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A method for analyzing fundamental kinetic plasma parameters, such as linear drive and external
damping rate, based on experimental observations of chirping Alfvén eigenmodes, is presented. The
method, which relies on new semiempirical laws for nonlinear chirping characteristics, consists of
fitting procedures between the so-called Berk–Breizman model and the experiment in a
quasiperiodic chirping regime. This approach is applied to the toroidicity induced Alfvén eigenmode
�TAE� on JT-60 Upgrade �JT-60U� �N. Oyama et al., Nucl. Fusion 49, 104007 �2009��, which yields
an estimation of the kinetic parameters and suggests the existence of TAEs far from marginal
stability. Two collision models are considered, and it is shown that dynamical friction and
velocity-space diffusion are essential to reproduce nonlinear features observed in experiments. The
results are validated by recovering measured growth and decay of perturbation amplitude and by
estimating collision frequencies from experimental equilibrium data. © 2010 American Institute of
Physics. �doi:10.1063/1.3500224�

I. INTRODUCTION

In an ignited tokamak, the confinement of �-particles is
critical to prevent damages on the first wall and to achieve
break even. A major concern is that high energy ions can
excite plasma instabilities in the frequency range of Alfvén
eigenmodes �AEs�, which significantly enhance their trans-
port. Ever since the recognition of this issue in the 1970s,
considerable progress has been made in the theoretical un-
derstanding of the principal Alfvénic instabilities. However,
the estimation of the mode growth rate � is complex, and the
question of their stability in ITER �Ref. 1� remains to be
clarified. Linear theory predicts that the toroidicity induced
Alfvén eigenmode2 �TAE� is stable when the continuous
damping of the background plasma exceeds the drive of fast
particles. Thus, accurate estimations of fundamental kinetic
parameters such as the linear drive �L and the damping rate
�d are needed, especially if the system is close to marginal
stability, where � is sensitive to small variations. For this
class of instabilities, the growth rate can be estimated either
by linear stability codes such as PENN,3 TASK/WM,4 NOVA-K,5

or CASTOR-K �Ref. 6� or by gyrokinetic or drift-kinetic per-
turbative nonlinear initial value codes such as FAC �Ref. 7� or
HAGIS.8 The analysis requires internal diagnostics that are not
always available. The global damping involves complicated
mechanisms with details still under debate. Experimentally,
�d can be estimated by active measurements of externally
injected perturbations.9,10 However, the applicability of this
technique is limited to dedicated experiments, and this pre-
vents robust linear predictions of the stability of AEs. More-
over, the existence of unstable AEs in a regime where linear
theory predicts ��0, or subcritical AEs, has not been ruled
out. Therefore, nonlinear analysis is needed to assess the
stability.

In general, these instabilities are described in a three-

dimensional �3D� configuration space. However, near the
resonant surface, it is possible to obtain a new set of vari-
ables in which the plasma is described by a one-dimensional
�1D� Hamiltonian in two conjugated variables11–14 if we as-
sume an isolated single resonance. In this sense, the problem
of AEs is homothetic to a simple 1D single mode bump-on-
tail instability. The so-called Berk–Breizman �BB�
problem11,12,15 is a generalization of the bump-on-tail prob-
lem, where we take into account an external wave damping
accounting for background dissipative mechanisms at a rate
�d and a collision operator. Observed quantitative similarities
between BB nonlinear theory and both global TAE
simulations13,16 and experiments17,18 are an indication of the
validity of this reduction of dimensionality.

A feature of the nonlinear evolution of AEs, the fre-
quency sweeping �chirping� of the resonant frequency by
10%–30% on a timescale much faster than the equilibrium
evolution, has been observed in the plasma core region of
tokamaks JT-60U,19 DIII-D,20 the Small Tight Aspect Ratio
Tokamak,21 the Mega Amp Spherical Tokamak �MAST�,16

and the National Spherical Torus Experiment22 and in stell-
erators such as the Compact Helical Stellerator,23 and the
Large Helical Device.24 In general, two branches coexist,
with their frequency sweeping downwardly �down-chirping�
for one, upwardly �up-chirping� for the other. In most of the
experiments, chirping events are quasiperiodic, with a period
of the order of a millisecond. In many experiments, asym-
metric chirping has been observed, with the amplitude of
down-chirping branches significantly dominating up-
chirping ones.

