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Abstract

A novel distributed consensus protocol, where only sampled position information is exchanged between neighboring agents,
is designed for second-order multi-agent systems under a directed communication topology. This protocol allows to reach
the consensus for asynchronous and aperiodic sampling periods, which means that every agent can send its measurements
independently from its neighbors. Furthermore, the upper bound on the sampling periods can be chosen arbitrarily long by
adapting the tuning parameters. This result is obtained by using a continuous-discrete time observer which allows to reconstruct
the system state in real time from only discrete-time measurements. The feedback control gain is set according to the observer
gain which is itself set according to the maximum sampling period.

1 Introduction

Multi-agent systems (MAS) have attracted a lot of
researchers due to their applications in many �elds
such as biology, physics, robotics, power grid, etc (Cao
et al. 2013, Defoort et al. 2008). A fundamental challenge
is how to design an appropriate distributed protocol
using only the information of the current agent and its
neighbors in order to reach consensus (Zuo et al. 2017).
Among the di�erent consensus problematics, the lead-
erless consensus has received considerable attention (Li
et al. 2013).
Systems described by double integrators have been espe-
cially investigated (Ren & Atkins 2007, Yu et al. 2010)
since a large class of mechanical systems are modeled
by second-order dynamics. While it is interesting to
model systems by continuous dynamics since they are
mostly continuous by nature, local information is usu-
ally transmitted through digital networks and are then
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discrete by nature, see (Ge et al. 2018) for a survey on
the consensus problem for sampled MAS. Several con-
sensus protocols have been proposed in the literature,
when both the position and speed are exchanged (Cao
& Ren 2010, Cheng et al. 2013, Zhan & Li 2015).
However, in all the aforementioned works, it is requested
to measure both the relative positions and relative veloc-
ities of neighboring agents. But in practice, measuring
the relative velocities can be much more di�cult than
measuring the relative positions (Hong et al. 2008, Hong
et al. 2006). In order to tackle this problem, it would
then be preferable to use only the relative positions
in the consensus protocol. Several solutions have been
proposed in the literature. For continuous measure-
ments, observers have been used in (Hong et al. 2006, Li
et al. 2011), both continuous and discrete measure-
ments have been used in (Yu et al. 2011), a �lter based
approach has been proposed in (Mei et al. 2013) and a
delay induced method in (Yu et al. 2013). For the case
where only sampled position information is available,
only a few results are available. In (Ma et al. 2014),
an approach based on the discretization of the model
and the use of an Euler derivative is proposed which
allows to obtain the consensus. The authors of (Chen &
Li 2014) obtain the consensus under sampled data by
using observers in order to recover the speeds. A delay
induced method is also proposed in (Huang et al. 2016).
All these methods require that the sampling period is
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uniform and synchronized, that is all the agents send
local information at the same regular time, but this
does not allow to capture the inter-sampled behavior
of the system (Ge & Han 2016) and can overload the
network, so it is preferable to allow asynchronous sam-
pling periods, that is, every agent can send its position
independently from its neighbors.
The problem of reconstructing a continuous signal
from discrete-time measurements by using �continuous-
discrete time� observer has been investigated by several
authors during the last few years. Indeed, the case of
uniformly observable systems has been considered in
(Farza et al. 2014), and in (Bouraoui et al. 2015) for
the case of measurement noises and uncertainties in the
dynamics. Non uniformly observable systems have also
been considered in (Hernández-González et al. 2016).
This framework is particularly adapted for the consen-
sus problem of MAS since the dynamics are continuous
by nature and the measurements are transmitted in
discrete-time due to physical constraints. While only
bounded inputs are usually considered to ensure the
convergence of these observers, this is not the case in
the present work since the observer is used to feed a
control law. Despite this di�culty, this framework is
successfully investigated in this article for the consen-
sus problem of MAS, where a continuous-discrete time
observer is combined with a continuous control law in
order to reach the consensus of MAS under a directed
topology. Several contributions have to be emphasized:
(i) Only three tuning parameters have to be selected:
the coupling force c̄, the gain of the observer θ and
the gain of the feedback control law λ. Furthermore, θ
and λ have physical meaning since they represent the
speed of convergence of the observer and of the con-
trolled part respectively, which facilitates the tuning of
the proposed consensus. (ii) The sampling periods may
be asynchronous and aperiodic. Indeed, each agent can
send its measurements aperiodically and independently
from the other agents. This allows to reduce the required
bandwidth since it is not necessary for the di�erent
agents to send their measurements at the same instants.
(iii) Only the sampled position data are exchanged
between neighbors, neither the relative velocities, nor
the applied inputs are required. (iv) Arbitrary long,
but bounded, sampling periods can be used in order to
reach the consensus. This feature is obtained by prop-
erly setting the gain of the continuous control law and
the gain of the observer for a given upper bound on the
sampling periods.
The remaining of the paper is organized as follows.
First, some notations and previous results are reminded
in Section 2. The considered model and main results
are presented in Section 3. Simulations are provided in
Section 4 in order to illustrate the proposed approach.
Finally, Section 5 concludes the article. The proof of
the results presented in this article are reported in the
appendix for clarity purpose.

