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AN INTRODUCTION TO QUANTIFIED VARIATIONS OF ABSOLUTE TIME 

IN THE PRESENCE OF A GRAVITATIONAL FIELD 

IN A PLATONICIAN QUADRIDIMENSIONAL SPACE 

 

Alain Jégat 

 

 

Abstract 
 

Following a comparative examination of the results presented in articles hal-01584918 and 

hal-01756323 proposing a quantification of Keplerian orbits, it appears that the Platonic 

velocity of objects moving in a gravitational field is not uniform, but is subject to variations. 

These variations are related to the De Broglie waves generated by the massive bodies in 

interaction. The consequences of these quantified variations are numerous. 

Within the Platonic framework of this modeling we can thus find, by way of illustration and 

according to the results proposed by the theory of general relativity (and verified 

experimentally), the variations of the measurement of time in a satellite in orbit around the 

Earth, the gravitational redshift and the advance of the perihelion of the planets. 

 

 

 

UNE INTRODUCTION AUX VARIATIONS QUANTIFIÉES DU TEMPS ABSOLU 

EN PRÉSENCE D’UN CHAMP GRAVITATIONNEL  

DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN 

 

Résumé 
 

Suite à un examen comparatif des résultats exposés dans les articles hal-01577669 et hal-

01739986 proposant une quantification des orbites képlériennes, il apparaît que la vitesse 

platonicienne des objets se déplaçant dans un champ de gravitation n’est pas uniforme, mais 

est soumise à des variations. 

Ces variations sont liées aux ondes de phase de De Broglie générées par les corps massifs en 

interaction. Les conséquences de ces variations quantifiées sont nombreuses. 

Dans le cadre platonicien de cette modélisation, on retrouvera par exemple dans cet article, 

conformément aux résultats proposés par la théorie de la relativité générale (et vérifiés 

expérimentalement), les variations de la mesure du temps dans un satellite en orbite autour de 

la Terre, le redshift gravitationnel et  l’avance du périhélie des planètes. 

 

 

 

 



2 
 

 

Introductory 

One of the postulates of the Platonic model is that the objects move in a uniform way, that is 

to say that between two observations, whatever their trajectory, they all travel the same 

distance (see article hal-01165196). 

From this postulate follows the notion of absolute time introduced in the article hal-01378215: 

"the absolute time T  between two events is the distance traveled by (all) the moving objects 

 between these two events". 

It should be noted that this absolute time is measured in meters. 

These definitions imply that the modulus of the velocity of any moving object in the Platonic 

space is equal to 1; this speed, called "Platonic", being without unity (see articles cited with 

reference to paragraph 1 below). 

However, after a comparative examination of the results exposed in the articles hal-01584918 

and hal-01756323, it appears in fact that the modulus of the Platonic speed of a mobile is 

subjected to variations in the presence of a gravitational field. 

These variations, related to the absolute frequency of the mass waves generated by the body 

at the origin of the gravitational field, lead to the formula: 

2 3

01 1

1
sin

Gh
v

c w 
= −


 

in which (see diagram in paragraph 2): 

2v  denotes the modulus of the Platonic velocity of the point object 2C  observed in the 

gravitational field generated by the massive point body 1C ; 

01

01

h
w

m c
 =  is the stratification distance of the sequence of hyperplanes of the Platonic 

space generating the De Broglie wave of the massive body 1C ; 

1  is a measure of the angle formed by the Platonic speed 1v  of this body with these 

hyperplanes; 

  is the projected distance 1 2' 'C C . 

The reasoning leading to this formula is described in paragraph 3. 

The consequences of these variations are numerous and lead rapidly to results obtained in the 

framework of the theory of general relativity, as we will see in this introductory article. 
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1. The geometrical framework 

This modeling is based on the Platonic space outlined in the following articles: 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 

RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 

RELATIVITY » (pre-publication hal-01165196, version 1). 

