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Abstract. In this paper we study the local stabilization of one dimen-
sional compressible Navier-Stokes equations around a constant steady
solution (ρs, us), where ρs > 0, us 6= 0. In the case of periodic bound-
ary conditions, we determine a distributed control acting only in the
velocity equation, able to stabilize the system, locally around (ρs, us),
with an arbitrary exponential decay rate. In the case of Dirichlet bound-
ary conditions, we determine boundary controls for the velocity and for
the density at the inflow boundary, able to stabilize the system, locally
around (ρs, us), with an arbitrary exponential decay rate.

Key words. Compressible Navier-Stokes equations, local stabilization,
feedback control, localized interior control.

1. Introduction

Stabilization of fluid flows around unstable stationary solutions is an im-
portant issue in many engineering applications (see e.g. [5]). The case of
the incompressible Navier-Stokes equations has been widely studied both in
the mathematical and engineering literatures [2, 3, 4, 15, 16, 17, 20]. Similar
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issues for the compressible Navier-Stokes equations are much more recent.
There are a few papers studying the controllability of such systems in the one
dimensional case [1, 12, 11]. The null controllability of linearized systems
([11]) or nonlinear systems ([1, 12]) implies their stabilization. But they
do not give an explicit way for computing stabilizing controls. One of the
goals of this paper is to fill this gap. We would like to determine stabilizing
controls for the one dimensional Navier-Stokes equations, around a constant
steady state ρs > 0, us 6= 0. We first study the local stabilization of the
one dimensional compressible Navier-Stokes system, with periodic boundary
conditions, by a distributed control. Next we shall see that the stabiliza-
tion of the one dimensional compressible Navier-Stokes system by Dirichlet
boundary controls may be deduced from this first result.

We consider the following compressible isentropic Navier-Stokes equations
in the interval (0, L) with periodic boundary conditions

ρt + (ρu)y = 0 in (0, L)× (0,∞),

ρ(ut + uuy) + (p(ρ))y − νuyy = ρfχ(`1,`2) in (0, L)× (0,∞),

ρ(0, ·) = ρ(L, ·), u(0, ·) = u(L, ·), uy(0, ·) = uy(L, ·) in (0,∞),

ρ(·, 0) = ρ0(·), u(·, 0) = u0(·) in (0, L).

(1.1)

Here ρ(y, t) is the density, u(y, t) is the fluid velocity, ν > 0 is the fluid
viscosity, and the pressure p is assumed to satisfy the constitutive law

p(ρ) = a ργ ,

for some constants a > 0 and γ ≥ 1. Here, f is an interior control with
support in (`1, `2), a nonempty interval of (0, L). We set

Ωy = (0, L), and Q∞y := Ωy × (0,∞). (1.2)

Let us first notice that any pair of constants (ρs, us), with ρs > 0, is a
steady state solution of (1.1) for f = 0. By integrating the first equation in
(1.1) and using the periodic boundary conditions, we also observe that∫ L

0
ρ(y, t)dy =

∫ L

0
ρ0(y)dy, ∀ t > 0.

Thus there is no effect of the control f on the mean value of the density. So
we start with an initial density ρ0 satisfying

1

L

∫ L

0
ρ0(y)dy = ρs and min

y∈Ω̄y
ρ0(y) > 0. (1.3)
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To study the local stabilization of (1.1) around the pair of constants (ρs, us),
where ρs > 0 and us 6= 0, we define

σ = ρ− ρs, v = u− us.
The system satisfied by (σ, v) is

σt + ρsvy + usσy + σyv + σvy = 0 in Q∞y ,

vt + vvy + usvy + aγ(σ + ρs)
γ−2σy − ν

vyy
σ + ρs

= fχ(`1,`2) in Q∞y ,

σ(0, ·) = σ(L, ·), v(0, ·) = v(L, ·), vy(0, ·) = vy(L, ·) in (0,∞),

σ(·, 0) = σ0(·) = ρ0(·)− ρs, v(·, 0) = v0(·) = u0(·)− us in Ωy,

1

L

∫ L

0
σ0(y)dy = 0.

(1.4)
Now note that σ satisfies∫ L

0
σ(y, t)dy = 0, ∀ t > 0.

To achieve the stabilization of (1.4) with exponential decay e−ωt, for any
ω > 0, it is convenient to introduce the new unknowns

σ̂ = eωtσ, v̂ = eωtv, f̂ = eωtf.

We notice that (σ̂, v̂, f̂) satisfies the system

σ̂t + usσ̂y + ρsv̂y − ωσ̂ + e−ωt{σ̂yv̂ + σ̂v̂y} = 0 in Q∞y ,

v̂t + usv̂y + e−ωtv̂v̂y + aγ(e−ωtσ̂ + ρs)
γ−2σ̂y

−ν v̂yy
e−ωtσ̂ + ρs

− ωv̂ = f̂χ(`1,`2) in Q∞y ,

σ̂(0, ·) = σ̂(L, ·), v̂(0, ·) = v̂(L, ·), v̂y(0, ·) = v̂y(L, ·) in (0,∞),

σ̂(·, 0) = σ0(·), v̂(·, 0) = v0(·) in Ωy,
1

L

∫ L

0
σ0(y)dy = 0.

(1.5)
Thus we have

1

L

∫ L

0
σ̂(y, t)dy = 0, ∀ t > 0.

To study the associated stabilization problem, we need to introduce the
one dimensional Sobolev spaces with periodic boundary conditions. For s ∈
N∪{0}, we denote by Hs

per(0, L), the space of L-periodic functions belonging
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to Hs
loc(R), and by Ḣs

per(0, L) the subspace of the functions belonging to
Hs
per(0, L), with mean value zero.
Our first main result is regarding stabilization of system (1.5).

Theorem 1.1. Let ω be any positive number. There exist positive constants
µ̂0 and κ̂, depending on ω, ρs, us, `1, `2 and L, such that for all 0 < µ̂ ≤ µ̂0

and all initial condition (σ0, v0) ∈ Ḣ1
per(Ωy)×H1

per(Ωy) satisfying

‖(σ0, v0)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ κ̂ µ̂,

there exists a control f̂ ∈ L2(0,∞;L2(Ωy)) for which system (1.5) admits a
unique solution (σ̂, v̂) satisfying

‖(σ̂, v̂)‖L∞(0,∞;Ḣ1
per(Ωy))∩L2(0,∞;Ḣ1

per(Ωy))×H1(0,∞;L2(Ωy))∩L2(0,∞;H2
per(Ωy)) ≤ µ̂.

Moreover, (σ̂, v̂) ∈ Cb([0,∞); Ḣ1
per(Ωy) × H1

per(Ωy)), |σ̂(y, t)| ≤ ρs
2

for all

(y, t) ∈ Q∞y .

The above theorem leads us to the following stabilization result for system
(1.1).

Theorem 1.2. (Case of periodic boundary conditions.) Let ω be any posi-
tive number. There exist positive constants µ̂0 and κ̂, depending on ω, ρs,
us, `1, `2 and L, such that, for all 0 < µ̂ ≤ µ̂0 and all initial condition
(ρ0, u0) ∈ H1

per(Ωy)×H1
per(Ωy), where ρ0 satisfies (1.3) and (ρ0, u0) obeys

‖(ρ0 − ρs, u0 − us)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ κ̂ µ̂,

there exists a control f ∈ L2(0,∞;L2(Ωy)) for which system (1.1) admits a
unique solution (ρ, u) satisfying

‖(ρ(·, t)− ρs, u(·, t)− us)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ C µ̂ e
−ωt,

for some positive constant C depending on ω, ρs, us, `1, `2 and L but inde-

pendent of µ̂. Moreover, we have ρ(y, t) ≥ ρs
2

for all (y, t) ∈ Q∞y .

The proofs of the above theorems appear in Section 4 and the details

about the controls f̂ and f obtained via a nonlinear control law are given in
Section 4.4.

It is well known that the main difficulty in studying the one dimensional
compressible Navier-Stokes equations (1.1) comes from the nonlinear term
ρyu. There are two classical ways to deal with that term. One way consists in
using the Schauder fixed point theorem, to prove the existence of a solution
to system (1.1). This method is well adapted for finite time interval [0, T ]
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and when there is no feedback control (see e.g. [12, 19]). In our case, since
we look for a solution to (1.1) or (1.5) over the time interval (0,∞), the
Schauder fixed point method cannot be used.

The second method consists in using a change of variables and in writing
the nonlinear system in Lagrangian variables. We follow that way. Since we
deal with the equations satisfied by σ̂ = eωt(ρ − ρs) and v̂ = eωt(u − us),
we do not use the classical Lagrangian change of variables, but a modified
one, adapted to system (1.5). In our situation the change of variables is
defined through the solution to a transport equation and not to an ordinary
differential equation. We shall refer to the transformed system (2.9), as the
Lagrangian system and the transformed variable (σ̃, ṽ), as the Lagrangian
variables. Similarly, system (1.5) will be referred to as the Eulerian system.
Finally our method consists in finding a feedback control operator able to
stabilize first the linearized Lagrangian system, and next the nonlinear one.
This is done by using a fixed point method. Then, coming back to the
Eulerian system, we prove the stabilization of system (1.5) and hence of
system (1.1).

The transformed nonlinear system presents two new difficulties. One is
that the control zone is also evolving with time. Thus the control operator
becomes time dependent. But there is no general stabilization method for
finding a feedback control operator for nonautonomous systems. We manage
this situation by choosing a fixed control domain, which lies inside each
transformed control zone for every t > 0 (Lemma 2.7).

The second difficulty is that the nonlinear term F1 appearing in the right
hand side of the density equation of the Lagrangian system, is no longer
with mean value zero. Hence the associated density is also not with mean
value zero, but the control has no effect on the mean value of density. To
handle this difficulty, we split F1 and σ̃ in a unique manner as for all x ∈
(0, L), ∀ t > 0,

F1(x, t) = F1,m(x, t) + F1,Ω(t), σ̃(x, t) = σ̃m(x, t) + σ̃Ω(t).

Here F1,m and σ̃m are with mean value zero, and F1,Ω and σ̃Ω (which are the
mean values of F1 and σ̃ respectively) are functions only depending on time.
We estimate the two components differently. In our fixed point argument,
we will see that it is convenient to deal with a solution σ̃Ω and a right hand
side F1,Ω in weighted Lebesgue spaces. Proceeding in this way, we prove that
σ̃Ω is bounded in the corresponding weighted Lebesgue space. However, we
can deduce afterwards that σ̃Ω is indeed bounded (see Theorem 4.4).
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Next we consider the one dimensional compressible Navier-Stokes equa-
tions around (ρs, us), ρs > 0, us > 0 with boundary controls

ρt + (ρu)y = 0 in (0, L)× (0,∞),

ρ(ut + uuy) + (p(ρ))y − νuyy = 0 in (0, L)× (0,∞),

ρ(0, ·) = q1(·), u(0, ·) = q2(·), u(L, ·) = q3(·) in (0,∞),

ρ(·, 0) = ρ0(·), u(·, 0) = u0(·) in (0, L),

p(ρ) = a ργ ,

(1.6)

for some constants a > 0 and γ ≥ 1. We prove a local stabilization result for
system (1.6) with initial conditions (ρ0, u0) close to (ρs, us). Since us > 0,

we prove that u(y, t) ≥ us
2

> 0 for all (y, t) ∈ Q∞y . Thus the boundary

condition for density has to be prescribed only at y = 0. For us < 0 the
boundary condition for density should be prescribed at y = L and the result
of local stabilization can be easily adapted from the case us > 0. Our main
theorem for this case, reads as follows.

Theorem 1.3. (Case of Dirichlet boundary controls.) Let ω be any positive
number. There exists a positive constant µd, depending on ω, ρs, us > 0, and
L, such that for any initial condition (ρ0, u0) ∈ H1(0, L)×H1(0, L) satisfying

min
[0,L]

ρ0 > 0 and ‖(ρ0 − ρs, u0 − us)‖H1(0,L)×H1(0,L) ≤ µd, (1.7)

there exist controls q1 ∈ L2(0,∞) ∩ Cb([0,∞)) and q2, q3 ∈ H
3
4 (0,∞), such

that system (1.6) admits a unique solution (ρ, u) satisfying

‖(ρ(·, t)− ρs, u(·, t)− us)‖H1(0,L)×H1(0,L) ≤ C e−ωt, (1.8)

for some positive constant C depending on ω, ρs, us, and L but independent

of µd. Furthermore, ρ(y, t) ≥ ρs
2

and u(y, t) ≥ us
2

for all (y, t) ∈ (0, L) ×
(0,∞).

We prove the above stabilization result by extending system (1.6) to
(−L,L) with periodic boundary conditions and then using Theorem 1.2
with a control localized in (−L, 0). Finally the traces of the velocity and
the density at boundary give the boundary controls for system (1.6).

Chowdhury et. al ([9]) prove the exponential stabilization of compressible
Navier-Stokes system in (0, π) with homogeneous Dirichlet boundary con-
ditions around (ρs, 0), by using a localized control for velocity, for initial
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conditions in H1(0, π)×H1(0, π). Our approach to prove the local stabiliza-
tion of system (1.1) around (ρs, us), ρs > 0, us 6= 0, with periodic boundary
conditions, is also using Lagrangian coordinate transformation, similar to
[9]. However, there are crucial differences in the behaviour of the two sys-
tems and hence in the techniques to handle them. While the transformation
is given by an ODE in [9], it is given by a pde of transport type and hence
the estimates require more intricate analysis. The linearized system around
(ρ̄, 0) in ([9]) is not null controllable by localized control because of the ac-
cumulation point ω0 in the spectrum of the linearized operator (see [8]).
That is why in [9], the decay rate has to be chosen strictly less than ω0.
But in our case, we are able to show that the system is locally stabilizable
with exponential decay e−ωt, for any ω > 0. When us 6= 0, even though
the unstable subspace is of infinite dimension for ω arbitrarily large, the
unstable eigenvalues are isolated and there is a uniform lower bound for the
differences between any two eigenvalues. We are able to manage the infinite
dimensional unstable spaces by using the null controllability of the linearized
system associated with (1.1) by a localized control (see [11]). Furthermore,
in [9], because the unstable subspace of the linearized system is of finite
dimension, the feedback control operator turns out to be a Hilbert-Schmidt
operator. In contrast, in our case, the infinite dimensional unstable subspace
necessitates a totally different argument to get the structure of the feedback
operator.

