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Abstract We describe a series of experiments involving
the creation of cylindrical packings of star-shaped particles,
and an exploration of the stability of these packings. The
stars cover a broad range of arm sizes and frictional prop-
erties. We carried out three different kinds of experiments,
all of which involve columns that are prepared by raining
star particles one-by-one into hollow cylinders. As an addi-
tional part of the protocol, we sometimes vibrated the column
before removing the confining cylinder. We rate stability in
terms of r, the ratio of the mass of particles that fall off a pile
when it collapsed, to the total particle mass. The first exper-
iment involved the intrinsic stability of the column when the
confining cylinder was removed. The second kind of experi-
ment involved adding a uniform load to the top of the column,
and then determining the collapse properties. A third exper-
iment involved testing stability to tipping of the piles. We
find a stability diagram relating the pile height, &, versus
pile diameter, §, where the stable and unstable regimes are
separated by a boundary that is roughly a power-law in A
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versus § with an exponent that is less than unity. Increasing
vibration and friction, particularly the latter, both tend to sta-
bilize piles, while increasing particle size can destabilize the
system under certain conditions.

Keywords Granular - Cylindrical packing - Star-shaped
particle - Stability - Friction - Vibration - Aggregate

1 Introduction

Shape is one of the key features of a particle in deter-
mining mechanical behavior of an aggregate [1-4]. More
particularly, aggregates made from non-convex particles are
an emerging area of research that involves tuning mater-
ial properties to give specific functions to the macroscopic
system [5—7]. This is of high interest not only in granular
science [4,5] but also for architectural design [8]. Non-
convex particle geometries are one main group within the
overall area of designed aggregates, in addition to double-
non-convex hook-like, convex or even actuated particles
[4,9]. These approaches are promising for future lightweight
and reversible structural applications. Indeed, such systems
can be custom-designed for specific mechanical properties
[1,5] and architectural applications. Aggregate systems of
particles can also be programmable. The relevance of these
synthetic aggregate systems to construction is twofold: on the
one hand they can be fully re-configured and re-cycled; on
the other hand these structures can be functionally calibrated
and graded according to specific mechanical performance
criteria.

Two of the most striking characteristics of non-convex
designed granulates, in terms of the granular system and
possible design applications are their ability to form verti-
cal structures with a 90° angle of repose, and to sustain small
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Fig. 1 (coloronline) Non-convex particles used for experiments. From
left to right laser sintered white nylon PA2200 particles with size s 10,
5 and 2.5 cm and cast acrylic particles of size 2 cm. Each star consists
of six orthogonal square beams that taper from a thickness of 2 mm at
the center of the particle to 1 mm at the tips

tilting or loading perturbations. The aim of this paper is to
investigate, in a laboratory setting, how geometry, material,
and proportions, as well as preparation and base properties
affect the stability of vertical columns. These data serve to
inform the production of full-scale architectural construction
systems, which integrate mass-production and on-site robotic
construction [8].

Aggregate matter made of non-convex particles is also
of interest in terms of cohesive strength [4]. This has been
investigated in studies of particles that are shaped like sta-
ples [4,9,10]. In this paper we investigate the stability of
star-shaped particle aggregates. Some research has been done
on the packing of such particles [11-13] but little is known
about the stability of such aggregates. In the first part, we
present our experimental set-ups and the processes used to
prepare cylindrical packings. In the second part of this work,
results on the intrinsic stability of these aggregates is pre-
sented for different particle dimensions and materials, for
cylinder aspect ratios, and preparation processes. The effect
of vertical loading or tilting is also studied, as well as destabi-
lization due to the inclusion of beads in the packing. Finally
these results are discussed in the third part, and rules for a
better architectural design are extracted.

