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ABSTRACT

Hyperspectral images provide fine details of the scene under analysis in terms
of spectral information. This is due to the presence of contiguous bands that make
possible to distinguish different objects even when they have similar colour and
shape. However, neighbouring bands are highly correlated, and, besides, the high
dimensionality of hyperspectral images brings a heavy burden on processing and
also may cause the Hughes phenomenon. It is therefore advisable to make a band
selection pre-processing prior to the classification task. Thus, this paper proposes a
new supervised filter-based approach for band selection based on neural networks.
For each class of the data set, a binary single-layer neural network classifier per-
forms a classification between that class and the remainder of the data. After that,
the bands related to the biggest and smallest weights are selected, so, the band
selection process is class-oriented. This process iterates until the previously defined
number of bands is achieved. A comparison with three state-of-the-art band selec-
tion approaches shows that the proposed method yields the best results in 43.33%
of the cases even with greatly reduced training data size, whereas the competitors
have achieved between 13.33% and 23.33% on the Botswana, KSC and Indian Pines
datasets.

KEYWORDS
Band selection; neural network; dimensionality reduction; hyperspectral image;
k-nearest neighbours.

1. Introduction

Hyperspectral images (HSI) have tens and sometimes even hundreds of spectral bands
and so provide more information about a scene than, for example, RGB and multispec-
tral images, which have fewer bands (Xia et al. 2017; Xu, Li, and Li 2017). In practical
terms, more spectral information allows better identification of objects, which can be
distinguished even where they have similar colors and shapes (ElMasry and Sun 2010).

Multispectral and hyperspectral sensors are similar in terms of collecting informa-
tion outside the visual spectral range. What makes them different is that multispec-
tral sensors have spaced bands in the spectral range, whereas in HSI sensor technol-
ogy, the bands are contiguous, providing finer details about the scene under analysis



(Schowengerdt 2006). However, contiguous bands tend to be highly correlated, and this
creates a large amount of redundant information (Cao et al. 2017a). Moreover, in fea-
ture spaces with high dimensionality —resulting from numerous spectral bands—the
data points become sparse, which impairs the ability of the classifier to generalize
when insufficient training data are provided (Cover 1965; Theodoridis and Koutroum-
bas 2008). A lack of training data affects some classifiers, such as those based on Deep
Learning (DL) (Schmidhuber 2015). Normally, deep architectures have several param-
eters to be adjusted. However, these classifiers are very sensitive to the ratio between
training patterns and free classifier parameters, which can lead to overfitting. These
various drawbacks represent a challenge in a number of remote sensing data analysis
problems. For this reason, HSI data classification normally includes a preprocessing
step to reduce data dimensionality (Dong et al. 2017; Luo et al. 2016).

A commonly used method for dimensionality reduction is the so-called feature ex-
traction (Liu et al. 2017; Ren et al. 2017; cal, Ergn, and Akar 2017). It transforms
the original features into new ones by combining the spectral bands. Normally, the
new features belong to a much lower dimensional space, while retaining much of the
original data variance. A very popular feature extraction technique is the Principal
Component Analysis (PCA) (Jiang et al. 2016; Bishop 2006). PCA seeks to project the
original data into a lower dimensional orthogonal space whose axes are a linear com-
bination of the original axes, such that most of the data variation is concentrated in
the first new features —also called Principal Components. Feature extraction changes
the original data representation, which can hamper the post-processing analysis when
the physical meaning of individual bands needs to be maintained (Feng et al. 2017;
Khalid, Khalil, and Nasreen 2014).

Another popular approach for dimensionality reduction is feature selection, which,
in the realm of hyperspectral images, can also be called band selection (BS) (Cao
et al. 2017a, 2016). Like feature selection, BS seeks to reduce the dimensionality of
the original data while retaining as much information as possible. For classification
purposes, it is also important that a BS method can choose the correct bands to
provide a good class separability (Jahanshahi 2016; Marino et al. 2015). The advantage
of band selection is that it retains the original bands, what makes the results more
interpretable (Li and Liu 2017).

Band selection methods can be subdivided into two branches: groupwise selection
methods (Yuan, Zhu, and Wang 2015) and pointwise selection methods (Serpico and
Bruzzone 2001; Du and Yang 2008). Under the groupwise selection approach, the whole
set of spectral bands are separated into many subsets, and the finally selected bands
are drawn from those subsets (Martnez-UsMartinez-Uso et al. 2007).

Pointwise methods perform band selection without partitioning. Those methods
can be subdivided into two approaches: subset search and band ranking. Subset search
methods (Su et al. 2014) generate the final set of selected bands by adding new bands
to a initially empty set—sequential forward selection—, or it can remove bands from
a set containing all the spectral bands, constituting a sequential backward selection
(Theodoridis and Koutroumbas 2008). Band ranking methods assign weights to each
band, based on a previously chosen criterion, and then the bands related to the biggest
weights are selected (Chandra and Sharma 2015).

Normally, BS methods are used either as a preprocessing step before the classifier,
or they perform their task during the classification process. The former approach,
called filter method, has no relation with the classifier. Its main advantage is a shorter
processing time than for wrapper-based approaches. The main drawback is that the
feature selection is not done by the classifier, which generates suboptimal results (Sha-
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hana and Preeja 2016; Molina, Belanche, and Nebot 2002). The other method is called
wrapper method. In this scheme, the feature selection algorithm is embedded in the
classifier’s training phase. Once a band is inserted into the subset of selected bands
or removed from it, the classifier needs to be trained again in order to evaluate this
new subset. The main drawback of wrapper methods is therefore their excessive com-
putational cost. The positive aspect is a better classification accuracy that may be
obtained (Shahana and Preeja 2016; Molina, Belanche, and Nebot 2002).