( ), , , ,O i j k h  is a frame for the four-dimensional Euclidean space whose axes are denoted

( )OX , ( )OY , ( )OZ , ( )Ow ; the direction of the projection is that of the vector h . 

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic mass of a 

particle is described here as a result of its interaction with a stratification of the four-

dimensional Platonic space by a sequence of hyperplanes ( )nH which are orthogonal to the 

direction of the projection h , regularly spaced by a distance
0 0w  . 

This distance 0w  is equal to the Compton wavelength of the particle in question (for example, 

for an electron, 122,426.10e

e

h
w

m c

− =  , where em  denotes the rest mass of the electron). 

 

These concepts are detailed in the Hal articles below: 

 

hal-01165196, v1 : A platonic (euclidean-projective) model for the special theory of relativity. 

hal-01207447, v1 :  Towards a modeling of De Broglie waves in a platonic quadridimensional 

space. 

hal-01213447, v1 :  An idea of the mass of a particle in a platonic quadridimensional space. 

hal-01247385, v1 : A modeling of Michelson-Morley interferometer in a platonic quadri-

dimensional space. 

hal-01340134, v1 :  One-dimensional elastic collisions in a platonic quadridimensional space. 

hal-01378215, v1 : About time measurement in a platonic quadridimensional space. 

hal-01584918, v1 : A quantified approach to the laws of gravitation in a platonic quadri- 

  dimensional space. 

hal-01756323, v1 : De Broglie waves and quantification of Keplerian orbits in a platonic 

  quadridimensional space 
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2. Diagrams illustrating this study 

2.1. Trajectories observed in the reference frame R  

 

 

 

 

 

 

 

 

 

 

Observers of a reference frame R study the movement of two bodies 1'C  and 2'C  in 

gravitational interaction. 

These two objects are in fact the projections of two bodies 1C  and 2C  moving in the Platonic 

space (see also the diagram in paragraph 3). 

Let us denote by 1  and 2 the measures of the angles formed by the velocities 1v  and 2v  of 

these two bodies with the hyperplanes of respective equations ( )1W W C=  and ( )2W W C= ; by 

1  and 2   the measures of the angles formed by the vector i  and the absolute velocities 1absv  

and 2absv
 
of the observed bodies 1'C  and 2'C  : ( )1 1, absi v =  and ( )2 2, absi v = . 

The elliptic trajectories of  1'C  and 2'C  here observed in the reference frame R  are the 

projections of the trajectories of the bodies 1C   and 2C  into the platonic space. 

To simplify the calculations and the presentation of this quantum gravitational approach, the 

observation frame chosen is / 2R , the orbits of 1'C  and 2'C  in this reference frame are in a 

plane whose equation is 0z z= , the axes of / 2R  are positioned so as to have their origin / 2O  on 

the axis ( )OW  and their guiding vectors  / 2i , / 2j , / 2k  coincide with the guinding vectors i , 

j , k  of the axes ( )OX , ( )OY , ( )OZ . 

The orbits chosen for 1'C  and 2'C  in this reference frame are ellipses (the absolute velocities 

considered being small with respect to the speed of light). 

Axes ( )/ 2O z  and ( )OZ
 
are not shown. 
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2.2. Corresponding trajectories in the Platonic space 

The notation used in this diagram illustrates the quantities mentioned in this article. 

They have already been adopted and commented on in the articles referred to in paragraph 1. 
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3. Quantified variation of absolute time for a moving object in a gravitational 

field 
 

In the article hal-01584918, the absolute energy of the gravitational interaction system 

leads to the following formula [1] (page 8): 

 

( )
1 2 2 2 1 13 3

02 01

1 22 2 2 2 2 2

2 2 1 1

cos sin sin cos sin sin

1 cos cos cos
sin cos cos sin cos cos

Gh Gh

c w c wd

dT

     
 

  
     

    
− −    

     = + +
 + +
 
  

 

while article hal-01756323 offers very similar results from the following relation [2] 

(obtained from purely geometrical considerations):  

( )1 2cos cos cos
d

dT


  = + . 