2 Preliminaries

In this paper, the following notations will be used.
The set of n × n real matrices (complex matrices re-
spectively) is denoted Rn×n (Cn×n respectively). The
transpose for real matrices and conjugate transpose for
complex matrices are represented by the superscript T
and ∗ respectively. ‖.‖ denotes the Euclidean Norm. In
is the identity matrix of dimension n and 0n the square
matrix of dimension n whose entries are equal to zero.
0m×n denotes the matrix of dimension m × n whose
entries are all equal to zero. ENi denotes the square
diagonal matrix of dimension N whose i-th diagonal
entry is equal to 1 and all others to 0. The vector with
all entries equal to one is denoted 1. The real part of a
complex number ξ ∈ C is denoted R(ξ). A ⊗ B is the
Kronecker product of the matrices A and B. A vector

x =
(
x1 . . . xn

)T
∈ Rn is said to be nonnegative if

xi ≥ 0 for i = 1, . . . , n. The notation
4
= means equal by

de�nition.
A directed graph G is a pair (V, E), where V is a
nonempty �nite set of nodes and E ⊆ V × V is a set of
edges, in which an edge is represented by an ordered pair
of distinct nodes. For an edge (i, j), node i is called the
parent node, node j the child node, and i is a neighbor
of j. A graph with the property that (i, j) ∈ E implies
(j, i) ∈ E is said to be undirected. A path on G from
node i1 to node il is a sequence of ordered edges of the
form (ik, ik+1), k = 1, . . . , l − 1. A directed graph has
or contained a directed spanning tree if there exists a
node called the root, which has no parent node, such
that there exists a directed path from this node to every
other node in the graph.
Suppose that there are N nodes in a graph. The ad-
jacency matrix A = (aij) ∈ RN×N is de�ned by
aii = 0 and aij = 1 if (j, i) ∈ E and aij = 0 other-
wise. The Laplacian matrix L ∈ RN×N is de�ned as
Lii =

∑
j 6=i aij , Lij = −aij for i 6= j.

The following two lemmas will be needed for the proof
of the main result of this paper.

Lemma 1 (Olfati-Saber & Murray 2004) Let L be the
Laplacian matrix corresponding to the graph G. Zero
is an eigenvalue of L with 1 and a nonnegative vector
ϑT ∈ R1×N , verifying ϑT1 = 1, as the corresponding
right and left eigenvectors, and all nonzero eigenvalues
have positive real parts. Furthermore, zero is a simple
eigenvalue of L if and only if graph G has a directed span-
ning tree. The eigenvalues of L will be denoted (µi) with
µ1 = 0.

Lemma 2 Let v1(t) and v2(t) be real valued func-
tions verifying d

dt

(
v2

1(t) + v2
2(t)

)
≤ −av2

1(t) − bv2
2(t) +

c
∫ t
t−δ v

2
2(s)ds, for all t ≥ 0, where a, b > 0, c ≥ 0 and

c
bδ < 1, then v1(t) and v2(t) exponentially converge to
zero as t goes to in�nity.
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3 Main results

3.1 Class of considered MAS

One considers a group ofN identical agents, whose com-
munication topology is described by a graph G = (V, E).
The agents have the following second-order dynamics{

ṙi(t) = vi(t)

v̇i(t) = ui(t), i = 1, . . . , N
(1)

where ri, vi ∈ Rm represent respectively the position
and the speed of the i-th agent, with m ∈ N.
If (j, i) ∈ E , one considers that agent i receives the po-
sition rj of agent j at times ti,jk , with k ∈ N, but not
its speed vj , nor its input uj . The sampling instants

(ti,jk ) are supposed to verify 0 = ti,j0 < ti,j1 < · · · <
ti,jk < . . . . Furthermore, one assumes that there ex-
ist constants τm, τM > 0, called respectively the mini-
mum sampling period and the maximum sampling pe-

riod, such that τm < ti,jk+1 − t
i,j
k < τM , for all k ∈ N and

i, j ∈ {1, . . . , N}. The minimum bound τm on the sam-
pling periods guarantee no Zeno phenomenon.
The aim of this paper is to design a consensus protocol
such that all the agents reach a common trajectory, as
stated more precisely in the following de�nition.

De�nition 1 Second-order consensus of system (1) is
said to be achieved if, for any initial conditions and for
all i, j ∈ {1, . . . , N}, limt→+∞ ‖ri(t) − rj(t)‖ = 0 and
limt→+∞ ‖vi(t)− vj(t)‖ = 0.