One problem often faced by researchers on hyperspectral aerial images is the paucity
of available training data with ground truth information. Some existing approaches
seek to perform BS in a unsupervised fashion (Cao et al. 2017b; Wang et al. 2017b;
Xu, Shi, and Pan 2017; Wang et al. 2017a; Sui et al. 2015), and the selection of bands
can be done by ranking, clustering (Su and Du 2012), or searching methods (Sun et al.
2017). However, when there are images with ground truth, it is possible to perform a
supervised band selection.

The method proposed in this paper is a filter-based and supervised approach. For
each class of the problem, we use a single-layer neural network (SLN) to perform a
binary classification in a one versus all fashion. Then the bands related to the smallest
and biggest weights are selected, and highly correlated bands to those already selected
are automatically discarded from the data set, following a methodology also proposed
in this paper. In this way, highly redundant information can be discarded. The process
iterates until a previously determined number of bands is reached.

Assigning labels to HSI pixels is a highly time consuming task. Thus, we restricted
the proposed algorithm to work with only 20% of the available training data.

The contributions of this paper can be summarized as follows:

• It is a novel and easily implementable framework for HSI band selection based
on single-layer networks;
• It is a class-oriented band selection approach. That is, the BS process takes into

consideration the intrinsic characteristics of each class, by selecting the most
discriminating bands between that class and the remainder of the classes;
• We propose to select the bands directly related to the biggest and smallest

components of the hyperplane that separates a one-vs-all scheme;
• A new methodology is proposed to avoid highly correlated bands during the

band selection process; and
• We compare the proposed methods with three state-of-the-art band selection

algorithms and do valuable comparisons between filter and wrapper-based ap-
proaches.

2. Literature Review

Hyperspectral band selection techniques can be split into three major branches,
namely, supervised, unsupervised and semi-supervised approaches. Since the proposed
method is supervised, we will cite in this Section only supervised and semi-supervised
works.

Furthermore, it is still possible to subdivide the existing works into filter and wrap-
per approaches.

The wrapper methods perform the band selection based on the accuracy of the clas-
sifier. For example, (Monteiro and Murphy 2011) propose a band selection framework
for hyperspectral images using boosted decision trees (DT). Several DTs are gener-
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ated and the most recurrent features are selected. In (Fauvel et al. 2015), a method
that iteratively selects spectral bands that will be assessed by a Gaussian Mixture
Model classifier is proposed. The bands selection is made by a method called non-
linear parsimonious feature selection. One positive aspect of the proposed framework
is the selection of few bands—about 5% of the total quantity. In (Cao, Xiong, and
Jiao 2016), the authors propose a BS framework based on local spatial information.
Initially, the subset of selected bands is empty, and at each iteration a band is added
to it. Then, this subset is used as input to a Markov Random Field-based classifier.
Based on the local smoothness, the last inserted band is accepted or discarded. Due
to the paucity of the training data, this method could not achieve better results than
its competitors. In (Zhan et al. 2017), a framework based on Convolutional Neural
Networks (CNN) and Distance Density (DD) is proposed. In this case, DD is used, in-
stead of random search, for the selection of the candidate bands, which are assessed by
a CNN classifier. Experiments show that the DD-based BS is faster than its random-
based counterpart. In (Bris et al. 2014), the authors address the problem of designing
superspectral cameras dedicated to specific applications. Thus, they seek to find the
best number of bands and the most useful spectrum regions suitable for their ne-
cessities. For this, they use two different band selection methods, namely, Sequential
Forward Floating Search and Genetic Algorithm-based approach. The classifier used
is a Support Vector Machine (SVM). In (Su, Cai, and Du 2017), the authors pro-
posed a wrapper-based framework using extreme learning machine as classifier. Both
the selection of bands and optimization of classifier’s parameters are performed by an
evolutionary optimization algorithm called Firefly. In (Ma et al. 2017), it is proposed a
framework that measure the band importance by means of gain ratio, then the bands
subset is evaluated by polygon-based algorithm with SVM. The authors use not only
spectral data, but also other types of features.

When it comes to filter-based approaches, there are some different criteria for the
band selection, such as, distances measures (Keshava 2004), class separability mea-
sures (Cui et al. 2011), information, dependence (Camps-Valls, Mooij, and Scholkopf
2010), correlation, searching strategies (Jahanshahi 2016; Su, Yong, and Du 2016) and
classification measures (Habermann, Fremont, and Shiguemori 2017). For example, in
(Damodaran, Courty, and Lefevre 2017), the authors propose a class separability-based
approach. To be more precise, a new class separability measure based on surrogate ker-
nel and Hilbert space independence criterion in the kernel Hilbert space is devised.
Then, the proposed class separability is used as a objective function using LASSO
optimization (Hastie, Tibshirani, and Wainwright 2015). The authors claim that this
framework allows the selection of spectral bands to increase the class separability,
thus avoiding an intensive subset search. In (Jahanshahi 2016), the author proposes a
framework for hyperspectral band selection based on an evolutionary algorithm to per-
form the band selection, and then he uses a SVM classifier to assess the selected band
subsets. The BS step is performed by Multi-Objective Particle Swarm Optimization,
which ranks the bands according to the relevance between each band and the ground-
truth information. In (Su, Yong, and Du 2016), the authors propose a framework that
uses Firefly algorithm for the selection of bands. The bands subsets found during the
search are evaluated by Jeffreys-Matusita distance. In (Das 2001), the author lists
some of the pros and cons of wrapper and filter methods for feature selection, and
proposes a filter-based forward selection algorithm that shares some common features
with the wrapper method. The proposed framework uses boosted decision stumps.
Over series of iterations, the features that correctly predict the classes’ labels are cho-
sen. In (Patra, Modi, and Bruzzone 2015), the authors propose a BS framework based
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on Rough Set theory (RST) (Pawlak 1992), which has already been applied in image
classification tasks (Pessoa, Stephany, and Fonseca 2011). RST is a paradigm to deal
with vagueness, incompleteness and uncertainty of data. Firstly, informative bands
are selected by RST, based on relevance and significance. Comparison of classification
results shows that this method outperforms its competitors when a small number of
bands is selected.