To complete the references, we mention that Ervedoza et. al ([12]) prove
the local exact controllability of compressible Navier-Stokes system to con-
stant states (ρs, us) with ρs > 0, us 6= 0 using boundary controls for density
and velocity, when the initial conditions for density and velocity both be-
long in H3(0, L). Our stabilization result Theorem 1.3 is also with similar
boundary controls but in less regular space. However, our approach is en-
tirely different from that of [12]. In [10], the authors consider the linearized
compressible Navier-Stokes system around (ρs, us) with ρs > 0, us 6= 0 with
periodic boundary conditions. By the moment method they prove the null
controllability of this system in Ḣs+1

per ×Hs
per, for s > 6.5, using a localized

L2-interior control only for the velocity equation. In [11], the null control-

lability of that system is obtained in Ḣ1
per × L2 by proving an observability

inequality. In [14], the authors study the stabilizability of the same linearized
system with exponential decay e−ωt, for any ω > 0, using L2-control acting
only in velocity equation. It is proved that Ḣ1

per ×L2 is the largest space in
which that system is stabilizable with any arbitrary exponential decay rate.
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The plan of the paper is as follows. In Section 2, we introduce the La-
grangian change of variables and study its properties in Section 2.1. We
explain how we can choose a fixed control zone in Section 2.2. In Section
3, we study the feedback stabilization of the linearized Lagrangian system.
The stabilization of the nonlinear system is treated in Section 4. We state
and prove the stabilization results for the Lagrangian system in Section 4.1.
The Lagrangian system and its equivalence with the initial one are studied
in Section 4.2. Section 4.3 is devoted to the proofs of Theorems 1.1 and
1.2. In Section 4.4 we determine the nonlinear control law for the Eulerian
system. The case of Dirichlet boundary controls is studied in Section 5. For
the sake of completeness, some classical proofs and estimations are added in
an appendix (Section 6).

Acknowledgement. The authors are members of an IFCAM-project, Indo-
French Center for Applied Mathematics - UMI IFCAM, Bangalore, India,
supported by DST - IISc - CNRS - and Université Paul Sabatier Toulouse
III. The authors gratefully acknowledge the financial support from IFCAM.

2. Rewriting system (1.5)

The goal of this section is to explain how we can transform system (1.5)
through a change of variables. A similar approach is used in [9] when us = 0.
In the case us 6= 0, the method is more complicated.

For any s ∈ N ∪ {0}, we equip the spaces

Hs
per(0, L) =

{
ϕ | ϕ =

∑
k∈Z

cke
ik 2πx

L ,
∑
k∈Z
|k|2s|ck|2 <∞

}
,

Ḣs
per(0, L) =

{
ϕ ∈ Hs

per(0, L) |
∫ L

0
ϕ(x)dx = 0

}
,

with the norms,

‖ϕ‖Hs
per(0,L) = (

∑
k∈Z

(1 + |k|2s)|ck|2)
1
2 , ‖ϕ‖Ḣs

per(0,L) = (
∑

k∈Z\{0}

|k|2s |ck|2)
1
2 .

We mention that the Sobolev space Hs
per(0, L) for s = 0 corresponds to

L2(0, L).
Let us also recall that for any bounded open interval (L1, L2) ⊂ R, a

Sobolev constant s0 of the embedding H1(L1, L2) ↪→ L∞(L1, L2) can be
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chosen as (see for example, Theorem 8.8 in [7])

s0 = 4
√

2

(
1 +

1

L2 − L1

)
. (2.1)

In particular, we shall use the notation s0 for the interval (0, L) and in this
case

s0 = 4
√

2

(
1 +

1

L

)
. (2.2)

2.1. Lagrangian variables. To define properly the change of variables, in
addition to Ωy = (0, L), we introduce the notation

Ωx := (0, L), and Q∞x := Ωx × (0,∞), (2.3)

to consider functions depending on the x variable. Since we deal with peri-
odic boundary conditions, it is convenient to identify Ωy as well as Ωx with
the one dimensional torus R/(LZ).

For any smooth function v̂, L-periodic in the space variable and bounded
in L2(0,∞;H2

per(Ωy)), we consider the L-periodic mapping Yv̂(·, t) from Ωx

to Ωy satisfying the following equation

∂Yv̂(x, t)

∂t
+ us

∂Yv̂(x, t)

∂x
= us + e−ωtv̂(Yv̂(x, t), t), ∀ (x, t) ∈ Q∞x ,

Yv̂(x, 0) = I(x), ∀ x ∈ Ωx,

Yv̂(x, ·) = Yv̂(x+ L, ·), ∀ x ∈ Ωx,

(2.4)

where I(x) is the identity mapping in R/(LZ). By the method of character-
istics, this is equivalent to the following ordinary differential equation for all
(x, t) ∈ Q∞x ,

d

dτ

[
Yv̂(x+ us(τ − t), τ)

]
= us + e−ωτ v̂(Yv̂(x+ us(τ − t), τ), τ), τ > 0,

Yv̂(x+ us(τ − t), τ)|τ=0 = I(x− ust), ∀ (x, t) ∈ Q∞x ,

and hence to the following integral formulation for all τ > 0,

Yv̂(x+us(τ − t), τ) = I(x+us(τ − t)) +

∫ τ

0
e−ωrv̂(Yv̂(x+us(r− t), r), r) dr.

Thus to prove the existence of a solution to (2.4), it is enough to prove the
existence of a solution to the above integral formulation. In order to do that
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we introduce the spaces

V̂ = Cb([0,∞);H1
per(Ωy)) ∩ L2(0,∞;H2

per(Ωy)),

V̂ω =
{
v̂ ∈ V̂ | ‖v̂‖L2(0,∞;H2

per(Ωy)) ≤ min{
√
ω

2
√

2s0
,
√
ω√

2Ls0
}
}
,

(2.5)

where s0 is defined in (2.2). The following proposition gives the existence
and uniqueness of a solution to (2.4) under some conditions of v̂.

Proposition 2.1. If v̂ ∈ V̂ω, then there exists a unique function Yv̂ ∈
Cb([0,∞);L2(Ωx)) satisfying

Yv̂(x, t) = I(x) +

∫ t

0
e−ωτ v̂(Yv̂(x+ us(τ − t), τ), τ) dτ. (2.6)

For every t > 0, the periodic mapping x→ Yv̂(x, t) is bijective from the 1d-
torus Ωx to the 1d-torus Ωy. Moreover, Yv̂ belongs to Cb([0,∞);H2

per(Ωx))∩
C1
b ([0,∞);H1

per(Ωx)) and it satisfies equation (2.4).

The proof of the above proposition follows from the Picard’s iteration
method and careful estimations of the integrals. For the sake of complete-
ness, the proof is given in Section 6.1.

Lemma 2.2. Let v̂ ∈ V̂ω and let Yv̂ be the solution of equation (2.4). Then∥∥∥∥∂Yv̂∂x − 1

∥∥∥∥
L∞(Q∞x )

≤ 1

2
.

The proof is given in Section 6.1.

Corollary 2.3. Let v̂ ∈ V̂ω and let Yv̂ be the solution of equation (2.4).
Then, for every t > 0, the periodic map x → Yv̂(x, t) is C1diffeomorphism
from the 1d-torus Ωx to the 1d-torus Ωy. Denoting by Xv̂(·, t) the L-periodic
inverse of Yv̂(·, t), we have

Xv̂(Yv̂(x, t), t) = x, ∀ (x, t) ∈ Q∞x , Yv̂(Xv̂(y, t), t) = y, ∀ (y, t) ∈ Q∞y .

�
Let us introduce the constants

b := aγργ−2
s , ν0 :=

ν

ρs
. (2.7)

We set for all (x, t) ∈ Q∞x ,

σ̃(x, t) = σ̂(Yv̂(x, t), t), ṽ(x, t) = v̂(Yv̂(x, t), t), f̃(x, t) = f̂(Yv̂(x, t), t).
(2.8)
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Let us consider the system

σ̃t + usσ̃x + ρsṽx − ωσ̃ = F1(σ̃, ṽ, t) in Q∞x ,

ṽt + usṽx + bσ̃x − ν0ṽxx − ωṽ =

f̃χ
(˜̀1,ṽ(t),˜̀2,ṽ(t))

+ F2(σ̃, ṽ, t) in Q∞x ,

σ̃(0, ·) = σ̃(L, ·), ṽ(0, ·) = ṽ(L, ·), ṽx(0, ·) = ṽx(L, ·) in (0,∞),

σ̃(·, 0) = σ0(·), ṽ(·, 0) = v0(·) in Ωx,

∫ L

0
σ0(x)dx = 0,

Y (x, t) = I(x) +

∫ t

0
e−ωτ ṽ(x+ us(τ − t), τ)dτ, ∀ (x, t) ∈ Q∞x ,

X(Y (x, t), t) = x, ∀ (x, t) ∈ Q∞x , Y (X(y, t), t) = y, ∀ (y, t) ∈ Q∞y ,˜̀
1,ṽ(t) = X(`1, t), ˜̀

2,ṽ(t) = X(`2, t), ∀ t > 0,
(2.9)

where

F1(σ̃, ṽ, t) = ρsṽx

(
1−

(
∂Y

∂x

)−1
)
− e−ωtσ̃ṽx

(
∂Y

∂x

)−1

,

F2(σ̃, ṽ, t) = σ̃x

[
b− aγ(e−ωtσ̃ + ρs)

γ−2

(
∂Y

∂x

)−1
]

− νṽx
(e−ωtσ̃ + ρs)

∂2Y

∂x2

(
∂Y

∂x

)−3

− νṽxx

[
1

ρs
− 1

(e−ωtσ̃ + ρs)

(
∂Y

∂x

)−2
]
.

(2.10)
Then we have the following theorem.

Theorem 2.4. Let

σ̂ ∈ L∞(0,∞; Ḣ1
per(Ωy)) ∩ L2(0,∞; Ḣ1

per(Ωy)),

v̂ ∈ L2(0,∞;H2
per(Ωy)) ∩H1(0,∞;L2(Ωy)),

be the solution of (1.5) with control f̂ ∈ L2(0,∞;L2(Ωy)). If in addition v̂ ∈
V̂ , then (σ̃, ṽ, f̃) defined by (2.8), together with (Y,X) = (Yv̂, Xv̂), satisfies
system (2.9). Further, σ̃ belongs to L∞(0,∞;H1

per(Ωx))∩L2(0,∞;H1
per(Ωx)),

ṽ belongs to L2(0,∞;H2
per(Ωx)) ∩H1(0,∞;L2(Ωx)), f̃ ∈ L2(0,∞;L2(Ωx)),

and there exists a constant M1,ω, depending on ω, such that

‖(σ̃, ṽ)‖
D̃
≤M1,ω‖(σ̂, v̂)‖

D̂
,
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where ‖(σ̃, ṽ)‖
D̃

denotes the norm of (σ̃, ṽ) in

L∞(0,∞;H1
per(Ωx)) ∩ L2(0,∞;H1

per(Ωx)))

×(L2(0,∞;H2
per(Ωx)) ∩H1(0,∞;L2(Ωx)))

and ‖(σ̂, v̂)‖
D̂

denotes the norm of (σ̂, v̂) in

(L∞(0,∞; Ḣ1
per(Ωy)) ∩ L2(0,∞; Ḣ1

per(Ωy)))

×(L2(0,∞;H2
per(Ωy)) ∩H1(0,∞;L2(Ωy))).

Proof. For (σ̂, v̂, f̂) with the L-periodic transformation Yv̂ defined in (2.6),

by the chain rule differentiation formula, (σ̃, ṽ, f̃) satisfies (2.9) in Q∞x , with

L-periodic boundary conditions. From Lemma 2.2, it follows that ∂Yv̂
∂x ≥

1
2

for v̂ ∈ V̂ω. The rest of the proof follows from this and the change of variables
formula. �

The converse of the above theorem will be handled in Section 4.2. We
shall need the following spaces

Ṽ = Cb([0,∞);H1
per(Ωx)) ∩ L2(0,∞;H2

per(Ωx)),

Ṽω =

{
ṽ ∈ Ṽ | ‖ṽ‖L2(0,∞;H2

per(Ωx)) ≤
√
ω

2s0

}
,

(2.11)

and, for ṽ ∈ Ṽ , the transformation

Yṽ(x, t) = I(x) +

∫ t

0
e−ωτ ṽ(x+ us(τ − t), τ) dτ, ∀ (x, t) ∈ Q∞x . (2.12)

We have the following lemma.

Lemma 2.5. Let ṽ ∈ Ṽ and let Yṽ be defined by (2.12), then∥∥∥∥∂Yṽ∂x − 1

∥∥∥∥
L∞(0,∞;L2(Ωx))

≤ 1√
2ω
‖ṽ‖L2(0,∞;H2

per(Ωx)), (2.13)∥∥∥∥∂2Yṽ
∂x2

∥∥∥∥
L∞(0,∞;L2(Ωx))

≤ 1√
2ω
‖ṽ‖L2(0,∞;H2

per(Ωx)), (2.14)∥∥∥∥∂Yṽ∂x − 1

∥∥∥∥
L∞(0,∞;H1

per(Ωx))

≤ 1√
ω
‖ṽ‖L2(0,∞;H2

per(Ωx)). (2.15)

Moreover, if ṽ ∈ Ṽω, we have∥∥∥∥∂Yṽ∂x − 1

∥∥∥∥
L∞(Q∞x )

≤ 1

2
. (2.16)
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Proof. By differentiating (2.12), we get

∂Yṽ
∂x

(x, t)− 1 =

∫ t

0
e−ωsṽx(x+ us(s− t), s) ds, ∀ (x, t) ∈ Q∞x . (2.17)

Thus ∥∥∥∥∂Yṽ∂x (·, t)− 1

∥∥∥∥2

L2(Ωx)

≤ 1− e−2ωt

2ω
‖ṽx‖2L2(0,∞;L2(Ωx)),

and (2.13) is proved. Estimate (2.14) follows from

∂2Yṽ
∂x2

(x, t) =

∫ t

0
e−ωsṽxx(x+ us(s− t), s) ds.