2 Experimental set-up

We prepared cylindrical columns in several different ways
and subjected them to several different types of perturba-
tions. We used four kinds of stars also called hexapods, that
were made from two different types of materials, as shown
in Fig. 1. Each star consisted of six orthogonal beams with
square cross section, that tapered from a thickness of 2 mm
at the center of the particle to 1 mm at the tips. The end-to-
end size varied from 2 to 10 cm. They are made of either

Table 1 Properties of the 3D non-convex particles

Maximum size (cm) Material Mass (g) Friction coefficient
2 Acrylic 0.15 0.4

2.5 Nylon 0.22

5 Nylon 0.45 1

10 Nylon 0.84 1

cast acrylic, which has a friction coefficient 0.4 £ 0.1 or of
laser-sintered white nylon PA2200, which has a friction coef-
ficient 1.0 = 0.3. Since we are here focusing on the issue of
pile stability, most experiments were carried out with acrylic
particles. Columns made with this type of particle are less
stable due to lower friction. Hence, it permits one to observe
the limit of stability with relatively small piles. This does not
limit the generality of the results since, from a qualitative
point of view observations made for low friction particles
can be transposed to higher friction ones. In some cases, we
also created configurations that were a mixture of stars and
beads. The latter were made of acrylic and have a diameter
of 9.5 mm and a mass of 0.53 g. We summarize all particle
properties in Table 1.

We carried out three kinds of experiments, all of which
had the same preparation protocol. The protocol consisted
of filling thin-walled tubes with particles by dropping them
one-by-one at a steady rate from an overhead hopper that
was located 40 cm above a base plate, as shown in Fig. 2a.
Each tube was a 30 cm tall PVC pipe whose inner diameter,
8, varied from 2.6 to 20.2 cm. The tubes rested on base plates
made of glass for low friction (friction coefficient between
glass and acrylic particle is ~0.5) or glass covered with foam
for high friction (friction coefficient is higher than the limit
of our experimental measurement method, e.g. ~10). During
the filling process, the system could be vibrated by an eccen-
tric, driven by a DC motor that was attached to the outside
of the tube at a height of ~1.5 - 6. We tuned the speed of
the motor to create a ~1700m/s> cyclic acceleration of the
16 g eccentric. We measured the height, /, of the pile inside
the cylinders by gently dropping a disc of paper on top of
the particle packing and measuring the distance between the
center of this disc and the base. We removed this disc before
the next step.

Asshownin Fig. 2b, the tube was then carefully and slowly
removed by lifting it vertically. Friction between the particles
and the cylinder was low enough not to significantly perturb
particles inside the cylinder. This was particularly true for the
smaller stars, even when the cylinder diameters were small.
For the large, 25mm nylon stars, particles could be dragged
by the walls, but this was still a relatively rare occurrence,
and columns made of them were highly stable during lifting
of the tube.
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Fig. 2 (color online) a Non-convex particles are dropped one-by-one
at a Steady rate from an overhead hooper maintained at a constant height
in a cylinder of diameter § and height 30 cm. The system can be vibrated
by an eccentric, driven by a DC motor that is attached to the cylinder
at a height of ~1.5 - §. b Then the pile height, 4 is measured and the
cylinder is carefully and slowly removed by lifting it vertically. ¢ If
the pile is stable, this stability is tested by tilting the base of an angle

In the first kind of experiment, the aim was to study the
basic stability of piles. To this end, the tube containing the
particles was gently removed. As a quantitative measure of
stability, we measured the mass of particles that fell from
the column. Figure 2e shows the method we used to quantify
the degree of the collapse of a pile: after the cylinder was
removed, all particles (red markers in Fig. 2e) lying outside
the circle made by the intersection of the cylinder and the base
(red circle) were weighed, and their mass was compared to
the total mass of the pile (blue and red markers) to compute
a collapse ratio:

mass of collapsed particles
r= ey

total mass

When the column was stable, » was close to zero, and when
it was unstable, it approached 1. In this paper stability is
not considered as a binary situation (either collapsed or not)
but more like a progressive variation of the number of ‘col-
lapsed’ particles. Depending on the use made of the results
presented, the reader can choose a threshold value of r to
binarise the stability concept. The ratio r is the mass coun-
terpart of the space ratio defined in [14—16] to quantify the
intensity of collapse. In our experiments, the particles that
fell off did not generally assume a regular shape, hence the
need to have a quantitative measure such as r that did not
depend on geometry.