Normally, researchers working on the supervised band selection area have to devise
methods capable of handling few training data. It may be a challenging issue for filter-
based methods based on classification and class separability measures. For wrapper
approaches, the paucity of training data poses worse problem, since such methods rely
exclusively on classifiers to generate results. So, in order to alleviate this inconvenience,
unlabeled instances are added to the training data, constituting, thus, a semisupervised
model. In (Bai et al. n.d.), the authors propose a framework based on spectral-spatial
hypergraph model. Firstly, the method builds a hypergraph model using all data to
measure the similarity amongst pixels. Then, a semisupervised learning algorithm is
used in order to assign class labels to unlabeled samples. After that, the selection of
bands is performed by a linear regression model that uses group sparsity constraint.
Finally, the selected data are used to train a SVM classifier. This method has the
advantage of using the spatial information of pixels. In (Bai et al. 2015), the authors
assert that most band selection methods do their job taking into consideration all the
classes at the same time, and this could result in suboptimal band subset choice. Then,
a framework that selects bands for each class in a pairwise fashion is proposed. Initially,
the Expectation-Maximization (EM) algorithm is used to calculate the mean vectors
and covariance matrices of each class. Then, for each pair of classes, Bhattacharyya
distances are calculated and the best bands subset is chosen. After that, a binary
classifier is embedded into the ME process in order to get the posterior probabilities
of instances, based on the selected bands. Finally, all the binary classifiers are fused. In
(Jiao et al. 2015), the authors propose a semi-supervised framework based on affinity
propagation, which is an exemplar-based clustering method. For the bands selection,
bands correlation and bands preference are taken into account. In the paper, a new
normalized trivariable mutual information is devised to measure band correlation. Due
to the noisy bands the clustering step is disturbed, so a new method based on Statistics
is devised, that is, the mean value of the neighbouring bands correlation is compared
to the correlation between two contiguous bands in order to find bands bearing low
information. Finally, the framework is capable of selecting informative bands, whereas
it can discard redundant ones.

3. Proposed Framework

3.1. Definitions

Let X be the data set corresponding to a hyperspectral image, where each element of
X is a tuple (x i, yi), and x i ∈ Rd×1 is a vector containing a spectral signature and
yi ∈ {1, 2, ..., q} is its corresponding class—or label; where q is the number of classes
cj , with j = 1, 2, ..., q, and d is the dimensionality of the feature space F.

Let S be the set of selected bands, and G the set containing bands highly correlated
to those in S. Let A be the set containing the original spectral bands ak, with k =
1, 2, ..., d0; where d0 is the original quantity of bands. And let σ be the previously
determined number of bands to be selected.
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Figure 1.: Flowchart of a filter approach. The band selection takes place before the
training phase of the classifier.

Finally, let f : F −→ t be a single-layer neural network, where t = {0, 1}, and the
feature space F initially equals to A and updated by A \ (S ∪G) after each iteration.
The input to f is a vector x and its output is a scalar given by

t̂ = f(z) =
1

1 + e−z
, (1)

with z = wTx + b, where w ∈ Rd×1 and b are the weights and bias of the neural
network, respectively.

According to (1), t̂ ∈ [0, 1], and in order to assign a binary value to it, the following
criteria are adopted:

If z < 0 =⇒ f < 0.5 =⇒ t̂← 0, and (2)

if z ≥ 0 =⇒ f ≥ 0.5 =⇒ t̂← 1. (3)

From (2) and (3), it is clear that the signal of z determines whether an input vector
is to be assigned to class 0 or to class 1.

As the input data is normalized into [0, 1], the coefficients wl ∈ w , with l = 1, ..., d,
in the hyperplane equation

z = x1iw1 + x2iw2 + ...+ xdiwd + b (4)

play an important role in determining the signal of z, and, as a consequence, the
estimate t̂i for x i.

The cost function of this single-layer network is cross-entropy, and the training is
done by stochastic gradient descent, using the back-propagation algorithm.

3.2. Detailed description

The proposed method follows a filter-based approach, that is, it takes place before the
classifier training phase, as illustrated in Figure 1.

Our framework is also based on a sequential forward selection approach, meaning
that it starts with an empty subset, i.e., S = ∅, to which the bands selected from A
will be added. As it is based on single-layer neural networks, we call it SLN, whose
characteristics are described below.
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3.2.1. Iterations

SLN is an iterative class-oriented band selection method that starts at class c1 and
ends at the last class, that is, cq. At each iteration a binary classification problem is to
be solved by the function f . At iteration j, for j = 1, 2, ..., q, two groups, class j-vs-all,
are to be separated by a hyperplane defined by w and b, where the class j is composed
of all x i ∈ X with yi = j, and the remainder of the data is a balanced compo-
sition of all x i ∈ X whose yi 6= j. The total amount of iterations is always denoted as q.

3.2.2. Bands selection

After the training of the single-layer network, it is possible to assign degrees of per-
tinence to all ak ∈ A \ (S ∪ G). Since every element xl of x is directly linked to
wl, the value of wl is a token for the band al. This is the reason why we choose a
single-layer neural network for BS. Deeper architectures would create more complex
relationships among weights and spectral bands, thus, the consequent band selection
based on weights magnitudes would not be a straightforward task. Besides, architec-
tures with hidden layers have more parameters to be adjusted, and it would demand
more training data.

Note that our interest is not on the hyperplane defined by z in (4), but on how the
weights affect the signal of z, as in (2) and (3). The z signal determines the binary
class of an input vector x . Thus, our focus is not on the classification itself, but on
the behavior of the features.

In (4), the largest and the smallest—the negative value with the biggest magni-
tude—weights make the most important contributions to the signal of z. For this
reason the bands corresponding to these weights are also considered as the most im-
portant, and, consequently these bands are added to the set S. This band selection
strategy has, at least, two advantages:

• This method selects the most discriminant bands for the one-vs-all cases; and
• It is possible to assign either 0 or 1 to the class of interest during the training

of the single-layer neural network.