Let's look at these two formulas in a particular case: 

suppose that the rest mass 02m of the body 2C is small in relation to the rest mass 01m of 

the body 1C . 

The direction angle 1  corresponding to the Platonic trajectory of 1C  is then little 

disturbed and can be chosen close to the angle 
2


 of the observation frame (see 

paragraph 2, where 1C  would then be considered as being almost immobile into / 2R ). 

We have, in this particular case, 1cos 0  . 

Formulas [1] and [2] then lead to: 

 

     [1]bis :    

2 1 1 3

01

2

1

cos sin sin

cos
sin

Gh

c w
d dT

  


 


 
− 

 =  

i.e.      2 3

01 1

cos cos 1
sin

Gh
d dT

c w
  

 

 
= − 

 
 ; 

and  [2]bis :   2cos cosd dT  = . 

The comparison of these two expressions and the results which derive from the theory of 

general relativity direct the thought towards a variation of the flow of absolute time for 

the body 2C , caused by the massive body 1C ; to know :  

2 3

01 1

1
sin

Gh
dT dT

c w 

 
= − 

 
, 

where 2dT measures the absolute time travelled by the body 2C when dT measures the 

absolute time travelled by any other body not subject to a gravitational field.  
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An interpretation of this result (supported in paragraph 5) could be: 

in the gravitational field generated by the body 
1C , the distance travelled  

by any moving object 2C  is reduced by the quantity 
3

Gh

c 
 

at each perception of an occurrence of the mass waves generated by 
1C . 

 

According to the article hal-01340134, the absolute frequency of the phase wave generated 

by 
1C  is:      1

01 1

1

sin
abs

w



=


.  (*) 

Thus, for an absolute time interval dT measured out of any gravitational influence, the 

body 2C will have traveled a distance diminished by  
1 3abs

Gh
dT

c



, 

  which leads to the relation:  2 3

01 1

1
sin

Gh
dT dT

c w 

 
= − 

 
 evoked previously. 

 

This interpretation corresponds to a quantified variation of the absolute time traveled 

by the body 2C in the presence of the gravitation field generated by the body 1C . 

This result has multiple consequences, some of which are developed in paragraph 5; 

in particular a quantified variation of the time measured by our clocks in the presence 

of a gravitational field. 

(*)  See also formula [5] in paragraph 6, with 1cos 0    and   
3

0

1
0

sinj j

Gh

c w 



. 
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4. Modulation of the Platonic velocity in a gravitational field 
 

In the article hal-01584918 the following properties have been emphasized regarding to the 

concept of velocity of a moving object M in the Platonic space (so-called "platonic" velocity): 
 

given the definition of the absolute time T  (in m), the norm of the speed vector of all the 

moving objects is equal to 1 and the velocity vector 
dM

v
dT

=  of any object M  is given by: 

cos cos cos

cos cos sin

cos sin

sin

v

  

  

 



 
 
 =
 
 
 

, with any  ,  

;
2 2

 


 
 − 
 

and ;
2 2

 


 
 − 
 

. 

Its absolute speed is given by: 

cos cos cos

cos cos sin

cos sin

0

absv

  

  

 

 
 
 =
 
 
 

,  

whose norm is equal to cos . 

For the vector 2v
 
in this study, we have 0 =   and    = + − . 

 

Taking into account the assumptions considered in paragraph 3, these results now 

deserve to be refined. 

Thus, the Platonic speed of a body 2C in a gravitational field becomes: 

2

22
2 3

201 1

2

cos cos cos

cos cos sin
1

cos sinsin

sin

dC Gh
v

dT c w

  

  

  



 
 

  = = −   
 
 

. 

Its platonic norm being equal to:   2 3

01 1

1
sin

Gh
v

c w 
= −


 . 

