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Introduction

Multi-agent systems (MAS) have attracted a lot of researchers due to their applications in many elds such as biology, physics, robotics, power grid, etc [START_REF] Cao | An overview of recent progress in the study of distributed multi-agent coordination[END_REF][START_REF] Defoort | Sliding-mode formation control for cooperative autonomous mobile robots[END_REF]. A fundamental challenge is how to design an appropriate distributed protocol using only the information of the current agent and its neighbors in order to reach consensus [START_REF] Zuo | Fixedtime consensus tracking for multi-agent systems with highorder integrator dynamics[END_REF]).

Among the dierent consensus problematics, the leaderless consensus has received considerable attention [START_REF] Li | Distributed consensus of linear multi-agent systems with adaptive dynamic protocols[END_REF].

Systems described by double integrators have been especially investigated [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF][START_REF] Yu | Some necessary and sucient conditions for second-order consensus in multiagent dynamical systems[END_REF] since a large class of mechanical systems are modeled by second-order dynamics. While it is interesting to model systems by continuous dynamics since they are mostly continuous by nature, local information is usually transmitted through digital networks and are then This paper was not presented at any IFAC meeting. Corresponding author T. Ménard.
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discrete by nature, see [START_REF] Ge | A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems[END_REF]) for a survey on the consensus problem for sampled MAS. Several consensus protocols have been proposed in the literature, when both the position and speed are exchanged [START_REF] Cao | Multi-vehicle coordination for double-integrator dynamics under xed undirected/directed interaction in a sampled-data setting[END_REF][START_REF] Cheng | Sampled-data based average consensus of second-order integral multi-agent systems: Switching topologies and communication noises[END_REF][START_REF] Zhan | Asynchronous consensus of multiple double-integrator agents with arbitrary sampling intervals and communication delays[END_REF].

However, in all the aforementioned works, it is requested to measure both the relative positions and relative velocities of neighboring agents. But in practice, measuring the relative velocities can be much more dicult than measuring the relative positions [START_REF] Hong | Distributed observers design for leader-following control of multi-agent networks[END_REF][START_REF] Hong | Tracking control for multiagent consensus with an active leader and variable topology[END_REF]. In order to tackle this problem, it would then be preferable to use only the relative positions in the consensus protocol. Several solutions have been proposed in the literature. For continuous measurements, observers have been used in [START_REF] Hong | Tracking control for multiagent consensus with an active leader and variable topology[END_REF][START_REF] Li | Consensus of linear multi-agent systems with reduced-order observer-based protocols[END_REF], both continuous and discrete measurements have been used in [START_REF] Yu | Second-order consensus in multi-agent dynamical systems with sampled position data[END_REF], a lter based approach has been proposed in [START_REF] Mei | Distributed coordination for second-order multi-agent systems with nonlinear dynamics using only relative position measurements[END_REF]) and a delay induced method in [START_REF] Yu | Delay-induced consensus and quasi-consensus in multi-agent dynamical systems[END_REF]. For the case where only sampled position information is available, only a few results are available. In [START_REF] Ma | Second-order consensus for directed multi-agent systems with sampled data[END_REF], an approach based on the discretization of the model and the use of an Euler derivative is proposed which allows to obtain the consensus. The authors of [START_REF] Chen | Observer-based consensus of secondorder multi-agent system with xed and stochastically switching topology via sampled data[END_REF] obtain the consensus under sampled data by using observers in order to recover the speeds. A delay induced method is also proposed in [START_REF] Huang | Some necessary and sucient conditions for consensus of second-order multiagent systems with sampled position data[END_REF].

All these methods require that the sampling period is Preprint submitted to Automatica 2 October 2018 uniform and synchronized, that is all the agents send local information at the same regular time, but this does not allow to capture the inter-sampled behavior of the system [START_REF] Ge | Distributed sampled-data asynchronous h innity ltering of markovian jump linear systems over sensor networks[END_REF] and can overload the network, so it is preferable to allow asynchronous sampling periods, that is, every agent can send its position independently from its neighbors.