Qualitatively similar chirping modes are spontaneously
generated by the BB model, and theory relates the time evo-
lution of the frequency shift with �L and �d.25 In this work,
we identify a regime where chirping events are quasiperiodi-
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cal. This regime exists whether the collision model is
annihilation/creation type or takes into account dynamical
friction and velocity-space diffusion. We recall the equations
of the BB model and numerically investigate nonlinear
chirping features for both collision operators in Sec. II. In a
previous work,26 we showed that the nonlinear time evolu-
tion of chirping in 1D simulations can be used to retrieve
fundamental kinetic parameters with a good precision, which
suggests that it is possible to retrieve kinetic parameters from
experimental observations of chirping AEs. We propose a
new method to estimate �L, �d, �, and collision frequencies
from the spectrogram of magnetic field variations measured
by a Mirnov coil at the edge of the plasma. This method,
which relies on a fitting of normalized chirping characteris-
tics between the experiment and BB simulations, is described
and applied to JT-60U AE experiments in Sec. III. We show
that the BB model can successfully reproduce features ob-
served in the experiment only if the collision operator in-
cludes drag and diffusion terms. In Sec. IV, an independent
estimation of collision frequencies is obtained from experi-
mental equilibrium measurements, and compared with the
values obtained with our fitting procedure.

II. NONLINEAR FREQUENCY SWEEPING

A. The Berk–Breizman model

We adopt a perturbative approach and cast the so-called
BB model27 in a reduced form that describes the time evolu-
tion of the beam particles only.28 The main hypothesis of this
model is that the bulk particles interact adiabatically with the
wave so that their contribution to the Lagrangian can be
expressed as a part of the electric field. In this model, the real
frequency of the wave is imposed as �=�p, where �p

��4�n0q2 /m�1/2 is the plasma frequency �in cgs units�, q
and m are the electronic charge and mass, and n0 is the total
plasma density. The evolution of the beam distribution,
f�x ,v , t�, is given by the kinetic equation

� f

�t
+ v

� f

�x
+

qẼ

m

� f

�v
= C�f − f0� , �1�

where C�f − f0� is a collision operator described below, f0�v�
is the initial distribution function, and the pseudoelectric

field Ẽ is defined as

Ẽ�x,t� �
m

q
�Q�t�cos��� − P�t�sin���� , �2�

where ��kx−�pt.

In the definition of Ẽ, we assume a single mode of wave
number k, reflecting the situation of a low toroidal mode
number Alfvèn eigenmode, whose excited spectrum is usu-
ally discrete. The evolution of the pseudoelectric field is
given by

dQ

dt
= −

�p
3

2�n0
� f�x,v,t�cos���dxdv − �dQ , �3�

dP

dt
=

�p
3

2�n0
� f�x,v,t�sin���dxdv − �dP , �4�

where an external wave damping has been added to model
all linear dissipation mechanisms of the wave energy to the
background plasma, which are not included in the previous
equations. In the initial condition, we apply a small pertur-
bation, f�x ,v , t=0�= f0�v��1+� cos kx�, and the initial values
of Q and P are given by solving the Poisson equation. We
refer to Eqs. �1�–�4� as the 	f BB model, in opposition to the
full-f BB model studied in Ref. 26.

We define � and � as the real frequency and linear
growth rate of the wave, respectively, including contributions
of external damping and collisions. In the collisionless case,
one can see from the linear dispersion relation that �=�p

only if f0 is symmetric around the resonant velocity, vR

�� /k. Since we assumed �=�p from the start, we consider
only such distributions, for the model to be self-consistent.
The velocity distribution of beam particles in the initial con-
dition, f0, is shown in Fig. 1�a� for typical simulation param-
eters. A constant slope is imposed between v=−vc and v
=vc. The zero average ensures that the plasma frequency is
not perturbed by the beam density. Smooth joins between the
constant gradient region and the large velocity regions are
necessary to prevent numerical oscillations at v� 
vc. For
� /��1, the dispersion relation yields

� = �L0 − �d, �5�

where

�L0 �
�

2n0

�p
3

k2 	 � f0

�v
	

v=vR

. �6�

Let us define �L as the linear growth rate in the absence of
collisions and external dissipation. Note that in general, �L0

and �L are slightly different. In this paper, we use �L0 solely
as a measure of the slope of the initial velocity distribution.

