M S Khanouche

Ferhat Attal

Yacine Y Amirat
email: amirat@u-pec.fr

Abdelghani Chibani

Moussa Kerkar

Mohamed Essaid Khanouche

Clustering-based and QoS-aware services Composition Algorithm for ambient intelligence

Keywords: Ambient intelligence, Quality of service, Services composition, QoS constraints, k-means clustering method

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Service-oriented computing (SoC) is a powerful computing paradigm that is based on the use of services as fundamental elements to support rapid, low-cost and scalable development of applications [START_REF] Papazoglou | Service oriented architectures: approaches, technologies and research issues[END_REF]. By composing atomic services, the resulting applications will provide added-value services, called composite services, with new functionalities that none of the atomic services can provide individually. In the context of ambient intelligence (AmI) environments, the heterogeneous functionalities offered by smart objects (e.g., sensors, smartphones, digital tablets, smart watches) are usually abstracted as software services. Due to the dynamic nature of AmI environments, these services can be subject to frequent changes, such as (i) temporal or permanent disappearance of services, (ii) publication of new services, (iii) performance changes of used services, and (iv) evolution of users' requirements in terms of QoS with time and the context of use. More specifically, users' mobility can considerably influence the functioning of the services and result in their unavailability or a decrease in their qualities. Consequently, these services should be replaced by others to guarantee the overall quality of the composite service. A challenging issue in the context of AmI environments is "how to dynamically construct composite services that satisfy the user's requirements in terms of QoS ?".

In a services composition process, two types of services can be distinguished: concrete services and abstract services. A concrete service, also called a candidate service, refers to an invokable service, whereas an abstract service, also called a services class, represents a set of functionally equivalent concrete services, i.e., those that have the same input/output parameters, but differ according to their QoS attributes values. QoS attributes can be divided into qualitative attributes (e.g., security, comfort) and quantitative attributes (e.g., cost, response time, reputation, reliability, availability) [START_REF] Ardagna | Adaptive service composition in flexible processes[END_REF][START_REF] Zeng | Qos-aware middleware for web services composition[END_REF]. The services composition process consists of creating a new abstract service by aggregating the existing service classes in a type of abstract composition plan. An instance of this plan, called a concrete composition plan, is obtained by finding the optimal bindings of the service classes with their corresponding concrete services [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF].

The services composition process is typically divided into four main phases: (a) generation of the composition plan; (b) services discovery; (c) services selection; and (d) execution and monitoring of the composition plan [START_REF] Sheng | Web services composition: A decades overview[END_REF]. An abstract composition plan is generated from a user's request, which includes, in addition to the user's functional requirements, the user's QoS requirements expressed as global QoS constraints on the composite service. The discovery phase consists of finding, in the services registry, the concrete services that match the functionalities of each abstract service. This phase results in a set of candidate services that have similar functionalities, but different quality levels. The selection phase allows finding the best candidate services in terms of the QoS attributes values to be used in the concrete composition plan. In the last phase, the previously selected candidate services are invoked to execute the composition plan, and their execution is then monitored.

Several studies in the literature have focused on the services composition problem by accounting for the global QoS constraints [START_REF] Mabrouk | Qos-aware service composition in dynamic service oriented environments[END_REF][START_REF] Sun | A decomposition-based approach for service composition with global qos guarantees[END_REF][START_REF] Wang | Service composition in cyber-physical-social systems[END_REF][START_REF] Wang | Isat: An intelligent web service selection approach for improving reliability via two-phase decisions[END_REF][START_REF] Wu | Qos-aware multigranularity service composition: Modeling and optimization[END_REF][START_REF] Zou | Qos-aware dynamic composition of web services using numerical temporal planning[END_REF]. This problem consists of selecting the most appropriate concrete services for each requested functionality such that the resulting composite service best matches the user's functional requirements and satisfies the user's QoS requirements, such as minimizing the composite service cost while maximizing its availability. Evaluating all of the possible combinations of concrete services allows determining the optimal composition in terms of the QoS that satisfies the global QoS constraints. However, this approach results in an excessive amount of computation time because the search space of compositions increases exponentially with the number of services. To address this issue, two categories of QoS-aware services composition approaches have been proposed in the literature: local selection-based approaches and global optimization-based approaches [START_REF] Zeng | Qos-aware middleware for web services composition[END_REF]. Local selection-based approaches allow determining the optimal candidate service for each abstract service of the composition plan. Although efficient approaches in terms of the time complexity have been proposed in the literature, they do not guarantee a composite service that satisfies the global QoS constraints. Global optimization-based approaches consider the QoS constraints at the composite service level. The principle of these approaches consists of evaluating concrete services compositions to determine the best compositions, in terms of QoS, that satisfy the global QoS constraints. The global optimization is known to be an NP-hard problem, which is characterized by the difficulty of finding an optimal solution in a reasonable amount of time [START_REF] Zeng | Qos-aware middleware for web services composition[END_REF]. Thus, the proposed approaches tend to find near-to-optimal compositions in a reasonable amount of time by reducing the search space of the compositions.

In this paper, a clustering-based and QoS-aware services composition algorithm (CQCA) under global QoS constraints is proposed. The QoS-aware services composition is formulated as a clustering problem. The k-means clustering method is exploited to group candidate services into clusters, where each cluster represents a QoS level. Moreover, a new formulation of the utility function based on the characteristics of the resulting clusters (QoS level and centroid of each cluster) is proposed to remove unpromising candidate services in terms of QoS. The k-means clustering method is used to decrease the composition time by reducing the number of candidate services that are part of the composition process. A QoS level-based services selection that exploits the lexicographic optimization method is then proposed to determine the candidate services that offer the QoS level that satisfies the global QoS constraints. The selection process allows, on the one hand, further reduction of the search space as well as the composition time and, on the other hand, an increase in the optimality of the composite services. Finally, from the selected services, a search tree is constructed to find near-to-optimal compositions, i.e., compositions that satisfy the global QoS constraints and that have the highest utility value in terms of QoS.

The remainder of this paper is organized as follows: section 2 presents an overview of the related work on the services composition and summarizes the contributions of this work. The service and QoS constraints models along with the formalization of the services composition problem under global QoS constraints are introduced in section 3. The CQCA algorithm is detailed in section 4, whereas its theoretical time complexity is analysed in section 5. The per-formance of the proposed approach are evaluated and discussed in section 6.

Finally, the conclusions and some perspectives are given in section 7.

Related work

The QoS-aware services composition approaches proposed in the literature can be classified into five main categories: 1) Graph search-based approaches;

2) Pareto dominance-based approaches; 3) Meta-heuristic population-based approaches; 4) Machine learning-based approaches and 5) other methods. Some approaches can be seen as a combination of approaches of different categories.

Graph search-based approaches

In these approaches, a services dependency graph (SDG) is used to represent the relationships between services. A link relationship between services S 1 and S 2 means that one of S 1 's output parameters matches one of S 2 's input parameters. The services composition problem is then formulated as a graph search problem in which the SDG is travelled to find a feasible path from the initial input parameters to the desired output parameters, which represents a composite service that satisfies the user's requirements. In [START_REF] Deng | Top-k automatic service composition: A parallel method for large-scale service sets[END_REF][START_REF] Jiang | Top-k query for qos-aware automatic service composition[END_REF], the services composition is formulated as a problem of finding the k-best paths in a directed acyclic graph (DAG) to determine the k-best composite services in terms of QoS. The approach proposed in [START_REF] Jiang | Top-k query for qos-aware automatic service composition[END_REF] is based on the Sim-Dijkstra algorithm [START_REF] Jiang | Qos-aware automatic service composition: A graph view[END_REF], whereas the approach proposed in [START_REF] Deng | Top-k automatic service composition: A parallel method for large-scale service sets[END_REF] combines a backtracking search method and depth-first search method; these two methods are run in parallel to reduce the composition time. In [START_REF] Siebert | Lasec: A localized approach to service composition in pervasive computing environments[END_REF], the composition process in pervasive computing environments is modelled as a subgraph isomorphism problem, in which each vertex represents a particular service and the edges represent the communication links. A heuristic approach, inspired by the jigsaw puzzle game, is used to achieve a services composition with the minimum messaging cost.