After each iteration, the feature space F is updated by A\(S∪G), and this procedure
is repeated until the last class. In this way, each class chooses its most discriminant
bands.

3.2.3. Avoiding highly correlated bands

By definition, the bands of a hyperspectral image are contiguous, which implies a high
correlation between neighbouring bands (Schowengerdt 2006). In Figure 2 this fact is
depicted, emphasizing the high correlation amongst neighbouring bands, taking the
band 72 as reference.

Based on this fact, it is possible to devise a method to avoid the selection of highly
correlated bands. Thus, for each band ak ∈ F we build a vector vk, in such a way that
its elements are the bands indices in a descending order in relation to the correlation
to the band ak. That is, vk(1) is the index of the band avk(1), which is the most
correlated to ak.

Finally, the following procedure is adopted:

• At a given iteration, some band ak will be selected, so S← ak;
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Figure 2.: Correlation values of spectral bands in relation to the band 72, indicated
by the yellow vertical line, of the Botswana image. The higher degree of correlation
amongst neighbouring bands compared to more distant ones is evident.

• G← avk(1), where G is initially an empty set; and
• After the iteration, the feature space F is updated by A \ (S ∪G).

It is worth noting that only ak ∈ S will be the selected bands, and the bands in G
are discarded.

3.2.4. Number of selected bands

The number σ of selected bands is user-defined. Thus, for each class cj , with j =
1, 2, ..., q, a number of round(σ/q) bands can be selected, where round() is an operator
that rounds up the value of its argument to the next integer. Sometimes, at the end
of the BS process, |S| > σ. In such a case, it is possible to use the k-means algorithm
(Su et al. 2011) to select the σ sought bands.

It is worth noting that, at the end of the proposed band selection process, |S| = |G|.
Thus, |S| + |G| ≤ d0, and, consequently, |S| ≤ d0/2 is a requirement that must be
met, where d0 is the original number of bands. In other words, this means that the
maximum amount of bands that the proposed method is capable of selecting is the half of
the total amount of original bands. In practice, however, this limitation is not supposed
to impair a BS process due to, at least, two reasons: i) the high correlation amongst
neighbouring bands, permitting a certain band to bear its neighbours’s information;
and ii) in order to avoid either heavy processing burden or Hughes phenomenon (Sun
et al. 2016), it is desirable to greatly decrease the dimension of the input data.

There is no minimum limit of bands to be selected. However, when σ < q, not all
the classes can contribute to the band selection. In this case, suboptimal results may
be achieved.

Algorithm 1 summarizes the steps followed by our SLN approach.
Figure 3 depicts the proposed method. For each class cj , in Figure 3(a), a binary

one-vs-all classification is performed between class cj and the remainder of the data
set. In Figure 3(b), the bands ak corresponding to the largest and smallest weights are
then added to set S, and, in Figure 3(c), the highly correlated bands avk(1) are added
to set G. Finally, in Figure 3 (d), the feature space F is updated to A \ (S ∪G). This
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Algorithm 1: Proposed band selection framework.

1: Input : X, F = A, S = ∅, G = ∅, q and σ.
2: for r = 1 : q do
3: - Assign the value 1 to samples that belong to class cr, and the value 0 to a

balanced composition of the remaining classes
4: - Use f : F −→ {0, 1} to find a separating hyperplane z between class cr and

the remaining classes of the data set
5: - Identify the round(σ/q) bands a ∈ F related to the largest and smallest
w ∈ w , and insert their indices in the temporary set S0

6: for k=1:round(σ/q) do
7: S← aS0(k), and G← avS0(k)(1)

8: end for
9: S0 = ∅

10: F = A \ (S ∪G)
11: end for
12: if |S| > σ then
13: - Use k -means algorithm to select σ bands
14: end if
15: Return: S

process iterates from the first class, c1, until the last class, cq.

4. Experiments and Results

In this Section, the bands selected by the proposed method and their subsequent
classification accuracies by two classifiers are shown and analyzed.

Before that, the datasets used in this paper are presented. Also, the classifiers used
to obtain the results will be shortly described, as well as the three competitors used
to compare results.

Three hyperspectral images will be used: i) Botswana; ii) Indian Pines; and iii)
Kennedy Space Center.

Figure 3.: Flowchart of the proposed SLN method.
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4.1. Hyperspectral Datasets

• Botswana: This image has a spatial resolution of 30 m. It has 145 bands covering
the 0.4− 2.5 µm range with a spectral resolution of 10 nm. The Botswana image
comprises 1476× 256 pixels, with 14 classes to be classified.
• Kennedy Space Center (KSC): The spatial resolution of this image is 18 m.

The KSC image comprises 512 × 614 pixels and has 176 spectral bands. There
13 classes to be classified.
• Indian Pines: This scene was acquired by the AVIRIS sensor over the Indian

Pines test site in north-western Indiana. It consists of 145 × 145 pixels and
224 spectral reflectance bands in the 0.4− 2.5 µm wavelength range. The image
contains two-thirds agriculture, and one-third forest or other natural perennial
vegetation. Regarding the ground truth, there are 16 classes.

4.2. Classifiers

One way to compare the output of the different band selection methods is to perform
a classification of the data sets using their respective selected bands as input.

To this end, we chose two classifiers largely used in hyperspectral images classifi-
cation, namely, k-nearest neighbours (KNN) and Classification and Regression Trees
(CART) (Theodoridis and Koutroumbas 2008; Duda, Hart, and Stork 2001). Since the
focus of this paper is on the relative comparison amongst different BS methods, we
restrict the analysis to these two classifiers.