The estimate (2.15) is a direct consequence of (2.13) and (2.14). If ṽ ∈ Ṽω,
we have ∥∥∥∥∂Yṽ∂x − 1

∥∥∥∥
L∞(Q∞x )

≤ s0

∥∥∥∥∂Yṽ∂x − 1

∥∥∥∥
L∞(0,∞;H1

per(Ωx))

≤ 1

2
.

�

Corollary 2.6. Let ṽ ∈ Ṽω and let Yṽ be defined by (2.12). Then, for each
t > 0, the periodic mapping x → Yṽ(x, t) is C1-diffeomorphism from the
1d-torus Ωx to the 1d-torus Ωy. Denoting by Xṽ(·, t) the L-periodic inverse
of Yṽ(·, t), we have

Xṽ(Yṽ(x, t), t) = x, ∀ (x, t) ∈ Q∞x , Yṽ(Xṽ(y, t), t) = y, ∀ (y, t) ∈ Q∞y .

�

2.2. From a moving to a fixed control zone. As mentioned in the in-
troduction, in the transformed system (2.9), the control zone depends on the
time variable t. To handle this situation, we choose an open interval O ⊂ Ωx

such that O lies inside the control zone (˜̀1,ṽ(t), ˜̀2,ṽ(t)) for all t > 0. This is
detailed in the following Lemma.

Lemma 2.7. Let ṽ belong to Cb([0,∞);H1
per(Ωx))∩L2(0,∞;H2

per(Ωx)) and
let us also assume that

‖ṽ‖L2(0,∞;H2
per(Ωx)) ≤ min

{√
2ω(`2 − `1)

8s0
,

√
ω

2s0

}
. (2.18)

Then we have

|˜̀j,ṽ(t)− `j | ≤ |`2 − `1|
8

, ∀ t > 0, j = 1, 2. (2.19)
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Furthermore, if we choose the open set O ⊂ Ωx defined by

O :=

(
(7`1 + `2)

8
,
(7`2 + `1)

8

)
, (2.20)

then we have

O ⊂ (˜̀1,ṽ(t), ˜̀2,ṽ(t)), ∀ t > 0. (2.21)

Proof. For every t > 0 the moving domain for the control is (˜̀1,ṽ(t), ˜̀2,ṽ(t)),
where

`j = ˜̀
j,ṽ(t) +

∫ t

0
e−ωτ ṽ(˜̀j,ṽ(t) + us(τ − t), τ) d τ, j = 1, 2, ∀ t > 0.

For ‖ṽ‖L2(0,∞;H2
per(Ωx)) ≤

√
2ω|`2 − `1|

8s0
, we get

|˜̀j,ṽ(t)− `j | ≤ 1√
2ω
‖ṽ‖L2(0,∞;L∞(Ωx)) ≤

|`2 − `1|
8

.

For δ =
|`2 − `1|

8
, we also have `1 +δ < `2−δ . Therefore, the lemma follows

by choosing

O := (`1 + δ, `2 − δ) .

�

Let us notice that, with (2.21), we have

χ
(˜̀1,ṽ(t),˜̀2,ṽ(t))

χO = χO, ∀ t > 0.
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Thus to study the stabilizability of system (2.9), it is enough to study the
stabilizability of the system

σ̃t + usσ̃x + ρsṽx − ωσ̃ = F1(σ̃, ṽ, t) in Q∞x ,

ṽt + usṽx + bσ̃x − ν0ṽxx − ωṽ

= χOf̃ + F2(σ̃, ṽ, t) in Q∞x ,

σ̃(0, ·) = σ̃(L, ·), ṽ(0, ·) = ṽ(L, ·), ṽx(0, ·) = ṽx(L, ·) in (0,∞),

σ̃(·, 0) = σ0(·), ṽ(·, 0) = v0(·) in Ωx,

∫ L

0
σ0(x)dx = 0,

Y (x, t) = I(x) +

∫ t

0
e−ωτ ṽ(x+ us(τ − t), τ)dτ, ∀ (x, t) ∈ Q∞x ,

X(Y (x, t), t) = x, ∀ (x, t) ∈ Q∞x , Y (X(y, t), t) = y, ∀ (y, t) ∈ Q∞y ,˜̀
1,ṽ(t) = X(`1, t), ˜̀

2,ṽ(t) = X(`2, t), ∀ t > 0,
(2.22)

where F1 and F2 are defined in (2.10).

3. Stabilization of the linearized Lagrangian system

In this section, we will use the notation Ω and Q∞ instead of Ωx and
Q∞x , since we are going to study the Lagrangian system (2.22) where the
unknowns are functions of (x, t) only. Associated to the transformed sys-
tem (2.22), with the control zone O, let us consider the following linearized
system

σ̃t + usσ̃x + ρs ṽx = 0 in Q∞,

ṽt − ν0ṽxx + us ṽx + bσ̃x = f̃ χO in Q∞,

σ̃(0, ·) = σ̃(L, ·), ṽ(0, ·) = ṽ(L, ·), ṽx(0, ·) = ṽx(L, ·) in (0,∞),

σ̃(·, 0) = σ̃0, ṽ(·, 0) = ṽ0 in Ω,

∫
Ω
σ̃0(x)dx = 0,

(3.1)

where the control f̃ belongs to L2(0,∞;L2(Ω)).
Let us introduce the complex Hilbert space

Z = Ḣ1
per(Ω) × L2(Ω)

endowed with the inner product〈(
ρ
u

)
,

(
σ
v

)〉
z

:= b

∫ L

0
ρx(x)σx(x) dx+ ρs

∫ L

0
u(x)v(x)dx.
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We define the unbounded operator (A,D(A)) in Z by

D(A) = Ḣ2
per(Ω)×H2

per(Ω)

and

A =

[
−us ddx −ρs ddx
−b ddx ν0

d2

dx2
− us ddx

]
. (3.2)

Setting z(t) = (σ̃(·, t), ṽ(·, t))T and Bf̃ = (0, f̃χO)T , system (3.1) can be
written as

z′(t) = Az(t) +Bf̃(t), z(0) = z0 ∈ Z. (3.3)

Let us mention that (A,D(A)) generates a C0 semigroup in Z, denoted by
{etA}t≥0, and the control operator B belongs to L(L2(Ω), Z). We recall
Lemma 2.2 from [14] regarding the spectrum of A for L = 2π (see also [11]).

Lemma 3.1. The spectrum of A consists of 0 and two sequence of complex

eigenvalues {−λhk ,−λ
p
k}k∈Z∗ with −λhk = −λh−k, −λpk = −λp−k for all k ∈

Z∗.
Moreover, for k = 0, we denote −λh0 = 0. For k ∈ Z∗ with k2 < 4bρs

ν02
,

λhk =
[k2ν0−ik(

√
4bρs−k2ν02+2us)]

2 , λpk =
[k2ν0+ik(

√
4bρs−k2ν02−2us)]

2 ,

and, for k ∈ Z∗ with k2 ≥ 4bρs
ν02

,

λhk =
[(k2ν0−|k|

√
k2ν02−4bρs)−2ikus]

2 , λpk =
[(k2ν0+|k|

√
k2ν02−4bρs)−2ikus]

2 .

Let us denote ω0 = bρs
ν0

. We have the following asymptotic behaviors

Reλhk → ω0,
Reλpk
k2
→ ν0 as |k| → ∞,

| Im λhk
k | → us | Im λhk

k | → us as |k| → ∞.

In view of the above lemma, for ω > ω0, (A+ ωI) has an infinite number
of eigenvalues with positive real part (see [14] and [11]). In spite of having
an infinite dimensional unstable space, system (3.1) is stabilizable in Z with
exponential decay e−ωt, for any ω > 0, by a L2-control acting everywhere in
Ω (see [14]). We know that system (3.1) is null controllable in Z at T , by
L2-localized control, for any T > L

|us| (see Theorem 1.2 in [11]). Now from

this null controllability result, we obtain the complete stabilization of system
(3.1) (see Theorem 3.3 in [21]). One can also get a feedback stabilization
result as in the following theorem.
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Spectrum.pdf

Figure 1. Spectrum of A with us = 1 = ρs = a = ν, γ = 25,
ω0 = 25 and ω = 100

Theorem 3.2. Let ω be any positive number. There exists Km ∈
L(Z,L2(Ω)) such that the semigroup (et(A+ωI+BKm))t≥0 is exponentially sta-
ble. The solution (σ̃, ṽ) of

d

dt

(
σ̃
ṽ

)
= (A+ωI+BKm)

(
σ̃
ṽ

)
,

(
σ̃
ṽ

)
(·, 0) =

(
σ̃0

ṽ0

)
∈ Z, (3.4)

belongs to Cb([0,∞);Z) ∩ L2(0,∞;Z) and satisfies

‖(σ̃, ṽ)(·, t)‖Z < Me−δt‖(σ̃0, ṽ0)‖Z for all t > 0, (3.5)

for some δ > 0 and M > 0. Furthermore, Km can be chosen in the form
Km = −B∗P , where P is the solution of the following algebraic Riccati
equation

P ∈ L(Z,Z ′), P = P ∗ > 0,

P (A+ ωI) + (A∗ + ωI)P − PBB∗P + I = 0.
(3.6)

The above theorem follows from Theorem 3.3 in [21].
It is convenient to define the feedback operator K ∈ L(H1

per(Ω)× L2(Ω),

L2(Ω)) by

K(σ̃, ṽ) = Km (σ̃m, ṽ) , ∀ (σ̃, ṽ) ∈ H1
per(Ω) × L2(Ω), (3.7)

where σm(x, t) = σ(x, t) − 1
L

∫
Ω σ(y, t) dy and Km ∈ L(Ḣ1

per(Ω) × L2(Ω),

L2(Ω)). Now we analyze further the structure of this feedback operator to
see if it can be expressed by a kernel in a suitable Sobolev space. We have
the following proposition in this direction.
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Proposition 3.3. Let the operator K ∈ L(H1
per(Ω) × L2(Ω), L2(Ω)) be de-

fined in (3.7). Then there exist two kernel operators kσ ∈ L2(Ω;H−1
per(Ω))

and kv ∈ L2(Ω× Ω) such that for all (σ̃, ṽ) ∈ H1
per(Ω)× L2(Ω),

K(σ̃, ṽ)(x) = 〈kσ(x, ·), σ̃(·)〉H−1
per,H1

per
+

∫
Ω
kv(x, ξ)ṽ(ξ) dξ.

Proof. The operator K ∈ L(H1
per(Ω)×L2(Ω), L2(Ω)) can be decomposed in

the form

K(σ̃(·, t), ṽ(·, t)) = Kσσ̃(·, t) +Kvṽ(·, t),
with

‖Kσσ̃‖L2(Ω) ≤ C‖σ̃‖H1
per(Ω) for all σ̃ ∈ H1

per(Ω), (3.8)

and

‖Kvṽ‖L2(Ω) ≤ C‖ṽ‖L2(Ω) for all ṽ ∈ L2(Ω). (3.9)

Let us denote by Dper(Ω) the set of functions which are the restrictions
to Ω of L-periodic C∞ functions. The space Dper(Ω × Ω) is defined in an
analogous manner. The dual of Dper(Ω) is denoted by D′per(Ω) and the dual
of Dper(Ω×Ω) is denoted by D′per(Ω×Ω). From Schwartz’s kernel Theorem
(see [18, Theorem II], [13]) adapted to Dper(Ω), it follows that there exist
kσ ∈ D′per(Ω× Ω) and kv ∈ D′per(Ω× Ω) such that for all x ∈ Ω,

(Kσσ̃)(x) = 〈kσ(x, ·), σ̃(·)〉D′per(Ω),Dper(Ω) for all σ̃ ∈ Dper(Ω), (3.10)

and

(Kvṽ)(x) = 〈kv(x, ·), ṽ(·)〉D′per(Ω),Dper(Ω) for all ṽ ∈ Dper(Ω). (3.11)

Due to (3.8) it follows that kσ is a distribution of order 1, and due to (3.9)
that kv is a distribution of order 0.

Since Dper(Ω) is dense in H1
per(Ω) as well as in L2(Ω), using the calcu-

lations so far and the definitions of kσ and kv, we have a unique extension
kσ(x, ·) ∈ H−1

per(Ω) and kv(x, ·) ∈ L2(Ω) such that

(Kσσ̃)(x) = 〈kσ(x, ·), σ̃(·)〉H−1
per(Ω),H1

per(Ω) for all σ̃ ∈ H1
per(Ω),

and

(Kvṽ)(x) = 〈kv(x, ·), ṽ(·)〉L2(Ω),L2(Ω) for all ṽ ∈ L2(Ω).

Moreover, due to (3.8) and (3.9), kσ belongs to L2(Ω;H−1
per(Ω)) and kv be-

longs to L2(Ω× Ω). �
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Let us set

V = Ḣ1
per(Ω)×H1

per(Ω).

To use a fixed point argument in later analysis, we need to consider initial
condition (σ̃0, ṽ0) in V . We have the following regularity theorem for the
solution (σ̃, ṽ) of (3.4).

Theorem 3.4. For (σ̃0, ṽ0) ∈ V , the solution (σ̃, ṽ) of (3.4) satisfies

‖σ̃‖L∞(0,∞;Ḣ1
per(Ω)) + ‖σ̃‖L2(0,∞;Ḣ1

per(Ω)) + ‖ṽ‖L2(0,∞;H2
per(Ω))

+‖ṽ‖H1(0,∞;L2(Ω)) ≤ C‖(σ̃0, ṽ0)‖V .

Proof. The estimate of (σ̃, ṽ) in L2(0,∞;Z) ∩ L∞(0,∞;Z) follows from the

exponential stability of the semigroup (et(A+ωI+BKm))t≥0, see (3.5). Next,
the estimate of ṽ in L2(0,∞;H2

per(Ω))∩H1(0,∞;L2(Ω)) follows from regular-

ity results for parabolic equations, with a right hand side in L2(0,∞;L2(Ω)).
�

To handle the nonlinear terms in (2.22), we need to consider the linearized
system (3.4) with forcing terms, i.e.,

σ̃t + usσ̃x + ρsṽx − ωσ̃ = f1 in Q∞,

ṽt + usṽx + bσ̃x − ν0ṽxx − ωṽ

= χOKm

(
σ̃(·, t)− 1

L

∫
Ω
σ̃(ξ, t) dξ, ṽ(·, t)

)
+ f2 in Q∞,

σ̃(0, ·) = σ̃(L, ·), ṽ(0, ·) = ṽ(L, ·), ṽx(0, ·) = ṽx(L, ·) in (0,∞),

σ̃(·, 0) = σ0(·), ṽ(·, 0) = v0(·) in Ω.