Pareto dominance-based approaches

This category of approaches uses Pareto dominance to address the QoSaware services composition problem [START_REF] Al-Helal | Introducing replaceability into web service composition[END_REF][START_REF] Chen | A partial selection methodology for efficient qos-aware service composition[END_REF][START_REF] Chen | Multi-objective service composition with qos dependencies[END_REF][START_REF] Wang | Service composition in cyber-physical-social systems[END_REF]. To improve the composition process in terms of the computation time, the solutions space is reduced by pruning unpromising candidate services in terms of QoS using the Pareto dominance. A services composition approach in cyber-physical-social systems is proposed in [START_REF] Wang | Service composition in cyber-physical-social systems[END_REF]. In addition to the filtering based on the Pareto dominance, a coefficient of variation is introduced to filter out the candidate services that have high QoS fluctuations. Finally, the best composite service in terms of the QoS utility value is obtained using a mixed integer programming (MIP) solver.

In [START_REF] Al-Helal | Introducing replaceability into web service composition[END_REF], a dynamic services selection and composition approach based on the concept of service replaceability is used. The candidate services are filtered using the Pareto dominance principle.

Meta-heuristic population-based approaches

Population-based meta-heuristics are usually inspired from natural phenomena. Meta-heuristic population-based composition approaches use a population of feasible compositions to find the near-to-optimal composition. Two QoSaware multigranularity services composition approaches using the concept of generalized candidate services are proposed in [START_REF] Wu | Qos-aware multigranularity service composition: Modeling and optimization[END_REF]. The first approach uses the backtracking method to find the optimal composition, and the second approach uses an extended genetic algorithm to find the near-to-optimal composition in terms of QoS. In [START_REF] Deng | Mobility-aware service composition in mobile communities[END_REF], the mobility-aware services composition is formulated as a multi-objective optimization problem and solved using the Krill-Herd method [START_REF] Gandomi | Krill herd: a new bio-inspired optimization algorithm[END_REF]. In this approach, the user's moving path is assumed to be straight and only the response time is considered to be a QoS attribute. In [START_REF] Deng | Cost performance driven service mashup: A developer perspective[END_REF], a genetic algorithm is used to select candidate services and platforms for composite services deployment. Both the optimal QoS in terms of the response time and the minimal cost of the composite services are considered in the composition process. In [START_REF] Deng | Mobilityenabled service selection for composite services[END_REF], a mobile-aware services selection approach that is based on a teaching-learning optimization method is proposed for the services composition [START_REF] Rao | Teaching-learningbased optimization: a novel method for constrained mechanical design optimization problems[END_REF]. In this approach, the population consists of a group of learners in which each learner represents a feasible service composition. A QoS-aware services composition approach using the particle swarm optimization method is proposed in [START_REF] Zhang | Alliance-aware service composition based on quotient space[END_REF]. In [START_REF] Deng | Mobile service selection for composition: an energy consumption perspective[END_REF], mobility-aware services selection for composition is modelled as a multi-objective optimization problem and solved using a genetic algorithm. In this approach, only energy consumption is considered to be a QoS attribute. The user's speed and moving path are assumed to be predetermined and the signal strength along the path is assumed to be predictable before the services composition. In [START_REF] Wang | Integrating modified cuckoo algorithm and creditability evaluation for qos-aware service composition[END_REF], a two-phase approach is proposed to achieve an optimal services composition. In the first phase, the services are selected based on a creditable QoS that represents the overall capability of a service provider to deliver the promised QoS. In the second phase, the services composition is modelled as a multi-objective problem and solved using the cuckoo search method.

Machine learning-based approaches

In [START_REF] Mabrouk | Qos-aware service composition in dynamic service oriented environments[END_REF], a services selection and composition approach under global QoS constraints is proposed. In this approach, the k-means clustering method is used in the selection process to partition the candidate services into clusters that represent QoS levels. The candidate services are then filtered based on their utility values; the utility value of a candidate service depends on 1) its QoS attributes values and 2) the number of candidate services of the cluster to which this service belongs. The services selected in the previous phase are used to build a search tree on which pruning techniques are applied to find the service compositions that satisfy the global QoS constraints. The formulation used to estimate the utility value has a negative effect on the optimality of the composite service because: i) the number of services in a given cluster does not reflect the quality of that cluster compared to other clusters and ii) the QoS of the centre of the cluster to which a given candidate service belongs reflects the QoS level of that cluster, but is not considered in the proposed formulation. Two QoS-aware services composition approaches based on reinforcement learning are proposed in [START_REF] Mostafa | Multi-objective service composition in uncertain environments[END_REF]. The first approach consists of a single policy multi-objective composition that exploits the problem structure to find the best compositions in terms of QoS with unknown user preferences. The second approach is a multiple policy multi-objective composition that consists of learning a set of Pareto optimal compositions that have similar qualities to satisfy multiple QoSobjectives while accounting for different user preferences. A QoS-aware service composition approach using k-means clustering and particle swarm optimization methods is proposed for a mobile environment [START_REF] Hossain | Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment[END_REF]. This approach runs in parallel using MapReduce [START_REF] Dean | Mapreduce: simplified data processing on large clusters[END_REF] to find the optimal composition in terms of QoS with a reduced computation time. In [START_REF] Xia | A qos-aware web service selection algorithm based on clustering[END_REF], a services selection approach using the OPTIC clustering method [START_REF] Ankerst | Optics: ordering points to identify the clustering structure[END_REF] is proposed to reduce the execution time and find the near-to-optimal composition. In [START_REF] Ren | A reinforcement learning method for constraint-satisfied services composition[END_REF], to address the uncertainty of QoS values and services behaviours in a dynamic environment, the services composition problem under QoS constraints is formulated as a Markov decision process and solved using a Q-learning algorithm. In [START_REF] Wang | Integrating reinforcement learning with multi-agent techniques for adaptive service composition[END_REF], a large-scale adaptive services composition approach that combines reinforcement learning and game theory is proposed. The multi-agent Q-learning algorithm is used to ensure the adaptation of the composition in a highly dynamic environment, whereas game theory is used to enable agents to collaborate in the composition process. In [START_REF] Karimi | Qos-aware service composition in cloud computing using data mining techniques and genetic algorithm[END_REF], a QoS-aware services composition approach is proposed in the context of cloud computing. In this approach, the concrete services of each abstract service are first grouped into services clusters according to their QoS values. Based on the semantic relations between these clusters, a cluster is then selected for each abstract service as an initial population, and a genetic algorithm is used to find the near-to-optimal compositions in terms of QoS. In [START_REF] Tong | Energy-aware service selection and adaptation in wireless sensor networks with qos guarantee[END_REF], an energy and QoSaware services selection algorithm for composition is proposed in the context of wireless sensor networks. The proposed algorithm is based on a QoS constraints decomposition that uses the k-means clustering method combined with a mixed integer linear programming (MILP) method.

Other approaches

Other services composition approaches based on artificial intelligence (AI) planning techniques [START_REF] Chen | Goal-driven service composition in mobile and pervasive computing[END_REF][START_REF] Zou | Qos-aware dynamic composition of web services using numerical temporal planning[END_REF] or solving methods, such as integer programming (IP) [START_REF] Ardagna | Adaptive service composition in flexible processes[END_REF][START_REF] Wang | Isat: An intelligent web service selection approach for improving reliability via two-phase decisions[END_REF][START_REF] Zeng | Qos-aware middleware for web services composition[END_REF], QoS constraints decomposition [START_REF] Alrifai | A hybrid approach for efficient web service composition with end-to-end qos constraints[END_REF][START_REF] Imed | An automatic configuration algorithm for reliable and efficient composite services[END_REF][START_REF] Sun | A decomposition-based approach for service composition with global qos guarantees[END_REF], and the utility function [START_REF] Kouicem | Dynamic services selection approach for the composition of complex services in the web of objects[END_REF][START_REF] Yachir | Towards an event-aware approach for ubiquitous computing based on automatic service composition and selection[END_REF], have been proposed in the literature. In AI planning techniques-based approaches, the services composition is formulated as an automatic task planning problem in which each task represents an atomic service. Integer linear programming-based approaches are used to find the optimal composite service. However, their time complexity increases exponentially with the problem size.

In QoS constraints decomposition-based approaches, local QoS constraints are derived from the global QoS constraints. For each abstract service of the composition, a local selection is then conducted to determine the candidate services that satisfy the obtained local QoS constraints. In utility function-based approaches, a local selection is conducted to determine the optimal candidate service in terms of the QoS value for each abstract service of the composition.