In the second kind of experiment, we studied the stability
of the piles to tilting. A stable system (meaning no, or very
few, particles falling off after the cylinder was removed) was
prepared without vibration, on a foam-covered base (high
friction). The base was then slowly tilted from horizontal to

slice view,

collapsed pile

6 until the system collapse. d The stability is also tested by gradually
increasing the mass m of a plate on top of the pile. ¢ When the system
collapse particles away from the initial cylinder volume (red particles)
are weighted to quantify the intensity of the collapse. A slice view of
the middle of the packing is shown to clarify the geometry. See text for
details

an angle 6 as in Fig. 2c. We found that collapses occurred
via small nucleation events, where one or a few particles fell
off, which led quickly to a massive collapse that destroyed
the main structure of the pile. We measured the angles, 6, for
the first nucleation event and the last massive collapse, and
computed the collapse ratio, r, for the final event.

A third kind of experiment was carried out to quantify
the stability when the piles were loaded vertically. Like the
other experiments, we first prepared a stable pile on a glass
plate without vibration. We then added a weight to the top
(see Fig. 2d) until it collapsed. To do so, we first placed a
lightweight rigid disc on top of the pile to distribute the mass.
We then placed an empty container on the disc. Finally, we
slowly filled the container with water until the pile collapsed.
We determined the weight, m, of the filled container plus rigid
disc at the time of collapse as a function of the pile height 4.

To account for the statistical variability, each set of exper-
iments was repeated at least 10 times to produce an averaged
result. All experimental data presented here are mean values,
with error bars reflecting the variance over trials. In some
cases, these error bars are too small to see. Table 2 summa-
rizes the different experiments.

3 Results
3.1 Intrinsic stability of the pile

In Fig. 3a, we present the evolution of  as a function of / for
different cylinder diameters 8. For a given 8, r varies fromr =
0 (the pile is stable for low height) to r > 1 (the pile is fully
collapsed) with a reasonably well defined transition between
the two behaviors. The relative sharpness of the transition
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Table 2 Parameters used for the three kinds of experiment: stability, tilting and loading
N Test Stars Vibration Basis 8 (cm) h (cm) 8/s h/s
1 Stability Acrylic 2 cm No Glass 4 — 154 2.5— 275 2 — 7.7 1.25 — 13.75
2 Stability Acrylic 2 cm Yes Glass 4— 154 25— 2175 2177 1.25 — 13.75
3 Stability Acrylic 2 cm No Foam 7.7;15.4 25— 275 3.85;7.7 1.25 - 13.75
4 Stability Nylon 2.5 cm No Glass 4 — 10.1 6 — 30 1.6 - 4.04 24— 12
5 Stability Nylon 2.5 cm Yes Glass 4 — 10.1 6 — 30 1.6 - 4.04 24— 12
6 Stability Nylon 5 cm No Glass 7.7;15.4 7 — 30 1.54;3.08 14— 6
7 Stability Nylon 10 cm No Glass 7.7 12 — 30 0.77 1.2—-3
8 Stability Acrylic + beads No Glass 13 125£3% 6.5 6.25+3%
9 Tilting Acrylic 2 cm No Foam 13 8 — 19.5 6.5 4 —9.75
10 Tilting Nylon 2.5 cm No Foam 154 19 6.16 7.6
11 Tilting Nylon 5 cm No Foam 154 19 3.08 3.8
12 Tilting Nylon 10 cm No Foam 154 19 1.54 1.9
13 Loading Acrylic 2 cm No Glass 13 13.5 — 18.6 6.5 6.75 — 9.3
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Fig. 3 (color online) Stability of the acrylic particles from experiment
N1. a ratio r of collapsed particles as a function of the pile height &
normalized by the particle size, s = 2 cm for different heights of acrylic
particle piles and different cylinder sizes &/s. For each height, the ratio
r is averaged over at least 10 realizations and an error-bar is deduced.
Plain curves are the fit of the data with Eq. 2. b Fit parameters . (plain

means the range of partially stable systems is very narrow:
in most cases when a part of the pile begins to collapse,
stability is lost for the full structure. In order to characterize
this transition and to quantitatively measure the transition
height . we have fitted the experimental data for r (k) to:

1
r=———— )

he\* '
(7) +1

where &, is the height for which » = 1/2. This expression
indicates a critical height, .. For large diameters, r — 1
slowly since some particles remain in the original region
covered by the uncollapsed pile (red disc in Fig. 2e) after the
collapse.