Its absolute velocity becomes:    

2

22
2 3

201 1

cos cos cos

cos cos sin'
1

cos sinsin

0

abs

dC Gh
v

dT c w

  

  

  

 
 

  = = −   
 
 

 ; 

and its norm is:                        2 23

01 1

1 cos
sin

abs

Gh
v

c w


 

 
= − 

 
.                           [3] 
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5. First consequences 

5.1. Quantified variation of time and time advance measured by a satellite 

To repeat the interpretation proposed in paragraph 3:  

« in the gravitational field generated by the body 
1C , the distance travelled  

by any moving object 2C  is reduced by the quantity 
3

Gh

c 
 

at each perception of an occurrence of the mass waves generated by 
1C .» 

 

This interpretation results in a quantified variation of the time measured by the 

clocks of the reference frame linked to 
2 'C  in the presence of the gravitational field 

generated by 
1C . 

Indeed, at each perception of an occurrence of the mass waves, considering the 

absolute shift 
2 3

Gh
T

c 
 = , the formula 2 2 2sinc t T  =   (see article hal-01378215) 

implies the following time delay (independent of the mass of the object 1C ): 

 

2 24
sin

Gh
t

c
 


= . 

 

An order of magnitude of this delay, for a distance 1 m = and 2
2


  , is:  

78

2 5, 48.10t s −  

(see section 5.5 for some notes about Planck units). 
 

As an example, this result leads to the advance measured by a clock located in a 

satellite orbiting the Earth.  

Indeed, the rest mass 02m of the body 2C being small in relation to the mass at rest 01m of 

the body 1C , the directing angles 1  and 2 corresponding to the Platonic trajectories of 

these two bodies are undisturbed and can be chosen close to the angle 
2


 of the 

observation frame (see paragraph 2, where 1C  and 2C are then considered to be almost 

immobile in / 2R ). 

In this case, with 1 2sin sin 1 =   and 1

01 1

1

sin
abs

w



=


, we have, for a duration t  

that would be measured in the center of the Earth (and considering the mass of the Earth 

applied at its center - see note  below -):  

1 4 3

01

1
i abs

i i

Gh Gh
t c t t

c w c
 

 
=  = 


,   with  1;2i  ; 

that becomes, with 1

01

abs

h
m

c w
=


 :   1

2

abs
i

i

Gm
t t

c



=  . 
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Let 
1  denote the radius of the Earth (considered almost spherical). 

For a satellite that would be in orbit at an altitude  , the measured advance t   (here, 

the satellite being farther from the surface of the Earth than the Earth's clock, we have 

( )2 1 1   = +  and so 
2 1t t  ) is thus: 

1 1 1
2 1 2 2 2

2 1 2 1

1 1abs abs absGm Gm Gm
t t t t t t

c c c
  

   

 
= − =  −  =  − 

 
. 

With :   

( )
22 1 1 1

1

1

1 1 1 1

1



     




− = − = −
+  

+ 
 

, 

we obtain :     

( )

1

2
2

1

1

1

absGm
t t

c









= − 
 
+ 

 

,     [4] 

and finally, with 
( )

1

2

1

absGm
g


= , the well-known formula:         

2

1

1

g
t t

c








= − 
 
+ 

 

 ;    [4]bis 

that becomes, with 1   : 
2

g
t t

c


  −  .       [4]ter 

 

 

 

 

Remarks : 

 

 ① more rigorously, our clocks being located rather on the surface of the Earth than in 

its center, this advance should be measured by referring to the duration 1t .  

With 1 3

1 01 1

1
sin

Gh
t t

c w 

 
 = −  

 
, that would lead, under the assumptions of this 

paragraph, to:    1
12

2

1

1

1

gg
t t

c
c








 
 − +  

   
+ 

 

.  

As   
101

2
6,96.10

g

c

 − ,  we find the approximation used: 
1

2

1

1

g
t t

c








 − 
 
+ 

 

. 
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②  The masses of the bodies 
iC  and 

jC  are as a first approximation equal to the sums of 

the masses of the particles which constitute them. 