The QoS value of a candidate service is usually obtained by aggregating its QoS attributes values using the Simple Additive Weighting technique [START_REF] Zeleny | Multiple criteria decision making[END_REF]. Although these approaches are locally optimal and efficient in terms of time complexity, they do not guarantee a composite service that satisfies the global QoS constraints in all cases.

Discussion and Contributions

In this subsection, we summarize the contributions of this work by highlighting their novelty and positioning with regard to the most significant approaches discussed above.

First, in the clustering process, the existing clustering-based QoS-aware services composition approaches [START_REF] Hossain | Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment[END_REF][START_REF] Karimi | Qos-aware service composition in cloud computing using data mining techniques and genetic algorithm[END_REF][START_REF] Mabrouk | Qos-aware service composition in dynamic service oriented environments[END_REF][START_REF] Tong | Energy-aware service selection and adaptation in wireless sensor networks with qos guarantee[END_REF][START_REF] Xia | A qos-aware web service selection algorithm based on clustering[END_REF] typically use only the similarity between the services in terms of the QoS values without accounting for the relative relevance of each cluster and the possible clustering errors, which can lead, in some cases, to an unfeasible composition that does not satisfy the user's global QoS constraints. To increase the composition optimality and reduce the search space as well as the composition time, in this paper, candidate services are first partitioned, using the k-means clustering method, into clusters in which each cluster represents a QoS level; in addition, a new formulation of the utility function based on the use of the resulting clusters characteristics (QoS level and centroid of each cluster) is proposed to remove unpromising candidate services in terms of their QoS. Unlike the existing clustering-based approaches, the approach proposed in this paper improves the composition optimality and its robustness against clustering errors by exploiting, in the utility function formulation, the QoS levels of the clusters and the deviation, in terms of the QoS, between a given candidate service and the centroid of the cluster to which it belongs.

Second, this study focuses on QoS-aware services composition approaches that use a filtering phase for reducing the search space of the candidate services and, consequently, the composition time. For example, in the Pareto dominance-based services composition approaches [START_REF] Al-Helal | Introducing replaceability into web service composition[END_REF][START_REF] Chen | A partial selection methodology for efficient qos-aware service composition[END_REF][START_REF] Chen | Multi-objective service composition with qos dependencies[END_REF][START_REF] Wang | Service composition in cyber-physical-social systems[END_REF], the dominated candidate services in terms of QoS are filtered out to obtain the set of Pareto optimal compositions. However, the number of compositions increases exponentially with the number of candidate services that lead to an excessive composition time [START_REF] Trummer | Multi-objective qualitydriven service selectiona fully polynomial time approximation scheme[END_REF]. It is therefore crucial to further reduce the search space of the candidate services. Moreover, in utility function-based approaches [START_REF] Sun | A decomposition-based approach for service composition with global qos guarantees[END_REF][START_REF] Yu | Efficient algorithms for web services selection with end-to-end qos constraints[END_REF][START_REF] Zeng | Qos-aware middleware for web services composition[END_REF], the candidate services selected for the composition could have low quality with regard to some of the QoS attributes, resulting in i) violation of the users' global QoS constraints or/and ii) a decrease in the composite service optimality. To overcome these limitations, a lexicographic optimization method is exploited in this paper to filter out candidate services that have low quality with respect to some QoS attributes since they do not result in feasible compositions. This approach allows, on the one hand, further reduction of the search space as well as the composition time and, on the other hand, an increase in the optimality of the composite services.

Third, in our previous work [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF], we proposed a local services selection approach that does not account for the user's global QoS constraints. Although this approach is efficient in terms of time complexity, it does not guarantee a composite service that satisfies the user's global QoS constraints. To deal with this limitation, the present paper provides novel contributions in the way a clustering approach can be combined with other optimization techniques in order to solve the services composition problem accounting for the user's global QoS constraints. Since this problem is NP-hard, the approach proposed in the present paper, tends to find near-to-optimal compositions in a reasonable amount of time by reducing the search space of the compositions. Accordingly, a search tree is constructed to find the near-to-optimal compositions, i.e., compositions that satisfy the global QoS constraints and that have the highest utility value in terms of QoS. To reduce the tree construction time, a heuristic based on depth-first search strategy is used to develop only the most promising branches in terms of the QoS. The search tree building is based on a test of the global QoS constraints satisfaction from the root to the leaf nodes. The branches of the resulting tree, starting from the root to the leaf nodes, represent the service compositions that satisfy the global QoS constraints.

Table 1 summarizes the approaches presented in this section and compares them in terms of the: (1) resolution method, (2) scalability and (3) optimality of the composition.

Definition of models

Service Model

A concrete service cs j can be described by a tuple {I(cs j), O(cs j), F (cs j), QoS(cs j)}, where I(cs j) and O(cs j) represent the vectors of the input parameters and output parameters, respectively; F (cs j) is a function that transforms the input parameters into the output parameters; and QoS(cs j) is the vector of the QoS attributes [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF]. The I(cs j) and O(cs j) vectors describe the functional properties of the service cs j , whereas the QoS(cs j) vector represents its non-functional properties, which reflect the service's ability to respond adequately to the user's requirements. An abstract service AS = {cs 1 , .., cs j , .., cs n } represents a class of n functionally equivalent concrete services cs j , i.e., services that have the same input parameters and output parameters, but that could differ in the values of their QoS attributes [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF]. A concrete service can be seen as an implementation or an instance of an abstract service.

An atomic service provides basic functionality and is characterized by an autonomous execution insofar as it does not require other services for its execution. A composite service is obtained by combining atomic services to provide added-value services with new functionalities that none of the atomic service can provide individually. Therefore, the execution of a composite service requires the invocation of other atomic services.

An abstract services composition AC =< AS 1 , .., AS i , .., AS m > consists of a set of m abstract services (i.e., service classes) that are connected using different types of structures: sequential, parallel, conditional, loop or any combination of these structures [START_REF] Alrifai | A hybrid approach for efficient web service composition with end-to-end qos constraints[END_REF][START_REF] Yu | Efficient algorithms for web services selection with end-to-end qos constraints[END_REF]. A concrete services composition CC =< cs 1 j , .., cs i j , .., cs m j > is instantiated from an abstract services composition AC =< AS 1 , .., AS i , .., AS m > by mapping each abstract service AS i of the composition to a concrete service cs i j (1 ≤ j ≤ n and 1 ≤ i ≤ m).

QoS model

The QoS of an atomic service cs i j is defined by its QoS attributes vector QoS(cs i j) = (qos i 1,j , .., qos i q,j , .., qos i p,j), where qos i q,j (0 ≤ q ≤ p) represents the value of the q th attribute, and p represents the number of QoS attributes.

In the literature, the QoS attributes are usually classified into positive and negative attributes [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF]. A positive attribute (e.g., throughput, availability) has a positive influence on the overall QoS, i.e., the more the attribute value increases, the more the overall QoS increases. Conversely, a negative attribute (e.g., cost, response time) has a negative effect on the overall QoS, i.e., the more the attribute value increases, the more the overall QoS decreases.

The QoS of a composite service CC =< cs 1 j , .., cs i j , .., cs m j > is represented by its QoS attributes vector QoS(CC) = (Q 1 , .., Q q , .., Q p), where Q q (0 ≤ q ≤ p) represents the value of the q th attribute. Each component Q q is obtained by aggregating the values of the q th attributes of the concrete services that form the composite service. This aggregation depends on the composite service structure and on the function used to aggregate the QoS attributes. Table 2 provides, for each type of structure of a composite service with m concrete services, the aggregating functions in the worst-case scenario (i.e., when the worst QoS values are considered) [START_REF] Alrifai | A hybrid approach for efficient web service composition with end-to-end qos constraints[END_REF][START_REF] Sun | A decomposition-based approach for service composition with global qos guarantees[END_REF][START_REF] Zeng | Qos-aware middleware for web services composition[END_REF]. Note that pr j represents the execution probability of the concrete service cs i j in a conditional structure, and k represents the number of iterations in a loop structure. qos q,j m j=1 qos q,j m j=1 pr j • qos q,j k • qos q,j Product m j=1 qos q,j m j=1 qos q,j m j=1 pr j • qos q,j qos q,j k Maximum m j=1 qos q,j max 1≤j≤m qos q,j m j=1 pr j • qos q,j k • qos q,j Minimum min 1≤j≤m qos q,j min 1≤j≤m qos q,j min 1≤j≤m qos q,j qos q,j

QoS constraints model description

In the composition process, the user's functional requirements are used to generate an abstract services composition that must also satisfy the user's nonfunctional requirements. The latter are formulated as a set of global constraints GC =< gc 1 , .., gc q , ., gc p > that are imposed on the QoS attributes values of the composition; gc q (0 ≤ q ≤ p) represents the constraint on the q th QoS attribute.