We consider two collision models. On the one hand, a
large part of existing theory takes into account collisions in
the form of a Krook operator,29
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FIG. 1. �Color online� �a� Distribution function normalized to
n0�L0 / �
2�vR�p�. Solid line is the initial condition, dashed lines are for
�efft=2. �b� Time evolution of the bounce frequency. Parameters are �L0

=0.1, �d=0.05, and �eff=0.02. In the drag/diffusion case, �d /� f =3.
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CK�f − f0� = − �a�f − f0� , �7�

which is a simple model for collisional processes that tend to
recover the initial distribution at a rate �a, including both
source and sink of energetic particles. On the other hand, a
more realistic collision operator, the one-dimensional projec-
tion of a Fokker–Plank operator,30 includes a dynamical fric-
tion �drag� term and a velocity-space diffusion term,

CFP�f − f0� =
� f

2

k

��f − f0�
�v

+
�d

3

k2

�2�f − f0�
�v2 . �8�

Another large part of existing theory deals with the latter
operator in the absence of drag �� f =0�. Investigations of the
effects of dynamical friction are fairly recent.30 We define the
effective collision frequency as �eff��a in the Krook case
and �eff��d

3 /�L0
2 in the case with diffusion.

In a previous work,26 we developed and validated a 1D
semi-Lagrangian Vlasov code, referred to as COBBLES, in-
cluding a Krook operator and extrinsic dissipation, capable
of long-time, accurate nonlinear simulations of both full-f
and 	f BB models. In this paper, we use the 	f version of
COBBLES to investigate the nonlinear characteristics of chirp-
ing solutions. For this work, a collision operator with drag
and diffusion is implemented. We confirmed quantitative
agreement of nonlinear steady-state solutions between the
extended code and Ref. 30. Detailed verification will be in-
cluded in a separate publication. Both in our simulations and
in the remainder of this paper, time is normalized to �p un-
less some physical unit is explicitly given. When we com-
pare simulation and experimental results, we simply renor-
malize time by the measured AE linear frequency. In this
work, all simulations are performed with Nx
Nv=64

2048 grid points and a time-step width 0.05. The large
number of grid points in velocity space is necessary to avoid
recurrence effect during the quiescent phase between two
chirping events.

B. Chirping characteristics

The nonlinear behavior of an instability is determined by
a competition among the drive by resonant particles, the ex-
ternal damping, the particle relaxation that tends to recover
the initial positive slope in the distribution function, and par-
ticle trapping that tends to smooth it. Chirping solutions arise
in a low collision regime when hole and clump structures11

are formed in phase-space. They belong to a chaotic regime,
and each chirping event is slightly different. The velocity
distribution after nonlinear saturation shown in Fig. 1�a� il-
lustrates the fact that several holes and clumps with different
amplitudes can coexist. In this work, we are interested in the
nonlinear chirping characteristics, averaged over a significant
number of chirping events. In particular, in our simulations,
the first chirping event is observed to stand out from the
statistics, with a larger extent of chirping—up to twice as
much as any other one of the following series of repetitive
chirping. This may be due to the fact that the first chirping
benefits from a perfectly constant velocity-slope, while fol-
lowing events are subject to the interference of phase-space
structures that remain from previous chirping events. Since

the latter condition seems more experimentally relevant, the
first chirping is ignored in the present analysis.

Reference 25 shows how one can isolate one spectral
component and model it by a Bernstein–Greene–Kruskal
wave31 to obtain the time evolution of one chirping event. In

a regime where 	̇� /�b
2, 	̈� /�b

3, �̇b /�b
2, and �b /	��1, the

perturbation of the passing particle distribution is negligible,
and a bounce average of the trapped particle distribution
yields the frequency shift, in the collisionless limit, as

	��t� = ��L0

�dt , �9�

with ��0.44, and a saturation level as

�b � 0.54�L0, �10�

where the bounce frequency �b of particles that are deeply
trapped in the electrostatic potential, defined here as �b

4

�k2�Q2+ P2�, is used as a measure of the electric field am-
plitude. These analytic expressions have been found to agree
with 1D simulations of both 	f and full-f BB model,25,26

with both Krook and diffusion-only collision operators, and
with 3D HAGIS simulations.16 Figure 2�a� shows the spectro-
gram of a chirping solution in the aforementioned regime. In
Sec. III, we consider frequency sweeping in a regime where

	̇� /�b
2�0.5, which approaches the limit of validity of the

above theory. 	̇� /�b
2 can be seen as a measure of the hole/

clump adiabaticity, and is roughly proportional to

��d�a�1/2 /�L0 in the Krook case. When 	̇� /�b
2�0.5,

4�b / 	̇��2� /�b; in other words, a hole or a clump is
shifted by its width in a bounce time of deeply trapped par-
ticles. In this regime, the previous analytic treatment is not
relevant. However, numerical simulations show a similar
square-root dependency of the frequency shift in time. We
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FIG. 2. �Color online� Spectrogram of the electric field, obtained with a
moving Fourier window of size 510 for �L0=0.1 and �a� �d=0.04,
�d�a /�L0

2 =0.008, and �=1.0; �b� �d=0.09, �d�a /�L0
2 =0.043, and �=0.57.