3.2 Consensus protocol

The proposed observer-based consensus protocol is given
for t ≥ 0 by

ui(t) = c̄

N∑
j=1

aij
[
λ2
(
r̂ij(t)− r̂ii(t)

)
+ 2λ

(
v̂ij(t)− v̂ii(t)

)]
(2)

for i = 1, . . . , N , where r̂ij and v̂ij are the estimated
position and speed of the agent j by the agent i and their
dynamics are given by

˙̂rij(t) = v̂ij(t)− 2θe−2θ(t−ti,jk )
(
r̂ij

(
ti,jk

)
− rj

(
ti,jk

))
(3)

˙̂vij(t) =−θ2e−2θ(t−ti,jk )
(
r̂ij

(
ti,jk

)
− rj

(
ti,jk

))
(4)

for i, j = 1, . . . , N and t ∈
[
ti,jk , t

i,j
k+1

)
, k ∈ N, where

c̄ > 0 is the coupling strength, aij is the (i, j)-th entry of
the adjacency matrixA of the directed graph G, θ, λ > 0
are the observer and controller tuning parameters re-
spectively. The observer initial values r̂ij(0), v̂ij(0) ∈ Rm

can be chosen arbitrarily.
The dynamics of system (1) with consensus protocol (2)-
(3)-(4) can be written in a more compact form as stated
in the following lemma.

Lemma 3 Denoting xi =

(
ri

vi

)
, x̂ij =

(
r̂ij

v̂ij

)
and x̃ij =

x̂ij−xj
4
=

(
r̃ij

ṽij

)
, the dynamics ofMAS (1) with consensus

protocol (2)-(3)-(4) are given for all t ≥ 0 by

ẋi(t) =Axi(t)− c̄
N∑
k=1

LikBKcΓλ
(
xk(t) + x̃ik(t)

)
(5)

˙̃xij(t) =
(
A− θ∆−1

θ KoC
)
x̃ij(t) (6)

+θ∆−1
θ KoB

T

∫ t

κi
j
(t)

x̃ij(s)ds

+c̄

N∑
k=1

LjkBKcΓλ

(
xk(t) + x̃jk(t)

)

where A =

(
0m Im

0m 0m

)
, B =

(
0m

Im

)
, C =

(
Im 0m

)
,

Kc =
[
Im 2Im

]
,Γλ =

(
λ2Im 0m

0m λIm

)
,Ko =

[
2Im Im

]T
,

∆θ =

(
Im 0m

0m
1
θ Im

)
and κij(t) = max

{
ti,jk |t

i,j
k ≤ t, k ∈ N

}
.

Remark 1 For a given time instant t, κij(t) simply rep-

resents the last instant ti,jk when agent i has received the
position of agent j. This is a piecewise constant function.

Example 1 An example of a graph G with 4 nodes,

specifying the transmitted data ri(t
i,j
k ) and reconstructed

states x̂ij for each agent, is given in Fig. 1.

1

x̂1
1, x̂

1
4

2

x̂2
2, x̂

2
1

3

x̂3
3, x̂

3
1

4

x̂4
4, x̂

4
3

r1
(
t2,1k

)

r1
(
t3,1k

)

r3
(
t4,3k

)

r4
(
t1,4k

)
r1

(
t1,1k

)
r2

(
t2,2k

)

r4

(
t4,4k

)
r3

(
t3,3k

)

Fig. 1. Directed graph G

Remark 2 Each agent i = 1, . . . , N has to reconstruct

its own state: x̂ii by using ri

(
ti,ik

)
and the state of every

agent j such that (j, i) ∈ E: x̂ij by using rj
(
ti,jk

)
. Then,
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if i 6= j, ti,jk correspond to the instants where the mea-

surement are transmitted from agent j to agent i and ti,ik
correspond to the instants when agent i uses its own po-

sition measurement ri

(
ti,ik

)
to reconstruct its own state

x̂ii(t).

3.3 Convergence results

One �rst states the following result which allows to trans-
form the consensus problem into a stability problem
through the introduction of new coordinates.

Lemma 4 Consider the coordinates

ξc =
(
(IN − 1ϑT )⊗ Γλ

)
X, x̄ij = ∆θx̃

i
j

with X =
(
xT1 . . . xTN

)T
. Then, the dynamics of the

MAS (1) with consensus protocol (2)-(3)-(4) are given
for all t ≥ 0 by

ξ̇c = λ(IN ⊗A)ξc − c̄λ[L ⊗ (BKc)]ξ
c (7)

−c̄λ
N∑
i=1

(
[(IN − 1ϑT )(ENi L)]⊗ [BKcΓλ∆−1

θ ]
)
ξoi

˙̄xij = θ(A−KoC)x̄ij + θ2KoB
T

∫ t

κi
j
(t)

x̄ij(s)ds (8)

+
c̄

θ
[Lj ⊗ (BKcΓλ∆−1

θ )]ξoj +
c̄

θ
[Lj ⊗ (BKc)] ξ

c

where ξoj =
(

(x̄j1)T . . . (x̄jN )T
)T

andLj is the j-th line of
L. Furthermore, the consensus is achieved if ξc converges
to the origin.

The main result is given in the following Theorem.

Theorem 1 Consider MAS (1), whose communication
topology G contains a directed spanning tree, with the
consensus protocol given by equations (2)-(3)-(4). There
exists θ∗ > 0 and ε∗ ∈ (0, 1) such that if c̄, θ and τM
verify

c̄ ≥ 1

2 min
µi 6=0
{R(µi)}

, θ <
θ∗

τM
(9)

and if λ is chosen as λ = εθ with ε ∈ (0, ε∗) then the
consensus is achieved.