The problem of reconstructing a continuous signal from discrete-time measurements by using continuousdiscrete time observer has been investigated by several authors during the last few years. Indeed, the case of uniformly observable systems has been considered in [START_REF] Farza | Continuous-discrete time observers for a class of mimo nonlinear systems[END_REF], and in [START_REF] Bouraoui | Observer design for a class of uncertain nonlinear systems with sampled outputs application to the estimation of kinetic rates in bioreactors[END_REF] for the case of measurement noises and uncertainties in the dynamics. Non uniformly observable systems have also been considered in [START_REF] Hernández-González | A cascade observer for a class of mimo non uniformly observable systems with delayed sampled outputs[END_REF]).

This framework is particularly adapted for the consen- (i) Only three tuning parameters have to be selected:

the coupling force c, the gain of the observer θ and the gain of the feedback control law λ. Furthermore, θ and λ have physical meaning since they represent the speed of convergence of the observer and of the controlled part respectively, which facilitates the tuning of the proposed consensus. (ii) The sampling periods may be asynchronous and aperiodic. Indeed, each agent can send its measurements aperiodically and independently from the other agents. This allows to reduce the required bandwidth since it is not necessary for the dierent agents to send their measurements at the same instants.

(iii) Only the sampled position data are exchanged between neighbors, neither the relative velocities, nor the applied inputs are required. (iv) Arbitrary long, but bounded, sampling periods can be used in order to reach the consensus. This feature is obtained by properly setting the gain of the continuous control law and the gain of the observer for a given upper bound on the sampling periods.

The remaining of the paper is organized as follows.

First, some notations and previous results are reminded in Section 2. The considered model and main results are presented in Section 3. Simulations are provided in Section 4 in order to illustrate the proposed approach.

Finally, Section 5 concludes the article. The proof of the results presented in this article are reported in the appendix for clarity purpose.

Preliminaries

In this paper, the following notations will be used.

The set of n × n real matrices (complex matrices respectively) is denoted R n×n (C n×n respectively). The transpose for real matrices and conjugate transpose for complex matrices are represented by the superscript T and * respectively. . denotes the Euclidean Norm. I n is the identity matrix of dimension n and 0 n the square matrix of dimension n whose entries are equal to zero. 0 m×n denotes the matrix of dimension m × n whose entries are all equal to zero. E N i denotes the square diagonal matrix of dimension N whose i-th diagonal entry is equal to 1 and all others to 0. The vector with all entries equal to one is denoted 1. A directed graph G is a pair (V, E), where V is a nonempty nite set of nodes and E ⊆ V × V is a set of edges, in which an edge is represented by an ordered pair of distinct nodes. For an edge (i, j), node i is called the parent node, node j the child node, and i is a neighbor of j. A graph with the property that (i, j) ∈ E implies (j, i) ∈ E is said to be undirected. A path on G from node i 1 to node i l is a sequence of ordered edges of the form (i k , i k+1 ), k = 1, . . . , l -1. A directed graph has or contained a directed spanning tree if there exists a node called the root, which has no parent node, such that there exists a directed path from this node to every other node in the graph.

Suppose that there are N nodes in a graph. The ad-

jacency matrix A = (a ij ) ∈ R N ×N is dened by a ii = 0 and a ij = 1 if (j, i) ∈ E and a ij = 0 other- wise. The Laplacian matrix L ∈ R N ×N is dened as L ii = j =i a ij , L ij = -a ij for i = j.
The following two lemmas will be needed for the proof of the main result of this paper.

Lemma 1 (Olfati-Saber & Murray 2004) Let L be the Laplacian matrix corresponding to the graph G. Zero is an eigenvalue of L with 1 and a nonnegative vector ϑ T ∈ R 1×N , verifying ϑ T 1 = 1, as the corresponding right and left eigenvectors, and all nonzero eigenvalues have positive real parts. Furthermore, zero is a simple eigenvalue of L if and only if graph G has a directed spanning tree. The eigenvalues of L will be denoted (µ i ) with

µ 1 = 0. Lemma 2 Let v 1 (t) and v 2 (t) be real valued func- tions verifying d dt v 2 1 (t) + v 2 2 (t) ≤ -av 2 1 (t) -bv 2 2 (t) + c t t-δ v 2 2 (s)ds, for all t ≥ 0, where a, b > 0, c ≥ 0 and c b δ < 1, then v 1 (t)
and v 2 (t) exponentially converge to zero as t goes to innity.