4.2.1. KNN

The k-nearest neighbours approach is a nonparametric classifier. It takes into con-
sideration the spatial relationship amongst data points. Each new entry is classified
according to its k-nearest neighbours in the feature space, being assigned the label
of the majority. Different k values lead to different outcomes, so, in order to find the
most suitable number of neighbours, for each k = n, with n ∈ {1, 2, ..., 25}, the KNN
classification using the three images described in Section 4.1 has been performed. Each
image has been analyzed separately, and the mean results are shown in Figure 4. All
the spectral bands were used in order not to favor any BS method compared in this
work. The best accuracy for the Botswana dataset is achieved with k = 5. For the KSC
image, the best number of neighbours is k = 10. And k = 7 yields the best outcome
for the Indian Pines dataset. These parameters will be kept throughout this paper.

4.2.2. CART

Classification and Regression Trees is a nonparametric classifier based on Decision
Trees. Basically, it defines features thresholds in order to split the feature space into
homogeneous regions. For the classification of a new entry, its features are analyzed
according to the previously learned thresholds, and its label will be assigned according
to the feature space region this entry falls into.

4.3. Related Works for Comparison

Results obtained by the proposed approach in this paper are compared with results
from three state-of-the-art supervised band selection approaches. The framework we
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(a) (b)

(c)

Figure 4.: KNN mean classification accuracies with different numbers of neighbours.
In (a), the best number of neighbours (red dot) k for the Botswana image is k = 5. In
(b), the best number of neighbours is k = 10. And in (c), k = 7.
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propose is based on Machine Learning, so, for the sake of a more diverse comparison, we
chose methods from three different branches, namely Statistical Models, Evolutionary
Algorithms (EA) and Image Processing (IP).

4.3.1. Statistical Models-based Approach

In the first method (Feng et al. 2017), the authors propose a framework that uses
Non-homogeneous Hidden Markov Chains (NHMC) and wavelet transform as tools for
band selection. Spectral signatures are first processed by wavelet transform, which is
capable of encoding compactly the locations and scales at which the signal structure
is present. A zero-mean Gaussian mixture model is then used to provide discrete
values for the wavelet coefficients. The more Gaussian components used, the greater
the detail in the descriptors generated. However, the authors demonstrate that the
accuracy obtained using just two Gaussian components is usually only 1% less than
where multiple Gaussian components are used and therefore in this paper, we have
limited ourselves to two in order to reduce the computational load. Since wavelet
coefficient properties can be accurately modeled by a NHMC, this Hidden Markov
Chain is also used. Processing yields a set of candidate bands, among which those
with the highest score in terms of correlation form the final output of this framework.
The authors use an SVM classifier to measure the accuracy of the resulting bands.

This is a filter-based method, because the selection of bands is done before the
classification is performed by SVM. It is also a sequential search algorithm, performing
a sequential forward selection.

4.3.2. EA-based Approach

The second method is based on EA (Saqui et al. 2016). More precisely, it uses a Genetic
Algorithm (GA). Normally, GA methods use three operators: Selection, crossover and
mutation of individuals. Each element of the population is a binary vector v ∈ N1×d0

—also called chromosome —where d0 is the number of spectral bands in the image.
Each component, or gene, vk in v indicates the presence of the kth band when vk = 1.
At each generation of the algorithm, the population is evaluated by the fitness function,
which is a Gaussian Maximum Likelihood Classifier. This classifier classifies the image
using the bands indicated by the different vectors v , and the classification accuracy is
used as the fitness of the chromosome. After each iteration, the best chromosomes are
retained, following which they are subjected to crossover and mutations. The whole
process is repeated until a predefined number of generations is reached. At the end,
the selected fittest chromosome is the one with the selected bands.

Clearly, this is a wrapper-based method, i.e., the process of selecting features is
embedded in the classifier. It also performs a random search, in virtue of the intrinsic
characteristics of EA-based methods.

4.3.3. Image Processing-based Approach

The third competitor (Cao et al. 2017a) is a semi-supervised method that uses Image
Processing tools in its wrapper-based band selection framework. Firstly, it trains a
SVM classifier based on labeled instances, then this classifier assigns class label to un-
labeled data, which end up having wrong labels —or pseudo ground-truth. After that,
the resulting classification map is improved by an IP-based edge-preserving filter. At
this point, there are two data sets: One with the original ground-truth information, and
other with calculated pseudo ground-truth information. Then, for each combination of
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Figure 5.: KNN accuracies with different percentages of Botswana training data.

candidate bands to be selected, another SVM is trained using the data with original
ground-truth, and its accuracy is assessed by the data set with pseudo ground-truth.
By testing several band combinations, it is possible to select the one with the highest
classifier accuracy.

4.4. Results

Supervised approaches rely on labeled training data to obtain their results. As already
stated, the assignment of labels to pixels is an expensive task. So, in this paper, the
proposed BS framework uses only a small percentage of the available training data to
get its results.

4.4.1. Percentage of the training data used

We ran the proposed band selection algorithm ten times, with different fractions of the
available training data. For each percentage ps = s/100, with s ∈ {10, 20, ..., 100}, the
proposed BS method has been used to select bands, and the cardinality of its training
set was |X| × ps. Thus, for each ps there is a set Ss of selected bands. Each Ss has 50
selected bands.

Using all the three images, Figure 5 shows how the KNN classifier’s mean accuracies
change with different quantities of training data. In general, there is a tendency of
getting higher accuracies as the amount of training data increases. With 20% of the
available training data, the proposed algorithm had an accuracy similar to that of 30%
and 40%. As it is desirable to work only a small fraction of the available training data,
we chose to use only 20% of the data to select bands using the proposed method.

4.4.2. Methods Comparison

The bands selected by each competitor will be compared. We measure the validity of
each subset of selected bands using two classifiers, namely, KNN and CART, which
are largely used in classification of hyperspectral images (Wang et al. 2017a; Wang,
Lin, and Yuan 2016; Zhu et al. 2017; Zhang et al. 2017).