(3.12)
As explained in the Introduction, to study system (3.12), we decompose

f1 and σ̃ uniquely as follows

f1(x, t) = f1,m(x, t) + f1,Ω(t), σ̃(x, t) = σ̃m(x, t) + σ̃Ω(t), ∀ (x, t) ∈ Q∞x ,
(3.13)

where

f1,Ω(t) :=
1

L

∫
Ω
f1(x, t)dx,

∫
Ω
f1,m(x, t)dx = 0, ∀ t > 0,

σ̃Ω(t) :=
1

L

∫
Ω
σ̃(x, t)dx,

1

L

∫
Ω
σ̃m(x, t) dx = 0, ∀ t > 0.

(3.14)
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Setting zm(t) = (σ̃m(·, t), ṽ(·, t))T , we easily check that (σ̃, ṽ) is a solution
to (3.12) if and only if (zm, σ̃Ω) is a solution to

z′m(t) = (A+ ωI +BKm)zm(t) + (f1,m(·, t), f2(·, t))T for all t > 0,

zm(0) = z0,

σ̃′Ω(t) = ωσ̃Ω(t) + f1,Ω(t), ∀ t > 0, σ̃Ω(0) = 0.
(3.15)

This leads to

σ̃Ω(t) = eωt
∫ t

0
e−ωsf1,Ω(s) ds, ∀ t > 0. (3.16)

Thus, we introduce the weighted Lebesgue spaces

L∞(0,∞; e−ω(·)) = {h | e−ω(·)h ∈ L∞(0,∞)},

L1(0,∞; e−ω(·)) = {h | e−ω(·)h ∈ L1(0,∞)}.
(3.17)

We have the following results for the linearized closed loop system (3.12).

Theorem 3.5. For (σ̃0, ṽ0) ∈ V and f1,m ∈ L2(0,∞; Ḣ1
per(Ω)), f1,Ω ∈

L1(0,∞; e−ω(·)) and f2 ∈ L2(0,∞;L2(Ω)), the solution z(t) =
(σ̃(·, t), ṽ(·, t))T of system (3.12) satisfies

‖σ̃m‖L2(0,∞;Ḣ1
per(Ω)) + ‖σ̃m‖L∞(0,∞;Ḣ1

per(Ω)) + ‖σ̃Ω‖L∞(0,∞;e−ω(·))

+‖ṽ‖L2(0,∞;H2
per(Ω)) + ‖ṽ‖H1(0,∞;L2(Ω))

≤ C1

(
‖f1,m‖L2(0,∞;Ḣ1

per(Ω)) + ‖f1,Ω‖L1(0,∞;e−ω(·))

+‖f2‖L2(0,∞;L2(Ω)) + ‖(σ̃0, ṽ0)‖V
)
.

(3.18)

Proof. The estimate of (σ̃m, ṽ) in L2(0,∞;Z) ∩ L∞(0,∞;Z) follows from

the exponential stability of the semigroup (et(A+ωI+BKm))t≥0, see (3.5), the
Duhamel formula and the Young inequality for convolution products. The
estimate of σ̃Ω in L∞(0,∞; e−ω(·)) is obvious. Next, as in Theorem 3.4, the
estimate of ṽ in L2(0,∞;H2

per(Ω))∩H1(0,∞;L2(Ω)) follows from regularity

results for parabolic equations, with a right hand side in L2(0,∞;L2(Ω)). �



Local Stabilization of Navier-Stokes equations 21

4. Stabilization of the nonlinear system

With the feedback operatorK ∈ L
(
H1
per(Ωx) × L2(Ωx), L2(Ωx)

)
defined

in (3.7), the closed loop nonlinear system corresponding to (2.9) is

σ̃t + usσ̃x + ρsṽx − ωσ̃ = F1(σ̃, ṽ, t) in Q∞x ,

ṽt + usṽx + bσ̃x − ν0ṽxx − ωṽ
= χOK(σ̃(·, t), ṽ(·, t)) + F2(σ̃, ṽ, t) in Q∞x ,

σ̃(0, ·) = σ̃(L, ·), ṽ(0, ·) = ṽ(L, ·), ṽx(0, ·) = ṽx(L, ·) in (0,∞),

σ̃(·, 0) = σ0(·), ṽ(·, 0) = v0(·) in Ωx,

∫
Ωx

σ0(x)dx = 0,

Y (x, t) = I(x) +

∫ t

0
e−ωτ ṽ(x+ us(τ − t), τ)dτ, ∀ (x, t) ∈ Q∞x ,

X(Y (x, t), t) = x, ∀ (x, t) ∈ Q∞x , Y (X(y, t), t) = y, ∀ (y, t) ∈ Q∞y ,˜̀
1,ṽ(t) = X(`1, t), ˜̀

2,ṽ(t) = X(`2, t), ∀ t > 0,
(4.1)

where F1 and F2 are defined in (2.10).
In this section, first we show that (4.1) admits a unique solution in a suit-

able ball defined by some estimates. Next we show that it is possible to come
back from system (4.1) to the original system (1.5), since (σ̃, ṽ, X, Y ) satis-
fies the required estimates. Using these results, we finally prove Theorems
1.1 and 1.2.

4.1. Stabilization of the Lagrangian system (4.1). Recall the unique
decomposition introduced in (3.13)-(3.14). We first state the following lemma
which will be useful in deriving several estimates.

Lemma 4.1. Let σ̃(x, t) = σ̃m(x, t)+σ̃Ω(x, t) with σ̃m ∈ L∞(0,∞; Ḣ1
per(Ωx))

and σ̃Ω ∈ L∞(0,∞; e−ω(·)). If

‖σ̃m‖L∞(0,∞;Ḣ1
per(Ωx)) + ‖σ̃Ω‖L∞(0,∞;e−ω(·)) ≤

ρs
4s0

, (4.2)

then

|e−ωtσ̃(x, t)| ≤ ρs
2
, ∀ (x, t) ∈ Q∞x .

Proof. Using (4.2) and s0 > 1, for all (x, t) ∈ Q∞x , we have

|e−ωtσ̃(x, t)| ≤ ‖σ̃m‖L∞(Q∞x ) + ‖σ̃Ω‖L∞(0,∞;e−ω(·))

≤ s0‖σ̃m‖L∞(0,∞;Ḣ1
per(Ωx)) + ‖σ̃Ω‖L∞(0,∞;e−ω(·)) ≤

ρs
2
.
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�

Let us consider the space

D =
{

(ζ, ϑ) | ϑ ∈ H1(0,∞;L2(Ωx)) ∩ L2(0,∞;H2
per(Ωx)),

ζ = ζm + ζΩ, ζm ∈ L2(0,∞; Ḣ1
per(Ωx)) ∩ L∞(0,∞; Ḣ1

per(Ωx)),

ζΩ ∈ L∞(0,∞; e−ω(·))
}
,

(4.3)
equipped with the norm

‖(ζ, ϑ)‖D = ‖ζm‖L2(0,∞;Ḣ1
per(Ωx)) + ‖ζm‖L∞(0,∞;Ḣ1

per(Ωx))+

‖ζΩ‖L∞(0,∞;e−ω(·)) + ‖ϑ‖L2(0,∞;H2
per(Ωx)) + ‖ϑ‖H1(0,∞;L2(Ωx)).

For any µ > 0, we define

Dµ = {(σ̃, ṽ) ∈ D | ‖(σ̃, ṽ)‖D ≤ µ}. (4.4)

We set

F1(ζ, ϑ, t) = ρsϑx (1− (∂Y
(ζ,ϑ)

∂x )−1)− e−ωtζϑx (∂Y
(ζ,ϑ)

∂x )−1,

F2(ζ, ϑ, t) = ζx (b− aγ(e−ωtζ + ρs)
γ−2 (∂Y

(ζ,ϑ)

∂x )−1)

− νϑx
e−ωtζ+ρs

∂2Y (ζ,ϑ)

∂x2
(∂Y

(ζ,ϑ)

∂x )−3

−νϑxx ( 1
ρs
− 1

e−ωtζ+ρs
(∂Y

(ζ,ϑ)

∂x )−2).

(4.5)

As mentioned in the Introduction, we use the decomposition

F1(ζ, ϑ, t) = F1,m(ζ, ϑ, t) + F1,Ω(ζ, ϑ, t), ∀ t > 0,

where F1,Ω(ζ, ϑ, t) =
1

L

∫
Ω
F1(ζ, ϑ, t)dx.

The next lemma gives some useful estimations of (4.5).

Lemma 4.2. There exists a positive constant C2 depending on ω, ρs, us,
s0, L, ν such that for all (ζ, ϑ), (ζ1, ϑ1), (ζ2, ϑ2) belonging to Dµ, with

µ = min
{
ρs
4s0
,
√
ω

2s0

}
, we have the following estimates

‖F1,m(ζ, ϑ, ·)‖L2(0,∞;Ḣ1
per(Ωx)) ≤ C2‖(ζ, ϑ)‖2D, (4.6)

‖F1,Ω(ζ, ϑ, ·)‖L1(0,∞;e−ω(·)) ≤ C2‖(ζ, ϑ)‖2D, (4.7)

‖F2(ζ, ϑ, ·)‖L2(0,∞;L2(Ωx)) ≤ C2‖(ζ, ϑ)‖2D, (4.8)
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‖F1,m(ζ1, ϑ1, ·)− F1,m(ζ2, ϑ2, ·)‖L2(0,∞;Ḣ1
per(Ωx))

≤ C2

(
‖(ζ1, ϑ1)‖D + ‖(ζ2, ϑ2)‖D

)
‖(ζ1, ϑ1)− (ζ2, ϑ2)‖D,

(4.9)

‖F1,Ω(ζ1, ϑ1, ·)− F1,Ω(ζ2, ϑ2, ·)‖L1(0,∞;e−ω(·))

≤ C2

(
‖(ζ1, ϑ1)‖D + ‖(ζ2, ϑ2)‖D

)
‖(ζ1, ϑ1)− (ζ2, ϑ2)‖D,

(4.10)

‖F2(ζ1, ϑ1, ·)− F2(ζ2, ϑ2, ·)‖L2(0,∞;L2(Ωx))

≤ C2

(
‖(ζ1, ϑ1)‖D + ‖(ζ2, ϑ2)‖D

)
‖(ζ1, ϑ1)− (ζ2, ϑ2)‖D.

(4.11)

The proof of all these estimates (4.6)-(4.11) is given in the appendix (Sec-
tion 6.2).

We have the following theorem.

Theorem 4.3. Let K ∈ L
(
H1
per(Ωx) × L2(Ωx), L2(Ωx)

)
be defined in

(3.7) and O defined by (2.20). There exist constants µ0 > 0 and κ > 0,
depending on s0, ω, L, `1, `2, us, ρs, such that, for 0 < µ̃ ≤ µ0, and any initial
conditions (σ0, v0) satisfying

‖(σ0, v0)‖Ḣ1
per(Ωx)×H1

per(Ωx) ≤ κ µ̃, (4.12)

the closed loop system (4.1) admits a unique solution (σ̃, ṽ, X, Y ) such that
(σ̃, ṽ) belongs to Dµ̃, X ∈ Cb([0,∞);H2

per(Ωy)) ∩ C1
b ([0,∞);H1

per(Ωy)), and

Y ∈ Cb([0,∞);H2
per(Ωx)) ∩ C1

b ([0,∞);H1
per(Ωx)). Moreover, σ̃ ∈ C([0,∞);

H1
per(Ωx)), ṽ belongs to Ṽω and satisfies (2.18).

Proof. The proof is based on the Banach fixed point Theorem. Let us choose

µ0 := min
{ ρs

4s0
,

√
ω

2s0
,

√
2ω|`2 − `1|

8s0
,

1

4C1C2

}
, κ =

1

2C1
, (4.13)

where C1 and C2 are the constants appearing in Theorem 3.5 and Lemma
4.2 respectively. Let µ̃ belong to (0, µ0]. For any (ζ, ϑ) ∈ Dµ̄, we denote by
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σ̃(ζ,ϑ), ṽ(ζ,ϑ)

)
the solution of the following linear system

σ̃
(ζ,ϑ)
t + usσ̃

(ζ,ϑ)
x + ρsṽ

(ζ,ϑ)
x − ωσ̃(ζ,ϑ) = F1(ζ, ϑ, t) in Q∞x ,

ṽ
(ζ,ϑ)
t + usṽ

(ζ,ϑ)
x + bσ̃(ζ,ϑ)

x − ν0ũ
(ζ,ϑ)
xx − ωṽ(ζ,ϑ) =

χO(x)K(σ̃(ζ,ϑ)(·, t), ṽ(ζ,ϑ)(·, t)) + F2(ζ, ϑ, t) in Q∞x ,

σ̃(ζ,ϑ)(0, ·) = σ̃(ζ,ϑ)(L, ·), ṽ(ζ,ϑ)(0, ·) = ṽ(ζ,ϑ)(L, ·),

ṽ
(ζ,ϑ)
x (0, ·) = ṽ

(ζ,ϑ)
x (L, ·) in (0,∞),

σ̃(ζ,ϑ)(·, 0) = σ0(·), ṽ(ζ,ϑ)(·, 0) = v0(·) in Ωx,

∫
Ωx

σ0(x)dx = 0,

Y (ζ,ϑ)(x, t) = I(x) +

∫ t

0
e−ωτϑ(x+ us(τ − t), τ)dτ, ∀ (x, t) ∈ Q∞x ,

(4.14)
where F1 and F2 are defined in (4.5).