3 Main results

Class of considered MAS

One considers a group of N identical agents, whose communication topology is described by a graph G = (V, E).

The agents have the following second-order dynamics

ṙi (t) = v i (t) vi (t) = u i (t), i = 1, . . . , N (1) 
where r i , v i ∈ R m represent respectively the position and the speed of the i-th agent, with m ∈ N. If (j, i) ∈ E, one considers that agent i receives the position r j of agent j at times t i,j k , with k ∈ N, but not its speed v j , nor its input u j . The sampling instants (t i,j k ) are supposed to verify 0 = t i,j

0 < t i,j 1 < • • • < t i,j k < .
. . . Furthermore, one assumes that there exist constants τ m , τ M > 0, called respectively the minimum sampling period and the maximum sampling period, such that τ m < t i,j k+1 -t i,j k < τ M , for all k ∈ N and i, j ∈ {1, . . . , N }. The minimum bound τ m on the sampling periods guarantee no Zeno phenomenon.

The aim of this paper is to design a consensus protocol such that all the agents reach a common trajectory, as stated more precisely in the following denition.

Denition 1 Second-order consensus of system ( 1) is said to be achieved if, for any initial conditions and for all i, j ∈ {1, . . . , N }, lim t→+∞ r i (t) -r j (t) = 0 and

lim t→+∞ v i (t) -v j (t) = 0.

Consensus protocol

The proposed observer-based consensus protocol is given

for t ≥ 0 by u i (t) = c N j=1 a ij λ 2 ri j (t) -ri i (t) + 2λ vi j (t) -vi i (t) (2) 
for i = 1, . . . , N , where ri j and vi j are the estimated position and speed of the agent j by the agent i and their dynamics are given by

ṙi j (t) = vi j (t) -2θe -2θ(t-t i,j k ) ri j t i,j k -r j t i,j k (3) vi j (t) = -θ 2 e -2θ(t-t i,j k ) ri j t i,j k -r j t i,j k (4)
for i, j = 1, . . . , N and t ∈ t i,j k , t i,j k+1 , k ∈ N, where c > 0 is the coupling strength, a ij is the (i, j)-th entry of the adjacency matrix A of the directed graph G, θ, λ > 0 are the observer and controller tuning parameters respectively. The observer initial values ri j (0), vi j (0) ∈ R m can be chosen arbitrarily.

The dynamics of system (1) with consensus protocol (2)-( 3)-( 4) can be written in a more compact form as stated in the following lemma.

Lemma 3 Denoting

x i = r i v i , xi j = ri j vi j and xi j = xi j -x j = ri j ṽi j
, the dynamics of MAS (1) with consensus protocol (2)-( 3)-( 4) are given for all t ≥ 0 by

ẋi (t) = Ax i (t) - c N k=1 L ik BK c Γ λ x k (t) + xi k (t) (5) ẋi j (t) = A -θ∆ -1 θ K o C xi j (t) (6) +θ∆ -1 θ K o B T t κ i j (t) xi j (s)ds +c N k=1 L jk BK c Γ λ x k (t) + xj k (t)
where A =

0 m I m 0 m 0 m , B = 0 m I m , C = I m 0 m , K c = I m 2I m , Γ λ = λ 2 I m 0 m 0 m λI m , K o = 2I m I m T , ∆ θ = I m 0 m 0 m 1 θ I m and κ i j (t) = max t i,j k |t i,j k ≤ t, k ∈ N .
Remark 1 For a given time instant t, κ i j (t) simply represents the last instant t i,j k when agent i has received the position of agent j. This is a piecewise constant function.

Example 1 An example of a graph G with 4 nodes, specifying the transmitted data r i (t i,j k ) and reconstructed states xi j for each agent, is given in Fig. 1.