Fitted values of /. and « for different § from experiment
N1 are presented in Fig. 3b. As suggested qualitatively by

Fig. 3a, h. increases almost linearly with § and then saturates
around a height equivalent to 11 particle lengths (arm-tip-to-

3 4 5 6
diameter, 0/s

2 3

5

4 6 7
diameter, d/s

black line) and o (grey dashed line) for different pile diameters §. ¢
Stability phase diagram for acrylic particles. The ratio r of collapsed
particles is plotted as a function of the normalized pile height /2/s and
the normalized pile diameter §/s. Stable domain is where r is the lowest

arm-tip along an axis). Similarly to what has been done in
[17] Fig. 3c shows the extrapolated values of the collapse
ratio (8, h) as a function of &, and gives a stability dia-
gram indicating the pile behaviour: stability is greater when
4 is large, and an increase does not necessarily significantly
improve the stability.

We also consider the effect on stability of the particle
geometry, the properties of the base, and the preparation.
In Fig. 4, we plot r(h) from experiments N'1, 2, 3, 4, 6 and
7 for 6 = 7.7 cmand § = 15.4 cm, for the following config-
urations:

— 2 cm acrylic particles with the two substrate: slippery
glass or rough foam.

— 2 cm acrylic particles on glass with or without vibration.

— slippery 2 cm acrylic particles or rough 2.5 cm nylon
particles.

— nylon particles, changing the arm length: 2.5, 5 or 10 cm
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Fig. 4 (color online) Ratio r of collapsed particles as a function of
the scaled cylinder height /s for two different cylinder diameters:
8 = 7.7 cm for the inset graph and § = 15.4 cm for the main panel. In
both cases, experiments were made in different situations: (blue) acrylic
2 cm particles on a slippery glass base (experiment A1), (red) vibrated
acrylic particles on glass (experiment N2), (green) acrylic particles
on a rough foam base (experiment N3), (cyan/purplelyellow) nylon
10/5/2.5 cm particles on glass (experiment N4, 6, 7). Plain curves were
fitted with Eq. 2 and error-bars have been removed by sake of clarity

Figure 4 shows that there is only a slight increase of the pile
stability when the base is changed from glass with friction
coefficient ~0.5 to foam with friction coefficient higher than
10. Hence, the frictional coefficient of the substrate does not
influence the pile stability significantly. However, as shown

in the inset of Fig. 4, vibrating the system during the prepara-
tion measurably increases the stability of the pile by shifting
the ratio curve rightward. As shown in the main panel, this
effect is weaker for higher pile diameters. This stabilization
effect may be due to the fact that in the case of larger 4,
more particles are poured, which acts in a similar manner to
externally applied vibration.

Figure 4 shows that increasing the friction coefficient
between particles (from 0.4 to 1) dramatically increases the
value of the critical height h.. Note that the size differ-
ence between acrylic (2 cm) and nylon (2.5 cm) particles
is too small to affect stability. Even with the smaller tube
(6 = 7.7 cm), we did not observe instability for our tallest
piles (b, = 30 cm) for 2.5 cm nylon particles, whereas
he =~ 14 cm for acrylic particles. We did not observe any
stabilisation effect due to the particle size, but the inset of
Fig. 4 shows that 5 cm nylon particles are less stable than
2 cm acrylic stars, even if the friction coefficient is larger
and the arms longer. This is only observed for § = 7.7 cm,
and is due to the fact that the diameter of the pile is compa-
rable to the particle size. The base of the structure is reduced
to too few particles to be stable.