The classifiers are run using Matlab. For the KNN classifier, we used fitcknn
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(c)

Figure 6.: (a) Mean spectral signatures for the Botswana image. (b) Mean spectral
signatures for the KSC image. (c) Mean spectral signatures for the Indian Pines image.

command, from Statistics and Machine Learning toolbox. For CART, fitctree was
used, also from Statistics and Machine Learning toolbox. The proposed BS framework
was also implemented in Matlab, and we used the trainSoftmaxLayer command,
from Neural Network Toolbox, for single-layer neural network, with 2000 training
epochs—normally the training phase stopped before this, so other training epochs
quantities were not tested.

First, it is important to analyze the dataset to have an idea of the complexity of the
problem. Figure 6 shows the mean spectral signature of each class. In Figure 6(a), for
example, it can be seen that in some regions the spectral signatures are further apart
than in other regions of the electromagnetic spectrum. Since each spectral signature
corresponds to a class, one might conclude intuitively that the bands where the curves
are more spread out will provide a better class separability. In Figure 6(b), the spectral
signatures of classes are practically juxtaposed, except in a handful of regions. This
can prevent the classifier from achieving a good outcome.

The competitor described in Section 4.3.1 will be called NHMC. The method de-
scribed in Section 4.3.2 will be called GA. Finally, the algorithm described in Section
4.3.3 will be referred to as ICM.

All the classifiers results that will be exhibited in this paper are the mean values
of 10 runs. Standard-deviation values are also calculated.
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4.4.2.1. Botswana image. Table 1 shows the bands selected by the proposed
method, SLN. In Table 2, which exhibits the KNN mean accuracies and their respective
standard-deviation for Botswana image, we see that the SLN method outperformed
its competitors with 20, 30, 40 and 50 bands. Figure 7 (a) gives a plot of the results
of the four methods. It is then possible to see the advantage of the proposed method
in almost all cases.

Table 3 shows the CART mean accuracies and standard-deviations for Botswana
image. The proposed SLN method got the best results with 40 bands. Figure 7 (b)
gives a visual perspective about the results.

Table 1.: Selected bands for the Botswana image.

10 bands 1 3 20 27 32 37 43 50 54 68
20 bands 1 4 7 16 20 21 24 26 31 35 37 44 47 50 57 59 62 69 93 98
30 bands 1 4 6 10 13 16 21 24 29 33 35 38 41 43 47 49 50 55 59 61

67 71 75 84 89 93 107 113 122 125
40 bands 1 4 6 10 11 13 16 21 23 24 25 27 29 32 33 35 38 40 41 43

47 49 50 52 54 55 59 61 67 71 74 75 84 89 93 106 107 112
122 125

50 bands 1 2 6 13 15 19 20 23 24 26 27 29 32 34 35 41 43 44 47 49
50 52 53 54 55 61 63 64 65 66 69 71 73 74 75 79 84 87 94
96 98 103 106 107 112 115 117 122 125 131

Table 2.: KNN results for Botswana image, in percentages. The results in bold are the
highest values, and std stands for standard-deviation.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 90.86 0.58 91.19 1.13 91.09 0.91 91.16 1.10 91.22 1.15

NHMC 90.54 0.66 90.69 0.57 90.68 0.60 90.85 0.58 90.99 0.76

GA 90.95 0.72 90.89 0.69 90.75 0.53 91.00 0.76 90.89 0.67

ICM 90.52 0.71 90.54 0.71 90.26 1.14 90.32 1.02 90.51 0.88

Table 3.: CART results for Botswana image, in percentages. The highest values are
emphasized in bold, and std means standard-deviation.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 83.63 1.25 84.09 0.81 84.16 0.91 84.45 1.27 84.00 0.14

NHMC 84.16 0.34 84.06 0.41 84.18 0.23 84.24 0.98 85.17 0.14

GA 84.39 1.04 83.78 1.04 84.44 0.54 84.39 0.32 84.20 0.14

ICM 83.87 0.61 84.18 0.35 83.75 0.57 84.31 0.13 83.93 0.26

4.4.2.2. KSC image. In Table 4 all the bands selected by the SLN approach are
displayed.
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Figure 7.: Botswana image accuracy results having as input bands selected by all BS
methods. In (a), results achieved by the KNN classifier. In (b), results obtained by
CART.

Table 5 shows the KNN mean accuracies and standard-deviation for KSC image.
The proposed method SLN got the best results with 30, 40 and 50 bands. Figure 8 (a)
shows the results.

In Table 6, the CART classifier results are exhibited. The same results are depicted
in Figure 8 (b). The proposed method got the best results again with 30, 40 and 50
bands.

Table 4.: Selected bands for KSC image.

10 bands 1 17 34 37 48 74 98 134 161 175

20 bands 1 6 8 19 25 28 33 48 53 72 76 95 133 139 143 150 163 168

173 176

30 bands 1 2 9 15 19 28 31 34 37 41 44 47 48 72 74 75 96 97 101

110 124 133 135 139 143 147 160 163 167 175

40 bands 1 3 7 16 19 26 28 30 32 34 35 39 40 43 49 51 53 56 71 73

77 93 94 95 96 101 104 125 133 134 142 145 150 153 159

162 167 169 171 174

50 bands 1 3 7 9 18 19 26 28 33 34 37 38 39 41 42 47 48 51 53 59

68 69 70 71 72 73 78 96 97 100 101 107 110 111 120 121

125 127 131 133 135 137 140 142 143 159 162 171 173 175

4.4.2.3. Indian Pines image. The bands selected by our approach are shown in
Table 7.

According to Table 8, the proposed method got the best result with 30 bands, using
the KNN classifier with Indian Pines image. In Figure 9 (a), the results are displayed.