Solid lines show the chirping velocity predicted by Eq. �9�, with the correc-
tion coefficient �, and the chirping lifetime predicted by Eq. �12�. Through-
out this paper, the logarithmic color scale for each spectrogram spans three
orders of magnitude.
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introduce the effect of nonadiabaticity on chirping velocity
as a correction parameter �, defined as

� �
	��t�

��L0

�dt

. �11�

� is obtained numerically for �L0 /�=0.1 in Fig. 3. We con-
firm that inside the validity limit of the above theory, � ap-

proaches unity. Even for relatively large values of 	̇� /�b
2,

the chirping velocity has a smooth dependency on the kinetic
parameters. The latter point is crucial for the validity of the
procedure described in Sec. III. The spectrograms corre-
sponding to the two extreme points of Fig. 3�a� are shown in
Fig. 2.

The resonant velocity of a hole �a clump� does not in-
crease �decrease� indefinitely. We define the lifetime � of a
chirping event as the time it takes to the corresponding
power in the spectrogram to decay below a fraction e−2 of the
maximum amplitude reached during this chirping event. The
maximum lifetime �max is the maximum reached by � during
a time-series, ignoring the first chirping event and any minor
event. It is reasonable to assume that the island structure is
dissipated by collisional processes, in which case the maxi-
mum chirping lifetime should be of the form

�max =
�a

�a
, �12�

in the Krook case, and

�max = �d

�L0
2

�d
3 , �13�

in the case with drag and diffusion when � f ��d, where �a

and �d are constant parameters. In Fig. 4, we plot the maxi-
mum lifetime measured in COBBLES simulations where the
ratio �d /�L0 is chosen as 0.5 and 0.9, i.e., far from and close
to marginal stability, respectively. A quantitative agreement
is found with Eq. �12�, with �a=1.1, for �a

−1 spanning two
orders of magnitude. With the diffusive collision operator,
the chirping lifetime agrees with Eq. �13� only for low col-
lisionality. For high collisionality, diffusion affects the width
of a hole or clump during the first phase of their evolution,
namely, drive by free-energy extraction, which in turn affects

the decay by diffusion. Since chirping observed in experi-
ments has a lifetime of the order of ��500, we adopt a
semiempirical law obtained by a linear fit,

�max = �d��L0
2

�d
3 
0.5

, �14�

with �d=10. No repetitive chirping is found near marginal
stability for 0.05��L0�0.1, though longer computations
may reveal this possibility.

In the following analysis of TAE experiments, Eqs. �12�
and �14� are used as diagnostics for the effective collision
frequency; thus, it is important that these results are not too
sensitive to the shape of the fast particles distribution. To
investigate this point, we repeat the same analysis �in the
Krook case�, this time with an initial bump-on-tail distribu-
tion with a Gaussian beam instead of a constant gradient, or
linear, beam. Figure 4�a� shows that the agreement is kept,
even if the shape of the distribution has a significant effect
on the extent of chirping as can be seen for example in Fig.
12 of Ref. 26.