The stratification distances 
0iw  and 0 jw  taken into account in the calculations on the 

basis of the relation 0
sinabs

h
w

cm 
 =  are fictitious distances which make it possible to 

generate the occurrences of the mass waves corresponding to the accumulations of the 

occurrences generated by all of these particles. 

For the record, a natural limit for the mass of an "elementary particle" is the mass of 

Planck, of which its resting value is: 82,176.10
2

P

hc
m kg

G

−=  and its corresponding 

stratification distance 
0Pw  (i.e. its Compton wavelength) is: 

34

0 3
2 2 1,015.10

2
P C P

P

h Gh
w l m

m c c
  



− = = = =  . 

 

③  As an illustration, for a satellite of the GPS constellation in orbit at an altitude 

20200 km = , the relation [4] leads to an acceleration of 45 s  time per day, in 

agreement with the theory of general relativity. 

 

 

5.2. Gravitational Redshift 

The theory of general relativity predicts that light moving in a non-homogeneous 

gravitational field is shifted towards red or blue. According to this theory, a frequency 

produced in a gravitational field is seen to be red-shifted (i.e., diminished) when viewed 

from a place where gravitation is less. This prediction was successfully confirmed in 

1959 by Pound-Rebka’s experiment and more recently (thanks to the two Galileo 

satellites accidentally placed in an eccentric orbit in 2014) by physicists of the Paris 

Observatory - PSL of the department. SYRTE (Observatory of Paris - PSL / CNRS / 

Sorbonne University). 

Let us take again the relation [4] obtained in the preceding paragraph, with the 

following notations: 

 

0  denotes here the radius of the considered planet, 0absm  its absolute mass; 

1t  is the advance measured by an observer 1O  at an altitude 1  ; 

0t  measures a time interval on the surface of the planet, 1t is the corresponding 

measurement made by the observer 1O . 

So we have : 

( )

0 1
1 02

2 1
0

0

1

absGm
t t

c









= − 
 
+ 

 

    and    1 0 1t t t =  + .  
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By applying these relations to a luminous signal, of period 
0t , emitted from the 

surface of this planet in the direction of the observer 
1O , we have: 

( )

0 1
1 0 02

2 1
0

0

1

absGm
t t t

c








 =  − 
 
+ 

 

, 

 

i.e.    
( )

0 1
1 0 2

0 0 1

1 absGm
t t

c



  

 
 =  −  + 

. 

The corresponding frequencies are 0

0

1

t
 =


 and 1

1

1

t
 =


. 

Hence the relation (considering, given the orders of magnitude encountered here, that 

we have 
1

1
1



 +

−
):  

( )
0 1

1 0 2

0 0 1

1 absGm

c


 

  

 
= +  + 

. 

Finally, we can easily express this relation as a function of the Schwarzschild radius of the 

considered planet ( 0

2

2 abs
S

Gm
R

c
= ) and thus find a well-known formula of the theory of 

general relativity: 

( ) ( )
0 0 01

1 0 1 02 2 2

0 0 1 0 0 1

1 1abs abs absGm Gm Gm

c c c


   

     

   
= +  = + −      + +   

, 

i.e.     
( )

1 0

0 0 1

1
2 2

S SR R
 

  

 
= + −  + 

. 

 

 

 

 

 

 

 

 

 



13 
 

 

5.3. Advance of the perihelion of the planets 

The trajectory of an isolated planet around the Sun, according to classical mechanics, is 

an invariable ellipse. However, the observation shows that the perihelion of a planet 

moves slowly: its orbit is not fixed but rotates slowly in its plane. 

In this paragraph, we will examine the impact of the variation of the Platonic speed of a 

planet near the Sun during its period of revolution. 

We will thus find the well-known result, obtained by the theory of general relativity, 

concerning the advance of the perihelion of the planets. 