1 x1 1 , x1 4 2 x2 2 , x2 1 3 x3 3 , x3 1 4 x4 4 , x4 3 r1 t 2,1 k r1 t 3,1 k r3 t 4,3 k r4 t 1,4 k r 1 t 1,1 k r 2 t 2,2 k r 4 t 4,4 k r 3 t 3,3 k Fig. 1. Directed graph G
Remark 2 Each agent i = 1, . . . , N has to reconstruct its own state: xi i by using r i t i,i k and the state of every agent j such that (j, i) ∈ E: xi j by using r j t i,j k . Then, if i = j, t i,j k correspond to the instants where the measurement are transmitted from agent j to agent i and t i,i k correspond to the instants when agent i uses its own position measurement r i t i,i k to reconstruct its own state xi i (t).

Convergence results

One rst states the following result which allows to transform the consensus problem into a stability problem through the introduction of new coordinates.

Lemma 4 Consider the coordinates

ξ c = (I N -1ϑ T ) ⊗ Γ λ X, xi j = ∆ θ xi j with X = x T 1 . . . x T N T
. Then, the dynamics of the MAS (1) with consensus protocol (2)-( 3)-( 4) are given for all t ≥ 0 by

ξc = λ(I N ⊗ A)ξ c -cλ[L ⊗ (BK c )]ξ c (7) -cλ N i=1 [(I N -1ϑ T )(E N i L)] ⊗ [BK c Γ λ ∆ -1 θ ] ξ o i ẋi j = θ(A -K o C)x i j + θ 2 K o B T t κ i j (t) xi j (s)ds (8) + c θ [L j ⊗ (BK c Γ λ ∆ -1 θ )]ξ o j + c θ [L j ⊗ (BK c )] ξ c
where ξ o j = (x j 1 ) T . . . (x j N ) T T and L j is the j-th line of L. Furthermore, the consensus is achieved if ξ c converges to the origin.

The main result is given in the following Theorem.

Theorem 1 Consider MAS (1), whose communication topology G contains a directed spanning tree, with the consensus protocol given by equations ( 2)-( 3)-(4). There exists θ * > 0 and ε * ∈ (0, 1) such that if c, θ and τ M verify

c ≥ 1 2 min µi =0 {R(µ i )} , θ < θ * τ M (9)
and if λ is chosen as λ = εθ with ε ∈ (0, ε * ) then the consensus is achieved.

Remark 3 The conditions given in Theorem 1 are only sucient and may lead to conservative bounds, this is actually a common drawback of the Lyapunov approach. Nevertheless, it gives useful hints in order to tune the parameters θ and λ by a trial and error approach. Indeed, the parameters θ and λ have a physical meaning since they correspond to the speed of convergence of the observer part and control part respectively (the higher the value of θ is taken, the faster the observer will converge). Inequality ( 9) shows that if one wants to increase the sampling periods then θ has to be taken small enough.

The fact that * < 1 shows that λ has to be taken smaller than θ and the ratio between λ and θ does not depend on the sampling period upper bound. It should be noted that in order to consider long sampling periods, θ and λ have to be taken small enough and then the convergence of the overall MAS is slowed down.

Example

The observer-based consensus proposed in this article is applied to an MAS composed of 4 agents whose dynamics are given by ( 1), with m = 1 and whose graph is reported in Fig. 1. The corresponding adjacency and Laplacian matrices are given respectively by

A =        0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0        and L =        1 0 0 -1 -1 1 0 0 -1 0 1 0 0 0 -1 1       
The non zero eigenvalues of L are equal to 1 and 1.5 ± j0.866 where j is the imaginary unit, then the coupling strength c is chosen as c = 0.5 in order to verify inequality (9).

In all the following simulations, the initial conditions for the positions and velocities of the agents have been chosen as [r 1 (0), r 2 (0), r 3 (0), r 4 (0)] = [0, 1, 2, 3],

[v 1 (0), v 2 (0), v 3 (0), v 4 (0)] = [0, 0.2, 0.4, 0.6] and for the observers ri 1 (0), ri 2 (0), ri 3 (0), ri 4 (0) = [1, -2.7, 3.5, 4], vi 1 (0), vi 2 (0), vi 3 (0), vi 4 (0) = [0, -1, 0, -0.5] with i = 1, . . . , 4.