To more accurately analyse the effect of the particle rough-
ness and vibration, Fig. 5c and E show the stability phase
diagram for vibrated piles of 2 cm acrylic particles and 2.5 cm
nylon particles from experiments N2 and N4 respectively.
Fits of Eq. 2 to the data yield h.(§) for these two configura-
tions, as in Fig. 5a.
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=l : - oz S
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025 = 20}, = § = &
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= 0 12 14 16 g g
.%020 - §
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= 40F 1 2
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Fig. 5 (color online) Effect of vibration and friction on stability, for
experiments A1, 2, 4, 5 a Critical stability height ¢ measured from the
fitting of Eq. 2 as a function of the cylinder diameter § for different pack-
ing configurations: vibrated (red) and not vibrated (blue) 2 cm acrylic
particles on glass, vibrated (pink) and not vibrated (yellow) 2.5 cm
Nylon particles on glass. Plain lines are curves fitted with Eq. 3. b/d:
ratio r of collapsed particles as a function of the pile height # normal-

10 12 diameter, §/s

6 8
height, h/s

ized by the particle size s for different height of vibrated acrylic/2.5 cm
nylon particle piles and different cylinder sizes §/s. Plain curves are
the fit of the data with Eq. 2. ¢ Stability phase diagram for vibrated
acrylic particles. e Stability phase diagram for vibrated 2.5 cm nylon
particles. The ratio r of collapsed particles is plotted as a function of
the normalized pile height 2 /s and the normalized pile diameter §/s
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Fig. 6 (color online) Inset density p of vibrated 2 cm acrylic particle
piles (particles per cm?) as a function of the pile height (4 /) for different
pile diameters. Main panel effective pile density p measured correcting
the side effects according to Eq. 4 with A, = 0.75. Measurements are
from experiment N2

As suggested by Figs. 4 and 5a shows that vibration
improves the pile stability, even if the effect is weaker for
highly frictional particles and for larger §. Nevertheless, it
appears that the system parameter that has the largest effect
on the system stability is the the inter-particle friction coef-
ficient. Indeed, these figures confirm that increasing friction
between particles dramatically improves the pile stability,
whatever the pile dimensions, and very significantly shifts
the h.(8) curve upward. To provide a quantitative analysis,
we fitted these curves to:

he = K (8 — s0)”, )

where K quantifies the overall stability of the packing, B
quantifies the effect of the pile diameter and sp, of the same
order of magnitude as the particle size s, gives the smallest
possible diameter. We note that K is larger for vibrated sys-
tems and for rough particles, and that § is smaller for vibrated
systems than for non-vibrated ones.

To better understand the higher stability of vibrated sys-
tems, we computed the global density, p, of the 2 cm acrylic
particle piles for the non-vibrated (experiment A1) and
vibrated (experiment \/2) systems of different diameters and
different heights. In the inset of Fig. 6 these data are plotted
(p(h, 6)) in the case of vibrated piles. The density seems to
vary substantially with § and saturate only for large height.
This is due to boundary effects, since the local density is
reduced close to the edges of the cylinder. This can easily be
corrected in Eq. 4 by removing part of volume near the edges
when computing p:

n

2
w(h — Ay) (5 _ZA’)

= @)

InEq. 4, A, quantifies how much of the edge volume must be
removed. It is comparable to an arm length, and is computed
to optimize the collapse of the data in Fig. 6 (A, = 0.75 cm
~ 3/8-particle size). With this correction, we find that the
density is effectively constant, with an average value in the
non-vibrated case of p = 1.6 & 0.04 cm™3, and in the
vibrated case of p = 1.740.03 cm 3. Assuming that particle
neighbors are located roughly isotropically, this implies that
the average interlocking distance between particles changed
from to 3.70 mm to 3.57 mm when the packing was vibrated.
Hence, a variation of the interlocking distance as small as
0.13 mm can have a very significant impact on the pile sta-
bility as emphasized by Fig. 5.