Let us prove that the mapping

(ζ, ϑ) 7→
(
σ̃(ζ,ϑ), ṽ(ζ,ϑ)

)
(4.15)

is a contraction in Dµ̄. Since µ̃ is less than or equal to
ρs
4s0

and

√
ω

2s0
, from

(3.5), (4.6), (4.7), (4.8) and (4.12), it follows that

∥∥(σ̃(ζ,ϑ), ṽ(ζ,ϑ)
)∥∥
D

≤ C1

(
‖(σ0, v0)‖Ḣ1

per(Ωx)×H1
per(Ωx) + ‖F1,m(ζ, ϑ, ·)‖L2(0,∞;Ḣ1

per(Ωx))

+‖F1,Ω(ζ, ϑ, ·)‖L∞(0,∞;e−ω(·)) + ‖F2(ζ, ϑ, ·)‖L2(0,∞;L2(Ωx))

)
≤ C1

(
‖(σ0, v0)‖Ḣ1

per(Ωx)×H1
per(Ωx) + C2‖(ζ, ϑ)‖2D

)
≤ µ̃(C1κ+ C1C2µ̃) ≤ µ̃.

(4.16)

Hence, if (ζ, ϑ) ∈ Dµ̃, then
(
σ̃(ζ,ϑ), ṽ(ζ,ϑ)

)
belongs to Dµ̃. We set

Σ̃ = σ̃(ζ1,ϑ1) − σ̃(ζ2,ϑ2), Ṽ = ṽ(ζ1,ϑ1) − ṽ(ζ2,ϑ2).
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The couple (Σ̃, Ṽ ) satisfies

Σ̃t + usΣ̃x + ρsṼx − ωΣ̃ = F1(ζ1, ϑ1, t)− F1(ζ2, ϑ2, t) in Q∞x ,

Ṽt + usṼx + bΣ̃x − ν0Ṽxx − ωṼ =

χOK(Σ̃(·, t), Ṽ (·, t)) + F2(ζ1, ϑ1, t)− F2(ζ2, ϑ2, t) in Q∞x ,

Σ̃(0, ·) = Σ̃(L, ·), Ṽ (0, ·) = Ṽ (L, ·), Ṽx(0, ·) = Ṽx(L, ·) in (0,∞),

Σ̃(·, 0) = 0, Ṽ (·, 0) = 0 in Ωx.

(4.17)
If (ζ1, ϑ1) ∈ Dµ̃ and (ζ2, ϑ2) ∈ Dµ̃, with Theorem 3.5 and estimates (4.9),
(4.10), (4.11) and (4.13), we have∥∥∥(σ̃(ζ1,ϑ1), ṽ(ζ1,ϑ1)

)
−
(
σ̃(ζ2,ϑ2), ṽ(ζ2,ϑ2)

)∥∥∥
D

≤ C1(‖F1,m(ζ1, ϑ1, ·)− F1,m(ζ2, ϑ2, ·)‖L2(0,∞;Ḣ1
per(Ωx)

+‖F1,Ω(ζ1, ϑ1, ·)− F1,Ω(ζ2, ϑ2, ·)‖L1(0,∞;e−ω(·))

+‖F2(ζ1, ϑ1, ·)− F2(ζ2, ϑ2, ·)‖L2(0,∞;L2(Ωx)))

≤ 2C1C2µ̃‖(ζ1, ϑ1)− (ζ2, ϑ2)‖D ≤ 1
2‖(ζ

1, ϑ1)− (ζ2, ϑ2)‖D.

(4.18)

Hence, the mapping defined in (4.15) is a contraction. Further, ṽ obtained

from this fixed point argument belongs to Ṽω and satisfies (2.18) because of
our choice of µ0. The proof is complete. �

4.2. Transformation to original system. Now we want to prove the con-
verse of Theorem 2.4.

Theorem 4.4. Let µ̃ belong to (0, µ0], where µ0 is defined by (4.13). Let
(σ̃, ṽ, X, Y ) be a solution to system (4.1) such that (σ̃, ṽ) belongs to Dµ̃. Let

us set f̃(·, t) = χOK((σ̃(·, t), ṽ(·, t)),

σ̂(y, t) = σ̃(X(y, t), t), v̂(y, t) = ṽ(X(y, t), t), f̂(y, t) = f̃(X(y, t), t).

If ṽ ∈ Ṽω, then σ̂ belongs to L2(0,∞; Ḣ1
per(Ωy)) ∩ L∞(0,∞; Ḣ1

per(Ωy)), v̂

belongs to L2(0,∞;H2
per(Ωy)) ∩ H1(0,∞;L2(Ωy)), f̂ belongs to L2(0,∞;

L2(Ωy)) and there exists a constant M2,ω, depending on ω, such that

‖(σ̂, v̂)‖
D̂
≤M2,ω ‖(σ̃, ṽ)‖D.

Moreover (σ̂, v̂, f̂) satisfies system (1.5), and, for t > 0, Y (·, t) = Yv̂(·, t)
is the solution of (2.4) and X(·, t) = Xv̂(·, t) is the inverse of Y (·, t). In
addition, σ̃Ω belongs to L2(0,∞) ∩ L∞(0,∞).
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Proof. For ṽ ∈ Ṽω, using Lemma 2.5 and the change of variables formula, we

get that (σ̂, v̂, f̂) satisfies (1.5) in Q∞y . Notice that all the solutions to the
density equation (1.5)1 are with mean zero. Consequently, σ̂ also satisfies
this condition. Since

∂σ̂

∂y
(y, t) =

∂σ̃

∂x
(X(y, t), t)

∂X

∂y
(y, t),

we have
‖σ̂(·, t)‖Ḣ1

per(Ωy) ≤
√

2 ‖σ̃m(·, t)‖Ḣ1
per(Ωx), ∀ t > 0,

if ṽ ∈ Ṽω. Indeed, in that case we have
∣∣∣∂X∂y (y, t)

∣∣∣ ≤ 2. This inequality

provides an estimate of σ̂ in L∞(0,∞; Ḣ1
per(Ωy)) ∩ L2(0,∞; Ḣ1

per(Ωy)), but

also in L∞(0,∞;H1
per(Ωy)) ∩ L2(0,∞;H1

per(Ωy)) because σ̂ is with mean
value zero.

Let us now recall the identity

σ̃Ω(t) =
1

L

∫ L

0
σ̃(x, t)dx =

1

L

∫ L

0
σ̂(y, t)

∂X(y, t)

∂y
dy, ∀ t > 0. (4.19)

From (4.19) and the estimate of σ̂ in L∞(0,∞;H1
per(Ωy)) ∩ L2(0,∞;

H1
per(Ωy)), it follows that σ̃Ω also belongs to L∞(0,∞) ∩ L2(0,∞), because∣∣∣∂X∂y (y, t)

∣∣∣ ≤ 2. �

Remark 4.5. The Lebesgue spaces L1(0,∞; e−ω(·)) and L∞(0,∞; e−ω(·)) are
well adapted to study the ordinary differential equation satisfied by σ̃Ω. We
can prove the convergence of the fixed point method by using these spaces.
But it is not possible to do it directly in L∞(0,∞)∩L2(0,∞). We have finally
deduced from (4.19) that σ̃Ω is actually bounded. However, it is not possible
to use an identity similar to (4.19) for the different iterates of the fixed point
method.

The next remark will be useful to prove the stabilization of system (1.5)
by using the stabilization of system (2.8).

Remark 4.6. In Section 4.1, we first obtain the unique solution (σ̃, ṽ, X, Y )

of system (2.9) satisfying ṽ ∈ Ṽω. Then applying Theorem 4.4, we get a
solution (σ̂, v̂, X, Y ) for system (1.5) where Y is the solution of (2.4) and
X its inverse. But the solution (σ̂, v̂, X, Y ), obtained in this way, is not
necessarily unique. To prove the uniqueness, we first need to guarantee that
the solutions to system (1.5) provide solutions to system (2.9) by a change
of variables. That is obtained by imposing one more condition on the norm
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of ‖ṽ‖L2(0,∞;H2
per(Ωx)), in addition to the fact that ṽ ∈ Ṽω. The details are

given in the following lemma. The uniqueness of solution for system (1.5)
will be obtained as a consequence of the uniqueness of solution for system
(2.9) (see the proof of Theorem 1.1).

Lemma 4.7. Let ṽ ∈ Ṽω and let us set v̂(y, t) = ṽ(X(y, t), t) for all (y, t) ∈
Q∞y . There exists a positive Cω such that if

‖ṽ‖L2(0,∞;H2
per(Ωx)) ≤ Cω,

then v̂ belongs to V̂ω.

Proof. For each t > 0, we have v̂(y, t) = ṽ(X(y, t), t) and Y (X(y, t), t) = y
for y ∈ Ωy. Now differentiating these two terms with respect to y, we get

∂v̂

∂y
=
∂ṽ

∂x

∂X

∂y
,

∂Y

∂x

∂X

∂y
= 1. (4.20)

Using change of variables and the fact that ∂X
∂y ≤ 2, we have

‖v̂‖L2(Q∞y ) ≤ 2‖ṽ‖L2(Q∞x ). (4.21)

Using ∂Y
∂x ≥

1
2 , from Lemma 2.5, we get∥∥∥∥∂v̂∂y

∥∥∥∥
L2(Q∞y )

≤
∥∥∥∥∂ṽ∂x

∥∥∥∥
L2(Q∞x )

∥∥∥∥∂X∂y
∥∥∥∥
L∞(Q∞y )

≤ 2

∥∥∥∥∂ṽ∂x
∥∥∥∥
L2(Q∞x )

. (4.22)

By differentiating (4.20) with respect to y, we get

∂2v̂

∂y2
=
∂2ṽ

∂x2

(
∂X

∂Y

)2

+
∂ṽ

∂x

∂2X

∂y2
,

∂2Y

∂x2

(
∂X

∂y

)2

+
∂Y

∂x

∂2X

∂y2
= 0. (4.23)

With Lemma 2.5, we have∥∥∥∂2X∂y2 ∥∥∥L∞(0,∞;L2(Ωy))
≤ 8

∥∥∥∂2Y∂x2 ∥∥∥L∞(0,∞;L2(Ωx))

≤ 8√
2ω
‖ṽ‖L2(0,∞;H2

per(Ωx)) ≤ 2
√

2
s0
.

Thus we get∥∥∥∥∂2v̂

∂y2

∥∥∥∥
L2(Q∞y )

≤ 4

∥∥∥∥∂2ṽ

∂x2

∥∥∥∥
L2(Q∞x )

+ 2
√

2

∥∥∥∥∂ṽ∂x
∥∥∥∥
L2(0,∞;H1

per(Ωx))

. (4.24)
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Finally by using (4.21), (4.22), (4.24), we obtain

‖v̂‖L2(0,∞;H2
per(Ωy)) = ‖v̂‖L2(Q∞x ) +

∥∥∥∥∂v̂∂x
∥∥∥∥
L2(Q∞x )

+

∥∥∥∥∂2v̂

∂x2

∥∥∥∥
L2(Q∞x )

≤ 2
√

2(1 +
√

2)‖ṽ‖L2(0,∞;H2
per(Ωx)).

Let us choose

Cω := min

{ √
ω

8(
√

2 + 1)s0

,

√
ω

4
√
L(
√

2 + 1)s0

}
. (4.25)

For Cω defined above, v̂ belongs to V̂ω. �

4.3. Stabilization of the original system. By making a change of vari-
ables, we can transform system (4.1) to find a control law for system (1.5).
For (σ0, v0) satisfying (4.12), let (σ̃, ṽ, X, Y ) be the unique solution to sys-
tem (4.1) satisfying (σ̃, ṽ) ∈ Dµ̃. Associated to this solution, we consider the
change of variables(

x
t

)
7−→

(
Y (x, t)
t

)
, ∀ (x, t) ∈ Q∞x . (4.26)

Then, for each t > 0, the feedback control K(σ̃(·, t), ṽ(·, t)), is transformed
in the form

K(σ̃(t), ṽ(t)) ◦X(·, t), (4.27)

where X(·, t), the inverse of Y (·, t), is also one of the components of the
solution to system (4.1). As in Theorem 4.4, we can set

σ̂(y, t) = σ̃(X(y, t), t), v̂(y, t) = ṽ(X(y, t), t), ∀ (y, t) ∈ Q∞y , (4.28)

and for each t ≥ 0 we have X(·, t) = Xv̂(·, t), where Xv̂(·, t) is the inverse of
Yv̂(·, t) and Yv̂(·, t) is the solution to transport equation (2.4). Therefore the
feedback law K, transformed with the change of variables (4.26), depends
not only on v̂(·, t) but also on Xv̂(·, t). This is why we set

K̂(σ̂(t), v̂(t), Xv̂(t))(y) = K (σ̃(·, t), ṽ(·, t))◦X(y, t), ∀ (y, t) ∈ Q∞y . (4.29)

The feedback operator K is linear but, due to the change of variables, K̂ is
a nonlinear operator.
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With the change of variables (4.26), system (4.1) is transformed into

σ̂t + usσ̂y + ρsv̂y − ωσ̂ + e−ωt{σ̂yv̂ + σ̂v̂y} = 0 in Q∞y ,

v̂t + usv̂y + e−ωtv̂v̂y + aγ(e−ωtσ̂ + ρs)
γ−2σ̂y − ν

v̂yy
e−ωtσ̂ + ρs

− ωv̂

= χ(l1,`2)K̂(σ̂(t), v̂(t), Xv̂(t)) in Q∞y ,

σ̂(0, ·) = σ̂(L, ·), v̂(0, ·) = v̂(L, ·), v̂y(0, ·) = v̂y(L, ·) in (0,∞),

σ̂(·, 0) = σ0(·), v̂(·, 0) = v0(·) in Ωy,
1

L

∫ L

0
σ0(y)dy = 0,

∂Yv̂(x, t)

∂t
+ us

∂Yv̂(x, t)

∂x
= us + e−ωtv̂(Yv̂(x, t), t), ∀ (x, t) ∈ Q∞x ,

Yv̂(x, 0) = I(x), ∀ x ∈ Ωx, Yv̂(x, ·) = Yv̂(x+ L, ·), ∀ x ∈ Ωx,

Xv̂(Yv̂(x, t), t) = x, ∀ (x, t) ∈ Q∞x .