Remark 3 The conditions given in Theorem 1 are only
su�cient and may lead to conservative bounds, this is
actually a common drawback of the Lyapunov approach.
Nevertheless, it gives useful hints in order to tune the pa-
rameters θ and λ by a trial and error approach. Indeed,
the parameters θ and λ have a physical meaning since
they correspond to the speed of convergence of the ob-
server part and control part respectively (the higher the

value of θ is taken, the faster the observer will converge).
Inequality (9) shows that if one wants to increase the
sampling periods then θ has to be taken small enough.
The fact that ε∗ < 1 shows that λ has to be taken smaller
than θ and the ratio between λ and θ does not depend on
the sampling period upper bound. It should be noted that
in order to consider long sampling periods, θ and λ have
to be taken small enough and then the convergence of the
overall MAS is slowed down.

4 Example

The observer-based consensus proposed in this article is
applied to anMAS composed of 4 agents whose dynamics
are given by (1), withm = 1 and whose graph is reported
in Fig. 1. The corresponding adjacency and Laplacian
matrices are given respectively by

A =


0 0 0 1

1 0 0 0

1 0 0 0

0 0 1 0

 and L =


1 0 0 −1

−1 1 0 0

−1 0 1 0

0 0 −1 1


The non zero eigenvalues of L are equal to 1 and
1.5± j0.866 where j is the imaginary unit, then the cou-
pling strength c̄ is chosen as c̄ = 0.5 in order to verify
inequality (9).
In all the following simulations, the initial conditions
for the positions and velocities of the agents have
been chosen as [r1(0), r2(0), r3(0), r4(0)] = [0, 1, 2, 3],
[v1(0), v2(0), v3(0), v4(0)] = [0, 0.2, 0.4, 0.6] and for the
observers

[
r̂i1(0), r̂i2(0), r̂i3(0), r̂i4(0)

]
= [1,−2.7, 3.5, 4],[

v̂i1(0), v̂i2(0), v̂i3(0), v̂i4(0)
]

= [0,−1, 0,−0.5] with
i = 1, . . . , 4.
The sampling periods have been chosen so that they be-
long to [0.5s, 2s]. The gain for the observer has been cho-
sen as θ = 2 and the gain for the control as λ = 0.2. The
simulation results are reported in Fig. 2. The sampling
periods have been chosen following a uniform stochastic
law and are reported in Fig. 2.e. The estimation of the
position and velocity of agent 1 by agent 2 are depicted
in Figs. 2.c and 2.d. It is worth to be noted that the ob-
server does not converge until the consensus is reached
since due to absence of knowledge of the input applied
to agent 1, the model used by agent 2 is not correct (the
input is considered as an unmodeled perturbation).
More simulations have been done with the same tuning
but we have added some measurement noise and process
noise following a centered normal law of variance 0.05
and 0.1 respectively. The additive measurement noise
level corresponds to a SNR of 40dB on the output error
signal r̃ij . The results of these simulations are reported
in Fig. 3.

4



0 10 20 30 40 50 60 70 80 90 100

-5

0

5

10

15

20

25

30

35

40

(a) Position of the agents

0 10 20 30 40 50 60 70 80 90 100

-1.5

-1

-0.5

0

0.5

1

(b) Speed of the agents

0 5 10 15 20 25 30

-2

0

2

4

6

8

10

12

14

(c) Estimation of the po-
sition of agent 1 by agent
2

0 5 10 15 20 25 30

-1

-0.5

0

0.5

1

1.5

(d) Estimation of the
speed of agent 1 by agent
2

0

0.5

1

1.5

2

10 20 30 40 50 60 70 80

(e) Sampling period for transmission from agent 1 to
agent 2

Fig. 2. Simulation results for τm = 0.5s, τM = 2s, θ = 2,
λ = 0.2.

0 10 20 30 40 50 60 70 80 90 100

-5

0

5

10

15

20

25

30

35

40

(a) Position of the agents

0 10 20 30 40 50 60 70 80 90 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Speed of the agents

Fig. 3. Simulation results for τm = 0.5s, τM = 2s, θ = 2 and
λ = 0.2 with measurement and process noise.

5 Conclusion

In this article, the consensus problem for second-order
multi-agent systems has been investigated. A protocol
based on a continuous-discrete time observer and a con-
tinuous feedback law has been designed. This protocol
allows to reach the consensus for arbitrary long, aperi-
odic and asynchronous sampling periods by using only
the measured positions of the agents by setting properly
the gain of the observer and the gain of the control law
according to the sampling periods.
The main limitation of the proposed method is that the
theoretical bounds which ensure the stability of the sys-
tem are very conservative, then a trial and error ap-
proach should be used in order to tune the proposed
consensus protocol. Nevertheless, the tuning of the pa-
rameters is intuitive since they simply correspond to the
convergence speed and the theoretical bounds provide a
useful guideline for the practitioner.

While the present work only consider second order dy-
namics, more general dynamics shall be considered in
future works such as systems exhibiting nonlinear dy-
namics.