3.2 Destabilization of piles

In order to study other modes of destabilization, we mixed
beads among the particles. The total number of particles in
the system was kept constant (2300) but the number ratio
between 2 cm acrylic particles and 0.95 cm diameter acrylic
beads was varied from 0 to ~ 6% in experiment /8. We
chose 0.95 cm diameter beads because their radius corre-
sponds to the length of a particle arm. Such a spherical
particle can be completely contained in the arms of a star
particle, hence weakening the interlocking of the star parti-
cles. Also, the bead volume was low enough not to create a
strong height variation as we changed the fraction of beads
(h ~ 12.5 cm). In Fig. 7, we show that the addition of
spheres indeed decreases the stability of the pile by linearly
increasing the fraction of collapsed particles to beads in the
total packing. Similarly, the fraction of collapsed beads also
increases linearly with the total fraction of beads. Neverthe-
less, beads are always destabilizing, since the collapsed bead
fraction is always higher than the collapsed star ratio.

70 T T T T T

60 — beads 4
— stars

50 .
40

30} :
20t :
10t :

0 1 P 3 4 5 6
ratio of beads (%)

ratio of collapsed particles (%)

0

Fig. 7 (color online) Fraction of collapsed beads (0.95 cm diameter
acrylic beads) to the total number of beads (blue) and ratio of collapsed
particles (2 cm acrylic particles) over the total number of particles as a
function of the ratio of beads in the 2300 particles packing. Measure-
ments were made from experiment A'8
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Fig. 8 (color online) Tilt angle 6 (see Fig. 2c) for the collapse of the
initial particle and for the final collapse as a function of the pile height.
Inset Collapse ratio r for first and main collapse. Experiments were
carried out with 2 cm acrylic particles in a 13 cm diameter cylinder

WN9)

Stable systems can also be unbalanced by tilting. Slowly
tilting a stable pile of 2 cm acrylic particles induced an initial
small collapse of a few particles, corresponding to a small
initial rearrangement of the pile. With increasing tilt, this
was followed by a series of other small collapses, leading to
a final major failure that was system-spanning. The tilting
experiment, N9, was carried out with a 13 cm diameter tube
on arough foam substrate for various /. Figure 8 presents the
evolution of the initial and final collapse angles, 6 (h) vs. h.
The initial collapse occurred early in the tilting process and
is clearly separated from the last one for low enough h.
But, for higher /4, the gap between initial and final collapse
angles coalesced, and there was only one large collapse. The
inset of Fig. 8 shows the ratio of particles lost by the pile
after the first and last collapses. As & increased, the angu-
lar gap between the two collapses decreased and the ratios
of collapsed particles converged, i.e. the first and last col-
lapses converge in both angle and intensity. Also, as expected,
whether the criterion of stability is the first or last collapse
angle, the critical angle rapidly decreased with increasing pile
height.

We also carried out tilting experiments with fixed pile sizes
(§ = 15.4cmand & = 19 cm) and varying particle sizes. We
used nylon particles with arm lengths s = 2.5, 5 and 10 cm
(experiments N10, 11, 12 respectively). Due to their high
friction, nylon particles tended to fall over as a rigid body
at the collapse angle, corresponding to an imbalance of the
pile center of mass. The final angles of collapse are given in
Table 3 which shows that the longer the arms, the less stable
the pile. This is due to the fact that the larger the particle, the
less contact points there were between the pile and the base
and the lower the stability.

Table 3 Angle of collapse for piles with # = 19 cm and § = 15.4 cm
and different nylon particle size

Particle size (cm) Collapse angle (°)
2.5 29.2
5 25.0
10 14.7

Results from experiments A'10, 11, 12
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Fig. 9 Maximum mass, m, supported by a stable 13 cm diameter pile
before collapsing, as a function of the scaled pile height (2/s). The
loading is given as a fraction of the pile mass. Non vibrated 2 cm acrylic
particles were used on a glass base (experiment \'13)