In Table 9, the proposed SLN method has the best result with 30 bands. The results
can be visualized in Figure 9 (b).
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Table 5.: KNN results, in percentages, for KSC image. The values in bold represent
the highest outcomes and std stands for standard-deviation.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 88.77 0.23 89.28 0.68 91.11 0.45 91.13 0.36 91.32 0.50

NHMC 88.75 0.81 89.40 0.59 90.91 1.04 90.23 0.14 90.62 0.63

GA 88.71 0.18 89.67 0.27 90.47 0.23 90.12 0.09 91.20 0.09

ICM 89.37 0.63 90.90 0.36 90.13 0.59 90.93 0.14 90.66 0.27

Table 6.: CART results for KSC image, in percentages. The values in bold represent
the highest values, and std stands for standard-deviation.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 85.44 0.14 85.41 1.27 87.43 0.41 88.09 1.18 88.13 1.49

NHMC 85.56 0.86 85.96 0.90 87.30 2.31 87.57 0.45 86.50 0.50

GA 85.83 0.36 87.24 2.08 87.01 0.68 86.47 0.54 87.01 0.72

ICM 85.96 1.58 87.91 0.18 87.30 0.41 88.04 0.72 87.40 0.63

(a) (b)

Figure 8.: Classification accuracies for KSC images, having as input the bands selected
by the methods under analysis. In (a), results by KNN classifier. In (b), results obtained
by CART.
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Table 7.: Selected bands for Indian Pines image.

10 bands 10 25 32 39 42 48 63 75 91 98 149

20 bands 5 11 18 23 25 29 36 44 52 56 60 64 75 91 94 98 106 117

132 168

30 bands 5 6 11 16 18 20 23 25 29 30 31 36 38 44 47 52 54 56 60

62 64 74 75 91 94 98 106 117 132 168

40 bands 1 8 10 12 15 19 20 23 27 30 32 36 39 41 49 51 54 56 58

60 64 66 71 74 75 80 91 94 98 101 113 117 149 156 167

170 173 178 206 218

50 bands 4 8 11 14 18 20 22 27 30 32 36 38 41 44 46 48 52 58 60

62 64 66 68 71 75 77 81 84 86 88 90 94 95 98 100 109

117 124 137 140 149 153 156 167 170 172 174 178 202 216

Table 8.: KNN results, in percentages, for Indian Pines image. The highest values are
in bold, and std means standard-deviation.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 72.03 2.37 74.68 2.16 74.99 2.60 69.20 0.78 69.45 0.67

NHMC 76.63 0.85 78.59 0.51 73.54 0.71 75.32 0.97 75.30 0.09

GA 69.20 1.03 63.04 0.02 62.31 0.30 63.82 0.14 63.54 0.23

ICM 80.57 0.09 82.47 0.87 66.98 0.64 67.71 0.53 63.09 1.38

Table 9.: CART results for Indian Pines image, in percentages. The highest values are
in bold, and std stands for standard-deviation.

10 bands 20 bands 30 bands 40 bands 50 bands

Method mean std mean std mean std mean std mean std

SLN 69.35 1.63 73.48 0.90 74.57 1.77 71.17 0.11 73.54 1.45

NHMC 69.33 0.60 71.09 0.23 72.00 0.99 73.84 0.76 73.32 0.34

GA 68.99 1.22 71.59 0.32 72.96 1.43 73.90 0.14 74.70 0.60

ICM 73.31 0.80 73.76 0.64 73.20 0.48 73.95 0.11 72.49 0.41
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(a) (b)

Figure 9.: Indian Pines image classification results by KNN classifier. In (a), KNN
results. In (b), results achieved by CART.

4.4.3. Linear separation in a one-vs-all scheme

As we use a linear classifier in the proposed framework, all the results and their
subsequent analyses are only valid if the classification problem to be solved is also
linear.

In a one-vs-all scheme, in many cases the two groups are linearly separable. There
are other situations in which a hyperplane cannot separate the two classes, however
it may still provide a reasonable separation. To illustrate this, in Figure 10, all the 14
classes present in the Botswana image data set are displayed in a one-vs-all fashion. We
reduced the data dimensionality by using the first two principal components from the
Principal Components Analysis. The data samples in green color represent the class j
under analysis, for j = 1, ..., 14, and the blue points stand for a balanced composition
of the remaining classes. Thus, for each frame in Figure 10, the number of green and
blue points is practically the same. The red line segment in each frame represents the
separating boundary provided by a single-layer neural network.

4.5. Remarks about the results

4.5.1. KNN versus CART

Both classifiers used in this paper are nonparametric, that is, they do not assume any
hypothesis about data distribution nor about its parameters. Yet, they share more
dissimilarities than characteristics in common. To illustrate this, one can notice the
differences between the overall accuracies of the two classifiers, taking into account all
the methods compared in this paper using the three hyperspectral images: For KNN,
the mean accuracies of all results are 84.03%, whereas CART has 81.18% of mean
accuracy. One possible explanation may be related to the highly nonlinearity of the
classes boundaries. For example, let hl be a homogeneous region of the feature space
defined by CART, whose a new entry x i will be classified as cl, even if it belongs
to class cj . This, obviously, is a classification error. KNN classifier, in this situation,
would inquire the k nearest neighbours of x i, and eventually assign the cj label to it.

The overall results for each number of selected bands can be seen in Figure 11.
For the CART classifier, the classification accuracy increased as the number of bands
increased. For the KNN classifier, there was an opposite effect. This indicates that
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Figure 10.: One-vs-all illustration for each class of the Botswana image. In each frame,
the horizontal and vertical axis are, respectively, the first (PC1) and the second (PC2)
principal components. The green dots represent the class under scrutiny, whereas the
blue ones stand for data samples of the remaining classes. The red line segment is
given by a single-layer neural network.
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Figure 11.: Overall results considering all methods compared in this paper, using all
the three images.

CART is not susceptible to the curse of dimensionality, at least in the dimensions
and with the analyzed images. In general, one can see that there is not a general
improvement in results as the number bands increases from 10 to 50, as shown in
Figure 13.

4.5.2. Filter versus Wrapper-based Approaches

It is frequently stated in the literature that wrapper-based methods are superior in
performance to filter approaches (Cao et al. 2017a; Theodoridis and Koutroumbas
2008; Shahana and Preeja 2016; Molina, Belanche, and Nebot 2002; Cao, Xiong, and
Jiao 2016; Ma et al. 2017). Concerning the methods compared in this paper, SLN and
NHMC are filter-based approaches; and GA and ICM are wrapper frameworks, using,
respectively, Gaussian Maximum Likelihood and SVM classifiers in their frameworks.