A Proof of Lemma 2

Let ν ∈
(
0,min

{
a
2 ,

b
2

})
be such that ξ

4
= c

b
eνδ−1
ν < 1

and denote κ = (1 − ξ) ∈ (0, 1). The real num-
ber ν exists since the function g : R+ → R de�ned

as g(ν) = eνδ−1
ν for ν ∈ (0,+∞) and g(0) = δ

is continuous and increasing over [0,+∞). Con-
sider the candidate Lyapunov functional W (vt) =

v2
1(t) + v2

2(t) +c
∫ δ

0

∫ t
t−s e

νκ(µ−t+s)v2
2(µ)dµds, where

vt(s) = [v1(t+ s), v2(t+ s)]T , s ∈ [−δ, 0]. Then

Ẇ (vt) ≤ −av2
1(t)− bv2

2(t) + c

∫ t

t−δ
v2

2(s)ds (A.1)

− νκc
∫ δ

0

∫ t

t−s
eνκ(µ−t+s)v2

2(µ)dµds

+ c

∫ δ

0

eνκsv2
2(t)− v2

2(t− s)ds

≤ −av2
1(t)− bv2

2(t) + c

(
eνκδ − 1

νκ

)
v2

2(t) (A.2)

− νκ
(
W (vt)− v2

1(t)− v2
2(t)

)
Thus, one obtains

Ẇ (vt) + νκW (vt)

≤ (−a+ νκ)v2
1 +

(
−b+ c

(
eνκδ − 1

νκ

)
+ νκ

)
v2

2

≤
(
−a+

aκ

2

)
v2

1 +

(
−b+ b(1− κ) +

bκ

2

)
v2

2 (A.3)

≤ −a
(

1− κ

2

)
v2

1 −
bκ

2
v2

2 ≤ 0

where inequality (A.3) is obtained by using the fact that
ν ∈ (0,min{a/2, b/2}) and g(νκ) ≤ g(ν) = b(1− κ)/c.

B Proof of Lemma 3

Let k ∈ N, from the de�nition of xi, x̃
i
j and A, B, C,Kc,

Ko, Γλ, ∆θ, one directly gets for all t ∈
[
ti,jk , t

i,j
k+1

)
ẋi(t) =Axi(t) +Bui(t) (B.1)

˙̃xij(t) =

(
ṽij(t)− 2θzij(t)

−θ2zij(t)

)
(B.2)

˙̃xij(t) = (A− θ∆−1
θ KoC)x̃ij(t)−Buj(t) (B.3)

−θ∆−1
θ Ko(z

i
j(t)− r̃ij(t))

5



ui(t) =−c̄
N∑
k=1

LikKcΓλ(xk + x̃ik) (B.4)

where r̃ij = r̂ij − rj , ṽ
i
j = v̂ij − vj and zij(t) =

e−2θ(t−ti,j
k

)r̃ij

(
ti,jk

)
. Furthermore, żij(t) = −2θzij(t) and

˙̃rij(t) = ṽij(t)− 2θzij(t) implies that

d

dt

(
zij(t)− r̃ij(t)

)
= −ṽij(t) = −BT x̃ij(t) (B.5)

and
(
zij(t

i,j
k )− r̃ij(t

i,j
k )
)

= 0 yields

(
zij(t)− r̃ij(t)

)
= −

∫ t

ti,j
k

BT x̃ij(s)ds (B.6)

for all t ∈
[
ti,jk , t

i,j
k+1

)
.

Replacing expressions of ui and (zij − r̃ij) given by (B.4)

and (B.6) in (B.1) and (B.3), and de�ning κij as in

Lemma 3) give expressions (5)-(6) for all t ≥ 0.

C Proof of Lemma 4

Let us �rst show how to obtain equations (7) and (8).
This is done in two steps, indeed, one has ξc = [(IN −

1ϑ) ⊗ I2m]E with E =
(
eT1 . . . eTn

)T
and ei = Γλxi.

Using Lemma 3 and the following equalities ∆θA∆−1
θ =

θA, C∆−1
θ = C, ΓλAΓ−1

λ = λA, ΓλB = λB, ∆θB =

1/θB and BT∆−1
θ = θBT , one obtains

ėi = λAei − c̄λ
N∑
k=1

LikBKc(ek + Γλ∆−1
θ x̄ik) (C.1)

= λAei − c̄λ[Li ⊗ (BKc)]E (C.2)

−c̄λ[Li ⊗ (BKcΓλ∆−1
θ )]ξoi )

Ė = λ(IN ⊗A)E − c̄λ[L ⊗ (BKc)]E (C.3)

−c̄λ
N∑
i=1

[(ENi L)⊗ (BKcΓλ∆−1
θ )]ξoi

˙̄xij = θ(A−KoC)x̄ij + θ2KoB
T

∫ t

κi
j
(t)

x̄ij(s)ds (C.4)

+
c̄

θ
[Lj ⊗ (BKc)]E +

c̄

θ
[Lj ⊗ (BKcΓλ∆−1

θ )]ξoj

Using the equality (IN − 1ϑT )L = L(IN − 1ϑT ) (resp.
(Lj)(1ϑT ) = 01×N for j = 1, . . . , N) directly gives equa-
tion (7) (resp. equation (8)).
It is direct to see that 0 is a simple eigenvalue of (IN −
1ϑT ) with 1 as a right eigenvector and ϑT as a left
eigenvector and 1 is the other eigenvalue of multiplicity
N − 1. Thus, by de�nition of ξc, ξc = 0 if and only if
e1 = e2 = · · · = eN .