We have established, in article Hal-01756323, the relation: 

cos
sini

i

d

dT





=  ; where cos i corresponds to the absolute speed of the studied object. 

We will compare the results obtained by the quantification of the Keplerian approach 

adopted in the article hal-01756323 to the results obtained  

taking into account of the variation of the Platonic speed proposed here. 

 

To clarify the situation, we will consider the following notations: 

kd  and k  will denote the quantities corresponding to the Keplerian approach;  

d  and   the corresponding quantities, modified by the current approach; 

PdT  will denote an absolute duration measured by the planet considered and dT

the corresponding absolute duration in the absence of a gravitational field; 

absv  denotes the modulus of the absolute velocity of the planet considered. 

By designating by SM the absolute mass of the Sun ( 1

01 1sin
S abs

h
M m

c w 
= =


), we 

have:  

2
1 S

P

MG
dT dT

c 

 
= − 

 
 

2
1 cosS

abs

MG
v

c




 
= − 
 

 

2
1

k

SMG

c






=

−

 (modulation due to the conservation of absolute angular momentum *) 

cos
sink

k

d

dT

 



= ,   i.e.  

cos
sink

k

d dT


 


= . 



14 
 

From these preliminary data and the formula sinabs
P

v
d dT 


= ,  we get: 

3

2

cos
sin sin 1abs S

P

k

v MG
d dT d dT

c


   

  

 
=  = − 

 
. 

With :    

3

2 2
1 1 3S SM MG G

c c 

 
−  − 

 
,  

this implies :  
2

cos cos
sin 3 sinS

k k

MG
d dT dT

c

 
  

  
= −  

i.e.       
kd d  = −  ,    avec   

2

cos
3 sinS

k

MG
dT

c


 

 
= . 

So we obtain :    
2

3 S
k

MG
d

c
 


= . 

Now, according to the Keplerian mechanics,  
( )21

1 cos k

a e

e




−
=

+
. 

Which leads us to:   
( )

( )2 2
3 1 cos

1

S
k k

MG
e d

c a e
  = +

−
 . 

During the complete revolution of a planet around the Sun, the advance of the perihelion 

is thus expressed as:      
( )

( )
2

2 2 0
3 1 cos

1

S
k k

MG
e d

c a e



   = +
−

 , 

i.e.         
( )2 2

6

1

SGM

c a e


 =

−
. 

 

 

* Note on the modulation of the distance  : 
 

as we saw in the Keplerian approach proposed in articles hal-01584918 and hal-

01756323, the conservation of the absolute angular momentum of the system leads to: 

1 2
1 2 2

01 1 02 2

cos cos
sin sin

sin sin
k k

h h
c

c w c w

 
   

 
+ =

 
,      where 2c  is constant.  [m1] 

(the distances here have been designated 1k  and 2k  to emphasize the Keplerian nature 

of this formula). 

In this formula, the terms cos i  correspond to the absolute velocities of the interacting 

bodies. 
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In the present study, it is therefore appropriate to substitute for them the terms 
absiv , 

with : 

3

0

1 cos
sin

absi i

j j

Gh
v

c w


 

 
= −   

. 

So the conservation of the absolute angular momentum of the system is expressed by: 

1 2
1 2 2

01 1 02 2

sin sin
sin sin

abs abshv hv
c

c w c w
   

 
+ =

 
,      i.e. 

1 2
1 2 23 3

01 1 02 2 02 2 01 1

cos cos
1 sin 1 sin

sin sin sin sin

h hGh Gh
c

c w c w c w c w

 
   

     

   
− + − =   

      

 

which induces, by comparison with [m1], the relations: 
3

0

1
sin

ki i

j j

Gh

c w
 

 

 
= −   

, 

i.e. :     

3

0

1
sin

ki
i

j j

Gh

c w




 

=

−


. 