The sampling periods have been chosen so that they belong to [0.5s, 2s]. The gain for the observer has been chosen as θ = 2 and the gain for the control as λ = 0.2. The simulation results are reported in Fig. 2. The sampling periods have been chosen following a uniform stochastic law and are reported in Fig. 2.e. The estimation of the position and velocity of agent 1 by agent 2 are depicted in Figs. 2.c and 2.d. It is worth to be noted that the observer does not converge until the consensus is reached since due to absence of knowledge of the input applied to agent 1, the model used by agent 2 is not correct (the input is considered as an unmodeled perturbation).

More simulations have been done with the same tuning but we have added some measurement noise and process noise following a centered normal law of variance 0.05 and 0.1 respectively. The additive measurement noise level corresponds to a SNR of 40dB on the output error signal ri j . The results of these simulations are reported in Fig. 3. < 1 and denote κ = (1 -ξ) ∈ (0, 1). The real number ν exists since the function g : R + → R dened as g(ν) = e νδ -1 ν for ν ∈ (0, +∞) and g(0) = δ is continuous and increasing over [0, +∞). Consider the candidate Lyapunov functional W (

v t ) = v 2 1 (t) + v 2 2 (t) +c δ 0 t t-s e νκ(µ-t+s) v 2 2 (µ)dµds, where v t (s) = [v 1 (t + s), v 2 (t + s)] T , s ∈ [-δ, 0]. Then Ẇ (v t ) ≤ -av 2 1 (t) -bv 2 2 (t) + c t t-δ v 2 2 (s)ds (A.1) -νκc δ 0 t t-s e νκ(µ-t+s) v 2 2 (µ)dµds + c δ 0 e νκs v 2 2 (t) -v 2 2 (t -s)ds ≤ -av 2 1 (t) -bv 2 2 (t) + c e νκδ -1 νκ v 2 2 (t) (A.2) -νκ W (v t ) -v 2 1 (t) -v 2 2 (t)
Thus, one obtains

Ẇ (v t ) + νκW (v t ) ≤ (-a + νκ)v 2 1 + -b + c e νκδ -1 νκ + νκ v 2 2 ≤ -a + aκ 2 v 2 1 + -b + b(1 -κ) + bκ 2 v 2 2 (A.3) ≤ -a 1 - κ 2 v 2 1 - bκ 2 v 2 2 ≤ 0
where inequality (A.3) is obtained by using the fact that ν ∈ (0, min{a/2, b/2}) and g(νκ

) ≤ g(ν) = b(1 -κ)/c. B Proof of Lemma 3 Let k ∈ N, from the denition of x i , xi j and A, B, C, K c , K o , Γ λ , ∆ θ , one directly gets for all t ∈ t i,j k , t i,j k+1 ẋi (t) = Ax i (t) + Bu i (t) (B.1) ẋi j (t) = ṽi j (t) -2θz i j (t) -θ 2 z i j (t) (B.2) ẋi j (t) = (A -θ∆ -1 θ K o C)x i j (t) -Bu j (t) (B.3) -θ∆ -1 θ K o (z i j (t) -ri j (t)) u i (t) = -c N k=1 L ik K c Γ λ (x k + xi k ) (B.4)
where ri j = ri j -r j , ṽi j = vi j -v j and z i j (t) = e -2θ(t-t i,j k ) ri j t i,j k . Furthermore, żi j (t) = -2θz i j (t) and ṙi j (t) = ṽi j (t) -2θz i j (t) implies that

d dt z i j (t) -ri j (t) = -ṽ i j (t) = -B T xi j (t) (B.5) and z i j (t i,j k ) -ri j (t i,j k ) = 0 yields z i j (t) -ri j (t) = - t t i,j k B T xi j (s)ds (B.6) for all t ∈ t i,j k , t i,j k+1 .
Replacing expressions of u i and (z i j -ri j ) given by (B.4) and (B.6) in (B.1) and (B.3), and dening κ i j as in Lemma 3) give expressions ( 5)-( 6) for all t ≥ 0.