D Proof of Theorem 1
According to Lemma 4, if ξc tends to the origin then the
consensus is achieved. Thus, one shows here that both ξc

and x̄ij exponentially converge to the origin with a Lya-
punov approach. The proof of Theorem 1 is split into two
steps. In step 1, new coordinates are de�ned in order to
simplify the stability analysis. Then, in step 2 candidate
Lyapunov functions are considered and inequalities are
derived in sub-steps 2.1 ,2.2, 2.3 so that Lemma 2 ap-
plies in sub-step 2.4. Throughout the proof of the The-
orem, some technical facts are stated in order to clarify
the presentation. The proof of these facts can be found
at the end of this section.
Step 1. Since G contains a directed spanning tree, it fol-
lows from Lemma 1 that 0 is a simple eigenvalue of L
and that all the other eigenvalues have a positive real
part, that is µ1 = 0 and R(µi) > 0, i = 2, . . . , N . Thus,
one can �nd a non singular matrix U such that U−1LU
is under the Jordan form, that is

U−1LU =

(
0 01×(N−1)

0(N−1)×1 ∆

)
(D.1)

with ∆ = D + U where D ∈ C(N−1)×(N−1) is diagonal
with µ2, . . . , µN on its diagonal and U ∈ C(N−1)×(N−1)

is strictly upper triangular. Furthermore, U can be cho-

sen such that U =
[
1 Y1

]
and U−1 =

[
ϑT

Y2

]
where

Y1 ∈ CN×(N−1) and Y2 ∈ C(N−1)×N are such that
Y2Y1 = IN−1.
Since (ϑT ⊗ I2m)ξc = 0 by the de�nition of ξc, it is then
su�cient to show that ζc = (Y2 ⊗ I2m)ξc converges to
the origin in order to show that ξc converges to the ori-
gin. One can show that the dynamics of ζc are given by

ζc = λ
[
I(N−1) ⊗A− c̄(D + U)⊗ (BKc)

]
ζc (D.2)

−c̄λ
N∑
i=1

(
[Y2(ENi L)]⊗ [BKcΓλ∆−1

θ ]
)
ξoi

by using the fact that Y21 = 0(N−1)×1 and the following
equalities

(Y2 ⊗ I2m)(L ⊗ (BKc))ξ
c = ((Y2LU)⊗ (BKc))

(
02m

ζc

)

=
((
Y2

(
L1 LY1

))
⊗ (BKc)

)(02m

ζc

)
= ((Y2LY1)⊗ (BKc))ζ

c = ((D + U)⊗ (BKc))ζ
c

Fact 1 For every c̄ ≥ 1
2 minµi 6=0(R(µi))

, the matrixM 4
=[

I(N−1) ⊗A− c̄(D + U)⊗ (BKc)
]
is Hurwitz. One de-
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notes Q̄ ∈ C(N−1)2m×(N−1)2m the Hermitian positive
de�nite matrix verifyingM∗Q̄+ Q̄M = −2I(N−1)2m.

Following the same lines as for ζc, the dynamics of x̄ij
are given by

˙̄xij = θ(A−KoC)x̄ij + θ2KoB
T

∫ t

κi
j
(t)

x̄ij(s)ds (D.3)

+
c̄

θ
[Lj ⊗ (BKcΓλ∆−1

θ )]ξoj +
c̄

θ
[(LjY1)⊗ (BKc)] ζ

c

Step 2. One considers the following candidate Lyapunov
functions

V̄c(ζ
c) = (ζc)∗Q̄(ζc), Vo

(
x̄ij
)

=
(
x̄ij
)T
P
(
x̄ij
)

V̄o(ζ
o) =

N∑
i=1

N∑
j=1

(aij + δij)Vo
(
x̄ij
)

where δij is the Kronecker delta (which is equal to 1
if i = j and 0 if else), ζo is the vector containing all
the x̄ij such that aij 6= 0 or i = j and P ∈ R2m×2m is
the symmetric de�nite positive matrix, solution of the
equation

P +ATP + PA = CTC (D.4)

and Ko = P−1CT (see (Gauthier et al. 1992) for more
details).

Step 2.1. Over-valuation of ˙̄Vc(ζ
c)

One has

˙̄Vc(ζ
c) = λ(ζc)∗(M∗Q̄+ Q̄M)(ζc) (D.5)

+(Υ1)∗Q̄ζc + (ζc)∗Q̄Υ1

≤−2λ‖ζc‖2 + 2
√
λmax(Q̄)

√
v̄c(ζc)‖Υ1‖ (D.6)

where inequality (D.6) is obtained by applying Fact 1,
the Cauchy-Schwartz inequality and the Rayleigh quo-
tient (λmin(P )x∗x ≤ x∗Px ≤ λmax(P )x∗x, for every
Hermitian matrix P ∈ Cn×n and vector x ∈ Cn), and
Υ1 = −c̄λ

∑N
i=1

(
[Y2(ENi L)]⊗ [BKcΓλ∆−1

θ ]
)
ξoi .