As long as the background plasma parameters are not
significantly changed, chirping events in most tokamak ex-
periments are quasiperiodic, with a quiescent phase between
two chirping branches that lasts a few milliseconds. It should
be noted that this statement does not seem to apply to
DIII-D.20 In some parameter regimes, the chirping arising
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FIG. 3. �Color online� Correction to Eq. �9� when the timescale of frequency
shift is relatively short compared to the bounce period, for �L0=0.1. The
ratio �d /�eff is such that 	��1 /�eff�=0.2 in Eq. �9�. �a� In the Krook case,
spectrograms for two extreme points are shown in Fig. 2. �b� With drag and
diffusion, �d /� f =10.
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With a Krook collision operator. The crosses correspond to the initial distri-
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distribution with a Gaussian beam. In both cases, �L0=0.05. The solid line
corresponds to Eq. �12�. �b� With a diffusive collision operator �for a linear
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�14� with �d=10. The drag is chosen so that it does not significantly alter the
chirping lifetime, �d /� f =10. An absence of points means that we do not
observe repetitive chirping before the end of the simulation �t=100 000�.
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from the BB model with Krook collisions is also quasiperi-
odic, although the phase between two major chirping events
is generally not as quiet as in the experiments. In a regime
where � f ��d, the chirping arising from the BB model with
drag and diffusive collisions is quasiperiodic too, but this
time with clear quiescent phases in-between chirping events.
In Fig. 1�b�, which shows periodic decay and recovery of
perturbation amplitude, corresponding to major chirping
events, we observe qualitatively different behavior between
the two collision models. In both case, no analytic theory has
been developed to predict the average time between two
chirping events, �tchirp. However, conceptually, there exists
some relation with a subset of the input parameters. Thus, if
we normalize time with the mode frequency, then chirping
velocity, lifetime, and period are dictated by the input param-
eters of the model, �L0, �d, and �a, or � f and �d. In the Krook
case, we have a three-variable, three-equation system, which
we solve by a fitting procedure described in Sec. III. With
drag and diffusion, there is one additional degree of freedom;
hence, the solution is not unique, but the boundaries of chirp-
ing regime limit the possible range of input parameters.

III. ANALYSIS OF EXPERIMENTAL CHIRPING
MODES

A. Fitting procedure

We consider magnetic field perturbations measured by a
Mirnov coil at the edge of a fusion plasma, for a time inter-
val during which quasiperiodic, perturbative chirping is ob-
served, and during which background plasma parameters are
not significantly changed, since a fixed mode structure is
assumed to reduce the problem to a one dimensional Hamil-
tonian. We also assume that frequency shifting occurs well
within the gap of the Alfvén continuum, so that chirping
lifetime is determined by collision processes, rather than by
continuum damping. In the corresponding magnetic spectro-
gram, we extract the linear mode frequency fA, the average
chirping velocity d	�2 /dt, the maximum chirping lifetime
�max, and the average chirping period �tchirp. Equation �9�
gives a relation between linear drive and external damping,

�L0
2 �d =

1

�2�2

d	�2

dt
. �15�

With the Krook model, chirping is limited to a range where
0.2��d /�L0�1.1.26 We found a similar constraint in our
simulations with drag and diffusion, although a full scan of
parameter space remains to be done. From this observation,
in both cases, �L0 is given within roughly 30% error, and �d

within 50% error, by

�L0 � 1.3� 1

�2�2

d	�2

dt

1/3

, �16�

�d � 0.7� 1

�2�2

d	�2

dt

1/3

. �17�

We refine these estimations in a manner that depends on the
collision model we adopt.

1. With Krook collisions

The analysis described here aims at estimating the values
of �L0, �d, and �a for which the 	f BB model fits experimen-
tal observations in terms of chirping characteristics. Equation
�12� yields the effective collision frequency,

�a =
�a

�max
. �18�

Note that this effective collision frequency is meaningful
only in the framework of a modelization by the simple
Krook operator of all dissipative processes: particle colli-
sions, particle source, and particle sink. Thus, this effective
collision frequency �a cannot be quantitatively compared
with experimental measurements of collision frequency un-
less particle source and sink terms are fully identified as
well. Equations �15� and �18� form a system of two equations
with three unknowns. The remaining unknown is found by
fitting the chirping period. In our simulations, the chirping
period is estimated by searching for the dominant frequency
in the Fourier spectrum of the electric field amplitude. To
ensure a reasonable accuracy, simulations are performed for
a time t��tchirp. If the experiment belongs to a regime
where �=1, the above procedure is systematic. However, if
� is significantly smaller than unity, an iterative procedure is
needed, with a feedback between � and �L0

2 �d.

2. With drag and diffusion

The analysis described here aims at estimating the values
of �L0, �d, � f, and �d for which the 	f BB model fits experi-
mental observations. Equations �14� and �15� form a system
of two equations with four unknowns. The boundaries of the
chirping regime yield an estimation of �d within 20% error,

�d � 1.2� �d

�max

2/3� 1

�2�2

d	�2

dt

2/9

. �19�

On the one hand, it is shown in Ref. 30 that for typical
neutral beam-heated experiments, the ratio �d /� f is of the
order of unity. On the other hand, a numerical exploration of
chirping regimes with drag and diffusion, which will be de-
tailed in a future publication, suggests that when � f ��d, the
drag significantly modifies the shape of chirping, to the point
where we leave the regime of repetitive chirping. Thus, the
relevant regime for friction is � f ��d. In this regime, �tchirp

increases with decreasing � f and �, and increasing �d. To
refine the above estimations, and estimate � f, we need a two-
dimensional scan in �� f ,�d�, where we search for solutions
that fit the chirping period. In general, ��1, and trial-and-
errors are required to adjust the chirping velocity to the ex-
perimental value.