These constraints represent, on the one hand, the upper bounds imposed on the negative QoS attributes of the composite service and, on the other hand, the lower bounds imposed on the positive QoS attributes of the composite service.

Let AC =< AS 1 , .., AS i , .., AS m > be an abstract services composition with m abstract services, and let GC =< gc 1 , .., gc q , .., gc z > be a set of z global QoS constraints with 1 ≤ z ≤ p.

Feasible services composition

A concrete services composition CC is said to be feasible if the following two conditions are satisfied:

• only one candidate service cs i j is assigned to each abstract service AS i of the composition;

• the aggregated QoS values of the composition CC satisfy all of the global QoS constraints. Formally, ∀q ∈ {1, ..., z},

   Qq ≤ gcq if q is a negative attribute Qq ≥ gcq otherwise (1)
The quality of a candidate service cs i j (respectively, of a concrete composition CC) is quantified by a utility value U (cs i j) (respectively, by a global utility U (CC)) that is calculated from its QoS attributes values. Sections 4.1.2 and 4.3 detail how these utility values are calculated.

Near-to-optimal services composition

A concrete services composition CC is said to be near-to-optimal if the following two conditions are satisfied: (i) CC is a feasible composition; and (ii) CC has the best global utility U (CC).

Composition problem with QoS constraints

For a given abstract composition with m abstract services AC =< AS 1 , ..., AS m > and a given set of z global QoS constraints GC =< gc 1 , .., gc q , .., gc z >, finding the near-to-optimal services compositions without establishing all of the possible combinations of services consists of finding a concrete composition CC =< cs 1 j , ..., cs m j > by assigning to each abstract service AS i of the abstract composition one and only one concrete service cs i j , such as 1. ∀gc q ∈ GC, the aggregated QoS Q q of the concrete composition CC satisfies the condition Q q ≤ gc q (respectively, the condition Q q ≥ gc q) if q is a negative attribute (respectively, if q is a positive attribute);

2. The global utility U (CC) of the concrete composition CC is maximal.

Candidate services filtering

The first phase consists of partitioning the candidate services of each abstract service into clusters, where each cluster represents a QoS level. The partitioning of the candidate services into QoS levels is carried out using the k-means clustering method [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. The utility values of the candidate services, calculated from the resulting clusters characteristics, are then used to remove unpromising candidate services in terms of their QoS. end for 13: In this study, the k-means method is used to partition, according to the distance in terms of their QoS values, the candidate services cs i j (1 ≤ j ≤ n and

J (b+1) = k l=1 n j=1 z (b) jl ||pj -µ (b+1) l || 2 14: b ← b + 1; 15: until |J (b) -J (b+1) | J (b+1)
1 ≤ i ≤ m) of each abstract service AS i into k clusters CL i l (1 ≤ l ≤ k). Each cluster CL i
l is characterized by its QoS level, denoted QoSL i l , and its centroid µ i l , whose the vector of QoS attributes is QoS(µ i l) = (qos i 1,l , .., qos i q,l , .., qos i p,l). This partitioning is especially well suited for determining the relevance of the candidate services for the composition process and allows reducing the services composition time since it reduces the search space of the candidate services that belong to the composite services satisfying the QoS constraints and offering the best utility value in terms of QoS. The k-means clustering method is used in this study for several reasons. This method is among the most widely used clustering methods [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF] and belongs to a list of the top 10 data mining algorithms [START_REF] Wu | Top 10 algorithms in data mining[END_REF].

The k-means clustering method is simple and easy to implement, and every aspect of the method (initialization, distance function, stopping criterion, and so on) can be modified and adapted for a specific use. In addition, as shown in section 5, the k-means method has a linear time complexity of the number of data n, the dimension of data d, the number of iterations t, and the number of clusters k (in general, d << n and k << n). Finally, unlike other methods, such as GMM (Gaussian mixture model), the use of the k-means method does not impose specific assumptions on the data to be partitioned.

Candidate services filtering based on the utility value

As discussed in subsection 2.6, in this study, a new utility value formulation is proposed to increase the composition optimality and reduce the search space as well as the composition time. The utility value U (cs i j) of a candidate service cs i j represents the relevance of this service for the composition process. This value is calculated from the QoS level QoSL i l of the cluster to which the candidate service cs i j belongs, the user's preferences P ref with respect to each QoS attribute, and the deviation in terms of QoS between the candidate service cs i j and centroid µ l of its cluster. Formally:

U (cs i j) = QoSL i l QL T otal p q=1 P refq • (qos i q,j -qos i q,l) (2)
where QL T otal is the total number of QoS levels (i.e., the number of clusters).

The qos i q,j (respectively, qos i q,l) represents the normalized value of the q th QoS attribute of the service cs i j (respectively, the normalized value of the q th QoS attribute of the centroid µ l of the cluster CL i l). The q th attribute value of the service cs i j is normalized as follows:

qos i q,j =    Q if qos M ax q -qos M in q = 0 1 otherwise (3)
with

Q =      qos M ax q -qos i q,j qos M ax q -qos M in q
if q is a negative attribute

qos i q,j -qos M in q qos M ax q -qos M in q otherwise (4
)
where qos i q,j represents the current value of the q th QoS attribute of the concrete service cs i j . Here, qos M ax q and qos M in q represent the maximal value and minimal value of the q th QoS attribute of the abstract service AS i , respectively.

In equation (2), the term QoSL i l QL T otal represents the relative relevance of the candidate service cs i j that belongs to a cluster with the QoS level QoSL i l . In other words, the candidate services that belong to the cluster with the highest QoS level have high QoS values. Accordingly, selecting these services for the composition process allows obtaining composite services with high QoS. Furthermore, the probability of satisfying the user's requirements in terms of the global QoS constraints increases when the candidate services selected for the composition have high QoS values. The term qos i q,j -qos i q,l is introduced to normalize the QoS values of the candidate service cs i j with respect to the QoS values of the centroid of the cluster to which it belongs. In addition, this formulation allows accounting for not only the unbalanced partitioning of the candidate services through the term QoSL i l QL T otal but also the possible classification errors that could result from the clustering phase through the normalization term qos i q,j -qos i q,l . For example, when the number of candidate services with high quality is low, the relevance term increases the utility values of these services. In the case of clustering errors, the normalization term decreases the utility values of the candidate services that have low quality that are classified at the high QoS level, and vice versa.

Considering all of the possible combinations of candidate services leads to an excessive amount of computation time because the number of possible compositions increases exponentially with the number of candidate services. To reduce the composition time, only promising candidate services in terms of QoS must be selected for the composition. The utility value of the candidate services is thus used to select the services to be part of the near-to-optimal compositions. Thus, a threshold utility value U i T hreshold is calculated for each abstract service AS i from the utility values of its candidate services. A candidate service cs i j is selected for the composition if its utility value U (cs i j) is greater than U i T hreshold . The choice of the threshold utility value is crucial due to its impact on the performance of the services composition algorithm. Indeed, a high threshold utility value reduces the number of candidate services to be considered for the composition, the number of possible compositions and, therefore, the composition time. Conversely, if the threshold utility value is low, then the number of compositions and composition time increase since the number of candidate services to be considered for the composition also increases. Consequently, the threshold utility value must be chosen to find a tradeoff between the optimality of the compositions and the computation time required by the algorithm.

For each abstract service AS i , the first phase of the CQCA algorithm provides a set of r candidate services SCS(AS i) that have a utility value that is greater than the threshold value (see algorithm 2). Formally, SCS(AS i) =

{cs i j /U (cs i j) ≥ U i T hreshold , 1 ≤ j ≤ r}.

QoS level-based services selection

This phase consists of selecting the candidate services that offer the required QoS level to satisfy the global QoS constraints. This selection is conducted using the lexicographic optimization method [START_REF] Fishburn | Exceptional paper-lexicographic orders, utilities and decision rules: A survey[END_REF].

Algorithm 2 -Candidate services filtering.