Fact 2 We have ‖Υ1‖ ≤
K1λ‖Γλ∆−1

θ
‖√

λmax(Q̄)

√
V̄o(ζo) with

K1 =
c̄‖Y2‖√
λmin(P )

‖L‖‖Kc‖
√
N
√
λmax(Q̄) (D.7)

Using Fact 2 gives

˙̄Vc(ζ
c)≤−2λλmin(Q̄)V̄c(ζ

c) (D.8)

+2K1λ‖Γλ∆−1
θ ‖
√
V̄c(ζc)

√
V̄o(ζo)

Step 2.2. Over-valuation of V̇o(x̄
i
j)

One has

V̇o(x̄
i
j) = θ(x̄ij)

T ((A−KoC)TP + P (A−KoC))(x̄ij)

+ (x̄ij)
TP (Υ2 + Υ3 + Υ4) + (Υ2 + Υ3 + Υ4)TP (x̄ij)

≤ −θV
(
x̄ij
)

+ 2
√
λmax(P )

√
Vo
(
x̄ij
)

× (‖Υ2‖+ ‖Υ3‖+ ‖Υ4‖)

where the inequality is obtained by using equation (D.4),
the Cauchy-Schwarz inequality and the Rayleigh quo-

tient, and Υ2 = θ2KoB
T
∫ t
κi
j
(t)
x̄ij(s)ds, Υ3 = c̄

θ [Lj ⊗
(BKcΓλ∆−1

θ )]ξoj and Υ4 = c̄
θ [(LjY1)⊗ (BKc)] ζ

c.

Fact 3 Wehave ‖Υ2‖ ≤ K2θ
2

N
√
λmax(P )

∫ t
t−τM

√
V̄o(ζo(s))ds

with

K2 =
N‖Ko‖

√
λmax(P )√

λmin(P )
(D.9)

Fact 4 We have ‖Υ3‖ ≤
K3‖Γλ∆−1

θ
‖

Nθ
√
λmax(P )

√
V̄o(ζo) with

K3 =
c̄N

3
2

√
λmax(P )‖L‖‖Kc‖√
λmin(P )

(D.10)

Fact 5 We have ‖Υ4‖ ≤ λmin(Q̄)K4

Nθ
√
λmax(P )

√
V̄c(ζc) with

K4 =
c̄N

3
2

√
λmax(P )‖L‖‖Y1‖‖Kc‖

(λmin(Q̄))
3
2

(D.11)

Using Facts 3, 4 and 5 gives

V̇o(x̄
i
j)≤−θVo(x̄ij) +

2K3‖Γλ∆−1
θ ‖

θN

√
Vo(x̄ij)

√
V̄o(ζo)

+
2θ2K2

N

√
Vo(x̄ij)

∫ t

t−τM

√
Vo(x̄ij(s))ds (D.12)

+
2K4λmin(Q̄)

θN

√
Vo(x̄ij)

√
V̄c(ζc)

Step 2.3. Over-valuation of ˙̄Vo(ζ
o)

Using the inequality
∑N
i=1

√
αi ≤

√
N
√∑N

i=1 αi for all

αi ≥ 0, yields

N∑
i,j=1

(aij + δij)
√
Vo(x̄ij) ≤ N

√
V̄o(ζo) (D.13)

7



and then

˙̄Vo(ζ
o)≤−θV̄o(ζo) +

2‖Γλ∆−1
θ ‖

θ
K3V̄o(ζ

o) (D.14)

+2θ2K2

√
V̄o(ζo)

∫ t

t−τM

√
V̄o(ζo(s))ds

+
2

θ
λmin(Q̄)K4

√
V̄c(ζc)

√
V̄o(ζo)

Step 2.4. Application of Lemma 2
Taking λ = εθ with ε ∈ (0, 1) gives ‖Γλ∆−1

θ ‖ = εθ2,
then inequalities (D.8) and (D.14) yield

dt

dt

(√
V̄c(ζc) + ε

3
2 θ2
√
V̄o(ζo)

)
≤ −εθλmin(Q̄)

(
1

2
− ε 1

2K4

)√
V̄c(ζc)

−ε 3
2 θ3

(
1

4
− ε 1

2K1 − εK3

)√
V̄o(ζo)

−εθλmin(Q̄)

2

√
V̄c(ζc)−

ε
3
2 θ3

4

√
V̄o(ζo)

+ε
3
2 θ4K2

∫ t

t−τM

√
V̄o(ζo(s))ds (D.15)

Taking ε such that ε < ε∗ with ε∗ = min
{

1, 1
(2K4)2 ,

1
(8K1)2 ,

1
8K3

}
leads to

dt

dt

(√
V̄c(ζc) + ε

3
2 θ2
√
V̄o(ζo)

)
≤ −ε

3
2 θ3

4

√
V̄o(ζo)

− εθλmin(Q̄)

2

√
V̄c(ζc) + ε

3
2 θ4K2

∫ t

t−τM

√
V̄o(ζo(s))ds

Applying Lemma 2 with v2
1 =

√
V̄c(ζc), v2

2 =

ε
3
2 θ2
√
V̄o(ζo), a = εθλmin(Q̄)

2 , b = θ
4 , c = θ2K2 and

δ = τM gives the result, provided that c
bδ < 1 which is

equivalent to θ < θ∗

τM
with θ∗ = 1

4K2
.

