 51 Segregation property for n Under the assumptions of Theorem 4.2 and in the absence of cross-reactions (F 2 = G 1 = 0), equation (40) holds for the limits when γ → ∞. The segregation property holds, i.e., with the notations of Theorem 4.2, if n = 0, a.e. in Ω 0 , then n
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  a family of smooth and convex approximations of ϕ ∈ {|•| -, |•| + , |•|} then there holds for almost every x ∈ Ω and t > 0 ∂ ∂t ϕ(f ) ≤ ∂ ∂x (aϕ(f )) + ∂ 2 ∂x 2 (bϕ(f )). Proof. Multiplying Eq. (

Lemma A. 2 .

 2 Assume a ∈ C 1 b (R, R) and b ∈ C 2 b (R, R + ). Let ϕ ∈ C 1 (R, R + ) be a convex function, then there holds (ϕ ε ) ε>0 is a family of smooth and convex approximations of ϕ ∈ {|•| -, |•| + , |•|}then there holds for almost every x ∈ Ω and t > 0 0 ≤ ϕ(f (t)) ≤ ϕ(f (0)).

∂ 2 b ∂x 2 -

 2 bϕ ′′ (f ) ) + b ∂ϕ(f ) ∂x dS x .Using the fact that b ≥ 0 and the fact that a, b have bounded derivatives we get d dt

Remark 6 .( 1 2 ∂p γ,ε ∂x 2 -∂p γ ∂x 2 +,γ ∂x 2 -c ( 1 )Theorem 3 . 1 ,

 62222131 )dx ≤ 0, whence 0 ≤ ϕ(f (t)) ≤ ϕ(f (0)), which concludes the proof. Note that the assumptions on the functions a, b can be weakened from having 'bounded derivatives' to having integrable derivatives, i.e., ∂ x a, ∂ xx b ∈ L q (Ω, R).Appendix B. Energy Proposition 5. Let H 1 (p) := ∫ p 0 F (z) dz and H 2 (p) := ∫ p 0 G(z) dz for p ≥ 0.Then, the energyE(t) := ∫ Ω c (1) γ,ε H 1 (p γ,ε ) -c (2) γ,ε H 2 (p γ,ε ))dxis such that, for a constant C is independent of γ and ε,(44) E ′ (t) + γ ∫ Ω γ,ε w 2 γ,ε dx ≤ C.Proof. Consider the equation for the pressure (15) and multiply by -γ F 1 (p γ ) + c (2) γ G 1 (p γ ) -(c (1) γ ) 2 F (p γ ) -c (1) γ c (2) γ G(p γ ) ) + c (1) γ F (p γ ) [ γp γ w γ ] γ F 2 (p γ ) + c (2) γ G 2 (p γ ) -(c (2) γ ) 2 G(p γ ) -c (1) γ c (2) γ F (p γ ) ), (46) and (47), and using the uniform bounds for c γ H 1 (p γ ) -c (2) γ H 2 (p γ ) together with the Hölder inequality and the Sobolev embeddings yield the desired bound (44).