Inputs: Abstract service ASi with n candidate services.

k: the number of QoS levels. Several services composition algorithms use, as a utility function of a candidate service cs i j , the weighted sum of its QoS attributes [START_REF] Sun | A decomposition-based approach for service composition with global qos guarantees[END_REF][START_REF] Yu | Efficient algorithms for web services selection with end-to-end qos constraints[END_REF][START_REF] Zeng | Qos-aware middleware for web services composition[END_REF]. Formally:

U (cs i j) = p q=1 P refq • qos i q,j (5)
where P ref q represents the user's preferences with respect to the q th QoS attribute and qos i q,j is the normalized value of the q th QoS attribute of the candidate service cs i j . This utility function formulation can hide the poor quality of a candidate service with respect to some QoS attributes. For example, consider a candidate service with three QoS attributes, where the QoS attribute q 1 has a low value and the attributes q 2 and q 3 have high values. When these values are aggregated into a single utility value, the low value of the attribute q 1 can be compensated by the high values of the attributes q 2 and q 3 , thus leading to a high overall utility value and high probability of selecting this candidate service for the composition process. However, selecting this service can lead to a violation of the global constraints imposed on the QoS attribute q 1 or to a decrease in the composition optimality. Consequently, such a service must be filtered out during the selection phase because it does not lead to feasible compositions. in which each sub-problem addresses one QoS attribute. The lexicographic optimization was introduced and used in our previous work [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF]. The steps of the second phase of the CQCA algorithm are summarized as follows:

1. Ranking the QoS attributes in order of importance depending on the user's preferences that are expressed as weights P ref q . The rank of 1 is assigned to the QoS attribute that has the highest priority.

2. For each abstract service of the composition plan and for each QoS attribute (the QoS attributes are considered according to the ranking obtained in 1): a) Find the candidate service cs i j that provides the best quality value qos * q with respect to the most important QoS attribute q, i.e., the QoS attribute that has the highest rank.

b) A threshold value of quality qos T hreshold q is then calculated from the best quality value qos * q and a tolerance factor δ q that characterizes the decrease in the quality qos Decrease q allowed by the user. The threshold value determines the QoS level that is required to satisfy the global QoS constraints.

It is calculated as follows:

qos T hreshold q =    qos * q -qos Decrease q if q is positive qos * q + qos Decrease q otherwise (6)
such as

qos Decrease q = qos * q • δq (7)
where qos * q , δ q and qos Decrease q represent the best quality value, the tolerance factor, and the decrease in the quality with respect to the QoS attribute q, respectively. The value of δ q is in the range [0, 1].

c) The candidate services that do not satisfy the threshold value qos T hreshold q are removed from the candidate services set of AS i .

For each abstract service AS i , the second phase of the CQCA algorithm produces a set of t candidate services that offer the QoS level that is required to satisfy the global QoS constraints CSGC(AS i). This set is defined as follows: CSGC(AS i) = {cs i j /qos i q,j ≥ qos T hreshold q if q is a positive attribute and qos i q,j ≤ qos T hreshold q otherwise; 1 ≤ q ≤ p and 1 ≤ j ≤ t}.

Global optimization

The aim of the third phase of the CQCA algorithm is to determine the near-to-optimal compositions, i.e., the compositions that satisfy the global QoS constraints and have the highest global utility while accounting for the user's preferences. The global utility U (CC) of a concrete composition CC, defined by its QoS vector QoS(CC) = (Q 1 , .., Q q , .., Q p), is calculated as follows:

U (CC) = p q=1 Q q /p (8)
where Q q is the normalized value of the q th QoS attribute of the concrete composition CC. This value is obtained from the actual value Q q , the aggregated minimal value Q M in q and the aggregated maximal value Q M ax q of the q th QoS attribute. The aggregated minimal value (the aggregated maximal value respectively) can be estimated by aggregating the minimal values (the maximal values respectively) of the q th QoS attribute of each abstract service of the composition. For example, consider the cost to be the QoS attribute. The aggregated maximal cost can then be calculated by summing the costs of the most expensive candidate services in each abstract service of the composition. Formally, the aggregated minimal value and the aggregated maximal value of the q th QoS attribute are calculated as follows:

Q M in q = Agreg m i=1 (min ∀cs i j ∈ASi (qos i q,j)) (9
)
Q M ax q = Agreg m i=1 (max ∀cs i j ∈ASi (qos i q,j)) (10
)
where Agreg is the function used to aggregate the q th QoS attributes of a composite service (Table 2).

To determine the near-to-optimal compositions, a search tree is built from the candidate services selected in the second phase. The tree building accounts for the order in which the services specified in the composition plan are invoked. The candidate services represent the tree nodes, whereas the order of the invocation of services represents the parent/child relationship between the candidate services. Indeed, a link between two abstract services, AS u and AS v , in the direction from AS u to AS v means that each candidate service of AS u is the parent of all candidate services of AS v . The root of the tree is a virtual node that is considered to be the parent of the candidate services of all of the abstract services without incoming links with other services. To reduce the tree construction time, a heuristic based on depth-first search strategy is used to develop only the most promising branches in terms of the QoS. The search tree building is based on a test of the global QoS constraints satisfaction from the root to the leaf nodes. Accordingly, if the QoS of a composite service, calculated at a non-leaf node, does not satisfy at least one global QoS constraint, then all of the sub-branches located below this node are not developed. This approach allows reducing the computation time when the number of abstract services of the composition is high. Furthermore, the candidate services of each abstract service are ranked in descending order of their utility value. Accordingly, when a node n x , which represents a candidate service, does not result in any feasible composition, then all nodes (i.e., candidate services associated with the same abstract service) that have a utility value that is lower than that of node n x are pruned for the remainder of the building process. This approach allows reducing the computation time by reducing the number of candidate services to be processed; when the number of candidate services associated with an abstract service becomes high, the composition time also increases, but not in an excessive manner.

The branches of the resulting tree, starting from the root to the leaf nodes, represent the service compositions that satisfy the global QoS constraints.

Complexity analysis

The complexity of the CQCA algorithm depends on four factors: m, the number of abstract services that form an abstract composite service; n, the number of candidate services per abstract service; p, the number of QoS attributes; and k, the number of clusters.

In the first phase of the CQCA approach, the k-means method is used to partition n candidate services of each abstract service into k QoS levels. The

computational complexity of the k-means method is O(n • k • d • t),
where n represents the number of the d-dimensional data, k is the number of clusters, and t refers to the number of iterations before the convergence of the method [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF][START_REF] Qin | Distributed k-means algorithm and fuzzy c-means algorithm for sensor networks based on multiagent consensus theory[END_REF].

Accordingly, the time complexity for partitioning the candidate services of each

abstract service into k QoS levels is O(n•k•p•t).
In addition, the time complexity for filtering the candidate services that do not satisfy the utility threshold value is O(n). Finally, considering a composition of m abstract services, the time complexity of the first phase is then

O(m • n • k • p • t) + O(m • n).
The second phase of the CQCA algorithm is based on the lexicographic optimization method. As proved in [START_REF] Khanouche | Energy-centered and qos-aware services selection for internet of things[END_REF], the ranking of the QoS attributes according to the user's preferences has a logarithmic time complexity of O(p log p). This ranking is conducted using one of the best sorting algorithms (e.g., quick sort or merge sort). For a given abstract service, finding the candidate services that provide the best quality value with respect to a given QoS attribute The third phase of the CQCA algorithm has a time complexity that depends on the depth of the constructed tree, which is equal to the number of abstract services that form an abstract composite service.

6. Performance study

Simulation configuration

The CQCA algorithm is evaluated in different simulation scenarios of services composition. These scenarios are tested using MATLAB R2014b running on a PC equipped with a Windows 64-bit system and an Intel Core i7-4712HQ

CPU with a frequency of 2.3 GHz and 16 GB Random Memory. The composite services considered in the simulation scenarios have a sequential structure. This arbitrary choice has no effect on the validity and relevance of the obtained results since any other composition structure can be transformed into a sequential structure [START_REF] Alrifai | A hybrid approach for efficient web service composition with end-to-end qos constraints[END_REF][START_REF] Cardoso | Quality of service for workflows and web service processes[END_REF].

The CQCA algorithm is assessed using a dataset where the QoS values of the candidate services were synthesized from the literature [START_REF] Al-Masri | Qos-based discovery and ranking of web services[END_REF]. 3, respectively. Three clusters are considered for the performance evaluation purposes: (

High-QoS, which represents the cluster of candidate services that offer a high QoS;

(2) Middle-QoS, which represents the cluster of candidate services that offer a middle QoS; and (3) Low-QoS, which represents the cluster of candidate services that offer a low QoS. However, the effect of the number of clusters on the performance of the CQCA approach is evaluated in subsection 6.3.5 by considering up to five clusters. In addition, to show the added value of the CQCA algorithm, the impact of the clusters size (i.e., the number of candidate services for each QoS level) on the composition optimality is assessed in subsection 6.3.2.