In the third and last exploration, we prepared piles and then
loaded them vertically. Following our previous preparation
protocol, we prepared stable piles of 2 cm acrylic particlesina
tube of 13 cm diameter, and slowly loaded them vertically. In
this case, the collapse happened as a single event at a critical
loading mass m. Data for m versus h in Fig. 9 shows that m
decreases sharply with /. Also, we note, comparing this graph
with data from Fig. 5a, that the mass to make a pile collapse is
higher than the mass of additional particles needed to make it
collapsed because it is too high. For example, considering the
case where m = m, (for h/hg & 7.4), if the stabilization
process was just a matter of vertical loading, this would mean
that & should be h./s =~ 15, whereas Fig. 3 indicates that
itis h./s =~ 11. This implies that a pile does not collapse
because it cannot support its own weight, but because of low
cohesion of the particles when the pile becomes too high.

4 Discussion and conclusions

We have shown experimentally that star-shaped particles can
form stable cylindrical aggregates whose height can be more
than three time larger than the base diameter. The stabil-
ity of these aggregates was tested with and without loading
and tilting for particles spaning a broad range of arm sizes
and frictional properties. For a given type of star, the col-
umn critical height, A, rapidly increased with the diameter



24  Page 8 of 8

Y. Zhao et al.

of the base, §, when the latter was comparable to the par-
ticle size, but plateaued for larger diameters. This means
that to increase the height of a cylindrical aggregate one can
adjust the base diameter somewhat, but it is more effective
to increase the particle size to keep it just smaller than §.
There are other ways to increase the critical height. First, by
increasing the friction of the base, the first particle layer is
stabilized, which in turn, stabilizes the whole structure. In
general, fixing the first layer is a good way to increase the
stability of the whole aggregate. Second, by vibrating the
system while raining in the particles, the packing fraction
increases, and the distance between particles decreases which
also enhances stability. This is particularly the case if the sys-
tem is small, because less shaking energy is required to create
rearrangements. Thus, not only is the intrinsic geometry of
the system important, but also, the preparation method can
improve the aggregate stability. Third, as long as the parti-
cle size remains significantly smaller than the pile diameter,
using larger particles also increases the stability. But, this
effect reverses when the particles become comparable to the
cylinder diameter because the effective base of the pile (diam-
eter minus arm length) vanishes. Fourth and finally, the most
important parameter for stabilizing a packing, keeping other
properties constant (geometry and preparation), is the inter-
particle friction coefficient. For instance, we found for a given
cylinder diameter and particle friction coefficient ~ 1, that
a stable aggregate can be more than two times higher than
for a friction coefficient of 0.4. Hence, the choice of material
or surface properties for the particles for the present experi-
ments is certainly the most important parameter to obtain a
tall stable aggregate.

Star-shaped particle aggregates that are stable initially, can
sustain destabilization effects, within limits. First, adding a
certain fraction of beads with the stars leads to a less stable
packing, then when there are no beads. Conversely, it follows
that adding non-convex particles to spheres can help stabi-
lize the packing, although we have not investigated the high
sphere-fraction limit. Second, stable cylindrical packings
collapse via a succession of avalanches when slowly tilted.
The collapse angles vary nearly linearly with pile height.
This suggests the possibility of creating structures with more
complex aggregate geometries, than purely cylindrical and
vertical. Third, and finally, a stable packing of star-shaped
particles can support up to twice its own weight. However,
the ability to support added weight decreases rapidly with
pile height.

The data for the acrylic particles constitute a baseline,
laboratory-scale exploration, specifically focusing on the
issue of pile stability. To create taller, architectural-scale
structures, including freestanding walls, arches and domes
[8], the same type of star-shaped particles but with higher fric-
tion can be used. The results reported in this work represent
a step forward in the knowledge of both architectural design

and granular science. It gives a better understanding of the
self-sustained stability of non-convex 3D particles and their
ability to form vertical structures, while it permits a widening
of possible design applications. In addition to the scientific
aspects, we believe this work constitutes a "handbook’ of
mechanical rules to improve the design of aggregated struc-
tures by giving methods to make them stronger, more stable
and more reliable.
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