C Proof of Lemma 4

Let us rst show how to obtain equations ( 7) and ( 8). This is done in two steps, indeed, one has

ξ c = [(I N - 1ϑ) ⊗ I 2m ]E with E = e T 1 . . . e T n T
and e i = Γ λ x i .

Using Lemma 3 and the following equalities

∆ θ A∆ -1 θ = θA, C∆ -1 θ = C, Γ λ AΓ -1 λ = λA, Γ λ B = λB, ∆ θ B = 1/θB and B T ∆ -1 θ = θB T , one obtains ėi = λAe i -cλ N k=1 L ik BK c (e k + Γ λ ∆ -1 θ xi k ) (C.1) = λAe i -cλ[L i ⊗ (BK c )]E (C.2) -cλ[L i ⊗ (BK c Γ λ ∆ -1 θ )]ξ o i ) Ė = λ(I N ⊗ A)E -cλ[L ⊗ (BK c )]E (C.3) -cλ N i=1 [(E N i L) ⊗ (BK c Γ λ ∆ -1 θ )]ξ o i ẋi j = θ(A -K o C)x i j + θ 2 K o B T t κ i j (t) xi j (s)ds (C.4) + c θ [L j ⊗ (BK c )]E + c θ [L j ⊗ (BK c Γ λ ∆ -1 θ )]ξ o j Using the equality (I N -1ϑ T )L = L(I N -1ϑ T ) (resp.
(L j )(1ϑ T ) = 0 1×N for j = 1, . . . , N ) directly gives equation (7) (resp. equation ( 8)).

It is direct to see that 0 is a simple eigenvalue of (I N -1ϑ T ) with 1 as a right eigenvector and ϑ T as a left eigenvector and 1 is the other eigenvalue of multiplicity N -1. Thus, by denition of ξ c , ξ c = 0 if and only if

e 1 = e 2 = • • • = e N .

D Proof of Theorem 1

According to Lemma 4, if ξ c tends to the origin then the consensus is achieved. Thus, one shows here that both ξ c and xi j exponentially converge to the origin with a Lya- punov approach. The proof of Theorem 1 is split into two steps. In step 1, new coordinates are dened in order to simplify the stability analysis. Then, in step 2 candidate Lyapunov functions are considered and inequalities are derived in sub-steps 2.1 ,2.2, 2.3 so that Lemma 2 applies in sub-step 2.4. Throughout the proof of the Theorem, some technical facts are stated in order to clarify the presentation. The proof of these facts can be found at the end of this section.

Step 1. Since G contains a directed spanning tree, it follows from Lemma 1 that 0 is a simple eigenvalue of L and that all the other eigenvalues have a positive real part, that is µ 1 = 0 and R(µ i ) > 0, i = 2, . . . , N . Thus, one can nd a non singular matrix U such that U -1 LU is under the Jordan form, that is

U -1 LU = 0 0 1×(N -1) 0 (N -1)×1 ∆ (D.1)
with ∆ = D + U where D ∈ C (N -1)×(N -1) is diagonal with µ 2 , . . . , µ N on its diagonal and U ∈ C (N -1)×(N -1) is strictly upper triangular. Furthermore, U can be cho-

sen such that U = 1 Y 1 and U -1 = ϑ T Y 2 where Y 1 ∈ C N ×(N -1) and Y 2 ∈ C (N -1)×N are such that Y 2 Y 1 = I N -1 .
Since (ϑ T ⊗ I 2m )ξ c = 0 by the denition of ξ c , it is then sucient to show that ζ c = (Y 2 ⊗ I 2m )ξ c converges to the origin in order to show that ξ c converges to the origin. One can show that the dynamics of ζ c are given by

ζ c = λ I (N -1) ⊗ A -c(D + U ) ⊗ (BK c ) ζ c (D.2) -cλ N i=1 [Y 2 (E N i L)] ⊗ [BK c Γ λ ∆ -1 θ ] ξ o i
by using the fact that Y 2 1 = 0 (N -1)×1 and the following equalities