Proof of Fact 1 One can �rst notice that the ma-
trix I(N−1) ⊗A− c̄D ⊗ (BKc) is diagonal by block and
each block is given by A − c̄µiBKc, i = 2, . . . , N . Let
Q ∈ R2m×2m be the symmetric positive de�nite matrix,
solution of the equation Q+ATQ+QA = QBBTQ, one
can notice that Kc = BTQ (see (Bédoui et al. 2008) for
more details), then (A−c̄µiBKc)

∗Q+Q(A−c̄µiBKc) ≤
−Q+ (−2c̄R(µi) + 1)QBBTQ. Thus, each bloc is Hur-
witz if c̄ ≥ 1

2 miniR(µi)
. Finally, the matrix M is also

Hurwitz since the matrix −c̄U ⊗ (BKc) is strictly upper
triangular by block.

Proof of Fact 2 We have

‖Υ1‖ ≤ c̄λ
N∑
i=1

‖Y2‖‖L‖‖Kc‖

×‖Γλ∆−1
θ ‖

√√√√ N∑
j=1

(aij + δij)‖xij‖2 (D.16)

≤ c̄λ‖Y2‖‖L‖‖Kc‖‖Γλ∆−1
θ ‖

×
√
N

√√√√ N∑
i,j=1

(aij + δij)
Vo(x̄ij)

λmin(P )
(D.17)

=
c̄λ
√
N‖Y2‖√

λmin(P )
‖L‖‖Kc‖‖Γλ∆−1

θ ‖
√
V̄o(ζo) (D.18)

where inequality (D.16) is obtained by using the relation
‖A⊗B‖ = ‖A‖‖B‖, the submultiplicativity property of
‖.‖, the fact that ‖B‖ = 1, the fact that ‖ENi ‖ = 1 and
the fact that Lij = 0 if aij = 0 and δij = 0, inequality
(D.18) is obtained by using the Rayleigh quotient and
inequality (D.13).

Proof of Fact 3 We have

‖Υ2‖ ≤ θ2‖Ko‖
∫ t

κi
j
(t)

‖x̄ij(s)‖ds (D.19)

≤ θ2‖Ko‖√
λmin(P )

∫ t

t−τM

√
Vo(x̄ij(s))ds (D.20)

≤ θ2‖Ko‖√
λmin(P )

∫ t

t−τM

√
V̄o(ζo(s))ds (D.21)

where inequality (D.19) is obtained by using the submul-
tiplicativity property of ‖.‖ and the fact that ‖BT ‖ = 1,
inequality (D.20) is obtained by using the Rayleigh quo-
tient and the fact that 0 ≤ t − κij(t) ≤ τM , ∀t ≥ 0

by construction of κij and since ti,jk+1 − ti,jk ≤ τM for

all k ∈ N and inequality (D.20) by using the fact that
Vo(x̄

i
j) ≤ V̄o(ζo).

Proof of Fact 4 We have

‖Υ3‖ ≤
c̄

θ
‖Lj‖‖Kc‖‖Γλ∆−1

θ ‖

×

√√√√ N∑
k=1

(ajk + δjk)‖xjk‖2 (D.22)

≤
c̄
√
N‖L‖‖Kc‖‖Γλ∆−1

θ ‖
θ
√
λmin(P )

√
V̄o(ζo) (D.23)

where inequality (D.22) is obtained by using the relation
‖A ⊗ B‖ = ‖A‖‖B‖, the submultiplicativity property
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of ‖.‖, the fact that ‖B‖ = 1, the fact that ‖A ⊗ B‖ =
‖A‖‖B‖ and the fact that Lij = 0 if aij = 0 and δij =
0, inequality (D.23) is obtained by using the Rayleigh

quotient and the fact that ‖Lj‖ ≤
√
N‖L‖.

Proof of Fact 5 We have

‖Υ4‖ ≤
c̄

θ
‖Lj‖‖Y1‖‖Kc‖ ‖ζc‖ (D.24)

≤ c̄
√
N

θ
√
λmin(Q̄)

‖L‖‖Y1‖‖Kc‖
√
V̄c(ζc) (D.25)

where inequality (D.24) is obtained by using the relation
‖A⊗B‖ = ‖A‖‖B‖, the submultiplicativity property of
‖.‖, the fact that ‖A⊗B‖ = ‖A‖‖B‖ and the fact that
‖B‖ = 1, inequality (D.25) is obtained using the fact

that ‖Lj‖ ≤
√
N‖L‖ and the Rayleigh quotient.
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