(4.30)

Theorem 4.8. Let ω be any positive number. There exist positive constants
µ̂0 and κ̂, depending on ω, ρs, us, `1, `2 and L, such that for all 0 < µ̂ ≤ µ̂0

and all initial condition (σ0, v0) ∈ Ḣ1
per(Ωy)×H1

per(Ωy) satisfying

‖(σ0, v0)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ κ̂ µ̂, (4.31)

the nonlinear closed loop system (4.30) admits a unique solution (σ̂, v̂, Yv̂, Xv̂)
satisfying

‖(σ̂, v̂)‖
D̂
≤ µ̂. (4.32)

Moreover, (σ̂, v̂) ∈ Cb([0,∞); Ḣ1
per(Ωy) × H1

per(Ωy)), |σ̂(y, t)| ≤ ρs
2

for all

(y, t) ∈ Q∞y .

Proof. In view of Remark 4.6 and Lemma 4.7, µ0 in Theorem 4.3 can be
reduced further, if necessary, so that µ0 ≤ Cω, where Cω is defined in Lemma
4.7. Then by Theorems 4.3 and 4.4, we deduce that there exist constants
µ̂0 > 0 and κ̂ such that, for 0 < µ̂ ≤ µ̂0 and any initial condition (σ0, v0) ∈
Ḣ1
per(Ωy)×H1

per(Ωy) satisfying

‖(σ0, v0)‖Ḣ1
per(Ωy)×H1

per(Ωy) ≤ κ̂ µ̂, (4.33)

the closed loop system (4.30) admits a solution (σ̂, v̂, X, Y ) such that

‖(σ̂, v̂)‖L∞(0,∞;Ḣ1
per(Ωy))∩L2(0,∞;Ḣ1

per(Ωy))×H1(0,∞;L2(Ωy))∩L2(0,∞;H2
per(Ωy)) ≤ µ̂.

Moreover, X ∈ Cb([0,∞);H2
per(Ωy)) ∩ C1

b ([0,∞);H1
per(Ωy)), Y ∈ Cb([0,∞);

H2
per(Ωx)) ∩ C1

b ([0,∞);H1
per(Ωx)), σ̂ ∈ C([0,∞); Ḣ1

per(Ωy)), and v̂ ∈
Cb([0,∞);H1

per(Ωy)).
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If the initial condition (σ0, v0) satisfies (4.33) and if (σ̂, v̂, Xv̂, Yv̂) is a so-
lution to (4.30), we can define (σ̃, ṽ) by change of variables, and (σ̃, ṽ, X, Y ),
with (X,Y ) = (Xv̂, Yv̂) is a solution to system (4.1). From the decomposition
σ̃ = σ̃m + σ̃Ω and the definition of σ̃Ω, we deduce that

‖σ̃Ω‖L∞(0,∞;e−ω(·)) ≤
1

L1/2
‖σ̃‖L∞(0,∞;H1

per(Ωy))∩L2(0,∞;H1
per(Ωy)) ,

‖σ̃Ω‖L∞(0,∞)∩L2(0,∞) ≤ ‖σ̃‖L∞(0,∞;H1
per(Ωy))∩L2(0,∞;H1

per(Ωy)) ,

and

‖σ̃m‖L∞(0,∞;H1
per(Ωy))∩L2(0,∞;H1

per(Ωy)) + ‖σ̃Ω‖L∞(0,∞;e−ω(·))

≤ ‖σ̃‖L∞(R+;H1
per(Ωy))∩L2(R+;H1

per(Ωy)) + ‖σ̃Ω‖L∞(R+)∩L2(R+)∩L∞(R+;e−ω(·))

≤ (2 + L−1/2) ‖σ̃‖L∞(0,∞;H1
per(Ωy))∩L2(0,∞;H1

per(Ωy)) .

Therefore, due to Theorem 2.4 and to the definition of the norms ‖ · ‖D and
‖ · ‖

D̃
, we have

‖(σ̃, ṽ)‖D ≤ (2 + L−1/2) ‖(σ̃, ṽ)‖
D̃
≤ (2 + L−1/2)M1,ω ‖(σ̂, v̂)‖

D̂
.

Thus, if we choose (2 + L−1/2)M1,ω µ̂0 ≤ µ0, we shall have ‖(σ̃, ṽ)‖D ≤ µ0,
and (σ̃, ṽ, X, Y ) will be the unique solution of system (4.1) in Dµ0 . Thus,

under the additional condition (2 + L−1/2)M1,ω µ̂0 ≤ µ0, (4.30) admits a
unique solution (σ̂, v̂, Xv̂, Yv̂) such that ‖(σ̂, v̂)‖

D̂
≤ µ̂. The proof is complete.

�

From Theorem 4.8, the stabilization result of Theorem 1.1 is obtained

with the control f̂ defined by

f̂(y, t) = χ(`1,`2)(y)K̂ (σ̂(·, t), v̂(·, t), X(·, t)) (y), ∀ (y, t) ∈ Q∞y . (4.34)

Proof of Theorem 1.2. The closed loop nonlinear system corresponding
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to system (1.1) reads as follows

ρt + (ρu)y = 0 in Q∞y ,

ρ(ut + uuy) + (p(ρ))y − νuyy
= ρχ(`1,`2)e

−ωtK̂(eωt(ρ(t)− ρs), eωt(u(t)− us), X(t)) in Q∞y ,

ρ(0, ·) = ρ(L, ·), u(0, ·) = u(L, ·), uy(0, ·) = uy(L, ·) in (0,∞),

ρ(·, 0) = ρ0(·), u(·, 0) = u0(·) in Ωy,

∂Y (x, t)

∂t
+ us

∂Y (x, t)

∂x
= u(Y (x, t), t), ∀ (x, t) ∈ Q∞x ,

Y (x, 0) = I(x), ∀ x ∈ Ωx, Y (x, ·) = Y (x+ L, ·), ∀ x ∈ Ωx,

X(Y (x, t), t) = x, ∀ (x, t) ∈ Q∞x .
(4.35)

From the proof of Theorem 1.1, it follows that system (4.35) admits at least
a solution (ρ, u,X, Y ) defined by

ρ = e−ωtσ̂ + ρs, u = e−ωtv̂ + us, X = Xv̂, Y = Yv̂,

where (σ̂, v̂, Xv̂, Yv̂) is the solution of system (4.30). The solution (ρ, u,X, Y )
is unique in the set of functions satisfying

‖(eωt(ρ− ρs), (eωt(u− us))‖D̂ ≤ µ̂.

Thus the stabilization result of Theorem 1.2 is obtained with the control f
defined by

f(y, t) = χ(`1,`2)(y) e−ωtK̂
(
eωt(ρ(t)− ρs), eωt(u(t)− us), X(t)

)
(y), (4.36)

for all (y, t) ∈ Q∞y .

4.4. Control law for the original system. In this section, we explain
why the control defined in (4.27) or in (4.29) is a nonlinear control law for
system (4.30). The state variable of system (4.30) is (σ̂, v̂, Yv̂, Xv̂). It is
clear that (σ̂, v̂, Yv̂) are state variables, since the triplet satisfies an evolution
equation. The last equation in (4.30) is a nonlinear equation characterizing
Xv̂ in terms of Yv̂. Since we deal with one dimensional problems, Xv̂ can be
easily deduced from Yv̂. This is why we can consider Xv̂ as an additional
component of the state variable for system (4.30).

Due to Proposition 3.3, the feedback K is expressed by two functions
kσ ∈ L2(Ωx;H−1

per(Ωx)) and kv ∈ L2(Ωx × Ωx). For all t > 0, we compose
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kσ(·, ·) and kv(·, ·) with Xv̂(·, t) and we set

k̂σ(y, ζ, t) = |∂yXv̂(ζ, t)| kσ(Xv̂(y, t), Xv̂(ζ, t))

and
k̂v(y, ζ, t) = |∂yXv̂(ζ, t)| kv(Xv̂(y, t), Xv̂(ζ, t)).

Since Xv̂ belongs to Cb([0,∞);H2
per(Ωy)) ∩ C1

b ([0,∞);H1
per(Ωy)), it follows

that

k̂σ ∈ Cb([0,∞);L2(Ωy;H
−1
per(Ωy))) and k̂v ∈ Cb([0,∞);L2(Ωy × Ωy)).

Therefore, the control law K̂ for the original system is defined by

K̂(σ̂(·, t), v̂(·, t), Xv̂(t))(y)

=
〈
k̂σ(y, ·, t), σ̂(·, t)

〉
H−1
per(Ωy),H1

per(Ωy)
+
(
k̂v(y, ·, t), v̂(·, t)

)
L2(Ωy)

.
(4.37)

Remark 4.9. The corresponding control law for system (4.35) is

e−ωtK̂
(
eωt(ρ(t)− ρs), eωt(u(t)− us), X(t)

)
(y)

=
〈
k̂σ(y, ·, t), (ρ(·, t)− ρs)

〉
H−1
per(Ωy),H1

per(Ωy)

+
(
k̂v(y, ·, t), (u(·, t)− us)

)
L2(Ωy)

.

From Theorem 4.8, it follows that the first two components of the state of
system (4.35), namely (ρ, u), are stabilized towards the steady state (ρs, us),
exponentially in the H1

per(Ωy)×H1
per(Ωy) norm, even if (Y,X) is not stabi-

lized.

5. Dirichlet boundary control

In this section, we study the local stabilization of the one dimensional com-
pressible Navier-Stokes system around (ρs, us), ρs > 0, us > 0 by boundary
controls. We prove Theorem 1.3 by using Theorem 1.2. To do that, we
need to extend the domain (0, L) to (−L,L) and to consider system (1.6)
in (−L,L) with periodic boundary conditions. The next theorem gives the
stabilization result for domain (−L,L) × (0,∞), analogous to Theorem 1.2
and we skip its proof as it is similar to that of Theorem 1.2.

Theorem 5.1. Let L be any positive number and (`1, `2) is an open subset
of (−L,L). Let us consider system (1.1) in (−L,L) × (0,∞) with peri-
odic boundary conditions. For any positive number ω, there exist positive
constants µ̂0 and κ̂, depending on ω, ρs, us, `1, `2 and L, such that, for
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0 < µ̂ ≤ µ̂0 and any initial condition (ρ0, u0) ∈ H1
per(−L,L)×H1

per(−L,L),
where ρ0 satisfies

1

2L

∫ L

−L
ρ0(y)dy = ρs and min

y∈[−L,L]
ρ0(y) > 0

and (ρ0, u0) obeys

‖(ρ0 − ρs, u0 − us)‖Ḣ1
per(−L,L)×H1

per(−L,L) ≤ κ̂ µ̂,

there exists a control f ∈ L2(0,∞;L2(−L,L)) for which system (1.1) admits
a unique solution (ρ, u) satisfying

‖(ρ(·, t)− ρs, u(·, t)− us)‖Ḣ1
per(−L,L)×H1

per(−L,L) ≤ Cµ̂e
−ωt,

for some positive constant C depending on ω, ρs, us, `1, `2 and L but inde-

pendent of µ̂. Moreover, we have ρ(y, t) ≥ ρs
2

for all (y, t) ∈ (−L,L)×(0,∞).

Furthermore, if us > 0, we can choose µ̂0 in such a way that u(y, t) ≥ us
2

for all (y, t) ∈ (−L,L)× (0,∞).

To prove the stabilization result for system (1.6) using the above theorem,
we extend the initial condition (ρ0, u0) as follows.

Proposition 5.2. Let µ̂0 and κ̂ be the positive constants defined in Theorem
5.1 corresponding to the domain (−L,L). There exists a positive constant
µd depending on ω, ρs, us, L and µ̂0, such that any (ρ0, u0) ∈ H1(0, L) ×
H1(0, L) satisfying (1.7), i.e.

min
[0,L]

ρ0 > 0 and ‖(ρ0 − ρs, u0 − us)‖H1(0,L)×H1(0,L) ≤ µd,

admits an extension (ρe0, u
e
0) in H1

per(−L,L)×H1
per(−L,L) obeying

1

2L

∫ L

−L
ρe0(x)dx = ρs, min

[−L,L]
ρe0 > 0, (5.1)

and

‖(ρe0 − ρs, ue0 − us)‖Ḣ1
per(−L,L)×H1

per(−L,L) ≤ κ̂µ̂0. (5.2)

Proof. We want to determine µd and the extension (ρe0, u
e
0) ∈ H1

per(−L,L)×
H1
per(−L,L) of (ρ0, u0) depending on µ̂0 in such a way that (1.7) implies

(5.1) and (5.2). Recall that ‖ρ0 − ρs‖H1(0,L) ≤ µd gives

‖ρ0 − ρs‖L∞(0,L) ≤ s0µd, (5.3)
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where s0 is the Sobolev constant depending on the domain. To get (5.1), we
need the compatibility condition

1

2L

∫ L

0
ρ0(x)dx < ρs. (5.4)

In view of (5.3), we have

1

2L

∫ L

0
ρ0(x)dx ≤ 1

2
(ρs + s0µd).

We notice that (5.4) is satisfied if We choose µd such that

0 < µd <
ρs
s0
. (5.5)

From now on, we assume that (5.5) is true. In order to determine the
extension, we consider the minimization problem

min
{∫ 0

−L
|%′(x)|2dx | % ∈ H1(−L, 0) and satisfies (5.7)

}
(5.6)

with

%(0) = ρ0(0), %(−L) = ρ0(L),∫ 0

−L
%(x)dx = (ρs + ρ̌)L, where ρ̌ = ρs −

1

L

∫ L

0
ρ0(x)dx.

(5.7)

By solving Euler-Lagrange equation associated with (5.6), we obtain the
solution

%min(x) = ax2 + bx+ σ0, on (−L, 0)

with

a = 3

(
ρ0(L)− ρs

)
+
(
ρ0(0)− ρs

)
− 2ρ̌

L2
, b = 2

(aL
3
− ρs + ρ̌− ρ0(0)

L

)
.

(5.8)
Since |ρ0(L)− ρs| ≤ s0µd, |ρ0(0)− ρs| ≤ s0µd and |ρ̌| ≤ s0µd, we have

|a| ≤ 12s0µd
L2

, |b| ≤ 12s0µd
L

. (5.9)

Thus we get a positive constant M1 depending only on L, s0 such that∫ 0

−L
|%′min(x)|2dx =

∫ 0

−L
|2ax+ b|2 ≤ 2

(
4a2L3

3
+ b2L

)
≤M1µ

2
d. (5.10)
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Now define

ρe0 =

{
ρ0, on (0, L),
%min, on (−L, 0].