B. Application to JT-60U

In JT-60U, TAEs are destabilized by a negative ion
based neutral beam �N-NB�, which injects deuterons at Eb

=360 keV. A distinction is made between so-called abrupt
large-amplitude events �ALEs� and fast frequency sweeping
�fast-FS�.32 In this paper, we focus on the latter phenomenon,
which has a timescale of 1–5 ms, and with which the asso-
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ciated redistribution of energetic ions is relatively small.33

ALEs are identified as energetic particle driven modes,34

have larger amplitude, shorter timescale �200–400 �s�, in-
duce significant loss of energetic ions, and are out of the
scope of this work since we assume a constant density of
energetic ions.

In the discharge E32359, around t=4.2 s, frequency
sweeping modes have been identified as m /n=2 /1 and 3/1
TAEs.19 In the spectrogram shown in Fig. 5�a�, we measure
fA=53 kHz, d	�2 /dt=6.3
10−5, �max=0.44
103, and
�tchirp=3
103 �on average�.

1. With Krook collisions

Equations �15� and �18� yield �a=0.25%, and �L0

�d

=1.8
10−2. However, the results of our analysis suggest that
the plasma belongs to a regime where �=0.65, so we adjust
the value of the product �L0


�d to 1.8
10−2 /0.65=2.8

10−2.

A scan for this set of parameters is performed by chang-
ing the slope of the distribution. Figure 6 shows that the
chirping quasiperiod depends on �L in a roughly monotonous
way. Note that the scan needs to be performed on a relatively
narrow range of the kinetic parameters, since the limits of
subcritical regime and nonchirping �chaotic� regime yield a
first estimate as �L�8%–12% and �d�4%–10%, in per-
centage of the mode frequency �A=2�fA. Here, the nonlin-
ear stability threshold is defined as the largest value of �L for
which the electric field amplitude tends to zero in the time-
asymptotic limit, independently of the initial perturbation
amplitude; the chaotic regime is defined and categorized in a
way described in Ref. 26. We observe that the two-point
correlation of electric field amplitude decreases as the system
approaches marginality.

Figure 5�b� is the spectrogram for the simulation which
is emphasized by a circle in Fig. 6. The features of the main
chirping events agree with the experimental observation.
However, we observe a series of minor chirping events in
between, which are absent from the experimental spectro-
gram. Another caveat is that only symmetric chirping is ob-
served with the 	f BB model with Krook collisions and a
linear velocity distribution. Thus, the application of this
method with Krook collisions is restricted to symmetric or
nearly-symmetric chirping experiments. The linear param-
eters estimated from this analysis are shown in Table I. Our
analysis suggests that the TAE in this discharge is marginally
unstable, with � /�L�0.1, even though �L��d, which is not
inconsistent with Eq. �5� since �L0��d. However, these val-
ues are inconsistent with estimations that take into account
drag and diffusion processes. Since the following analysis
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FIG. 5. �Color online� �a� Spectrogram of magnetic fluctuations during
fast-FS modes in the JT-60U discharge E32359, obtained with a moving
Fourier window of size 2 ms. ��b� and �c�� Spectrogram of the electric field
where the kinetic parameters of the 	f BB model were chosen to fit the
magnetic spectrogram for JT-60U discharge E32359. The solid curve shows
the analytic prediction for the chirping velocity. �b� Krook collisions, cor-
rection parameter �=0.65. �c� Friction-diffusion collisions, correction pa-
rameter �=0.85.
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FIG. 6. �Color online� Scan of the chirping quasiperiod for the set of pa-
rameters corresponding to JT-60U discharge E32359. The region where
� /�L�0.1, where �tchirp�2
103 is not included in this plot. Both linear
and nonlinear stability thresholds are indicated. The chirping quasiperiod
agrees with the experiment for �L�8.5%. The spectrogram for the circled
simulation is shown in Fig. 5�b�.

TABLE I. Frequencies and growth rates estimated from the magnetic spec-
trogram of chirping TAEs, in percentage of the mode frequency �A=2�fA.