In the dataset used, the QoS attributes values of the candidate services were synthesized according to the three considered clusters. To have a realistic dataset, the distributions of these QoS values have been generated to have overlaps between clusters. However, applying the k-means method to this dataset allows assigning each candidate service to only a single cluster with possible clustering errors that could result from the overlapped QoS values; the occurrence of mis-clustered candidate services allows assessing the robustness of the proposed utility function. In the presence of these clustering errors, the normalization term in equation 2 decreases the utility values of the candidate services with low quality that are classified at the high QoS level, and vice versa. This approach allows selecting the services with high QoS that have been classified

at the low QoS level, and vice versa.

The global QoS constraints are set as follows. For each QoS attribute q

(1 ≤ q ≤ p), the mean value m i q of the QoS values of the candidate services associated with each abstract service AS i of the composition AC =< AS 1 , ..., AS m > is calculated. The obtained mean values m 1 q , ..., m i q , ..., m m q are then aggregated according to the composition structure and aggregation function used. Thus, the global QoS constraint gc q on the q th QoS attribute represents the aggregation of the mean values of the candidate services associated with each abstract service. In subsection 6.3.4, the performance of the CQCA algorithm are evaluated according to other values of global QoS constraints.

For each abstract service AS i , the threshold utility value is set to µ i + σ i , where µ i and σ i represent the mean and standard deviation of the utility values of all of the candidate services of AS i , respectively.

Performance metrics and baselines for comparison

The performance of the CQCA algorithm are compared to those of the following approaches:

• Approach with global QoS constraints for services composition (ACSC) [START_REF] Mabrouk | Qos-aware service composition in dynamic service oriented environments[END_REF]: In the ACSC approach, the k-means clustering method is used to reduce the search space of compositions; this approach is the only approach that is very close to the approach proposed in this paper. However, the ACSC approach has several limitations with regard to the utility function formulation. To show the benefit of the new utility function proposed in the CQCA algorithm, the performance of the latter have been compared to those of the ACSC approach.

• QoS-aware services composition algorithm using a partial selection approach (PSA) [START_REF] Chen | A partial selection methodology for efficient qos-aware service composition[END_REF]: this new approach has been chosen as a baseline for comparison since it shows interesting performance in terms of composition optimality due to the use of the Pareto dominance to reduce the search space of the composition and, implicitly, the composition time.

• Teaching learning-based QoS-aware services composition algorithm (TLQCA) [START_REF] Deng | Mobilityenabled service selection for composite services[END_REF]: this approach has been chosen as a baseline for comparison because it uses a fundamental population-based algorithm and it performs better compared to several other population-based algorithms, such as genetic algorithm (GA), particle swarm optimization (PSO), and negative selection algorithm (NSA).

To demonstrate the effectiveness of the CQCA algorithm compared to the aforementioned approaches, the following metrics are used in this study:

• Execution time: this metric represents the computation time of each algorithm (CQCA, ACSC, PSA and TLQCA) with respect to the number of candidate services per class.

• Optimality of the composition: this metric is defined as the ratio between the utility value of the best composite service F CQCA obtained with the CQCA algorithm and the optimal utility value of the composite service F Optimal obtained with an exhaustive search algorithm. Formally:

Optimality = F CQCA F Optimal (11)
• Compositions space: this metric represents the number of services compositions obtained with the CQCA, ACSC and PSA algorithms by varying the number of candidate services per class. Note that the TLQCA algorithm is a population-based approach in which a population of feasible compositions with predefined size is used to find the near-to-optimal composition in terms of QoS. The search space of the compositions is invariant and therefore cannot be represented in the case of this algorithm.

Simulation results

Impact of the concrete services number

In this section, the impact of the concrete services number on the CQCA performance is evaluated. The number of concrete services for each services class varies from 30 to 150 and is equally distributed into the three clusters.

The number of services classes is set to 3. The tolerance factor and the number of global QoS constraints are set to 0.4 and 5, respectively. Note that the value of the tolerance factor was chosen to find a tradeoff between the composition optimality and the computation time required by the algorithm (see subsection 6.3.3). In the TLQCA algorithm, the population size is set to 15, whereas the number of iterations is equal to 100.

In the first simulation, the performance of the CQCA, ACSC, PSA and TLQCA algorithms are evaluated in terms of the execution time. (see Fig. 3). The filtering process used in the CQCA algorithm is very efficient when the number of concrete services is high since it allows drastically reducing the search space of the compositions.

In the second simulation, the optimality of the composition obtained with the CQCA algorithm and those obtained with the ACSC, PSA and TLQCA algorithms are evaluated and compared by varying the number of concrete services. As observed in Fig. 3, when the number of concrete services is low, the optimality of the composition obtained with each of the three algorithms is slightly lower than the optimal value, which is obtained in the case of the PSA algorithm, but the CQCA algorithm remains more efficient than the ACSC and TLQCA algorithms and produces a very close-to-optimal composition compared to the PSA algorithm. Indeed, the CQCA algorithm uses a selection phase that is based on the QoS level to filter out concrete services that have a negative effect on the optimality of the composition, i.e., services that have a low QoS. We also observe in Fig. 3 that the optimality of the composition for the CQCA and ACSC algorithms increases until it reaches 100%, when the number of concrete services increases. This finding can be explained by the fact that the probability of finding more services with high QoS increases with the number of candidate services. In addition, an advantage of the CQCA algorithm is that it provides a composition that is very close to the optimum, with a much more reduced execution time in comparison to the ACSC, PSA and TLQCA algorithms (see Fig. 2).

The aim of the third simulation is to assess and compare the search space of the compositions obtained with the CQCA, ACSC and PSA algorithms. As shown in Fig. 4, the search space for the three algorithms increases with the number of concrete services. This finding can be explained by the increasing number of candidate services that are selected for a composition in the case of the CQCA and ACSC algorithms and due to the increase in the number of non- This finding is because the selection process filters out candidate services with low QoS, which might lead to a violation of the global QoS constraints. This filtering reduces the number of compositions to be processed. In addition, the search space obtained in the case of the CQCA algorithm represents only 2% of that obtained with the ACSC algorithm and 3.6% of that obtained with the PSA algorithm when the number of candidate services is equal to 150. This reduction in the search space considerably decreases the execution time of the CQCA algorithm compared to those obtained with the ACSC and PSA algorithms (see Fig. 2).

Impact of the clusters size on the optimality

The fourth simulation focuses on the study of the impact of the clusters size on the optimality of the CQCA, ACSC, PSA and TLQCA algorithms. The number of service classes is set to 3, whereas the number of candidate services for each class varies between 30 and 150. The concrete services of each class are divided into the three clusters, as follows: 10% of the concrete services belong to

Impact of the tolerance factor

In the fifth simulation, the impact of the tolerance factor on the performance of the CQCA algorithm is assessed in terms of the execution time, optimality, and ratio of feasible compositions. The latter is defined as the ratio between the number of compositions that satisfy the QoS constraints and the number of all possible compositions in the search space. In this simulation, a composition plan of 3 services classes is considered, and for each class, the number of candidate services varies between 30 and 150, which are equally distributed in the three clusters. The number of QoS constraints is set to 5, whereas the tolerance factor varies between 0.3 and 0.6. Fig. 8 shows that the CQCA algorithm provides a quasi-optimal composition when the tolerance factor is high (i.e., T F ≥ 0.4) and an optimality of the composition slightly lower than the optimum value when the tolerance factor is low (i.e., T F < 0.4). Indeed, when the number of concrete services that have a high QoS increases, the obtained composition will have a QoS that is close to the optimum and vice versa. In addition, for a given value of the tolerance factor, In conclusion, these results highlight the fact that a lower tolerance factor (i.e., T F < 0.4) reduces the optimality of the composition (see Fig. 8), whereas a larger tolerance factor (i.e., T F > 0.4), on the one hand, leads to less feasible compositions (see Fig. 7) and, on the other hand, increases the execution time of the CQCA algorithm (see Fig. 6). This finding justifies the choice of the value 0.4 to evaluate the performance of the proposed algorithm. Indeed, the CQCA and ACSC algorithms are evaluated by setting the QoS global constraints gc q that are associated with each QoS attribute q, as follows:

gcq =          Agreg(µ) Agreg(µ + σ) if q is a positive attribute Agreg(µ -σ) if q is a negative attribute (12
)
where Agreg is the aggregating function of the QoS values, and µ and σ represent, respectively, the mean and the standard deviation of the q th QoS attribute values of the candidate services associated with each abstract service of the com-position.