(5.11)

Then ρe0 belongs to Ḣ1
per(−L,L) and by (5.10), we have

‖ρe0 − ρs‖2Ḣ1
per(−L,L)

≤ (M1 + 1)µ2
d. (5.12)

In place of (5.5), we assume that µd satisfies the more restrictive condition

0 < µd ≤
ρs

s0

√
M1 + 1

. (5.13)

In that case, ρe0 obeys (5.1). We extend u0 as follows

ue0(x) =

{
u0(x), if x ∈ (0, L),
x

L
(u0(0)− u0(L)) + u0(0), if x ∈ (−L, 0].

(5.14)

Then ue0 belongs to H1
per(−L,L) and

‖ue0−us‖2H1
per(−L,L) = ‖ue0−us‖2H1

per(−L,0)+‖u0−us‖2H1
per(0,L) ≤M2µ

2
d, (5.15)

for some positive constant M2 depending only on L, s0. Finally we assume
that

0 < µd = min

{
ρs

s0

√
M1 + 1

,
κ̂µ̂0√

M1 +M2 + 2

}
. (5.16)

In that case, (ρe0, u
e
0) satisfies estimate (5.2), the proposition is proved. �

Proof of Theorem 1.3. Let us consider (ρ0, u0) satisfying (1.7) where
µd > 0 obeys (5.16). Then (ρ0, u0) admits an extension (ρe0, u

e
0) to (−L,L),

satisfying (5.1) and (5.2) (see Proposition 5.2). We consider system (1.1) in
(−L,L) × (0,∞) with the initial condition (ρe0, u

e
0) and an interior control

localized in

(
−L
2
,
−L
4

)
. Now, from Theorem 5.1 applied to the interval

(−L,L), it follows that there exists a control f ∈ L2(0,∞;L2(−L,L)), with

support in

(
−L
2
,
−L
4

)
, such that system (1.1) in the domain (−L,L) ×

(0,∞) admits a unique solution (ρe, ue) satisfying

‖(ρe(·, t)− ρs, ue(·, t)− us)‖Ḣ1
per(−L,L)×H1

per(−L,L) ≤ Ce
−ωt,

for some positive constant C independent of µd. Furthermore,

ρe ∈ L2(0,∞;H1
per(−L,L)) ∩ Cb([0,∞);H1

per(−L,L))
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and

ue ∈ H1(0,∞;L2(−L,L))∩L2(0,∞;H2
per(−L,L))∩Cb([0,∞);H1

per(−L,L)).

We also have

ρe(y, t) ≥ ρs
2

and ue(y, t) ≥ us
2
, ∀ (y, t) ∈ (−L,L)× (0,∞).

By setting

(ρ, u) = (ρe, ue)|(0,L)×(0,∞), (5.17)

(ρ, u) is the solution of (1.6) with the controls

q1(t) = ρe(0, t), q2(t) = ue(0, t), q3(t) = ue(L, t). (5.18)

Moreover (ρ, u) satisfies (1.8), ρ(y, t) ≥ ρs
2

and u(y, t) ≥ us
2

for all (y, t) ∈
Q∞y . With (5.18) and the regularity of the trace of (ρe, ue) at x = 0, L, we

have q1 ∈ L2(0,∞) ∩ Cb([0,∞)) and qj ∈ H
3
4 (0,∞), for j = 2, 3. Hence,

Theorem 1.3 is proved. �

6. Appendix

6.1. Proof of Proposition 2.1 and Lemma 2.2. Proof of Proposition
2.1.

Proof. In order to use the method of successive approximations for the ex-
istence of a L-periodic solution Yv̂ to equation (2.6), we define the sequence

of functions {Y (n)
v̂ }n∈N by

Y
(1)
v̂ (x, t) = I(x), ∀ (x, t) ∈ Q∞x , (6.1)

and for every n ∈ N,

Y
(n+1)
v̂ (x, t) = I(x)+

∫ t

0
e−ωτ v̂(Y

(n)
v̂ (x+us(τ−t), τ)+I(x+us(τ−t)), τ) dτ,

(6.2)

for all (x, t) ∈ Q∞x . By induction, it follows that Y
(n+1)
v̂ is L-periodic and

Y
(n+1)
v̂ ∈ Cb([0,∞);L2(Ωx)) for every n ∈ N. Now, for every t > 0, we
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obtain

‖Y (n+1)
v̂ (·, t)− Y (n)

v̂ (·, t)‖2L2(Ωx)

≤ 1

2ω

∫ ∞
0

∥∥∥∥∂v̂∂y (·, τ)

∥∥∥∥2

L∞(Ωy)

×∫ L

0
|Y (n)
v̂ (x+ us(τ − t), τ)− Y (n−1)

v̂ (x+ us(τ − t), τ)|2 dx dτ.

(6.3)

By using ξ = x+ us(τ − t), for fixed τ > 0, t > 0, n ∈ N and the periodicity

of {Y (n)
v̂ }n∈N, we have that∫ L

0
|Y (n)
v̂ (x+ us(τ − t), τ)− Y (n−1)

v̂ (x+ us(τ − t), τ)|2 dx

=

∫ L+us(τ−t)

us(τ−t)
|Y (n)
v̂ (ξ, τ)− Y (n−1)

v̂ (ξ, τ)|2 dξ

=

∫ L

0
|Y (n)
v̂ (ξ, τ)− Y (n−1)

v̂ (ξ, τ)|2 dξ.

(6.4)

From (6.3) and (6.4), we obtain

‖Y (n+1)
v̂ (·, t)− Y (n)

v̂ (·, t)‖2L2(Ωx)

≤ 1

2ω

∫ ∞
0

∥∥∥∥∂v̂∂y (·, τ)

∥∥∥∥2

L∞(Ωy)

∫ L

0
|Y (n)
v̂ (ξ, τ)− Y (n−1)

v̂ (ξ, τ)|2 dξ dτ

≤ s2
0

2ω
‖v̂‖2L2(0,∞;H2

per(Ωy))‖Y
(n)
v̂ − Y (n−1)

v̂ ‖2Cb(0,∞;L2(Ωx)).

Similarly, for every t > 0, we also have

‖Y (2)
v̂ (·, t)− Y (1)

v̂ (·, t)‖2L2(Ωx) ≤
Ls2

0

2ω
‖v̂‖2L2(0,∞;H2

per(Ωy)).

As v̂ ∈ V̂ω, this yields

‖Y (2)
v̂ − Y (1)

v̂ ‖Cb([0,∞);L2(Ωx)) ≤
1

2
,

‖Y (n+1)
v̂ − Y (n)

v̂ ‖Cb([0,∞);L2(Ωx)) ≤
1

2n
, ∀n ∈ N.

From the above estimates, it follows that {Y (n)
v̂ }n∈N converges to a L-periodic

function Yv̂ in the space Cb([0,∞);L2(Ωx)) and Yv̂ is the unique solution to



38 D. Mitra, M. Ramaswamy, J.-P. Raymond

equation (2.6).
In order to conclude the regularity of this solution, we check that

d

dτ

[∂Yv̂
∂x

(x+ us(τ − t), τ)
]

= e−ωτ
∂v̂

∂y

(
Yv̂(x+ us(τ − t), τ), τ

)[∂Yv̂
∂x

(x+ us(τ − t), τ)
]
, τ > 0,

∂Yv̂
∂x

(x+ us(τ − t), τ)|τ=0 = 1.

(6.5)
The unique solution of equation (6.5) is

∂Yv̂
∂x

(x, t) = exp

(∫ t

0
e−ωτ

∂v̂

∂y
(Yv̂(x+ us(τ − t), τ), τ) dτ

)
, ∀ (x, t) ∈ Q∞x .

(6.6)
From this expression, we estimate that∥∥∥∥∂Yv̂∂x

∥∥∥∥
L∞(Q∞x )

≤ 3

2
. (6.7)

From (6.6) and (6.7), it follows that∥∥∥∥∂Yv̂∂x (·, t)
∥∥∥∥2

L2(Ωx)

≤ 9L

4
, ∀ t > 0. (6.8)

In a similar manner, we obtain∥∥∥∥∂2Yv̂
∂x2

(·, t)
∥∥∥∥2

L2(Ωx)

≤ 27

16ω
‖v̂‖2L2(0,∞;H2

per(Ωy)), ∀ t > 0. (6.9)

Using the fact that v̂ ∈ V̂ , we obtain∥∥∥∥∂2Yv̂
∂t∂x

(·, t)
∥∥∥∥
L2(Ωx)

≤ 3

2
‖v̂‖Cb([0,∞);H1

per(Ωy)) +
3
√

3us
4
√
ω
‖v̂‖L2(0,∞;H2

per(Ωy)),

(6.10)
for all t > 0. Finally, (6.8), (6.9) and (6.10) yield that

Yv̂ ∈ Cb([0,∞);H2
per(Ωx)) ∩ C1

b ([0,∞);H1
per(Ωx))

and hence Yv̂ is the solution of (2.4).
For every t > 0, the injectivity of the mapping x 7→ Yv̂(x, t) follows

from the uniqueness of the solution to equation (2.6). The existence of a
unique solution to the backward equation corresponding to (2.4) implies the
surjectivity of the mapping x 7→ Yv̂(x, t) for every t > 0. �
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Proof of Lemma 2.2.

Proof. From the estimates in the above proof, we obtain∣∣∣∣∂Yv̂∂x (x, t)− 1

∣∣∣∣ =

∣∣∣∣exp

(∫ t

0
e−ωτ

∂v̂

∂y
(Yv̂(x+ us(τ − t), τ), τ) dτ

)
− 1

∣∣∣∣ ≤ 1

2
,

for all (x, t) ∈ Q∞x . Thus ∥∥∥∥∂Yv̂∂x − 1

∥∥∥∥
L∞(Q∞x )

≤ 1

2
.

�

6.2. Estimates of the nonlinear terms. In this section, we assume that

(ζ, ϑ), (ζ1, ϑ1) and (ζ2, ϑ2) belong to Dµ with µ = min
{
ρs
4s0
,
√
ω

2s0

}
. Here,

to avoid heavy notation, we denote the change of variables by Y instead of
Y (ζ,ϑ).

Proof of (4.6) and (4.9). To estimate F1,m in L2(0,∞; Ḣ1
per(Ωx)), it is

enough to estimate
∂F1

∂x
in L2(0,∞;L2(Ωx)). We have

∂F1

∂x
= ρsϑxx

(
1− 1

∂Y
∂x

)
+ ρsϑx

∂2Y
∂x2(
∂Y
∂x

)2 − e−ωt (ζm)xϑx
∂Y
∂x

−e−ωt ζmϑxx
∂Y
∂x

− e−ωt ζΩϑxx
∂Y
∂x

+ e−ωt(ζm + ζΩ)ϑx

∂2Y
∂x2(
∂Y
∂x

)2 .
(6.11)

The different terms in (6.11) may be estimated as follows∥∥∥∥ρsϑxx(1− (
∂Y

∂x
)−1

)∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2ρss0

∥∥∥∥∂Y∂x − 1

∥∥∥∥
L∞(0,∞;H1

per(Ωx))

‖ϑ‖L2(0,∞;H2
per(Ωx))

≤ 2ρss0√
ω
‖ϑ‖2L2(0,∞;H2

per(Ωx)), (6.12)
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∂x2

(∂Y∂x )2

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 4ρss0‖ϑx‖L2(0,∞;H1
per(Ωx))

∥∥∥∥∂2Y

∂x2

∥∥∥∥
L∞(0,∞;L2(Ωx))

≤ 2
√

2ρss0√
ω
‖ϑ‖2L2(0,∞;H2

per(Ωx)),

(6.13)

∥∥∥∥∥e−ωt (ζm)xϑx
∂Y
∂x

∥∥∥∥∥
L2(0,∞;L2(Ωx))

=

∥∥∥∥∥e−ωt (ζm)xϑx
∂Y
∂x

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2s0‖ζm‖L∞(0,∞;Ḣ1
per(Ωx))‖ϑ‖L2(0,∞;H2

per(Ωx)),

(6.14)

∥∥∥∥∥e−ωt ζmϑxx∂Y
∂x

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2s0‖ζm‖L∞(0,∞;Ḣ1
per(Ωx))‖ϑ‖L2(0,∞;H2

per(Ωx)), (6.15)∥∥∥∥∥e−ωt ζΩϑxx
∂Y
∂x

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2‖ζΩ‖L∞(0,∞;e−ω(·))‖ϑ‖L2(0,∞;H2
per(Ωx)), (6.16)

and∥∥∥∥e−ωt(ζm + ζΩ)ϑx
∂2Y
∂x2

( ∂Y
∂x

)2

∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 4
(
s0‖ζm‖L∞(0,∞;Ḣ1

per(Ωx)) + ‖ζΩ‖L∞(0,∞;e−ω(·))

)∥∥∥ϑx ∂2Y∂x2 ∥∥∥L2(0,∞;L2(Ωx))

≤
√

2s0ρs√
ω
‖ϑ‖2L2(0,∞;H2

per(Ωx)).

(6.17)
Using (6.12), (6.13), (6.14), (6.15), (6.16) and (6.17), we can choose a con-
stant C2 = C2(ω, s0, L, ρs, us) such that (4.6) holds.

To prove the Lipschitz estimate in (4.9), we have to estimate ∂F1
∂x (ζ1, ϑ1, t)

− ∂F1
∂x (ζ2, ϑ2, t) where Y j(x, t) = x +

∫ t

0
e−ωsϑj(x, s) ds, j = 1, 2. For that,

we have to consider different terms. We are going to estimate

e−ωt
ζ1
mϑ

1
xx

∂Y 1

∂x

− e−ωt ζ
2
mϑ

2
xx

∂Y 2

∂x

and ρsϑ
1
x

∂2Y 1

∂x2

(∂Y
1

∂x )2
− ρsϑ2

x

∂2Y 2

∂x2

(∂Y
2

∂x )2
. (6.18)
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The other terms could be estimated similarly. We write

e−ωt
ζ1
mϑ

1
xx

∂Y 1

∂x

− e−ωt ζ
2
mϑ

2
xx

∂Y 2

∂x

= e−ωt
ϑ1
xx

∂Y 1

∂x

(ζ1
m − ζ2

m) + e−ωt
ζ2
m

∂Y 1

∂x

(ϑ1
xx − ϑ2

xx) + e−ωtζ2
mϑ

2
xx

(
1
∂Y 1

∂x

− 1
∂Y 2

∂x

)
.