(Y 2 ⊗ I 2m )(L ⊗ (BK c ))ξ c = ((Y 2 LU) ⊗ (BK c )) 0 2m ζ c = Y 2 L1 LY 1 ⊗ (BK c ) 0 2m ζ c = ((Y 2 LY 1 ) ⊗ (BK c ))ζ c = ((D + U ) ⊗ (BK c ))ζ c
Fact 1 For every c ≥ 1 2 min µ i =0 (R(µi)) , the matrix M = I (N -1) ⊗ A -c(D + U ) ⊗ (BK c ) is Hurwitz. One de-notes Q ∈ C (N -1)2m×(N -1)2m the Hermitian positive denite matrix verifying M * Q + QM = -2I (N -1)2m .

Following the same lines as for ζ c , the dynamics of xi j are given by ẋi

j = θ(A -K o C)x i j + θ 2 K o B T t κ i j (t) xi j (s)ds (D.3) + c θ [L j ⊗ (BK c Γ λ ∆ -1 θ )]ξ o j + c θ [(L j Y 1 ) ⊗ (BK c )] ζ c
Step 2. One considers the following candidate Lyapunov functions

Vc (ζ c ) = (ζ c ) * Q(ζ c ), V o xi j = xi j T P xi j Vo (ζ o ) = N i=1 N j=1 (a ij + δ ij )V o xi j
where δ ij is the Kronecker delta (which is equal to 1 if i = j and 0 if else), ζ o is the vector containing all the xi j such that a ij = 0 or i = j and P ∈ R 2m×2m is the symmetric denite positive matrix, solution of the equation

P + A T P + P A = C T C (D.4)
and K o = P -1 C T (see [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF]) for more details).

Step 2.1. Over-valuation of Vc (ζ c )

One has

Vc (ζ c ) = λ(ζ c ) * (M * Q + QM)(ζ c ) (D.5) +(Υ 1 ) * Qζ c + (ζ c ) * QΥ 1 ≤ -2λ ζ c 2 + 2 λ max ( Q) vc (ζ c ) Υ 1 (D.6)
where inequality (D.6) is obtained by applying Fact 1, the Cauchy-Schwartz inequality and the Rayleigh quotient (λ min (P )x * x ≤ x * P x ≤ λ max (P )x * x, for every Hermitian matrix P ∈ C n×n and vector x ∈ C n ), and

Υ 1 = -cλ N i=1 [Y 2 (E N i L)] ⊗ [BK c Γ λ ∆ -1 θ ] ξ o i . Fact 2 We have Υ 1 ≤ K1λ Γ λ ∆ -1 θ √ λmax( Q) Vo (ζ o ) with K 1 = c Y 2 λ min (P ) L K c √ N λ max ( Q) (D.7) Using Fact 2 gives Vc (ζ c ) ≤ -2λλ min ( Q) Vc (ζ c ) (D.8) +2K 1 λ Γ λ ∆ -1 θ Vc (ζ c ) Vo (ζ o )
Step 2.2. Over-valuation of Vo (x i j )

One has

Vo (x

i j ) = θ(x i j ) T ((A -K o C) T P + P (A -K o C))(x i j ) + (x i j ) T P (Υ 2 + Υ 3 + Υ 4 ) + (Υ 2 + Υ 3 + Υ 4 ) T P (x i j ) ≤ -θV xi j + 2 λ max (P ) V o xi j × ( Υ 2 + Υ 3 + Υ 4 )
where the inequality is obtained by using equation (D.4), the Cauchy-Schwarz inequality and the Rayleigh quotient, and