 

 

 

5.4. Stoppage of the absolute time 

A singular result appears very quickly when one observes the Platonic velocity of a 

body 2C  (possibly a photon) in the gravitational field generated by a body 1C , located at 

a distance equal to its half-radius of Schwarzschild. 

Indeed, we have: 

2

22
2 3

201 1

2

cos cos cos

cos cos sin
1

cos sinsin

sin

dC Gh
v

dT c w

  

  

  



 
 

  = = −   
 
 

, 

with :    12 3

01 1sin
S abs

G Gh
m

c c w
 


→ = =


. 

This leads to :    2 0v → . 

In other words, the body 2C  tends to stop in the Platonic space.  

This surprising result, obtained quickly at a first approach, lets us glimpse at other results 

which a more refined study can offer within a quantum framework. 
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5.5. Some links with Planck units 

If we repeat the interpretation proposed in paragraph 3:  
 

« in the gravitational field generated by the body 
1C  , the distance travelled  

by any moving object 2C   is reduced by the quantity  
3

Gh
T

c



=  

at each perception of an occurrence of the mass waves generated by  
1C » , 

we notice the presence of the quantity 
3

Gh

c
which evokes the universe of Planck. 

 So, from 
32

P

Gh
l

c
=  and 

52

P
P

lGh
t

c c
= =  which correspond respectively to the 

length and time of Planck, we have, by posing ,Pnl n =   : 

2
,PT l n

n


 =  . 

And, thus, with the temporal relation 2sinc t T  =   (cf the article hal-01378215): 

each perception of an occurrence of the mass waves generated by 1C  generates 

for the punctual body 2C  a proper temporal delay equal to: 

  2

2
sin ,Pt t n

n


  =  . 

Note that, in this mathematical model, quanta related to the perception of an occurrence 

of De Broglie waves and inducing changes in absolute time and proper time are smaller 

than the corresponding Planck units. 

The mass waves, of which the celerity is greater than or equal to the speed of light (see 

the model proposed in the article hal-01207447), can thus be seen, mathematically, to 

attribute original and successful properties. 
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6. Frequency of  the mass waves generated by the body Ci  and perceived by Cj   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We will repeat in this paragraph the calculations presented in the articles 

hal-01584918 and hal-01756323, taking into account the variations of absolute time 

generated by the gravitational interaction bodies. 
 

Referring to the diagram above, consider the mass waves generated by the body iC  and 

perceived by the body jC . 

Let us denote by  a measure of the angle ( ),abs i abs jv v . 

A first wavefront 0 (0)F  is perceived by jC  when it is at (0)jC . 

The next wavefront 1F  is then located at 1(0)F , separated by the absolute wavelength 

0 tanabs i iw = 
 
(in addition, see the diagram in the article hal-01584918, § 8). 

After an absolute time T  (measured outside of any gravitational field), the bodies iC  

and jC  are at ( )iC T  and ( )jC T  and the wavefront 1F  is at 1( )F T , with the 

relations: 

1
cos cos

i

i

T
F

 

−
 =     and     cosj j jC T  =  . 

 

Thus, the body jC  perceives the front 1F when the absolute duration T satisfies the 

equation:  

1jl C F=  +  ,    i.e.   0 tan
cos

cos cos cos

i i i
j j

i

w T
T




  

 −
− = +  , 

 

i.e. :    
0

3 3

0 0

sin

1 1
1 cos cos cos 1

sin sin

i i

i j

j j i i

w
T

Gh Gh

c w c w



  
   


 =

   
− − −       

    

 

(absolute period T of the mass waves perceived by jC ).  
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It follows that the absolute frequency ,i jf of this mass wave is given by: 
 

3 3

0 0

,

0

1 1
1 cos cos cos 1

sin sin1

sin

i j

j j i i

i j

i i

Gh Gh

c w c w
f

T w

  
   



   
− − −       = =

 
. 