For the first term we have∥∥∥∥∥e−ωt ϑ1
xx

∂Y 1

∂x

(ζ1
m − ζ2

m)

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2s0‖ζ1
m − ζ2

m‖L∞(0,∞;Ḣ1
per(Ωx))‖ϑ

1‖L2(0,∞;H2
per(Ωx)).

The second term can be estimated as∥∥∥∥∥e−ωt ζ2
m

∂Y 1

∂x

(ϑ1
xx − ϑ2

xx)

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2s0‖ζ2
m‖L∞(0,∞;Ḣ1

per(Ωx))‖ϑ
1 − ϑ2‖L2(0,∞;H2

per(Ωx)).

For the third term, we have∥∥∥∥e−ωtζ2
mϑ

2
xx

(
1

∂Y 1

∂x

− 1
∂Y 2

∂x

)∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 4

∥∥∥∥e−ωtζ2
mϑ

2
xx

(
∂Y 2

∂x
− ∂Y 1

∂x

)∥∥∥∥
L2(0,∞;L2(Ωx))

≤ ρss0√
ω
‖ϑ2‖L2(0,∞;H2

per(Ωx))‖ϑ1 − ϑ2‖L2(0,∞;H2
per(Ωx)).

Hence we have∥∥∥∥∥e−ωt ζ1
mϑ

1
xx

∂Y 1

∂x

− e−ωt ζ
2
mϑ

2
xx

∂Y 2

∂x

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ max

{
2s0,

ρss0√
ω

}(
‖(ζ1, ϑ1)‖D + ‖(ζ2, ϑ2)‖D

)
×(

‖ζ1
m − ζ2

m‖L∞(0,∞;Ḣ1
per(Ωx)) + ‖ϑ1 − ϑ2‖L2(0,∞;H2

per(Ωx))

)
.

This completes the estimate of the first expression in (6.18). For the second
one, we write

ρsϑ
1
x

∂2Y 1

∂x2

(∂Y
1

∂x )2
− ρsϑ2

x

∂2Y 2

∂x2

(∂Y
2

∂x )2
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= ρs

∂2Y 1

∂x2

(∂Y
1

∂x )2
(ϑ1
x − ϑ2

x) + ρs
ϑ2
x

(∂Y
1

∂x )2

(
∂2Y 1

∂x2
− ∂2Y 2

∂x2

)

+ ρsϑ
2
x

∂2Y 2

∂x2

(
1

(∂Y
1

∂x )2
− 1

(∂Y
2

∂x )2

)
.

We can estimate the first term as follows∥∥∥∥∥ρs ∂2Y 1

∂x2

(∂Y
1

∂x )2
(ϑ1
x − ϑ2

x)

∥∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 4ρss0√
2ω
‖ϑ1‖L2(0,∞;H2

per(Ωx))‖ϑ1 − ϑ2‖L2(0,∞;H2
per(Ωx)).

The second term can be estimated as∥∥∥∥ρs ϑ2x

( ∂Y
1

∂x
)2

(
∂2Y 1

∂x2
− ∂2Y 2

∂x2

)∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 4ρss0√
2ω
‖ϑ2‖L2(0,∞;H2

per(Ωx))‖ϑ1 − ϑ2‖L2(0,∞;H2
per(Ωx)).

For the last term, the estimate is∥∥∥∥ρsϑ2
x
∂2Y 2

∂x2

(
1

( ∂Y
1

∂x
)2
− 1

( ∂Y
2

∂x
)2

)∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 16ρs

∥∥∥∥ϑ2
x
∂2Y 2

∂x2

((
∂Y 1

∂x

)2
−
(
∂Y 2

∂x

)2
)∥∥∥∥

L2(0,∞;L2(Ωx))

≤ 36ρs

∥∥∥ϑ2
x
∂2Y 2

∂x2

(
∂Y 1

∂x −
∂Y 2

∂x

)∥∥∥
L2(0,∞;L2(Ωx))

≤ 36ρss20
ω
√

2
‖ϑ2‖2L2(0,∞;H2

per(Ωx))‖ϑ
1 − ϑ2‖L2(0,∞;H2

per(Ωx))

≤ 18ρss0√
2ω
‖ϑ2‖L2(0,∞;H2

per(Ωx))‖ϑ1 − ϑ2‖L2(0,∞;H2
per(Ωx)).

In the last inequality, we have used that ‖ϑ2‖L2(0,∞;H2
per(Ωx)) ≤

√
ω

2s0
. Hence

we have∥∥∥∥ρsϑ1
x

∂2Y 1

∂x2

( ∂Y
1

∂x
)2
− ρsϑ2

x

∂2Y 2

∂x2

( ∂Y
2

∂x
)2

∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 22ρss0√
2ω

(
‖(ζ1, ϑ1)‖D + ‖(ζ2, ϑ2)‖D

)
‖ϑ1 − ϑ2‖L2(0,∞;H2

per(Ωx)).



Local Stabilization of Navier-Stokes equations 43

The other terms can be estimated similarly. Therefore, there exists a positive
constant C2 = C2(ω, s0, L, ρs, us) such that

‖F1,m(ζ1, ϑ1, ·)− F1,m(ζ2, ϑ2, ·)‖L2(0,∞;Ḣ1
per(Ωx))

≤ C2

(
‖(ζ1, ϑ1)‖D + ‖(ζ2, ϑ2)‖D

)
‖(ζ1, ϑ1)− (ζ2, ϑ2)‖D.

�

Proof of (4.7) and (4.10). From Section 4.1, we have

F1,Ω(ζ, ϑ, t) =

∫
Ωx

ρsϑx

(
1− (

∂Y

∂x
)−1

)
dx−

∫
Ωx

e−ωt(ζ̃m+ζ̃Ω)ϑx(
∂Y

∂x
)−1 dx.

Using Lemma 4.1, to estimate the first term we write

∥∥∥∥∫
Ωx

ρsϑx

(
1− (

∂Y

∂x
)−1

)
dx

∥∥∥∥
L1(0,∞;e−ω(·))

≤ 2ρs

∫ ∞
0

e−ωt
∣∣∣∣∫

Ωx

ϑx

(
∂Y

∂x
− 1

)
dx

∣∣∣∣ dt
≤ 2ρs

∫ ∞
0

e−ωt‖ϑx(·, t)‖L2(Ωx)

∥∥∥∥∂Y∂x (·, t)− 1

∥∥∥∥
L2(Ωx)

dt

≤ 2ρs√
2ω
‖ϑ‖L2(0,∞;H2

per(Ωx))

∫ ∞
0

e−ωt‖ϑx(·, t)‖L2(Ωx) dt

≤ ρs
ω
‖ϑ‖2L2(0,∞;H2

per(Ωx)).
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The second term can be estimated as follows∥∥∥∥∫
Ωx

e−ωt(ζ̃m + ζ̃Ω)ϑx(
∂Y

∂x
)−1 dx

∥∥∥∥
L1(0,∞;e−ω(·))

=

∫ ∞
0

e−ωt|
∫

Ωx

e−ωt(ζ̃m + ζ̃Ω)ϑx(
∂Y

∂x
)−1| dx dt

≤ 2s0‖ζm‖L∞(0,∞;Ḣ1
per(Ωx))

∫ ∞
0

e−ωt
∫

Ωx

|ϑx| dx dt

+2‖ζΩ‖L∞(0,∞;e−ω(·))

∫ ∞
0

e−ωt
∫

Ωx

|ϑx| dx dt

≤ 2
√
Ls0‖ζm‖L∞(0,∞;Ḣ1

per(Ωx))

∫ ∞
0

e−ωt‖ϑx(·, t)‖L2(Ωx) dt

+2
√
L‖ζΩ‖L∞(0,∞;e−ω(·))

∫ ∞
0

e−ωt‖ϑx(·, t)‖L2(Ωx) dt

≤ 2
√
Ls0√
2ω
‖ζm‖L∞(0,∞;Ḣ1

per(Ωx))‖ϑx‖L2(0,∞;L2(Ωx))

+
2
√
L√

2ω
‖ζΩ‖L∞(0,∞;e−ω(·))‖ϑx‖L2(0,∞;L2(Ωx))

≤ (1 + s0)

√
L√
2ω

(
‖ζm‖2L∞(0,∞;Ḣ1

per(Ωx))
+ ‖ζΩ‖2L∞(0,∞;e−ω(·))

+‖ϑ‖2L2(0,∞;H2
per(Ωx))

)
.

Therefore, there exists a positive constant C2 = C2(ρs, ω, s0, L) such that

‖F1,Ω(ζ, ϑ, ·)‖L1(0,∞;e−ω(·)) ≤ C2‖(ζ, ϑ)‖2D.

The Lipschitz estimate (4.10) can be proved in a similar way. �

Proof of (4.8) and (4.11). Let us recall that

F2(ζ, ϑ, t) = (σ̃m)x

(
b− aγ(ρs + e−ωtζ)γ−2 1

∂Y
∂x

)
+

ν

ρs + e−ωtζ

−∂2Y
∂x2

(∂Y∂x )3
ϑx

−νϑxx

(
1

ρs
− 1

ρs + e−ωtζ

1

(∂Y∂x )2

)
.

To estimate F2(ζ, ϑ, t) we need a lower bound for ρs+ e−ωtζ. Due to Lemma
4.1, we notice that

|ρs + e−ωtζ(x, t)| ≥ ρs − |e−ωtζ(x, t)| ≥ ρs
2
, ∀ (x, t) ∈ Q∞x . (6.19)
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By the fundamental theorem of calculus, we have

(ρs+e−ωtζ(x, t))γ−2−ργ−2
s = (γ−2)e−ωtζ(x, t)

∫ 1

0
(ρs+τe−ωtζ(x, t))γ−3 dτ,

for all (x, t) ∈ Q∞x . Therefore, it yields

|(ρs + e−ωtζ(x, t))γ−2 − ργ−2
s | ≤ C3e

−ωt|ζ(x, t)|, ∀ (x, t) ∈ Q∞x , (6.20)

for some positive constant C3. Using Lemma 4.1, (6.20), (2.15), the first
term can be estimated as follows∥∥∥aγ(ζm)x

(
ργ−2
s − (ρs + e−ωtζ)γ−2(∂Y∂x )−1

)∥∥∥
L2(0,∞;L2(Ωx))

≤ C3(‖(ζm)x(∂Y∂x
−1

)‖L2(0,∞;L2(Ωx)) + ‖(ζm)xe
−ωt(ζm + ζΩ)‖L2(0,∞;L2(Ωx)))

≤ C3 ‖(ζm)x‖L2(0,∞;L̇2(Ωx))

(∥∥∂Y
∂x − 1

∥∥
L∞(Q∞x )

+ ‖ζΩ‖L∞(0,∞;e−ω(·))

+‖(ζm)‖L∞(0,∞;Ḣ1
per(Ωx))

)
≤ C3(‖ϑ‖2L2(H2

per(Ωx)) + ‖ζm‖2(L2∩L∞)(Ḣ1
per(Ωx))

+ ‖ζΩ‖2L∞(0,∞;e−ω(·))
).

For the second term we have the following estimate∥∥∥∥ ν

ρs + e−ωtζ

− ∂
2Y
∂x2

( ∂Y∂x )
3ϑx

∥∥∥∥
L2(0,∞;L2(Ω))

≤ 16ν
ρs

∥∥∥∥∂2Y

∂x2
ϑx

∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 16νs0
ρs
√

2ω
‖ϑ‖2L2(0,∞;H2

per(Ωx)).

To estimate the third term first note that

1
ρs
− 1

ρs+e−ωtζ
1

( ∂Y
∂x

)2

= 1
ρs
− 1

ρs+e−ωtζ
+ 1

ρs+e−ωtζ
− 1

ρs+e−ωtζ
1
∂Y
∂x

+ 1
ρs+e−ωtζ

1
∂Y
∂x

− 1
ρs+e−ωtζ

1
( ∂Y
∂x

)2

= e−ωtζ
ρs(ρs+e−ωtζ)

+ 1
ρs+e−ωtζ

(
∂Y
∂x − 1

)
1
∂Y
∂x

+ 1
ρs+e−ωtζ

(
∂Y
∂x − 1

)
1

( ∂Y
∂x

)2
.
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Using Lemma 4.1 and (2.15) we have the following estimate for third term∥∥∥∥νϑxx( 1
ρs
− 1

ρs+e−ωtζ
1

( ∂Y
∂x

)2

)∥∥∥∥
L2(0,∞;L2(Ωx))

≤ 2ν
ρ2s
‖e−ωt(σ̃m + σ̃Ω)ϑxx‖L2(0,∞;L2(Ωx)) + 4ν

ρs

∥∥ϑxx (∂Y∂x − 1
)∥∥
L2(0,∞;L2(Ωx))

+8ν
ρs

∥∥ϑxx (∂Y∂x − 1
)∥∥
L2(0,∞;L2(Ωx))

≤ C3

(
‖σ̃m‖L∞(0,∞;Ḣ1

per(Ωx)) + ‖σ̃Ω‖L∞(0,∞;e−ω(·))

)
‖ϑ‖L2(0,∞;H2

per(Ωx))

+12νs0
ρs
√
ω
‖ϑ‖2L2(0,∞;H2

per(Ωx))

≤ C3

(
‖σ̃m‖2L∞(0,∞;Ḣ1

per(Ωx))
+ ‖σ̃Ω‖2L∞(0,∞;e−ω(·))

+ ‖ϑ‖2L2(0,∞;H2
per(Ωx))

)
.

Therefore, there exists a positive constant C2 = C2(s0, ρs, us, L, ω, ν) such
that

‖F2(ζ, ϑ, ·)‖L2(0,∞;L2(Ωx)) ≤ C2‖(ζ, ϑ)‖2D.
The Lipschitz estimate (4.11) can be proved in a similar way. �
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