Collision model
�L0

�%�
�L

�%�
�d

�%�
�a

�%�
� f

�%�
�d

�%�
�

�%�

Krook 9.4 8.5 8.6 0.25 ¯ ¯ 0.7

Fokker–Planck 9.8 9.2 4.7 ¯ 0.36 1.7 4.6
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shows much better agreement with the experiment, we imply
that the Krook model is insufficient to describe nonlinear
features related to repetition of chirping.

2. With drag and diffusion

We perform a first, rough scan in �� f ,�d� parameter
space, assuming �=1. Measuring average chirping velocity
in repetitive chirping solutions yields an estimation of the
correction parameter, �=0.85. Then Eqs. �16�, �17�, and �19�
yield �L0=10
3%, �d=5
3%, and �d=1.7
0.4%. We perform
a second, more careful scan, which consists of a series of 4

8 simulations in the domain �1.5%��d�2.2% and 1
��d /� f �8�, where �L0 and �d are constrained by Eqs. �14�
and �15�. The only repetitive chirping solution with 2500
��tchirp�3500 we found is shown in Fig. 5�c�. We verify
that chirping features measured in this simulation, d	�2 /dt
=7.1
10−5 �6.2
10−5 for up-chirping and 7.9
10−5 for
down-chirping�, �max=0.45
103 �0.47
103 for up-chirping
and 0.43
103 for down-chirping�, and �tchirp=2.8
103, fit
the experiment. The estimated linear parameters are shown
in Table I. In theory, the solution is not unique, but the latter
estimations are quite accurate because of the narrow range of
periodic chirping regime. To validate this analysis, we com-
pare the amplitude of perturbations in Fig. 7. Since the
growth rate of chirping structure is neither � nor �L and the
decay rate is not simply �d but a function of several linear
parameters, the agreement we obtain is not trivial �we mea-
sure a growth rate of 2.3% and a decay rate of 0.3%�. For
further validation, we estimate the values of � f and �d from
plasma parameters in Sec. IV.

IV. ESTIMATION OF COLLISION FREQUENCIES

A. Projection of Fokker–Planck collision operator

We consider collisions on energetic particles by thermal
electrons �s=e�, ions �s= i�, and carbon impurities �s=c� and
describe them by a Fokker–Planck collision operator35 that
acts on the distribution f�x ,v , t� of energetic particles
�s=b�. In spherical coordinates �v ,��, neglecting gyroangle
dependency,

	df

dt
	

coll.
= �defl

1

2

1

sin �

�

��
�sin �

� f

��



+
1

v2

�

�v
�v3��slowf +

1

2
��v

� f

�v

� , �20�

where �defl, �slow, and �� are pitch-angle scattering, slowing-
down, and parallel velocity diffusion rates, respectively, v�

�v ·b=v cos � is the parallel velocity of energetic particles,
b�B0 /B0, and B0 is the equilibrium magnetic field.

We consider a TAE with toroidal mode number n, result-
ing from the coupling of m and m+1 poloidal modes. To
simplify the following discussion, we consider strongly co-
passing beam particles that resonate with the TAE at a ve-
locity v�v� =vA, where vA is the Alfvén velocity. Then, the
resonance condition is given by �=�A, where

� = nA
v�

R0
− m

v�

q�r�R0
, �21�

R0 is the major radius of the magnetic axis, q�r� is the safety
factor, and r is the minor radius. To project the Fokker–
Planck operator on the resonant surface, we follow the pro-
cedure described in Refs. 11 and 30. We substitute �vf by
Jb��f , where P� is the toroidal angular momentum,

P� � −
eb

c
��r� + mbR0v� , �22�

J is the Jacobian of the coordinate transformation from v� to
�,

J =
�P�

�v�

	 ��

�P�
	

v�

=
mcSmbv�

2r2ebB0
, �23�

and S�rq� /q is the magnetic shear. Here, es and ms are
charge and mass of a species s, respectively, and b stands for
beam particles. This procedure yields

	df

dt
	

coll.
= � f

2 � f

��
+ �d

3 �2f

��2 , �24�

with

� f
2 = v�J�2�� + �slow − �defl� , �25�

�d
3 =

v2

2
J2��� cos � + �defl sin �� . �26�

We assume Maxwellian background distributions with
same temperature T0. Typical experiments satisfy the follow-
ing ordering of thermal velocities: vTc�vTi�vA�vTe, while
the beam energy Eb is much larger than T0. With these as-
sumptions, around the resonance,
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FIG. 7. �Color online� Evolution of the perturbation during a single chirping
event. The signal is filtered between 40 and 65 kHz. In these arbitrary units,
10−3 roughly corresponds to a noise level. The parameters of the simulation
are shown in Table I. For the simulation, to avoid hiding experimental data,
we show the amplitude of perturbations instead of the perturbations them-
selves. Note the use of arbitrary units �we only compare normalized
quantities�.
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� f
2 =