In this simulation, the CQCA, ACSC, PSA and TLQCA algorithms are compared in terms of the execution time (see Fig. 9) and the number of feasible compositions (see Fig. 10). As explained previously, the TLQCA algorithm is a population-based approach in which a population of feasible compositions with predefined size is used to find the near-to-optimal composition in terms of QoS.

The number of feasible compositions is invariant and therefore cannot be represented in the case of this algorithm. Two QoS constraint values are considered in this evaluation for each QoS attribute q: 1) Agreg(µ) and Agreg(µ + σ) for positive attributes; and 2) Agreg(µ) and Agreg(µ -σ) for negative attributes.

The number of services classes is set to 3, whereas the number of candidate services varies between 30 and 150 and is equally distributed in the three clusters.

The number of QoS constraints and the tolerance factor are set to 5 and 0.4, respectively. In the TLQCA algorithm, the population size is set to 15, whereas the number of iterations is equal to 100. of the composition algorithm. Indeed, the number of compositions decreases when these constraints are severe and increases in the case of more flexible constraints.

Impact of the number of clusters

To evaluate the effect of the number of clusters on the performance of the proposed approach, in this simulation, up to five clusters are considered; each selection of more candidate services for the composition process and therefore to the simultaneous increase in the search space of the compositions (see Fig. 12) and the composition optimality (see Fig. 13) since the probability of finding concrete services with high QoS increases.

Conclusions and future work

In this paper, a clustering-based and QoS-aware services composition algorithm under global QoS constraints for AmI environments is presented. The k-means clustering method is used to partition the candidate services into clusters, according to their QoS values, where each cluster represents a QoS level.

This partitioning is well suited to determine the relevance of candidate services for the composition process. To increase the composition optimality and reduce the search space as well as the composition time, a new formulation of the utility value of candidate services is proposed based on the use of the resulting clusters characteristics (QoS levels and centroids of each cluster). A QoS level-based services selection that exploits the lexicographic optimization method is then conducted to determine the candidate services that offer the QoS level that satisfies the global QoS constraints. The selection process allows further reducing the search space and, consequently, the composition time. Finally, a search tree is built from the selected candidate services to determine the near-to-optimal compositions. The simulation results highlight the benefit and promising performance of the proposed approach. The CQCA algorithm is scalable in terms of the execution time for ambient intelligence environments and can find near-to-optimal compositions due to the new utility value formulation and the lexicographic optimization method. In terms of short-term research perspectives, an interesting topic would be to extend the CQCA algorithm to address services re-composition by predicting QoS values changes, with respect to the different composition structures used in a composition plan. In terms of long-term research perspectives, the proposed approach will be extended to generate services composition plans that minimize energy consumption to guarantee a high availability of composite services while accounting for, on the one hand, the dynamic nature of the AmI environments and, on the other hand, the users' requirements in terms of QoS. Through these extensions, the objective will be to address situations in which no feasible composition can be found or when some of the candidate services become unavailable during execution. Furthermore, other clustering methods, such as Probabilistic C-Means, Evidential C-Means could also be investigated in our future work.

4 .

 4 CQCA: Clustering-based and QoS-aware services composition algorithm The proposed clustering-based and QoS-aware services composition algorithm (CQCA) includes three phases: (i) candidate services filtering; (ii) QoS level-based services selection; and (iii) global optimization (see Fig. 1).

Figure 1 :

 1 Figure 1: CQCA algorithm phases.

4. 1 . 1 . 4 : 1 9 :

 11419 Candidate services partitioning based on k-meansThe k-means clustering method is one of the most commonly used unsupervised clustering methods[START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. This method allows dividing a set D of n data samples into k homogeneous clusters CL 1 , .., CL l , .., CL k , which are also called Algorithm 1 -The k-means clustering method. Inputs: D = {p1, ..., pj, ..., pn} a dataset of n samples. Z = {1, ..., l, ..., k}, k is the total number of clusters. J (b) is the objective function at iteration b.: a threshold value. 1: Begin 2: b ← 0 ; 3: J (b) = ∞ ; Choose the initial set of clusters centroids C (b) = {µ if l = arg min l∈Z ||pj -µ Update the set of clusters centroids C (b+1) = {µ (b+1) 1 , ..., µ (b+1) l , ..., µ (b+1) k }; 10:for l = 1 to k do 11:

< 16 :

 16 Return the set of k clusters CL1, ..., CL k ; 17: End Outputs: The clusters centroids C = {µ1, ..., µ l , ..., µ k } and the set of k clusters CL1, ..., CL l , ..., CL k with CL l = {pj/z jl = 1}, ∀j ∈ [1, n], ∀l ∈ [1, k]. classes or groups. Each cluster CL l (1 ≤ l ≤ k) is characterized by its centroid µ l . The data samples are grouped based on the principle of maximizing the intra-class similarity and minimizing the inter-class similarity. The distance function is usually used to estimate these similarities (see algorithm 1). Among the stopping criteria that are usually used in the clustering process, we can cite: (1) the maximum number of iterations reached; and (2) the convergence of the algorithm when the formed clusters remain the same between two successive iterations. It should be noted that the number of clusters k is an input parameter of the algorithm and depends on the set of data samples D. This number is determined experimentally by testing different values of k.

 has a time complexity of O(r), where r is the number of candidate services that satisfy the utility threshold value. The same time complexity is required for filtering the candidate services that do not satisfy the QoS threshold values. The time complexity of the second phase is then O(p log p) + O(p • m • r). Since the number of QoS attributes p is usually very small compared to m and r, this complexity becomes O(m • r).

 The data used correspond to a set of QoS attributes values (response time ReT , throughput T h, availability Avl, reliability Rel and cost C) related to the e-mail validation services. The simulation data are randomly generated in the interval [min val , max val], where min val and max val represent the minimum and maximum values of the QoS attributes described in Table

Fig. 2

 2 shows that the execution time of the four algorithms increases with the number of candidate services. This result is predictable since the time required to find the candidate services that belong to a feasible composition increases with the number of candidate services. The average execution time taken by the CQCA algorithm is compatible with the dynamic nature of the ambient intelligence environments since it does not exceed 170 ms for a number of concrete services equal to 150. Fig.2also shows that the execution time of the CQCA algorithm increases slightly with the number of candidate services; this execution time is much lower than the execution times obtained with the ACSC, PSA and TLQCA algorithms, which increase in an excessive manner. For example, the execution time of the ACSC algorithm is greater than 4 seconds and that obtained with the PSA algorithm is almost 1 second for 120 candidate services.The reduction in execution time is because the new utility value formulation and services selection based on the QoS level used in the CQCA algorithm drastically reduces the number of candidate services and, implicitly, the search space of compositions. Note that when the number of concrete services is lower than 35, the composition time of the CQCA algorithm is higher than those obtained with the ACSC, PSA and TLQCA algorithms, but remains of a low order of magnitude; this composition time is approximately 70 milliseconds. Indeed, when the number of concrete services is lower than 35, the CQCA algorithm requires more time compared to the ACSC, PSA and TLQCA algorithms to filter out the unpromising concrete services in terms of QoS. However, the CQCA algorithm is more efficient than the ACSC algorithm in terms of the composition optimality and finds a very close-to-optimal composition compared to the PSA and TLQCA algorithms when the number of concrete services is lower than[START_REF] Sun | A decomposition-based approach for service composition with global qos guarantees[END_REF]

Figure 2 :

 2 Figure 2: Execution time versus the number of concrete services.

Figure 3 :

 3 Figure 3: Optimality of the composition versus the number of concrete services.

Figure 4 :

 4 Figure 4: Search space of compositions versus the number of concrete services.

Figure 5 :

 5 Figure 5: Optimality of the composition versus the number of concrete services for different clusters sizes.

Fig. 6

 6 Fig.6shows that the execution time of the CQCA algorithm increases with the tolerance factor. Indeed, the number of candidate services satisfying the QoS threshold values and that are selected to be part of the composition process increases with this factor. For a given value of the tolerance factor, one can also observe that the execution time taken by the CQCA algorithm increases with the number of concrete services of each abstract service. This finding occurs because the search space of compositions increases with the number of candidate services. In addition, the average composition time taken by the CQCA algorithm is compatible with the dynamic nature of ambient intelligence environments since it does not exceed 800 milliseconds for a number of concrete services equal to 150 and a high tolerance factor equal to 0.6.