   

With the equality  =  in the particular case that we study in these articles, the 

absolute frequency ,i jf  of this mass wave perceived by the mobile jC becomes: 

 

3

0 0

,

0

cos cos1
1 cos cos

sin sin

sin

i j

i j

j j i i

i j

i i

Gh

c w w
f

w

 
 

  



 
+ − +    =


.  [5] 

 

 

 

Remarks : 
 

The absolute proper period 
jT  of the mass waves perceived by jC  is: 

3

0

1
1

sin
j

i i

Gh
T T

c w 

 
 = −  

 
 

 

i.e.   

0 3

3 3

0 0

sin

1 1
1 cos cos cos 1

sin sin

i i

j

i j

j j i i

Gh
w

c
T

Gh Gh

c w c w




  
   

 −

 =
   
− − −       

. 

 

It follows that the absolute proper frequency 0 ,i jf  of these mass waves is given by: 
 

3 3

0 0

0 ,

0 3

1 1
1 cos cos cos 1

sin sin1

sin

i j

j j i i

i j

j
i i

Gh Gh

c w c w
f

GhT
w

c

  
   




   
− − −       = =


 −

. 

   
 

With the equality  = in the particular case that we study in these articles, the 

absolute proper frequency 0 ,i jf  of these mass waves becomes: 

 

3

0 0

0 ,

0 3

cos cos1
1 cos cos

sin sin

sin

i j

i j

j j i i

i j

i i

Gh

c w w
f

Gh
w

c

 
 

  




 
+ − +    =

 −

.  
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As in section 5.4, a singular result appears very quickly when one observes these 

results for a body jC  in the gravitational field generated by a body 
iC , located at a 

distance equal to its half-radius of Schwarzschild. 

Indeed we have, with 
3

0 sini i

Gh

c w



→


 , the following results: 

 

0jT →     and    
0 ,i jf → . 
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7. Conclusion 

Articles hal-01584918 and hal-01756323 offer a first quantified Platonic approach to 

Keplerian mechanics. 

In particular, they create links between these laws and the De Broglie mass waves generated 

by the interacting bodies, through quantized changes in direction of their Platonic velocities. 

By introducing a second quantified declination postulate, the article hal-01756323 also 

allows a quantified interpretation of the conservation of the absolute angular momentum of the 

considered system. 

In addition, a comparative examination of these two articles, centered on the conservation of 

the absolute energy of the system, leads to envisage a quantified correction of the modulus of 

Platonic velocity of the moving objects in a gravitational field. 

It thus appears that De Broglie mass waves modify, in a quantifiable way, not only the direction 

of Platonic velocities of the objects they affect, but also their modulus. 

 

In the relativistic Platonic space, these quanta have an absolute character (they do not 

depend on the reference frames of observation) and are independent of the rest masses of the 

considered bodies. 

Moreover, it should be emphasized that they are intimately related to the Planck units (by 

the presence of the quantity 
3

Gh

c
 in their expression). 

Thus, these postulates offer, in a relativistic framework, a surprisingly correct quantified 

approach of the classical laws of gravitation applied to elliptic Keplerian orbits and allow, 

moreover, to quickly find several results offered by the theory of general relativity (advance of 

the perihelion of the planets, variations in the measurement of time in a satellite orbiting the 

Earth, gravitational redshift, ...). 

As for the articles hal-01584918 and hal-01756323, these first results and their examination 

can certainly be quickly refined and completed (study of the deviation of light rays in a 

gravitational field, research on gravitational waves, ...). 

And the principles retained deserve, of course, to be further enriched and deepened to 

propose, in a more general framework, a more complete approach of a quantum theory of 

gravitation. 

In any case, the rapid obtaining of the few results set out in these introductory articles, in an 

original and quantified way, seems, at the very least, to favor the emergence of new and 

numerous questions, promising, in still unexplored directions . 

Notably about the deep links that it suggests between the quantum effects of De Broglie mass 

waves and the laws of gravitation. 
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