v�J
v3 �

s

ns�bs

ms
�erf �s −

2�s


�
e−�s

2� , �27�

�d
3 =

J2

2v3�
s

ns�bs

2mb�s
2���2�s

2 − 1�v�
2 + 2v�

2�erf �s

+
2�s


�
�v2 − 3v�

2�e−�s
2� , �28�

where �s�v /vTs, v� =vA,

�bs =
4�eb

2es
2 log �

mb
, �29�

and log � is the Coulomb logarithm. Since the magnetic mo-
ment is an invariant of the motion of injected beam ions from
deposition to resonant surface, v�

2 =vb
2�1−RT

2 /R0
2�, where vb

is the velocity of beam particles and RT is the tangential
radius of the beam. The equivalent collision operator in the
Berk–Breizman model is obtained by substituting �=kv in
Eq. �24�.

B. Application to JT-60U

In the discharge E32359 around t=4.2 s, the resonant
surface of the m /n=2 /1 and 3/1 TAE is located around r
=0.7 m. The magnetic shear is estimated from the q
profile,36 S=0.8. The deuteron plasma has the following
characteristics: B0=1.2 T, R0=3.3 m, and the tangential ra-
dius of the N-NB is RT=2.6 m. At r=0.7 m, ne=1.4

10−19 m−3, and T0=0.75 keV. We take into account car-
bon impurities with Zeff=2.7. With these equilibrium mea-
surements, Eqs. �27� and �28� yield � f /�=1.2% and �d /�
=1.7%. Note that the electrons account for 99% of � f

2, which
reflects a high Alfvén velocity, while impurities account for
57% of �d

3, which is consistent with the fact that pitch-angle
scattering is more effective with heavier particles. The value
of �d estimated in Sec. III B 2 quantitatively agrees with this
independent estimation. However, with our fitting procedure,
� f was underestimated by 70%. Though error bars in the
experimental data may account for this discrepancy, it is also
possible that our model misses some mechanism that would
enhance the friction.

V. CONCLUSION

In the present study, we found a regime of quasiperiodic
chirping with both Krook and Fokker–Planck collision op-
erators. Since quantitative agreement with theory suggests
the predictability of nonlinear chirping characteristics based
on fundamental linear kinetic parameters, the latter may be
estimated in the opposite way from chirping data in experi-
ments. More precisely, chirping velocity and lifetime yield
two relations among �L, �d, and collision frequencies, and a
fitting of �tchirp yields an estimation of remaining unknowns.
Note that major advantages of this technique are �1� kinetic
parameters in the core of the plasma estimated only from the
spectrogram of magnetic fluctuations measured at the edge,
without expensive kinetic MHD calculations nor detailed
core diagnostics, and �2� unified treatments of supercritical

and subcritical AEs. We showed that drag and diffusion are
essential to reproduce quiescent phases observed in experi-
ments between chirping events. We confronted this proce-
dure by analyzing AEs on JT-60U. We found quantitative
agreement with measured magnetic fluctuations for the
growth and decay of chirping structures and qualitative
agreement with collision frequencies estimated from experi-
mental background measurements. In these estimations, im-
purities, which were not included in estimations of Ref. 30,
account for the main part of velocity diffusion. An effect of
drag is to break the symmetry around the resonant velocity.
The discrepancy between simulations and experiments in
terms of asymmetry between up-shifting and down-shifting
frequencies remains to be clarified. Preliminary results show
that the shape of the energetic particle distribution has a sig-
nificant effect on chirping asymmetry. In the present analy-
sis, we chose a linear initial distribution. However, it is un-
clear what shape of velocity distribution is relevant to the
experiment. Many experiments in JT-60U and MAST feature
repetitive chirping with velocity, lifetime, and period compa-
rable to the TAE analyzed here, and we plan to apply the
same procedure to these data in order to survey the depen-
dency of kinetic parameters on fundamental plasma param-
eters. Finally, we will work toward an analytic theory for the
chirping quasiperiod, or an empirical formula, which would
improve the robustness of our procedure.
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