In Figure 12, the mean results of all methods are displayed. It uses all the three
images with both classifiers. We analyze all the three hyperspectral datasets together
just to have an idea of the general behavior each BS method, thus, it is possible to
predict the methods’ performances with other HSIs. In sum, Figure 12 shows the mean
values of the Tables 2, 3, 5, 6, 8 and 9. It is evident that the wrapper methods are not
necessarily better than filter approaches. More precisely, the wrapper methods yield
better results in only two situations—with 10 and 20 bands—, and in the remaining
cases filter methods have a superior performance.

It is worth noting that a wrapper-based method proceeds to the band selection
by using a certain classifier, and this classifier is supposed to be used during the
subsequent classification process. It was not the case here. That is, the two wrapper
competitors were trained with one classifier and used in this paper with another one,
and this fact may explain why those two methods could not outperform the filter-
based frameworks. On the other hand, filter methods perform the BS task without
any relation with the classifier, what makes them more versatile compared to wrapper
approaches.
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Figure 12.: Mean results of each method, using all images and both classifiers.

4.5.3. Methods comparison

In general, as we can see in Figures 7, 8 and 9, all the four methods have their best
and worst results in different situations. Thus, pointing out the best framework would
not be an easy task.

In Figure 12, we can see the mean results of the four methods. The proposed method,
SLN, has the best mean results using 30 and 40 spectral bands. If we take the mean
value of all results—using the three images, both classifiers and also all bands—, the
results are thus:

NHMC: 83.21%; ICM: 82.96%; SLN: 82.81%; and GA: 81.45%.

Basically, NHMC framework has the best overall result because it gets very high
accuracies with more spectral bands. However, it does not achieve good results with
less bands. Thus, NHMC has a instable behavior as the number of bands changes.

For the sake of a fair comparison, we will count how many times each method yields
the best results—values in bold in Tables 2, 3, 5, 6, 8 and 9. In this case, we have the
following outcome:

SLN: 13; ICM: 10; GA: 5; and NHMC: 2.

Consequently, one can infer that our proposed method has a stable outcome, achiev-
ing the best results in 43.33% of the tests.

It is worth-mentioning that, in most cases, the BS methods have very similar results
that can be considered equal, in terms of statistical significance. However, in this
section we insist on ranking the band selection frameworks just to have a way to
compared them.

4.5.4. Discussions on the proposed method

As shown in Figure 12, the proposed method has a tendency of achieving better results
as the number of selected bands increases from 10 until 30. It is important to notice
that each time the single-layer neural network is used to select bands, its training phase
starts with random values for weights and bias. Thus, two distinct runs are not likely to
have the same outcome. One possible explanation for this decrease from the 30th band
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Figure 13.: Mean accuracies of all results by both classifiers in relation to the number
of selected bands. All the three images are used.

may be related to the random initialization of our framework. Furthermore, due to
the peaking phenomenon—or curse of dimensionality—(Theodoridis and Koutroumbas
2008), the classification accuracy increases as more spectral bands are used until a
critical point, after which the probability of error increases. This explains the fact
that the accuracy of the SLN method decreases for 40 and 50 bands.

In order to see that, refer to Figure 13, which shows the overall results of all methods
together, using the three images and both classifiers. In general, the accuracies increase
until a certain point, after which they start decreasing. The peak in the 20 bands region
is due to the high scores achieved by the ICM method, as already shown in Figure 12.

As already said in Section 3.2.4, there is not a minimum limit of bands to be selected
by SLN. However, Figure 12 shows that SLN achieves below-average results with 10
and 20 bands. When it comes to the 10-bands case, we may conclude that its poor
results—compared to its competitors—may be due to the fact that SLN does not
inquiry all the classes of band selection when σ < q.

Using 30 bands, the proposed method gets above-average results, as shown in Figure
12. In this case, all the classes were inquired during the BS process. Consequently,
better results were achieved.

Finally, we should bear in mind that all the proposed method’s results were attained
by using only 20% of the available training data. Besides, the simplicity of the proposed
method, in terms of implementation, makes it a good choice in the feature selection
area.

5. Conclusion

Hyperspectral images provide rich spectral information about the scene under analysis
as a result of their both numerous and contiguous bands. Since different materials have
distinct spectral signatures, objects with similar characteristics in terms of colors and
shape may still be distinguished in the spectral domain.

One issue to be taken into account is the high correlation between neighbouring
bands, which causes data redundancy. The ratio amongst training patterns and free
classifier parameters is meaningful for classifiers, and so decreasing the dimensionality
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of data can avoid overfitting.
One way of handling this dimensionality reduction is band selection. One positive

aspect of BS is that it retains the original information, which can be very useful in
some cases.

In this context, the present paper proposed a supervised filter-based band selec-
tion framework based on single-layer neural networks using only 20% of the available
training data. For each class in the data set a binary classification into class and non-
class was performed, and the bands corresponding to the largest and smallest weights
were selected. During this iterative process, the bands most correlated with the bands
selected are automatically discarded, according to a procedure also proposed in this
letter. In general, the proposed method may be seen as a class-oriented band selection
approach, allowing a BS criterion that meets the needs of each class.

A number of other filter-based BS algorithms perform their choice of bands based,
for instance, on statistical properties of the data set. A positive aspect of the filter-
based method proposed in this paper is that it is based on classification, that is, uses
a linear classifier to rank and select the bands. The proposed method outperformed
its competitors in 43.33% of the cases analyzed in this paper.

As a secondary conclusion, we showed that wrapper-based approaches are not neces-
sarily better than their filter counterparts, when using different classifiers for the band
selection process and for the classification. More research on this subject is necessary.

A next step is to devise a methodology in order to find the optimum number of
bands to be selected for a given application and image.
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