Figure 6 :

 6 Figure 6: Execution time versus the number of concrete services for different values of the tolerance factor.

Figure 7 :

 7 Figure 7: Feasible compositions ratio versus the number of concrete services for different values of the tolerance factor.

Fig. 8

 8 Fig. 8 also shows that the optimality of the composition increases with the number of candidate services of each abstract service. As explained in the second simulation, the probability of finding more services with high QoS increases with the number of candidate services. This allows obtaining composite services with high QoS values, which increases the optimality of the composition.

Figure 8 :

 8 Figure 8: Optimality of the composition versus the number of concrete services for different values of the tolerance factor.

6. 3 . 4 .

 34 Impact of the global QoS constraint valuesIn the sixth simulation, the performance of the CQCA, ACSC, PSA and TLQCA algorithms are assessed and compared with respect to different global QoS constraint values. In this study, a statistical approach is used to determine the global QoS constraints based on the QoS values of the candidate services.

Figures 9 (

 9 Figures 9(a) and 9(b) show that when the QoS constraint values increase, the execution time of the four algorithms decreases. This finding can be explained by the fact that when the constraints are severe, the number of feasible compositions (i.e., compositions that satisfy the QoS constraints) decreases in the case of the CQCA, ACSC and PSA algorithms (see Fig. 10(a) and 10(b)),which leads to a reduced execution time. In the case of the TLQCA algorithm, when the constraints are severe, the number of compositions in the population that satisfy these constraints decreases, leading thus to a decrease in the composition time. In addition, these results show that the CQCA algorithm performs better compared to other approaches when the number of candidate services increases and regardless of the QoS constraints values. This is because the services selection process based on the QoS level used in CQCA algorithm allows reducing the number of compositions to be processed and, consequently, the composition time. The user's requirements in terms of the global QoS constraints have an influence on the number of resulting compositions and therefore on the performance

(a)Figure 9 :Figure 10 :

 a910 Figure 9: Execution time versus the number of concrete services for different QoS constraint values.

cluster represents a

 QoS level. The number of service classes is set to 3, whereas the number of candidate services for each class varies between 30 and 150. The concrete services of each class are divided into clusters according to the following 40 four scenarios: (1) High-QoS and Low-QoS clusters; (2) High-QoS, Middle-QoS and Low-QoS clusters; (3) Very High-QoS, High-QoS, Middle-QoS and Low-QoS clusters; and (4) Very High-QoS, High-QoS, Middle-QoS, Low-QoS and Very Low clusters. The tolerance factor and the number of global QoS constraints are set to 0.4 and 5, respectively.

Figure 11 :

 11 Figure 11: Execution time versus the number of concrete services for different numbers of clusters.

Figure 12 :

 12 Figure 12: Search space of compositions versus the number of concrete services for different numbers of clusters.

Fig. 11

 11 Fig. 11 shows that the execution time of the CQCA algorithm increases with the number of clusters because an increase in the QoS levels leads to the

Figure 13 :

 13 Figure 13: Optimality of the composition versus the number of concrete services for different numbers of clusters.

Table 1 :

 1 Comparison of QoS-aware services composition approaches.

		Comparison criterion	
	Approach	Resolution method	Scalability	Optimality
	[5]	Integer linear programming	No	Optimal
	[48]	ILP and utility function	No	Optimal
	[41]	0-1 integer programming	Yes	Near-to-optimal
	[40]	Pareto dominance and MIP	Yes	Not evaluated
	[42]	Backtracking/Genetic algorithm	Not evaluated	Optimal/Near-
				to-optimal
	[50]	AI planning technique	No	Optimal
	[35]	Utility function-based QoS con-	Yes	Near-to-optimal
		straints decomposition		
	[26]	k-means method	Limited	Near-to-optimal
	[21]	Sim-Dijkstra algorithm	Not evaluated	Optimal
	[13]	Backtrack and depth-first search	Yes	Optimal
	[34]	Game of jigsaw puzzle	Yes	Not evaluated
	[1]	Pareto dominance	Not evaluated	Optimal
	[9]	Pareto dominance	Not evaluated	Optimal
	[8]	Pareto dominance	Yes	Optimal
	[12]	Krill-Herd algorithm	Yes	Near-to-optimal
	[14]	Genetic algorithm	No	Near-to-optimal
	[11]	TLBO method	Yes	Near-to-optimal
	[49]	PSO method	Yes	Not evaluated
	[15]	Genetic algorithm	Yes	Not evaluated
	[39]	Cuckoo search method	Not evaluated	Optimal
	[28]	Reinforcement learning	No	Optimal
	[18]	k-means and PSO methods	Yes	Not evaluated
	[44]	OPTIC method	Yes	Near-to-optimal
	[32]	Q-learning algorithm	No	Optimal
	[38]	Reinforcement learning and game	Yes	Optimal
		theory		
	[23]	k-means and genetic algorithm	Yes	Not evaluated
	[36]	k-means and integer program-	Yes	Near-to-optimal
		ming		
	[7]	Backward-chaining method	Not evaluated	Not evaluated
	[3]	QoS constraints decomposition	Yes	Near-to-optimal
	[19]	Rule-based QoS constraints de-	Not evaluated	Not evaluated
		composition		
	[45]	Utility function	Not evaluated	Not evaluated
	[25]	Utility function	Not evaluated	Not evaluated

Table 2 :

 2 Functions used to aggregate the QoS attributes of a composite service.

	Structure

 The set of candidate services SCS(ASi).

	1: Begin
	2: SCS(ASi) ← ∅;
	3: k-means(ASi, k);
	4: for j = 1 to n do
	5:	Calculate the utility value U (cs i j) of the candidate service cs i j using (2);
	6: end for
	7: A given function F is used to calculate U i T hreshold = F n j=1 U (cs i j);
	8: for j = 1 to n do
	9:	if U (cs i j) ≥ U i T hreshold then
	10:	SCS(ASi) ← SCS(ASi) ∪ {cs i j };
	11:	end if
	12: end for
	13: Return SCS(ASi)
	14: End
	Outputs:

Table 3 :

 3 QoS attributes values related to e-mail validation services.

	QoS attributes

This approach allows, on the one hand, reducing the computation time of the composition algorithm and, on the other hand, increasing the optimality of the composition.

Consider the following example, where cs i 1 , cs i 2 , cs i 3 and cs i 4 represent four candidate services described by their normalized QoS attributes values, such as QoS(cs i 1) = (ReT = 0.1, Avl = 1, Rel = 0.9); QoS(cs i

2) = (ReT = 0.6, Avl = 0.9, Rel = 0.8); QoS(cs i

3) = (ReT = 0.3, Avl = 0.8, Rel = 1);

where ReT , Avl and Rel represent the response time, the availability, and the reliability of the candidate services, respectively. The user's preferences vector is P ref = (0.3, 0.5, 0.2). From formula [START_REF] Ardagna | Adaptive service composition in flexible processes[END_REF], the utility values of the services cs i 1 , cs i 2 , cs i 3 and cs i 4 can be calculated as follows : U (cs i 1) = 0.03 + 0.50 + 0.18 = 0.71; U (cs i

2) = 0.18 + 0.45 + 0.16 = 0.79; U (cs i

3) = 0.09 + 0.40 + 0.20 = 0.69; U (cs i 4) = 0.30 + 0.15 + 0.10 = 0.55;

Let U i T hreshold be the threshold utility value, which is chosen here as the average of the utility values of the four services. Although the service cs i 1 has a high response time, it can be selected for the composition since its utility value is higher than U i T hreshold . However, selecting this service can lead to a violation of the global QoS constraint on the response time or to a decrease in the composition optimality. Therefore, the aim of the second phase of the CQCA algorithm consists of removing, from the candidate services set of AS i , the services that have low QoS values with respect to some of the attributes. The objective is to further reduce the search space as well as the composition time.

Indeed, the probability of satisfying the global QoS constraints increases with the QoS of the selected services for the composition. In this context, the QoSaware services selection is formulated as a lexicographic optimization problem