Υ 2 = θ 2 K o B T t κ i j (t) xi j (s)ds, Υ 3 = c θ [L j ⊗ (BK c Γ λ ∆ -1 θ )]ξ o j and Υ 4 = c θ [(L j Y 1 ) ⊗ (BK c )] ζ c . Fact 3 We have Υ 2 ≤ K2θ 2 N √ λmax(P ) t t-τ M Vo (ζ o (s))ds with K 2 = N K o λ max (P ) λ min (P ) (D.9) Fact 4 We have Υ 3 ≤ K3 Γ λ ∆ -1 θ N θ √ λmax(P ) Vo (ζ o ) with K 3 = cN 3 2 λ max (P ) L K c λ min (P ) (D.10) Fact 5 We have Υ 4 ≤ λmin( Q)K4 N θ √ λmax(P ) Vc (ζ c ) with K 4 = cN 3 2 λ max (P ) L Y 1 K c (λ min ( Q)) 3 2 (D.11)
Using Facts 3, 4 and 5 gives Vo (x i j ) ≤ -θV o (x i j ) +

2K 3 Γ λ ∆ -1 θ θN V o (x i j ) Vo (ζ o ) + 2θ 2 K 2 N V o (x i j ) t t-τ M
V o (x i j (s))ds (D.12)

+ 2K 4 λ min ( Q) θN V o (x i j ) Vc (ζ c )
Step 2. Proof of Fact 2 We have

Υ 1 ≤ cλ N i=1 Y 2 L K c × Γ λ ∆ -1 θ N j=1 (a ij + δ ij ) x i j 2 (D.16) ≤ cλ Y 2 L K c Γ λ ∆ -1 θ × √ N N i,j=1
(a ij + δ ij ) V o (x i j ) λ min(P ) (D.17 where inequality (D.19) is obtained by using the submultiplicativity property of . and the fact that B T = 1, inequality (D.20) is obtained by using the Rayleigh quotient and the fact that 0 ≤ t -κ i j (t) ≤ τ M , ∀t ≥ 0 by construction of κ i j and since t i,j k+1 -t i,j k ≤ τ M for all k ∈ N and inequality (D.20) by using the fact that V o (x i j ) ≤ Vo (ζ o ).

Proof of Fact 4

We have 

Υ 3 ≤ c θ L j K c Γ λ ∆ -1
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  3. Over-valuation of Vo (ζ o )

(

  a ij + δ ij ) V o (x i j ) ≤ N Vo (ζ o ) (D.13)triangular by block.

  o )(D.18) where inequality (D.16) is obtained by using the relation A ⊗ B = A B , the submultiplicativity property of . , the fact that B = 1, the fact that E N i = 1 and the fact that L ij = 0 if a ij = 0 and δ ij = 0, inequality (D.18) is obtained by using the Rayleigh quotient and inequality (D.13).Proof of Fact 3 We haveΥ 2 ≤ θ 2 K

  inequality (D.22) is obtained by using the relation A ⊗ B = A B , the submultiplicativity property of . , the fact that B = 1, the fact that A ⊗ B = A B and the fact that L ij = 0 if a ij = 0 and δ ij = 0, inequality (D.23) is obtained by using the Rayleigh quotient and the fact that L j D.24) is obtained by using the relation A ⊗ B = A B , the submultiplicativity property of . , the fact that A ⊗ B = A B and the fact that B = 1, inequality (D.25) is obtained using the fact that L j ≤ √ N L and the Rayleigh quotient.

and then

Step 2.4. Application of Lemma 2

Taking λ = εθ with ε ∈ (0, 1) gives Γ λ ∆ -1 θ = εθ 2 , then inequalities (D.8) and (D.14) yield

Proof of Fact 1 One can rst notice that the matrix I (N -1) ⊗ A -cD ⊗ (BK c ) is diagonal by block and each block is given by A -cµ i BK c , i = 2, . . . , N . Let Q ∈ R 2m×2m be the symmetric positive denite matrix, solution of the equation Q + [START_REF] Bédoui | Robust nonlinear controllers for bioprocesses[END_REF]) for more details), then (A-cµ i BK c ) * Q+Q(A-cµ i BK c ) ≤ -Q + (-2cR(µ i ) + 1)QBB T Q. Thus, each bloc is Hurwitz if c ≥ 1 2 mini R(µi) . Finally, the matrix M is also Hurwitz since the matrix -cU ⊗ (BK c ) is strictly upper